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.A~stmct-We· discuss a novel v11riillional princ::iplc in quantum mcchtriks defining maximum crnanglcd !;tates 
·in tcnns of quantum fluctuations of observables specifying these stales. · 

There ~r<? a few reasons to study ma~imum eri~<J.n­
gled states {MES)specifica\ly . .Fir~t of all. a number .of 
important qu~ntum communication and computing 
protocols, such. as quantum telep.ortation [lJ, are .. based 
on the·US.~ pf MES, Then, if MES pfa given system are 
known, all other entangled (but not' maximum entan­
gled) states of this .system can ·be constructed from the 
MES by means ·of stochastic. jocal transformatic:>i:ts 
assisted ·by classical communkations (SLOCC) [2, J] . 
. Finally, MES can be described in the ~m;cinct and ele­
gailt form of a nt::W ·variational principleJ4] and. the,reby 
illuminate the physical nature ·of.the: phenomenon. 

The .. main objective-of this note is to discuss the vari­
ational principle for MES [41 and to demonstrate. how 
this principle cari be employed ·to determine MES in 
different physical systems. 

It should be stressed that the various -dce.~nitions of 
entanglement tire mo~tly intuitive and.cc;>ntairi acciden­
tal togeth~r with essential. An example is provided by 
01.e defin'ition plaborated by the- NSF Workshop oh 
.Quantum Information Science [5]: 

{Quantum entanglement is. a subtle.-noilloc;al corre­
lation among the parts Of a quantum system that has: no 
'classical analog. Thus, entanglement is be.st character­
ized and quantified as a feature -of the .system that c;in .. 
not be creat~d thrqµgh local operations ttiat act on the 
different parts·sepafately, or by means cif cla~sical com,· 
munication.) 

'This definition contains an a.priori ',lssumption of 
non locality that· leads'. to aJoss ofgenerality. In ·particu­
lar, .it. ]eaves-·aside the ·single-particle entanglement [6], 
as well as entanglement in the Bose .... Einstefo conden:­
.sate of atoms. where the requirement of nonlocality is 
meaningl~ss ·because o.f the strong overlap of wave­
functions of.different atoms [7]. 

The ab~ence cif a classical analog is a common fea­
ture pf almost aU definitions of entanglement. In the 
best Way, this is ex.pressed in the figurative definition, 
which is ascribed to Aser Peres (fotreference, see [$]): 

{Entangl~ment is a trick that quant11m magicians 
use to produc~ phenomena that Cc).nnot be .imitated by 
classical magicians:.-} 

.'·{:\ 

Probably, the characte'i'istic feature of MES\ 
most 'experts- agree with is their maximal remot~ 
from what is called .. classical reality" -[4]. 

Note thaL this is a question of remoteness fi::o 
classical reality ·and not ·of its violation. describe 
B¢1J's ty.pe of ineqtirilhies and Greenberger-HQ'. 
Zeilinger (GHZ) conditions. which can .be. man{fe 
by unentangled :;tales [9, 10]. 

The maii1 difference between the qm.intum and 
si,;:al levels of understanding of physical sys 
("physica1 r:eality"} is the existence of qvantum ff' 
ations (uncertainties) that vani$h for classiccil ··st 
The rertson for the existence of quantum fluctu~:' 
Hes in the very heart of quantum mechanic~. inf 
preting physical observables as operators with sp¢ 
algebra.ic properties (commutation relatiqns) , 
Ttms. the remoteness qfa quantum state from cla~~ 
~ality can :be ~p(;_cjfied by the maximum of the. 
variance·desc.r.ibing th~ ran_ge of quantum fluctu~t._ 
of an essential measurements .[ 4J. -

Corisider a physical system S defined in the Hi 
space.ll-ll(S}. Let. {·Mi} be the set ofaH essentiai' me : 
inents completely specifyi·ng. the state 'If of the s. · 
in IHl(S). The choice of the essential obs:erva 
depends on the phy·sical measurements we.are·go{ 
p.erform over the system, or onthe Hamiltonians. w. 
are accessible for nianipulations With states 'I' E IHf 

The. set of ~ssentjal.measurements is us.ua!Iy as· 
ated w_ith the. dynamic !iymmetry group of the Hi 
space [9, 10]. For example, in the case of an Nlq 
system defined .ih the space 

IHl<s> = !Hl2.N = ®H:r .. 
i"' I 

where 1Hl2 is thetwo-dimepsional Hilbert space c:if s' 
of spin 4 T the dynamic symmetry group is 

N 

d = SU(2) x $(/(2) x .... x.Sl/.(2) = TJ SU(2)l 
I= I 
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'\!f :::.~:~i~'::;:;;[:~,io:i::::e~ 
<1fitit-dfinfinitesimal generators of the Lie alge­
'fg)SU(2, C). The corresponding dynamic sym-
:[1~~ . 

N 

(3) 
j;; l 

''$¢ple7-1fication of G (2). Thus, in space (I), 
:iS?i.f essential measurements provided by the 
'./"·'::). ( ") 

lr:aiors cr~ U= l • .. . ,N,_<:x= 1,2,3). 

}'f~:~Gf t of a quantttm measurement i$ provided 
·"·:ab-value 

(M.) = {(\jf}M;\\JI), 
,. Tr(pM;) 

(4) 

(5) 

ii:;f:pure and mixed states, respectively. Here, 

:it/\((:· · 2 : · . 2 
(%::,;; (.6..M;) = (M;- (M;)) 

·Jtt~thtvatiance describing the remoteness of a 
'"\jf~te: in !Hl(S) from the clasS:ical reality tuk.es 
:,·.::,:., ·:"::· ·· . 

(6) 

'rifu.'tooui" definition [4] , the maximum of the 
rifiri'¢e(6) corresponds to the averaging in the· 
"'.'4Jide of{ 6) . over MES: 

i;[i .~ Lt:~:~::::;;;:.,>· (?) 

"tiiltf<;>n · (7} represents a new variational prin­
. · · S:T4], which specifies MES as the manifes­

_a4µntt1mfluctuations at their extreme. 

ifg\:fi~fli1ition, MES represerit an exact antithesis 
'"''H'Lstates. which manifest the minimum scale 
·wmjtuctua6.ons and, therefore, are maximally 
·h?,q1ass1cat reality c13, 14J. 

(1~~~lt}On (?) can 00 expressed in a different 
'"~l(iiµportant case when the enveloping algebra 
~\-?:-:::·:. ·· 
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'lfuo1 --------o/011 

'l'uoo ""-----'----'-<" 'Vo1(1 

,.,,( F101 ,,_. -----1------''l'u1 

'l'rno "'----------W'uo 

.Structure oflhc three-dimensional 11mlrix ('V] in the case or 
lhree qubi1s. Vertices .of the cube are .issociatcd with the 
coefficients ll\i.l, in Eq. (l l) al N = 3. .. . 

of the Lie alg~bra L(M) of an esserittal measurements 
c;,ontains a uniquely defined Casimir operator (scalar), 

~ " 2 C = .,t_,Mi = Cx.8, (8) 

where O is the unit operator irt IHl(S). Since V;(M;) ~ 0 
always, itfollqws frorn (5) and (6)that the maximum in 
(7}is achieved if 

Vi. (M;) = 0. (9) 

This property of MES was noticed in II 5]. It immedi­
ately fo1lows from (5)-(7) and (9) that the maximum 
total variance has the form · 

vm:IX = c. (10) 

As ail illustrative example of considerable interest, we 
examine the system ofN qubits. Hereafter, we consider 
pure states. The obtained results can be easily general­
ized to. the case of mixed states through the use of the 
result from [16] that the mixed states ~an be treated as 
pure states o(a certain doublet consisting of the system 
and its .. mirror image." 

Denote the base vectors in IHI~ irt (1) by e, ::: ll), 
where / = 0, 1. Then, an arbitr<iry pure stale in ( f) takes 
the form 

111t) = ""' '\tr e ® C ® @ C 'r .£...t '1' l1h .. ,l,v · I, lz • · • · /~.·· (11) 

l}te coefficients 'lt,. 11 .•• 1.ii fotm a multidimensional 
ma:trix ['If] (concerning multidimensional matrix ijnd 
determinants, see [ 17]). In the case of N == 3 qubits, for 
example, ['If] is a cube, as showriin the figurt! . 

The local measurements, provided in the case of 
qubits by the Pauli matrices, have the form 

. lj> ( . + H·· ) cr1 = e0 je 11 + .· .c . . 

(J) . . + . a2 · = 1(e1 e0 -H.c.) 
J ·I 

(12) 

c/i) = c() e0+ - e1 e+1 , J ./ .I / J 



136 KLYACHKO. SHUMOVSKY 

wherej = 1, ... , N. Since 

'efa, J l cr~li2 = t 
the maximum Lotal variance in the. system of N qubits 
lakes the value · 

V 11iaJS2.NJ = 3N. (13) 

For example, GHZ states of three qubits 

lGHZi) = }i(e01 c02ei13 ±~11 e11e1i) (14) 

obey c9ndi~ion (9) and haveW(GHZ3) = Vmm:CS,, 3) = 9. 
Hence, ( l4) is MES. At the same time, the simple sep­
arable state, sriy e01 e01e01 • has the minimum total vari-

ance Vm,n(S2, 3) = 6 and, hence, belongs to· the class of 
coherent states of three qubits. 

To stress the Tact that the variational principle (7) 
defines MES by the extreme of quantum fluctuations, 
we consider the so-called W state of lhree quhits [2] 

1 IW3) = J3(eo 1e1~e 1, + e1ie01c1, + .e 11e11e0,). (15) 

Definitely; this is not MES because 

\I( W3) = 8 + 2/3 < VmnxCS2; 3) = 9. 

At the same time,this state manifests quite a high leveJ 
of quant1.Hn fh.1ctuations, which strongly exceeds that of 
coherent states with Vm,nCS'Y.. :,.) = 6. Nevertheless,the W 
state (T5) does not manifest enlanglemerit at all; 
because the only entanglement moriotori.e for three 
qubits, which is the 3-tangle [l8],ha., zero value in this 
case. [19]. 

This means that the remoteness of states from clas­
sical reality provided by Lhe total variance (6) cannot be 
used as a measure of entanglement. 

Before we begin to discuss the possible choice bf a 
universal measure of entanglement, it should be noted 
that condition (9) can also.be expressed in terms of the 
properties of the matrix ["VJ in {I l). Namely, state fl l) 
obeys condition (9) iff the parallel slices of the. matrix 
{\JI] ate nmtuany orthogonal and have the same norm 
[4, 9; 101. 

In the case oftwo qubits, the parallel slices are pro~ 
vided by the :rows and columns of the (2 X 2) matrix 
['fi]. In ~he case of three qubits, these are the parallel 
faces of the cube shown in Fig. L and ·so on. 

As regards the quantifying entanglement.there have 
been numerous attem,pts to define a proper measure 9f 
entangled states. The main requirements areas foJlows. 

O}TI1e measure should be zero iri the.case ofunen­
tangled states .and achieve the ma,s,imum forMES. 

2 The measure should be an entanglement mono­
tone [20], i.e., afunction which does notincrease under 
the set of local transformations~. . . .. 

These conditions, together with the definition of 
MES and the possibility to construct any entangled 
state from MES by means of SLOCC [2, 3], make it 
possible to discuss the measure of entanglemem within 
the geometric invarianttheory [9J. Concerning geomet­
ric invariant theory, see [2.l]. Physical applications of 
this theory are discussed in [22]. In particular, a new 
universal measure of entanglement based on the 
notions of geometric invatiant theory can be .introduced. 
[4, 9J. This is the length of minimal vector in complex 
orbit of the statt;}l! E !Hl(S): 

µ{\if) = min !g11f. (16) 
ge d 

Here, g denotes a transformation from the complexified 
dynamic symmetry group G" in !Hl(S). This mea~ure · ( 16) 
obeys the above i:equirements, In particular, iri the case of 
the two,.qubit state (state (11) with N = 2 ), ( 16) is defined 
to be the detenninant oftw], whic:h is just the concurrence 
[23]. In the case ofthtee qubits (N = 3 in ( 11) ). measure 
(I 6) gives Caylefshyperdetenninant [17] 

. . 2 .. 2 1 2 2 2 
D I \jf] = \if ooo '11111 + 'l' oo 1 'I' l) o + 'I'm o \lf1 o 1 

2 2 
+ 'l'ou '11 wq - 2f:Wooo('Voo1'1'no + 'Vorn 'I' w.r 

+ lV on '11110 )'11111 + 'VorJJ 'l'oio 'I' JOl 'l' no 

+ \f/9<11 \f/011 Wno 'l'1~i -f:' '11010\Jf 01111' 101 'V 1001 

+ 4( \Jf ooo \11011 'I' w11Vno + '1'001 o/oio 'I' wo '1'111), 

(17} 

which is the only entanglement monotone of this sys­
tem. It shot11d be noted that (17) coincides with the 
sqµ~tre root of the 3-tangle [ .19]. Measure (I 6) can also 
be calculated in the case of four qubits (all geometric 
invariants of four qubits have been c.alculated recently 
[24]). 

Although the, variational principle (7) has a general 
meaning, our consideration so far has applied to sys­
tems of qubits. Consider now a more complicated case 
of qutrit systems defined in the Hilbert space · 

.N 

[H]J;N = Q9 !HJ3, 08) 
l,,. .1 

where 1Hl3 is the three-dim~nsional state spanned by the. 
vectors ei = jl), where l = 0, I, 2 .. An example is pro~ 
vided by the spin- I systems. 

For qutrit systems, a single-particle MES.is allowed 
[4, I 0]. Choosing the measurements as the infinitesimai · • 
generaiors of theSL(2, C) algebra in three dimensions . . 

(l9) 
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... lWJ[~sjly see that the variational principle (7) 
''s'edjn the form of condition (9) dc;fines the sin-
';,fijfstates ' 

t®rfi (c, + /''•,) 

(20) 

:i 

lo/:t 1 ) = L \JI ie( (21) 
/-ad 

] 2l'!'tii2 + i'Vil2 = L 

litt~~!1ii,:~:~,:.:.:~:i;:-q~ii: :;~~:: 
,,;ijfr{tpfal variance rnin '\/3_ 1 = l. Thus, a single 
iJi\Lrtflnitely mariy MES with respect to mea-

·;;{~',('}?J. 
. ffiTfhf!'lpbysical point of view, the subscript! in 
fi.B'tii&c6rrespond to the internarctegrees of free­
,,-y)viirtide. A,sa possible realization, the states of 

dhisbns with respect to up and down quarks 
>~rltioned here [4]. N.;imely, the quark states 
''l:.a}e coherent, while the quarks in n° are in 

,heY'~ktrerne of quantum fluctuations, which is 
·s::'aftll~ varjational principle for MES (7), sheds 
'°;'tti~:'r~dflhat a 1t0 n1eso.Ii is ii.mch Jess stable than 

i:~;~::1t~l'1/I•.···. 
\'"'\J_y, irie variational principle (7) aHows the 

''.f/~ihgle.cpart~cle MES if the number of inter­
:'\}offreedom :exceeds two. It also follows 
W_iil_'(Q).thata singlequbit is not able to mani­
.. \~,:~~ .. :: .... ;.,: if}:<:: 

(22) 

:'t'}]{l1Yi:) = L ~'111,e,, ® e,1 -

~--~.-.= ....... . 

(23) 

''::·~·'a~ i~~~e:~~~;g~~el~~;;:;i;~fed~~~J~! 
··'Jnertts{lO]. In the case of qutnts, m add11J.on 
;e/ta'.nichcidse the measurements correspond­
,,,'9s~Y~:yfnmetry SU(3) and provided by the 
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eight independent operators out oft he nine operators of 
the form 

{M} = 

+ + 
e1e1 - er+ 1Cr+ 1 

1 + 
2(e1e1+ 1 + H.c.) 

l (· ... + H . ) 2i c,er+ i - .c. 

(24) 

Here, the cyclic permutations of subscripts are 
assumed. so that / + I = 0 if I == 2. It is dear that mea­
surements (24) also include (19), 

Using (9), it is a Straightforward matter Jo see that 
there are infinitely many MES of the type of (23} with 
respect to{24) in the space (22). An important example 
is provided by the states 

I ) I ( ,,;~,i 2ii111>,1 .. 
'Jl<J = J3 e0,ei1,+e e.11 e 1,+e ·e2,c2.), (25) 

Where 

2qrr 
<t1 = -1-, q = 0, I, 2. 

These states wei·e introduced in the context ofthe quan­
tum phase of the angular momentum of photons in [25] 
and as the states of "bi photons" [26]. These states were 
also discus~ed in connection with three-state quantum 
cryptography [27]. 

It is easy to constmct a basi~ of MES in the Hilbert 
space (22) beginning with states (25) and using. the 
local cyclic permutation operator [4] of the forrh 

(26) 

Acting by (26) on the state of the first party in (25) 
once, we get . 

I . > l iq¢,, '1/11~1 · 
Xq = J3(ei,e0~ + e e21 e 11 + e. e01e 21 }. (27) 

Acting by (26) on the state of the first party once more; 
we obtain 

' . 1 iqq,,J 2iq<t,, ' 
Ill,)= ,fj,(e21e01 +e c0,e 1"+e e11e2). {28) 

It is easily seen that states (27) and (28) obey conditions 
(9) and that states (25), (27). and (2~) an~ mutually 
orthogonal. Thus, they form a basis of MES in space 
(22) ·of two qutrits. . 

In the. case of a tw(}~qutrit system, measure (16) 
coincides with the det[1V] of the (3 x 3) matrix of coef­
ficients in. (23). 

The local cyclic permutation operaior (26) can be 
used to create MES from a certain generic MES in other 
cases as well [4l For examplet in the case of qubits, 
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(26) coincides with cr1 in ( 12), while the generic MES 
can be chosen in GH_Z form, 

l ( + ) /;:. Co Co, ....0C1 c,, , -.12 I - I --

In the general case of qudits (d degrees of freedom per 
party), the 1qcal cyclk permutation operator tan be rep'­
resented as the (d x d) matrix of the form 

0 IO 0 

0 0 J 0 

000 
l O O O ·-

which obeys the condition cg,i = n. 
In summary, we have analyzed the new variational 

principle {16) in quantum mechanics defining MES of 
physical systems in terms of the extreme of quantum 
fluctuations of all esse11tial measurements spedfying 
either the pure or mixed state of the system. Ina sense, 
th1s print iple is si mi Jar to the maxi mum entropy princ i­
ple in statistical mechanics. 

It should be stressed that the definition in terms. of 
the variational principle has · a number of heuristic 
advantages. First of all, it defines quanti1m entangle­
ment as a physical phenomenon irrespective of infor­
mation processing and other possible applications of 
entanglement. This, in tum, makes it possible to sepa­
rate the essential from accidental and discard the :ines­
sential requirements, such as the nonlocality, nonsepa:.. 
rability~ arid violation of classical realism. 

This also leads to an expansion of the notion of 
entanglement to the branches of quantum physics that 
are not directly connected with the information pro,­
cessing and quantum coniputation. The above consid~ 
ered example of entangled quark states in 1t0 mesons 
should be mentioned here. 

. ~~~ 

The revelation of the physical nature of maxim1,.1m 
entanglement provided by the maximum scale ofquan­
tum fluctuations of the corresponding states gives a 
clue in the problem of stabilization of entanglement. 
Namely, to,make a persistent MES -of a given system, 
we should first exerl influence upon the system to 
achieve the state 'Nith the maximum scale -of quantum 
fluctuations. Then, we should decrease the energy of 
the syste111 up to a (local) minimllm under the condition 
of retention of the fluctuation scale. The possible real­
izations of this approach were discussed .in [28, 29] for 
atomic entanglement. 

Finally, the mathematical structure hidden behind 
the variational prindple for maximum entanglement 
es_tablishes contacts between the notion of entangle­
me:nt and geometric invariant theory. Iil particular; it 
opens a natural way 'of classifying entangled states in 
terms of the complex orbits of states. [3, 9, 241, as wen 

as of the quantification of entanglement throughJh', 
of measure (16). 
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