L, Aicp; IMPLIMEIti:ATION 5 f 1 -BPEIXINB
| CHECICESf 'f O/ sT LU

i7p e AW bijfto- :

DESIGN AND IMPLEMENTATION OF A SPELLING
CHECKER FOR TURKISH

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCES
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

_...o—
........

By Saall
Aysin Solak
June 1991

L

16,6

868
1391

i

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.
/‘

‘

Assoc. Prof. Dr. Kemal Oflazer(Principal Advisor)

I certily that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

! e

Asst. Prof. gﬁ/ M. Mete Bulut

Approved for the Institute of Engineering and Sciences:

Moty

Prof. Dr. Mehinet Barag/

Director of Institute of Engineering and Sciences

ABSTRACT

DESIGN AND IMPLEMENTATION OF A SPELLING
CHECKER FOR TURKISH

Aysin Solak
M.S. in Computer Engineering and Information Sciences
Supervisor: Assoc. Prof. Dr. Kemal Oflazer
June 1991

Proliferation of personal computers and workstations that bring computing
power to users of all levels has influenced how people prepare documents.
Word processors offer numerous functionalities for formatting documents, and
in general improving their presentation quality. In Turkey, computers are in-
creasingly being used for document production; but word processors used lack
various tools like spelling checkers specific to Turkish. The problem of spelling
checking is very interesting in itself, as Turkish, being very different from many
languages, presents special challenges and problems. In this thesis, the design
and implementation of a spelling checker for Turkish, which can be incorpo-

rated into word processing applications, is presented.

iii

OZET

TURKQE METINLERDE SOZCUK YAZIMI
KONTROLUNUN TASARIMI VE GERCEKLESTIRIMI

Aysin Solak
Bilgisayar ve Enformatik Mihendisligi Bolimu Yiiksek Lisans
Tez Yoneticisi: Assoc. Prof. Dr. Kemal Oflazer
Haziran 1991

Giintimiizde, kigisel bilgisayarlarin ve ig istasyonlarinin kullamiminin gittikce
artmas: dokiiman hazirlamakta kullamilan yontemleri de etkilemektedir. Ke-
lime islemciler, doklimanlan diizenlemek ve genel olarak kalitelerini arttirmak
icin pek ¢ok iglev sunmaktadirlar. Bilgisayarlarm dokiiman hazirlamak i¢in kul-
lanimi THirkiye'de de gittikge artmaktadir; ancak kullanilan kelime iglemcilerde
Tiirkce igin sdzciik yazim kontroli gibi bazi iglevler bulunmamaktadir. Tlrkge
pek ¢ok dilden farkli bir dil oldugu ve bir takim zorluklar gikardig: i¢in, bu
dilde sdzcitk yazimi kontrolii bagh basmna ilging bir problemdir. Bu ﬁezde,
Tlrkce metinlerde sozciik yazimi kontroli igin gerceklestirilen ve degisik ke-

lime islemcilere uyarlanabilecek bir yazihm ve tasarimi sunulmaktadir.

v

ACKNOWLEDGEMENT

I wish to express my considerable gratitude to my supervisor Assoc. Prof. Dr.
Kemal Oflazer who has given me guidance and encouragement throughout the
development of the thesis. I would also like to thank to my cousins Seval, Zuhal
and Vural, and to my brother Yalcin for their help in the preparation of the
dictionary. I owe a great dept of thanks to my family who have stood by me
and supported me well beyond the call of duty. Finally, I would like to thank
to my friends Bilge, Ozlem, Shoeleh, Zeliha, and to all of my office-mates for

their morale support during this study.

Contents

1 INTRODUCTION

2 SPELLING PROGRAMS
2.1 Causes of Spelling Errors
2.2 Types of Spelling Programs
2.3 Two Structures of a Spelling Program
2.4 The Dictionary
2.4.1 Content of the Dictionary
2.4.2 Structure of the Dictionary
2.4.3 Compression Techniques
2.5 Example Spelling Programs

2.5.1 SPELL for DEC-10

3 THE TURKISH LANGUAGE
3.1 History and Classification
3.2 Syllable Structure

3.2.1 Regular Syllables

vi

11

11

13

13

16

16

19

CONTENTS
3.2.2 TIrregular Syllables.
3.3 Morphophonemics. L.
3.3.1 VowelHarmony
3.3.2 Consonant Harmony
3.3.3 Root Deformations
3.4 Morphology
3.4.1 Noun Paradigm
3.4.2 Verb Paradigm
3.43 VerbalNouns
3.44 Participles
3.4.5 Derivational Suffixes
4 IMPLEMENTATION
4.1 General Structure Lo
4.2 Data Structures
421 HashTable
4,22 Dictionary
4.3 Syllabification Check L.
4.4 Root Determination.,
4.5 Morphophonemic Checks
4.5.1 Vowel Harmony Check
452 OtherChecks
4.6 Morphological Analysis

4.6.1 Morphological Parsing

Vil

20

21

21

26

29

31

35

43

45

51

51

53

53

57

67

76

76

77

CONTENTS viii

4.6.2 Utilities Used 80
4.6.3 Lexical Analyzers 81
4.6.4 Parsers. 83
5 PERFORMANCE EVALUATION 90
6 CONCLUSIONS AND SUGGESTIONS 95
A LISTS OF SUFFIXES 99

B EXAMPLE RUNS 101

List of Figures

o
—

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

3.1

Two structures for a spelling program
A simple spelling checker L.

Code for the simple checker

Vowel cube
The nominal model

The verbal model

General structure of the Turkish spelling checker.
Data structures oo oo

A sample hash table

The simplified finite state automaton for proper Turkish syllable

structureo e
Yace specification for numerals.

Word analysis

Change of execution time as an effect of the number of distinct

WOLAS & v v o e e e e e e e e,

ix

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

4.3

44

4.5

4.6

Words beginning with three consonants

Words ending with three consonants

“Words with three consecutive vowels

Words with four consecutive consonants
Words with five consecutive consonants

Comparison of words of Pure Turkish and words of foreign origin

with respect to their syllable structures
Usage of allomorphs of the factitive verb suffix
Usage of allomorphs of the passive voice verb suffix
Usage of allomorphs of the aorist suffix
Conjugation of person suffixes

Participles o

External and internal representations of Turkish letters
Listofflags
Word list for the flag ISUDD
Word list for the flag IS.STT
Word list for the flag IS KU

Word list forthe lag F.UD

22

22

37

LIST OF TABLES xi

4.7

4.8

4.9

4.10

5.1

5.2

5.3

List of valid letter sequences that appear at the beginning of the

words

69

List of valid letter sequences that appear inside the words. . . . 70

List of valid letter sequences that appear at the end of the words 71

An example to parsing process and switch between parsers . . . 86
Statistical information for test runs of the checker 91
TIMINGS . .« « v v v e e e 93
Some information on each function of word analysis 94

Chapter 1

INTRODUCTION

Proliferation of personal computers and workstations that bring computing
power to users of all levels has influenced the ways in which people prepare
documents. Word processors of all kinds offer numerous functionalities for
entering and formatting documents according to the users’ requirements and
preferences. However, it has long been noted that the use of computers in
this application area need not be limited to just formatting, but can extend
to helping the user in improving the quality of the document. A number of
tools have been developed for analyzing the text and suggesting changes that

improve the readability of the documents.

Spelling checking is one of the functions that improve readability. Spelling
checkers analyze documents word by word, and detect misspelled words. Solv-
ing this problem manually is usually a boring and an error-prone job as it
requires a careful and fast reading, and a good memory. However, it is ideally

suited for computers.

The reasons for us attacking the problem of spelling error detection for
Turkish are manifold: More and more documents in the Turkish business and
government work are being prepared using computers and word processors,
and it is clear that such usage will increase significantly in the years to come.
However, although many spelling checkers for English and some other languages
have been developed, so far no such tool was present for Turkish. The reason
for this is probably the complexity of the job, since being an agglutinative
language, Turkish has rather complex word structures. In Turkish, words are
combinations of several morphemes.? There is a root, and several suffixes are
combined to this root in order to extend the meaning or create other classes of

1 Morphemes are the smallest units of speech bearing a meaning,.

CHAPTER 1. INTRODUCTION 2

words. There are certain rules that must be obeyed during the concatenation
of morphemes. Wrong ordering of morphemes and errors in vowel or consonant
harmonies may cause the wrong spelling of Turkish words. Consequently, in
order to check the spelling of a Turkish word, it is necessary to make significant
phonological? and morphological® analyses. During these analyses, the root
and suffix morphemes must be determined, the necessary morphophonemic
checks must be done, and the validity and the order of the morphemes must
be controlled. This property of Turkish is its most important difference from
other languages in the Indo-European group (e.g., English, French, German
etc.), so the techniques for spelling checking developed for those languages
are not readily applicable to Turkish. Thus, Turkish poses challenging issues
not encountered in other spelling checkers, and therefore, understanding and
solving the problem of spelling error detection for Turkish is itself an interesting

research issue.

This thesis work involves the design and implementation of a first version
of a spelling checker for the Turkish written language. The scope is the de-
velopment of a spelling checking kernel that can be integrated to a variety of
applications. The approach to spelling error detection is based on checking
each word individually, with no attention to the semantics or to the context.
Besides, no suggestions are given about the most likely correct words after

detecting a misspelled word, i.e., spelling correction is not done.
The outline of the thesis is as follows:

General information on the properties of spelling programs and some histor-

ical information about various spelling programs, together with some examples

are given in Chapter 2.

The major part of this work depends on a detailed and careful research
on some features of Turkish that make the spelling checking problem for this
language especially hard and interesting. Chapter 3 presents a short history of
the language, detailed information on the syllable structure of Turkish words
and on some basic morphophonemic aspects of the language, such as vowel and
consonant harmony, and root deformations. The correct ordering of Turkish
suffixes, and the rules that must be obeyed during their concatenation can be

found in the same chapter.

2 Phonology is the sound system of the language.
3 Morphology is the word construction rules in the language.

CHAPTER 1. INTRODUCTION 3

In Chapter 4, the approach of the thesis to the problem is presented along
with a description of the implementation.

Finally, a performance evaluation of the implementation is made depending

on the results of some test runs of the spelling checker.

Chapter 2

SPELLING PROGRAMS

2.1 Causes of Spelling Errors

Spelling errors can be introduced in many ways. The following three are prob-

ably the most important ones [33]:

o Author Ignorance: Such errors can lead to consistent misspellings and
are related to the difference between how a word sounds and is actually

spelled.

o Typographical Errors: These are less consistent but perhaps more
predictable, since they are related to the position of the keys on the
keyboard and probably result from errors in finger movements during
typing.

e Storage Errors: These are related to the specific problems in encoding

and transmission of text.

In the context of Turkish and similar languages we can add the following

to the ones above:

e Morphological Errors: Such errors occur during concatenation of mor-
phemes forming words. Wrong ordering of morphemes and errors in vowel

or consonant harmonies and root deformations can be considered among

these errors.!

1These concepts will be explained later in the following chapter.

CHAPTER 2. SPELLING PROGRAMS 5

2.2 Types of Spelling Programs

Spelling programs are classified into two groups [33]:

1. Spelling Checkers: They identify potentially misspelled words in an
input text file.

2. Spelling Correctors: They suggest a list of most likely correct words
after detecting a misspelled word. Obviously, a spelling corrector is sig-

nificantly more complicated than a spelling checker.

2.3 Two Structures of a Spelling Program

There are two canonical structures for spelling programs as shown in Figure 2.1
[3]. The one on the left is a batch program, and the other is an interactive
program. In the batch structure, usually the input words are sorted and the
duplicates are eliminated. One pass through the list and dictionary is enough
to check all input tokens. The online program on the right looks up each
word as it is encountered. A spelling checker may use either structure, but
an interactive corrector is usually restricted to be online. Similarly, a random
access dictionary may be used by either structure, but a sequential access

dictionary is only suitable for a batch program.

There are some problems with a batch checker [33]. First, a substantial
real-time wait may be required while the program is running and this can be
rather annoying to a user at an interactive console. Second, the output list of
misspelled and unknown tokens lacks context. It may be difficult using text

editors to find these tokens in the text.

Such difficulties can be easily overcome with an interactive spelling checker.
When a spelling error is found, an interactive checker asks the user what to

do. The following list indicates some options that can be available to the user

[33]:

e Replace: The unknown token is taken to be misspelled and will be
replaced. The token is deleted and a correctly spelled word is requested

from the user.

¢ Replace and Remember: The unknown token is replaced by a user

CHAPTER 2. SPELLING PROGRAMS 6

Input
Words

sort &

unique

Sorted
Words

Sorted
Sequential

Online

Batch

Access

Dictionary Program

Program

Figure 2.1: Two structures for a spelling program

Dictionary

specified word, and all future uses of this token are also replaced by the

new word.

o Accept: The token is to be considered correct (in this context) and left

alone.

o Accept and Remember: The unknown token is correct and will be
left alone. In addition, all future uses of this token are correct in this

document; the user should not be asked about them again.

o Edit: An editing submode is entered, allowing the file to be modified. in

its local context.

The performance of an interactive spelling checker is important. The user
is waiting for the checker and the checker must therefore be sufficiently fast
to avoid frustration. Also, unlike batch checkers which need to look up each
distinct token once, an interactive checker may have to look up each occurrence
in the order in which they are used. Thus, the interactive checker must do more

work.

CHAPTER 2. SPELLING PROGRAMS 7

2.4 The Dictionary

All spelling checkers must use an external list of correctly spelled words in a
data structure that serves the function of a dictionary. The content and the
structure of the dictionary are both very important for the spelling checker to

be useful and complete.

2.4.1 Content of the Dictionary

Assembling the list of correctly spelled words presents some difficulties. One
must be very careful not to produce too large a dictionary, as it may include

rare, archaic, or obsolete words.

One way to create the dictionary is to use the output of the spelling checker,
i.e., a list of tokens which are not in the dictionary. Starting with a small
dictionary, many correctly spelled words will be output by the checker. By
deleting spelling errors from this list, a list of new words which can be added
to the dictionary can be obtained. A new dictionary can easily be created
by merging the two. In order to be successful with this method, the person
who deletes the spelling errors must have an excellent knowledge of spelling

and linguistics, because s/he has to decide which word is really misspelled and

which one is correct.

The best sources for the list of correctly spelled words are the vocabulary
items listed in the dictionaries for that language. This is a reasonable begin-
ning, but it may cause a large dictionary to be created. Thus, certain criteria
must be applied to select the necessary items. For instance, those words which
are rarely used, or the stems derived from others should be deleted from the
list. Another problem is that such dictionaries usually don’t include proper
names such as personal names, nationality names, countries and their cities.
Such names must be assembled from different sources and added to the list.
Many technical terms from different sciences are also not included in most of
the dictionaries. These terms must also be added to the list of correctly spelled

words. But, while adding care must be taken not to add too much.

The output of the checker can be examined on real runs, the checker may
log after each run, and these logs may be analyzed by the developers who can
recognize the problems with the checker, and correct them appropriately.

CHAPTER 2. SPELLING PROGRAMS 8

2.4.2 Structure of the Dictionary

The structure of the dictionary is also of great importance. A simple data
structure will ease development and maintenance, but performance may be
crucial in the interactive versions. The structure must allow very fast searches.
The correct structure must be determined for the configuration of the computer
system. Such factors as memory size, file access methods, and existence of
virtual memory can be significant in determining appropriate structures. If
the memory is large enough, the entire dictionary can be kept in memory,
making operations easier and faster. It can be represented as a hash table, a
binary search tree, or a trie. If the memory is virtual as opposed to physical,
the dictionary structure should minimize page faults while searching. If the
memory is too small, a two-layer structure may be needed, keeping the most
frequently referenced words in memory, while accessing the remainder with disk
reads as necessary. In this case, a B-tree or disk hash table is more suitable.

There is no best algorithm; each machine and system make different demands

on the dictionary data structure.

The dictionary will be most useful if it is sorted. Sorting can be done either
alphabetically or by frequency [33]. Attaching a frequency count to each table
entry provides the number of uses of each token. This can speed the process by
searching higher frequency items first (a self-modifying table structure), and it
may also help in determining misspellings. Typographical errors are generally
not repeated, so tokens typed incorrectly will tend to have a very low frequency.
Any token with low frequency is thus suspect. Consistent misspellings due to
the author not knowing the correct spelling are not as easily found using this

technique. Hence, alphabetical sorting is generally preferred.

A suggested structure for an alphabetically sorted dictionary is based on
tries. A large tree structure represents the dictionary. ‘The root of the tree
branches to as many different nodes as the number of characters in the alpha-
bet, one for each of the possible first letters of words in the dictionary.? Each
of these nodes would branch according to the possible second letters, given the
known first letter associated with the node. These new nodes branch on pos-
sible third letters, and so on. A special flag would indicate the possible ends
of words. With this structure, searching for a token of WL characters requires
following the tree WL levels down and checking the end-of-word bit.

A two-level search strategy for the dictionary lookup is given by Sheil [39]:

2This number is 28 for Turkish, sirce g never occurs in the beginning of a word.

CHAPTER 2. SPELLING PROGRAMS 9

The token is first compared with entries in a small in-core table of most fre-
quently used words. If the token is not in this table, a search of the remaining
words is made. This larger table might be stored on a secondary storage, or in

a separate part of virtual memory, requiring longer access and search times.

Another improvement in search time can be made by noticing that the total
number of distinct tokens in a document tends to be small to moderate, and
often words of particular interest to the subject area are used. This means
that for each specific document, there exist a small table of words which occur
frequently in that document. Thus, it is wise to build another table of words
which have been used in this specific document. By this three-table structure,
the token is searched first in the small table of most common words, next in
the table of words which have already been used in this document, and finally
in the large list of the remaining words in the main dictionary. If a word is
found at this level, it is added to the table of words for the document. Distinct
data structures may be appropriate for these three tables since they exibit the

following different properties:

e Most common words: static, small (100-200 items);
¢ Document specific words: dynamic, small to moderate (1000-2000 items);

o Secondary storage dictionary: static, very large (10,000-100,000 items).

2.4.3 Compression Techniques

For performance reasons, it is desirable to keep all the dictionary in main
memory. Thus, compact representation of the dictionary is also an important
issue, and serious thought has been given to ways of reducing the size of the

dictionary.

Robinson and Singer [34] compressed an English dictionary something like a
50 percent using the fact that most words share the same initial letters as their
predessors. Initial letters common to the previous entry in the dictionary are
replaced by a count of common letters. Thus the sequence of words eiderdown,
eigen-value, eigen-vector, eight appears as eiderdown, 2gen-value, Tector, Sht.

However, this technique has a disadvantage as it requires a sequential search

of the dictionary.

Nix [30] suggested a space efficient way to store a dictionary. To illustrate

CHAPTER 2. SPELLING PROGRAMS 10

the technique involved, suppose that we wish to test membership in a dic-
tionary of 1000 words. The algorithm represents the dictionary as a 20,000
element bit table T and accesses T through ten independent hashing func-
tions hl, h2,...,h10, that map words to numbers in the range 1 to 20,000.
T is initially all zero; each word w in the dictionary is inserted by setting
bits T[h1(w)], T[h2(w)],..., T[h10(w)] to 1. A word =z is looked up by testing
T[hl(z)], T[h2(=)],..., T[h10(z)]. If any of these hits are 0, then z is definitely
not a part of the dictionary. If all of the bits are set, we say that z is in the
dictionary. This method compresses the dictionary very much, but it has the

disadvantages that it can produce erroneous results and it does not support

affix analysis.

A similar technique is used by Dodds [11]. This technique involves replacing
each dicfionary entry by a hashed version. This hashed version is referred to as
the check hash. The check hash can be significantly shorter than the average
dictionary entry, thereby reduces storage requirements. The length of the check
hash is fixed, which simplifies the dictionary structure and the routines required
to create and access it. The fundamental limitation of the check hash is that it
introduces the potential for error through collisions, because two strings may
produce the same check hash. The frequency of such check hash collisions can
be reduced to any desired level by increasing the length of the check hash. at

the expense of increasing storage requirements.

Another compression technique is affix analysis. An affix is either a suffix
or a prefix. By removing affixes and storing only the root word, the dictionary
size can be reduced significantly. Two approaches are possible. In the simplest
case, each token is examined for a list of common affixes. These are removed
if found. The order of search can assure that larger suffixes are removed first.
Then the dictionary is searched. If found, the token is judged correct. A major
problem with this approach is that it does not catch misspellings which are the
result of correct affixes incorrectly applied to correct words. This can allow
misspelled tokens which are formed by invalid root-affix combinations to go
undetected. A solution to this problem is to flag each word in the dictionary
with its legal affixes. Then, after the root and the affixes are found, the flags
of the root can be examined to see whether the particular affix is legal for
this root [33]. Although such solutions are applicable in languages like English
where the number of affixes is rather limited, they are not readily applicable
in the case of Turkish where the number of possible affixes is upwards of 300

[18].

CHAPTER 2. SPELLING PROGRAMS 11

2.5 Example Spelling Programs

The original motivation for research on spelling checkers was to correct errors
in data entry, and much early work was directed at finding and correcting
errors resulting from specific input devices in specific context. Peterson [33]

investigated the basic structure of several such existing programs:

Davidson [7] was concerned with finding the (potentially misspelled)
names of passengers for a specific airline flight. Either the stored
or inquiry name (or both) might be misspelled. Carlson [6] was
concerned with names and places in a genealogical database. Free-
man [13] was working only with variable names and keywords in
the CORC programming language, while McElwain and Evans [27]
were concerned with improving the output of a system so that it

would recognize Morse code.

Each of these projects considered the spelling problem as only one aspect
of a larger problem, and not as a separate tool. Many academic studies on
the general problem of string matching and correction algorithms have been

conducted, but not with the aim of producing a working spelling program for

general text.

Recently, several spelling checkers have been written for the sole purpose
of checking text. Research dates back to 1957, but the first spelling checker
written as an application program (rather than research) appears to have been
SPELL for the DEC-10. This program and its revisions are widely available
today. The UNIX operating system provides two spelling checkers for English:
TYPO and SPELL, both of which represent different approaches.

2.5.1 SPELL for DEC-10

The first spelling program for DEC-10, SPELL, was written by Ralph Gorin
at Stanford in 1971. It is an interactive program which searches the dictionary
for each input token and asks the user what to do if the token is not in the
dictionary. It uses a hash chain table of 6760 entries as its dictionary. The
hash function for a token, which uses the first two letters (LI and L2) and the
length (WL) of the token (2, 3, .., 11 and over) is

(L1 26 + L&) * 10 + min(WL — 2, 9).

CHAPTER 2. SPELLING PROGRAMS 12

Each hash table entry is a pointer to a chain of words, all of which have
the same first two letters and the same length. This program assumes that all

tokens of length 1 are correctly spelled.

There are four kinds of errors that the correction portion of the program

attempts to correct:

1. one wrong letter,
2. one missing letter,
3. one extra letter,

4, two transposed letters.

For a wrong letter in the third or subsequent character, all words which
are candidates must exist on the same chain that the suspect token hashes
to. Hence, each entry on that chain is inspected to determine if :he suspect
differs from the entry by exactly one character. For a wrong letter in the first
or second character, the program tries varying the second letter through all
26 possible values, searching for an exact match. Then all 26 possible values
of the first letter are tried, after setting the second letter to its original value.

This means that 52 more chains are searched for possible matches.

To correct one missing letter, WL + 1 copies of the token are made, each
time inserting a null character in a new position in the suspect. The null
character is never part of any word, so the suspect token augmented by an
embedded null can be thought of as a word with one wrong letter (the null).
Then the algorithm matching one wrong letter is used. If the first character
is omitted, all 26 possible first characters are tried. Also, 26 more tokens are
formed by varying the second character in case that had been ornitted. To
correct one extra letter, WL copies of the token are made, eack with some
letter removed. Each of these is looked up in the dictionary. This takes WL
searches. To correct transposed letters, all combinations of transposed letters
are tried. There are only WL — 1 such combinations, so it is fairly cheap to do
this. Correction based upon these four rules is quite successful and relatively

cheap, leaving the more difficult corrections to the user.

CHAPTER 2. SPELLING PROGRAMS 13

2.5.2 TYPO

One of the spelling checkers developed on UNIX is TYPO [29]. This program
resulted from research on the frequency of two-letter pairs, digrams. and three-
letter triples, trigrams, in English text. If there are 28 letters {alphabetic,
blank and apostrophe), then there are 282 (= 784) digrams and 28° (= 21,952)
trigrams. However, the frequency of these digrams and trigrams varies greatly,
with many being extremely rare. In a large sample of text, only 550 digrams (70
percent) and 5000 trigrams (25 percent) actually occurred. If a token contains

several very rare digrams or trigrams, it is potentially misspelled.

TYPO computes the actual frequency of digrams and trigrams in the input
text and a list of the distinct tokens in the text. Then for each distinct token,
an index of peculiarity is computed. The index for a token is the root-mean-
square of the indices for each trigram of the token. The index for a trigram

zyz given digram and trigram frequencies f(zy), f(yz), and flryz) is:
log(f(xy) = 1) + log(f(yz) — 1)] / 2 = log(f(ayz) — 1)

This index is a statistical measure of the probability that the trigram zyz was
produced by the same source which yielded the rest of the text.

The index of peculiarity measures how unlikely the token is in the context
of the rest of the text. The output of TYPO is a list of tokens. sorted by
index of peculiarity. Experience indicates that misspelled tokens tend to have
high indices of peculiarity, and appear toward the front of the list. Errors tend
to be discovered since misspelled words are found quickly at the Leginning of
the list, and the list is relatively short. In a document of 10,000 tokens, only
approximately 1500 distinct tokens occur. This number is further reduced in
TYPO by comparing each token with a list of over 2500 commo:u words. If
the token occurs in the list, it is known to be correct and is not output, thereby

eliminating about half the distinct input tokens and producing a much shorter

list.

2.5.3 SPELL for UNIX

Another spelling checker for Unix, which is called SPELL was first written by

Steve Johnson in an afternoon in 1975. His straightforward approach is shown

3The log of zero is defined as -10 for this computation.

CHAPTER 2. SPELLING PROGRAMS 14

Break Sort and Compare
Input . Input Sorted
into Discard to
Words Words Words
Words Duplicates Dictionary

Figure 2.2: A simple spelling checker

prepare filename #remove formatting commands
translit A-Z a-z #map upper to lower case
translit la-z @n #remove punctuation

sort #put words in alphabetical order
unique #remove duplicate words
common -2 dict #report words not in dictionary

Figure 2.3: Code for the simple checker

in Figure 2.2: Isolate the words in a document, sort them, and then compare
the sorted list with the dictionary. The output is a list of all words in the

document that are not in the dictionary.

Kernighan and Plauger reconstruct Johnson’s program as in Figure 2.3.
The input is the name of the file to be checked and the output is the list
of misspelled words. The first program in the pipeline, prepare, deals with
the fact that many computerized documents contain formatting commands. A
spelling checker must ignore such commands. prepare copies its input to its
output, with the formatting commands removed. translit transliterates its
input to its output, performing substitutions on certain characters. Its first
invocation in the pipeline changes uppercase letters to lowercase. The second
invocation removes all nonalphabetic characters by mapping them into newline
character. The result is a file that contains the words of the. document in the
order they appear, with at most one word per line. The next program sorts
the words into alphabetic order, and unique removes multiple occurrences.
The result is a sorted list of the distinct words in the document. common,
with the cryptic -2 option, uses a standard merge algorithm to report all lines
in its (sorted) input that are not in the (sorted) named file, and the output is

the desired list of spelling errors.

This program was far from perfect, but it demonstrated the feasibility of a
spelling checker and gained a loyal following of users. Changes to the program
over the next several months were minor modifications to this structure — a

complete redesign would wait for several years.

Doug Mcllroy wrote another version of SPELL in 1978. Its user interface

CHAPTER 2. SPELLING PROGRAMS 15

is the same as Johnson’s: typing spell filename produces a list of the misspelled
words in the file. The two advantages of this program over Johnson’s are a
superior word list and reduced run time. It fits in a 64-kilobyte address space
and it can check a 5000 word English document in 30 seconds of VAX-11/750

CPU time.

Mcllroy’s program is the same as Johnson’s up to the point of looking up
words in the dictionary (the common program above). The new program
loops on each word, stripping affixes and looking up the result until it either
finds a match or no affixes remain (and the word is declared to be incorrect).
Because affix processing may destroy the sorted order in which the words arrive,

the dictionary is accessed in random order.

Today, numerous spelling programs for several natural languages are avail-
able on all kinds of computers. Computer users are increasingly getting used
to utilize these programs. Although it is obvious that such a tool for Turk-
ish users is also necessary and will be very useful, no such program has been
developed until recently. It may be because of some features of Turkish that
makes it different from many other languages, and causes some difficulties in
development of a spelling checker for this language. Turkish language, together
with its features that make the spelling checking problem for it especially hard
and interesting, will be discussed in the following chapter. The research and
implementation presented in the subsequent chapters have solved this problem

with a very satisfactory performance.

Chapter 3

THE TURKISH LANGUAGE

3.1 History and Classification

Turkish is a member of the Turkic family of languages, which extends over
a vast area in southern and eastern Siberia and adjacent portions of Iran,
Afghanistan and China. The more widely spoken Central Asian Turkic lan-
guages include Karakalpak, Kirghiz, Uygur and Uzbek. To the east, there is
another group of Turkic languages north of the Altai mountains, and this group
includes Yakut in eastern Siberia. To the west, Tatar is spoken in the Volga
area and in the Urals, and there is a group of related languages north of the
Caucasus. Chuvash, descended from the language of Huns, is also spoken in

the Volga region.

Turkish, in turn belongs to the Altaic family of languages, which also in-
cludes Mongol and the Manchu-Tunguz languages of north-eastern Siberia.
There are some typological and lexical similarities between Altaic and Uralic
languages, which include Finnish, Estonian, Hungarian and a number of Siberian
languages, notably Samoyed. These similarities are evidence for a Ural-Altaic

language family.

The southwestern or Oguz subgroup of Turkic family includes the languages
Tiirkmen, Azerbaijani or Azeri, Ghashghai, Gagauz and Turkish. The one that
particularly concerns us is the language of the Republic of Turkey, i.e., Turk-
ish. Turkish is also spoken in small areas throughout the Balkans, notably in
Greece, Bulgaria and Macedonia, and on Cyprus. There is a Turkish speaking
population in northern Iraq, in the area of Kirkuk, and smaller groups, includ-
ing Turkish speaking Armenians, throughout the Middle East, particularly in

Syria and Lebanon.

16

CHAPTER 3. THE TURKISH LANGUAGE 17

The history of Turkish is divided into three periods. Old Anatolian Turk-
ish (Eski Anadolu Tiirkgesi) includes the 13* through 15% centuries. Ottoman
Turkish (Osmanlica) includes the period of the Ottoman Empire. The transi-
tion from Ottoman to Modern Turkish (Yeni Ttrkge) is mainly by the political
events connected with the fall of the Ottoman Empire, and by the Language

Reform movement of the late 1920°s and 30’s.

The most important characteristic of Ottoman which distinguishes it from
Modern Turkish is the very heavy influence of Arabic and Persian, a conse-
quence of Arabic and Persian influence on Turkish literature and culture during
that period. Ottoman Turkish was written with Arabic script, used a higher
proportion of Arabic and Persian words, particularly in literary or learned writ-
ing, and borrowed certain syntatic rules from Persian. The modern language
reform movement is considered to date from 1928, when the Arabic script was
replaced by a Latin ortography. The current Turkish alphabet consists of 29
letters which are in sequence A, B, C, ¢, D, E, F, G, G, H,I,1,J, K, L, M, N,
0,0,P,R,S,ST,U,0,V,Y, 2

During the decade following the ortographic reform, and continuing until
the present time, the Turkish Language Society (Ttrk Dil Kurumu) has su-
pervised a steady program aimed at the reduction of the Arabic and Persian
loanwords. Turkish replacements were taken from non-standard dialects or
other Turkic languages, constructed with Turkish derivational suffixes, or sim-
ply invented. The Arabic and Persian component of the vocabulary has been by
no means eliminated; the current vocabulary still contains Arabic and Persian
words. It is significant that there has been little attempt to reduce the number
of European loanwords. Some words of Greek and Italian origin are very old,

while more recently many French and English words have accompanied the

westernization of Turkey.

Turkish spoken in different regions of Turkey also shows some differences.
Spoken Turkish is divided into some dialects each of which is spoken in a certain
region of Turkey. One of these dialects, namely Istanbul Tirkgesi, which is the
Turkish spoken in [stanbul area, is chosen as the written language for Turkish.
Written Turkish has certain standard rules, hence a word may show differences

while speaking, but it is written in a standard way.

Languages can be morphologically classified into three groups according to

word construction rules [36]:

CHAPTER 3. THE TURKISH LANGUAGE 18

1. Isolating Languages: No suffix exists. No word can change in the sen-

tence. Intonation and word order carry the information (e.g., Chinese).

2. Agglutinative Languages: Words are combination of several mor-
phemes and suffixes. There is a root and several suffixes are combined to

this root in order to extend its meaning (e.g., Turkish, Hungarian}.

3. Inflected Languages: During root-suffix combination the vowel changes
in the root. This fact is also observed in plural form of words (e.g.. Indo-

European languages such as English).

In this classification Turkish belongs to agglutinative languages, which means
that it expresses syntactic relations between words or concepts through discrete
suffixes, each of which conveys a single idea. For an agglutinative language such
as Turkish, the concept of word is much larger than the set of vocabulary items.
Words can grow to be relatively long by addition of suffixes and sometimes
contain an amount of semantic information equivalent to a complete sentence

in another language. A popular example of complex Turkish word formation
is

CEKOSLOVAKYALILASTIRAMADIKLARIMIZDANMISSINIZ

whose equivalent in English is “You had been one of those whom we could
not convert to a Czechoslovakian.” In this example, one word in Turkish cor-

responds to a full sentence of 14 words in English. The word above has the

following decomposition into suffixes:
CEKOSLOVAKYA /LI/LAS/TIR/AMA /DIK /LAR/1MIZ/DAN /MIS /SINIZ

Each suffix has a certain function and modifies the semantic information in the
stem preceding it. In the previous example, the root morpheme CEKOSLO-
VAKYA is the name of the country Czechoslovakia and the suffix -LI converts
the meaning into person from [Czechoslovakia], while the following suffix -LAS

makes a verb from the previous stem meaning to become one of [the persons
from [Czechoslovakia]].!

!From now on, we will indicate the English meaning of a word in Turkish in parentheses
following it.

CHAPTER 3. THE TURKISH LANGUAGE 19

3.2 Syllable Structure

The phonemes of a language are almost never pronounced standalone — a
number of them come together to form syllables. Meaningful words can be
formed by combining one or more of these syllables. In Turkish, there are

syllables that consist merely of a single vowel:
O (he/she/it) A-CIK (open) I-KI (two)
but usually more than one phoneme combine and form a syllable.

Each syllable in Turkish must contain a single vowel, hence a word has as
many syllables as the number of vowels it has. There are no words consisting

of a single vowel except the third person singular pronoun O (he/she/it)? [1].

Syllable types in Turkish words can be classified into two groups as regular
and irregular. Words of ‘Pure Turkish” contain only regular syllables, while

irregular syllables are commonly used in transcriptions of words of foreign

origin.

3.2.1 Regular Syllables

The regular syllable types of Turkish are as follows* [2, 9, 36]:
vV VC VCC CV CVC CVCC.

We can give the following 6 mono-syllable words as examples to these syllable
types:

O AK (white) UST (top) SU (water) KOL (arm) KURT (wolf).

As seen above, in a regular syllable, there can be at most one consonant be-
fore a vowel and at most two consonants after it. This means that words of
Pure Turkish can begin with at most one consonant and end with at most two

consonants.

In Turkish, there is no distinction of gender (masculine, feminine, neuter), and there
are no distinct personal pronouns or corresponding possessive suffixes for different genders.
So, while giving the English translations, we will use the male correspondings (he and his)
‘instead of listing all the three possibilities, i.e., he/she/it or his/her/its.

3Qztiirkee

4V represents a vowel and C represents a consonant.

CHAPTER 3. THE TURKISH LANGUAGE 20

In words of Pure Turkish, there is at least one consonant between two
consecutive vowels, l.e., a syllable ending with a vowel can not be directly
followed by a syllable beginning with a vowel. Portmanteau words — words
that are formed by combining multiple words — form an exception to this
rule. When a word ending with a vowel is directly combined with a word
beginning with a vowel, two vowels follow each other without an intervening
consonant: e.g., ACIORTAY (bisection), BILGIISLEM (information process-
ing), CEZAEVI (prison).

There rarely appears more than one consonant at the end of Turkish words,
and when they do, the first of these consonants is L, N, S, §, or R [9]: e.g.,
ALT (bottom), RENK (color), UST, ASK (love), DERS (lecture).

Since a regular syllable may end with at most two consonants and begin
with at most one consonant, there may occur at most three consonants be-
tween two consecutive vowels in words of Pure Turkish: e.g., ABARTMAK (to

exaggerate), RENKSIZ (colorless), TURKCE (Turkish), YURTTAS (citizen).

3.2.2 Irregular Syllables

All of the rules above model the syllables of a word in Pure Turkish. As
mentioned in the previous section, Turkish has many words assimilated from
various other languages. Although most of these words have been given new
equivalents in Turkish, there are still many of them that are used in daily
conversation and writing. Some syllables in such words of foreign origin conflict

with the Turkish phonetic system. Such syllables are called irregular syllables.
The following irregular syllable structures are commonly used in transcrip-
tions of words of foreign origin:

CVCCC CCV CCVC CCVCC CCVCCC CCCv CCCVC.

We can give the following examples for such syllables:

SO-MESTR (semester) ~ GRA-FIK (graphic) SPOR (sports)
BRANS (occupation) SFENKS (sphinx) ~ STRA-TE-JI (strategy)
STRIP-TIZ (strip-tease).

In pronounciation, one usually inserts a vowel between some of the consonants,

but such vowels are not written.

CHAPTER 3. THE TURKISH LANGUAGE 21

Some of these syllable types occur mostly at the beginning or at the end of
the words. For example CCCV and CCCVC type syllables mostly occur at the
beginning, while CYCCC and CCVCCC type syllables occur at the end of the
words. This means that words of foreign origin can begin and/or end with at
most three consonants. The lists of those words that begin or end with three

consonants are given in Table 3.1 and Table 3.2 respectively.

As mentioned before, in Pure Turkish two vowels can not follow each other
without at least one intervening consonant, but there are words of foreign origin
that do not obey this rule: e.g., AORT(aorta), IADE (return), REIS (head,
chief), SAAT (hour, watch, clock), IPTIDAI (primitive), SASAA (splendour).
There are also a small number of words, again of foreign origin, where three

vowels follow each other (see Table 3.3).

Since an irregular syllable may begin or end with up to three consonants,
in some words of foreign origin one can find four or five consonants between

two vowels (see Tables 3.4 and 3.5).

In Table 3.6 you can find a comparison of words of Pure Turkish and words

of foreign origin with respect to their syllable structures.

3.3 Morphophonemics

Turkish word formation uses a number of phonetic harmony rules. Vowels and
consonants change in certain ways when a suffix is appended to a stem, so that

such harmony constraints are not violated.

3.3.1 Vowel Harmony

The best known morphophonemic process in Turkish is the vowel harmony.
Turkish has an eight-vowel system (A, E, I, i o,0,U, U), made up of all
possible combinations of the distinctive features front/back, narrow/wide, and
rounded/unrounded. The resulting system is schematically shown as a cube by
Jean Deny [10] (see Figure 3.1). When the eight vowels are placed at the eight
corners of the cube, the opposite faces represent the above three classifications.
Through this cube we can understand the three classes that each vowel belongs
to. For instance, A is a back, wide and unrounded vowel, where U is a front,

narrow and rounded one.

CHAPTER 3. THE TURKISH LANGUAGE

SKRAYPER STRATOSFER STRIPTIZCI

SPREY STRATUS STRONSIYUM
STRATEJI STREPTOMISIN STRUKTURALIST
STRATEJIK STRIKNIN STRUKTURALIZM
STRATIGRAFI STRIPTIZ STRUKTUREL

Table 3.1: Words beginning with three consonants

KILOHERTZ
ROPDOSAMBR
SFENKS
SOMESTR

Table 3.2: Words ending with three consonants

GEOIT

MAAILE
MUDDEIUMUMI
SUIISTIMAL

Table 3.3: Words with three consecutive vowels

ABSTRE ENSTRUMAN KONTRBAS
DEKSTRIN ENSTRUMANTAL KONTRFILE
EKSPRES ENSTRUMANTALIZM OBSTRUKSIYON
EKSPRESYONIZM FOKSTROT SANTRFOR
EKSTRA GANGSTER TRANSKRIPSIYON
EKSTRAFOR HORNBLENT TUNGSTEN

Table 3.4: Words with four consecutive consonants

KONTRPLAK
GOLFSTRIM

Table 3.5: Words with five consecutive consonants

22

CHAPTER 3. THE TURKISH LANGUAGE 23

Words of

Pure Turkish foreign origin

begin with at most one consonant and | can begin and/or end with

end with at most two consonants at most three consonants
contain at least one consonant can contain at most three vowels
between two consecutive vowels with no intervening consonants

(except for the portmanteau words)

can contain at most three consonants can contain at most five consonants
between two consecutive vowels between two consecutive vowels

Table 3.6: Comparison of words of Pure Turkish and words of foreign origin
with respect to their syllable structures

narrow unrounded
A . A
I : /I, ’
: /*
U v/’
/7
back<--- -=~-= front
A E
/
// |
s
// : .
O, ’ V (0]
/ wide

rounded

Figure 3.1: Vowel cube

CHAPTER 3. THE TURKISH LANGUAGE 24

Vowel harmony is a process by which the vowels in all syllables of a word
except the first assimilate to the preceding vowel with respect to certain pho-
netic features. Vowel harmony in Turkish is a left-to-right process operating

sequentially from syllable to syllable. The rules are [44]:

1. A non-initial vowel assimilates to the preceding vowel in frontness.
2. A non-initial narrow vowel assimilates to the preceding vowel in rounding.

3. A non-initial wide vowel must be unrounded; that is, O and O do not

occur except in first syllables of the words.

Thus, while any of the eight vowels may occur in the first syllable of a word,
the vowel of the following syllable is restricted to a choice of two. The fea-
tures front/back and rounded/unrounded are entirely predictable, and only

narrow/wide remains distinctive.

Since most of the loanwords do not obey to the vowel harmony rules, there
exist many words whose vowels are not in harmony: e.g., INAT (obstinance),
ANTRE (entrance), EKONOMI (economy), etc. Such words take suffixes
conditioned by their last vowel: INAT — INATCI (obstinate), ANTRE —
ANTREDEN (from the entrance), EKONOMI — EKONOMIMIZ (our econ-
omy). Thus, although some stems are not subject to vowel harmony internally,

nearly all suffixes are in harmony with the vowel on their left.

Except the progressive tense suffix (~iyor), there are no suffixes in which the
wide vowels O and O appear. Therefore, in citing suffixes, if we use the cover
symbol {A} for a wide vowel and {I} for a narrow vowel, their allophones® will

be as follows:®

{A} = A | E
I =1 |1
Thus, the negation suffix can be shown as -M{A}, and the narrative past

tense suffix as -M{I}S.

| U | U

When a suffix is affixed to a stem, the first vowel in the suffix changes
according to the last vowel of the stem. Succeeding vowels in the suffix change
according to the vowel preceding it. If we denote the preceding vowel (be it in

5An allophone is any of the variant forms of a phoneme as conditioned by position or

adjoining sounds.
6| indicates or.

CHAPTER 3. THE TURKISH LANGUAGE 25

the stem or in the suffix) by V then the two classes of vowels are resolved as

follows:
{A} = A, ifVis A | I | O | U
= E iVis B | I | O | U.
I = I, iftVis A | I
= 1, fvis E | 1
= U, ifVis O | U
= U, tvis O | U.

An allomorph is any of the variant forms of a morpheme. For example, the
negation suffix -M{A} has two allomorphs, where narrative past tense suffix

~-M{I}§ has four:

-M{A} = -MA | -ME

~M{I}s = -MIS | -MIS | -MUS | -MUS.
The allomorph of a suffix that is to be used is determined according to the
phonemes of the stem it is affixed. For example, when the suffix -M{A} is
affixed to the root GOR(MEK) ((to) see), the allomorph —-ME is used, because
as the vowel preceding the vowel {A} is O (V = 0), {A} must resolve to an
E ({A} =E):

GOR + M{A} — GORME (do not see).

Similarly, the suffix -M{I}S takes the form -MUS when it is affixed to the
root GOR(MEK):

GOR + M{I}$ — GORMUS (he had seen).

There are also some non-harmonic suffixes, such as -KEN and -{I}YOR,
which are exceptions to harmonic conditioning from the vowel on their left:
OKURKEN (while reading), GELIYOR. (he is coming). Similarly, the sec-
ond vowel in compound verbs (e.g., ~Y{I}VER, -Y{A}BIL, -Y{A}DUR) do
not change according to the preceding vowel either: OKUYABIL (can read),
OKUYUVER (just read), GIYINEDUR (go on dressing). Such suffixes con-
dition the vowel on their right normally: GELIYORUM (I am coming), OKU-

YABILIR (he can read).

Because of their different phonetic structures, some loanwords do not obey

the vowel harmony rules during agglutination. For example:

CHAPTER 3. THE TURKISH LANGUAGE 26

SAAT + [YHA} — not SAATA but SAATE
ALKOL + L{I} — not ALKOLLU but ALKOLLT.

When certain suffixes beginning with a consonant are affixed to the stems
ending with a consonant, a narrow vowel is inserted between them.” This vowel
is also determined similarly as explained before. For example the first person
plural possessive suffix ~[{I}]M{I}Z has eight different allomorphs:

-{M{I}z = -IMIZ | -IMIZ | -UMUZ | -UMUZ
= -MIZ | -Miz | -MUz | -MUz

When this suffix is affixed to the root KAPI (door), it takes the form -MIZ.
But when it is affixed to the root OKUL (school), the allomorph -UMUZ is

used.

3.3.2 Consonant Harmony

Another basic aspect of Turkish phonology is consonant harmony. In one
respect, consonants in Turkish may be divided into two groups as harsh (G,
F, T, H,S, K, P, $)® and soft consonants (B, C, D, G, G, J,L, M, N, R, V,
Y, Z). Most of the consonant harmony rules listed below are based on this

classification [5, 23]:

1. Turkish words mostly end with a harsh consonant; especially, the soft
consonants B, C, D, or G are rarely found as the final phonemes of the
originally Turkish words. If there is one of these consonants at the end
of a foreign word, it changes to a corresponding harsh sound of P, C,

T, or K respectively: e.g., KITAB — KITAP (book), ILAC — ILAC

(medicine).

2. In multi-syllabic words and in certain mono-syllabic roots, the final harsh
consonants P, C, T, K are mostly (not always) softened (i.e., it changes
to B, C, D, or G respectively) when a suffix beginning with a vowel
is attached: e.g.,, AKORT (tune) — AKORDU (its tune) but AORT
(aorta) — AORTU (his aorta).

3. In some suffixes beginning with one of the consonants C, D, or G, this
initial consonant might change according to the last phoneme of the stem

"We will show such vowels as [{I}]. .
8An easy way to remember these consonants is through the famous mnemonic CIFTE

HASEKI PASA.

S
—-~1

CHAPTER 3. THE TURKISH LANGUAGE

it follows. If we show these consonants as {C}, {D}, and {G}, their
allophones will be:

{¢¢ = C | ¢

D} =D | T

{G} = G | K
If the last phoneme of the stem to which one of such suffixes is attached
is a harsh consonant, the initial consonant of the suffix becomes harsh
(G, T, or K respectively), otherwise it remains as C, D, or G. Thus, the
allomorphs of the definite past tense suffix ~{D}{I} can be listed as:

~{D}{1} = -DI | -DI | -DU | -DU

= -TI | -TI | -TU | -TU.

When this suffix is affixed to the root GEL(MEK) ((to) come), it takes
the form -DI, and when it is affixed to the root KOS(MAK) ((to) run),
the allomorph ~TU is used:

GEL + {D}I} — GELDI (he came)
KOS + {D}I} — KOSTU (heran).

Furthermore some morphemes beginning with a vowel are affixed to the
stems ending with a vowel with the insertion of one of the consonants N, S,
S, or Y.® For example, the genitive suffix can be shown as -[N]{I}N, the third
person singular possessive suffix as —[S]{I}, distributive numerical suffix as -

[SI{A}R, and the acceleration suffix as -[Y[{I}VER. The allomorphs of these

suffixes are as follows:

-[N]{I}N = -NIN | -NIN | -NUN | -NUN
= -IN | -IN | -UN | -ON
~[S){1} = -5l | -SI | -SU | -SU
= - | - | -U | -0
-[S{A})R = -SAR | -SER | -AR | -ER
~[Y{I}VER = -YIVER | -YIVER | -YUVER | -YUVER
= -IJVER | -IVER | -UVER | -UVER.

As an example, the suffix —[S]{I} takes the form —I when it is affixed to the

9We will show such consonants as [N], [S], [S], and [Y] respectively.

CHAPTER 3. THE TURKISH LANGUAGE 28

root EV (house), but the allomorph ~SI is used when it is affixed to the root
KAPI (door):

EV + [S{I} — EVI (his house)
KAPI + [S{I} — KAPISI (his door).

There may be some exceptions to such morphophonemic rules. For instance,
because of the former existence of an Arabic consonant not pronounced in
Turkish, the consonant S is not inserted between some words ending with a

vowel and the third person singular possessive suffix [23]:

SANAYI + [S}{I} — not SANAYISI but SANAYIL

For some such words both forms are valid:
CAMI + [S]{I} — either CAMISI or CAMIL

A similar case happens when a case suffix comes immediately after some
pronouns such as BU (this), 3U (that), O (it), KENDI (self), after the prono-
mial suffix -KI, or after the third person possessive suffixes —[S]{I} or ~-L{A}R{I}.
In such cases an N is inserted in between:
not BUYU but BUNU
not KENDIDEN but KENDINDEN
not SENINKIYE but SENINKINE
not KAPISIDA but KAPISINDA.

BU + [Y{1}
KENDI + {D}A}N
SENINKI + [Y]{A}
KAPISI + {D}{A}

A

When all the rules above are considered, we reach the result that Turkish

suffixes tend to have a highly protean nature. As an extreme example, the
participial suffix —-{D}{I}{K}'° has 16 allomorphs:

~{DMI}{K} = -DIK | -DIK | -DUK | -DUK
= -TIK | -TIK | -TUK | -TUK
= -DIG | -DIG | -DUG | -DUG
= -TIG | -TiG | -TUG | -TUG.

In the word SATTIGIN ([the thing] that you sell) that suffix takes the form
—TIG, because it follows the root SAT(MAK) ((to) sell) which ends with the
harsh consonant T (i.e., {D} = T) and whose last vowel is A (V = A —
{I} = 1), and it is followed by a suffix beginning with a vowel (i.e., {K} = G).

10The allophones of {K} are K and G.

CHAPTER 3. THE TURKISH LANGUAGE 29

3.3.3 Root Deformations

Normally Turkish roots are not flexed. However, there are some cases where
some phonemes are changed by assimilation or various other deformations [23].
An exceptional case related to the flexion of roots is observed in personal
pronouns. When the first and second singular personal pronouns BEN (I) and
SEN (you) take the dative suffix, they change as:

BEN + [Y][{A} — not BENE but BANA (to me)
SEN + [Y[{A} — not SENE but SANA (to you).

When these two roots take the plural suffix, their structures completely change:

BEN + L{A}R — not BENLER but BIZ (we)
SEN + L{A}JR — not SENLER but SiZ (you).

These are individual cases and can be treated as exceptions.

A more systematic change occurs when the suffix ~[{I}]YOR comes after
the verbs ending with the wide vowel {A}. In such cases, the wide vowel at

the end of the stem is narrowed:

KAPA + [{I}JYOR — not KAPAYOR but KAPIYOR.

As an exceptional case, when not only the suffix —[{I}]YOR but also any of
the suffixes beginning with the consonant Y is affixed to the roots DE(MEK)

((to) say) or YE(MEK) ((to) eat), they change as DI and YT respectively:

DE + [{I}JYOR — not DEYOR but DIYOR

DE + [Y[{AJN — not DEYEN but DIYEN M

YE + [Y{I}JP — not YEYIP but YIYIP.

One of the most important deformations in roots and stems occur as the
result of the second consonant harmony rule. This rule says that when some

words ending with one of the harsh consonants P, , T, K take a suffix begin-
ning with a vowel, that consonant changes into B, C, D, or G respectively:

DORT + {I}N{I}Z — not DORTUNUZ but DORDUNUZ
TABAK + [{IJM — not TABAKIM but TABAGIM.

If an N precedes a final K, the consonant K either stays as it is or it changes

11The verb DEMEK sometimes shows exception to this exception either. For example:
DE + [Y}{I}P —not DIYIP but DEYIP.

CHAPTER 3. THE TURKISH LANGUAGE 30

into a G:

TANK + [Y}{A} — TANKA
RENK + [YJ{A} — not RENKE but RENGE.

A similar change occurs when a suffix beginning with a vowel is affixed to
a word ending with ~LOG. In such a case, the final G changes into G:

PSIKOLOG 4+ [Y}J{A} — not PSIKOLOGA but PSIKOLOGA.

Another root deformation occurs as a vowel ellipsis. When a suffix begin-
ning with a vowel comes after some nouns, generally designating parts of the
human body, which has a vowel {I} in its last syllable, this vowel drops:

AGIZ + [{I}M{I}Z — not AGIZIMIZ but AGZIMIZ.

Similarly, when the passiveness suffix ~{I}L is affixed to some verbs, whose

last vowel is {I}, this vowel also drops:

AYIR + {I}L — not AYIRIL but AYRIL.

When a noun which has to face with vowel ellipsis receives the first person
singular or plural suffixes, i.e., -[Y]{I}M or -[Y]{I}Z, although these suffixes
begin with vowel, the last vowel of the root does not drop:

OGUL + [Y{I})Z — not OGLUZ but OGULUZ.

When a suffix beginning with a vowel is affixed to some originally Arabic
roots ending with a consonant, or when such a root is combined with another

word beginning with a vowel, the final consonant of the root is duplicated:

HAK + [{I]M — not HAKIM but HAKKIM
ZAN + ETMEK — not ZANETMEK but ZANNETMEK.

When the plural suffix ~-L{A}R is affixed to the portmanteau words which
were originally indefinite compounds, a deformation occurs. This suffix, coming

before the possessive suffix at the end of the stem, forms a ‘mid’fixing:

GOZYASI + L{AJR — not GOZYASILAR but GOZYASLARL

Sometimes, more than one deformation may happen on the same root:

CHAPTER 3. THE TURKISH LANGUAGE 31

KAYIT + {I}N — neither KAYITIN nor KAYTIN but KAYDIN

ZIT + [YKI} — neither ZITI nor ZITTI but ZIDDI

RENGEYIGI + L{A}R — neither RENGEYIGILER
nor RENGEYIGLERI
but RENGEYIKLER]

ADEMOGLU + L{A}JR — neither ADEMOGLULAR
nor ADEMOGLLARI
but ADEMOGULLARL

3.4 Morphology

Turkish roots can be classified into two main classes: nominal and verbal. The
verbal class comprises the verbs (GOR(MEK), KOS(MAK), SAT(MAK), etc.),
while nominal class comprises nouns, pronouns, adjectives (KAPI, BIZ, DORT,
etc.), and adverbs (AZ, DUN, YOK, etc.). The suffixes that can be received
by either of these groups are different, i.e., a suffix which can be affixed to
a nominal root can not be affixed to a verbal root with the same semantic
function. There exist some roots which never take suffixes. Some interjections,
conjunctions and postpositions can be given as examples to such roots (HEY
(hi!), VE (and), RAGMEN (despite), etc.).!? There are also some roots which
can take all the suffixes either the nouns or the verbs can take (TAT (taste),
DIK (set up, sew, vertical), SIS (swell, swelling), etc.).

Turkish suffixes can be classified as derivational and conjugational. Deriva-
tional suffixes change the meaning and sometimes the class of the stems they
are affixed to, while a conjugated verb or noun remains as such after the af-
fixation. Conjugational suffixes can be affixed to all of the roots in the class
that they belong to. On the other hand, the number of roots each derivational
suffix can be affixed to differs. For example, ~ZIR can only be used with the
verb EMMEXK (to suck), i.e., EMMEK— EMZIRMEK (to nurse).

Conjugational suffixes may be divided into two groups according to the root

class that they can be affixed to, i.e., a noun paradigm and a verb paradigm.

12Gome adverbs, such as HEMEN (immediately), GALIBA (perhaps), never take suffixes
either.

CHAPTER 3. THE TURKISH LANGUAGE 32

nominal | plural | possessive | case | relative

root suffix suffix | suffix | suffix
plural suffix -L{A}R
possessive suffixes —[{I}]M -{I}]M{1}Z

-{DIN - -[{I}N{T}Z
-[SH{1} ~L{A}R{T}

case suffixes internal external
~[Y{I} -[Y]L{A}
-[Y{A} H{CHA}
-{DHA} -L{I}
~-{DH{AIN -5{I}Z
~[NH{I}N

relative suffix -Ki

Figure 3.2: The nominal model

3.4.1 Noun Paradigm

The elements of the noun paradigm, in order, can be shown as in Figure 3.2
[1, 35, 36, 44]. All of these elements (except the root) are optional.

The plural suffix ~-L{A}R is added directly to the nominal root before any
other suffix or ending. In the plural forms of the pronouns BU, SU, O an N is

inserted between the word and the suffix:

BU + L{A}R — not BULAR but BUNLAR (these)
SU + L{A}R — not SULAR but SUNLAR (those)
O + L{A}R — not OLAR but ONLAR (they).

Possesive pronouns (in English: my, your, his/her/its, our, your, their) are
represented by suffixes in Turkish: e.g., EVIM (my house), ARABAN (your
car). If the possessed noun is plural, possessive suffixes come after the plural
suffix: e.g., EVLERIM (my houses), ARABALARIN (your cars). When the
third person plural possessive suffix ~-L{A}R{I} comes after a plural noun, two

L{A}R’s combine and one of them drops:

EV + L{AJR + L{A}R{I} .— not EVLERLERI but EVLERL

CHAPTER 3. THE TURKISH LANGUAGE 33

In the above example, the word EVLERI means their houses because LERI
is the combination of the plural sufix ~-L{A}R and the third person plural
possessive suffix -L{A}R{I}. The same word can be used in other meanings

since it can be formed by different suffixes as:

EV + L{AIR{I} — EVLERI (their house)
EV + L{A}R + [S{I} — EVLERI (his houses).

Portmanteau words which were originaily indefinite compounds have the
third person singular possessive suffix already in their structure: e.g., ATESBO-
CEGI (fire-ly), SAFRAKESESI (gall bladder). Such words receive the pos-
sessive suffixes after removing the possessive suffix which is already in their

structure:

ATESBOCEGIM

ATESBOCEGIN

ATESBOCEGI (not ATESBOCEGISI)
ATESBOCEGIMIZ

ATESBOCEGINIZ

ATESBOCEKLERI (not ATESBOCEGILERI),

SAFRAKESEM (not SAFRAKESESIM)
SAFRAKESEN (not SAFRAKESESIN)
SAFRAKESESI (not SAFRAKESESISI)
SAFRAKESEMIZ (not SAFRAKESESIMIZ)
SAFRAKESENIZ (not SAFRAKESESINIZ)
SAFRAKESELERI (not SAFRAKESESILERI).

The nominal roots SU (water) and NE'® (what) create some irregular cases

when they receive possessive suffixes [1]:

SUYUM (not SUM) NEYIM
SUYUN (not SUN) NEYIN
SUYU (not SUSU) NEYI

SUYUMUZ (not SUMUZ) NEYIMIZ
SUYUNUZ (not SUNUZ) NEYINIZ
SULARI NELERI.

13The regular forms for the root NE are alsc valid: NEM, NEN, NESI, NEMIZ, NENIZ,
NELERIL

CHAPTER 3. THE TURKISH LANGUAGE 34

Case suflixes can be grouped in two classes as internal and ezternal case
suffixes. Internal case suffixes are more frequently used than the external ones.

They are named as follows:

-[Y{1} accusative
-[Y]{A} dative
-{D}{A} locative
-{D}{A}N ablative
—[N]{I}N genitive.

Declensions of pronouns have some irregular forms. In the dative cases of
BEN and SEN, the front vowels become back (see page 29). In the genitive
cases of BEN and BIZ, -IM is used instead of the regular form —IN:

BEN 4+ [N[{I}JN — not BENIN but BENIM (my)
Biz + [N{I}N — not BIZIN but BIZIM (our).

Additionally, as mentioned on page 28, when a case suffix is attached to
certain nouns an N is put in before the case suffix. Among such nouns we should

add the portmanteau words having the characteristics mentioned above:

ATESBOCEGI + [Y]{A} — not ATESBOCEGIYE
but ATESBOCEGINE

SAFRAKESESI + {D}{A} — not SAFRAKESESIDE
but SAFRAKESESINDE.

The nominal roots SU and NE show exceptions for the genitive suffix, as

for the possessive suffixes. In their genitive cases a Y is inserted instead of an
N:
SU + [NHI}N — not SUNUN but SUYU

NE + [NJ{IIN — not NENIN but NEYIN.

The relative suffix ~KI may be added only to genitive or locative suffixes.
When it is affixed to a noun in genitive case, it forms a possessive pronoun:
e.g., KAPININKI (the door’s), BIZIMKI (ours). When it is affixed to a noun
in locative case, it makes an adjective determining the location of the thing

under question: e.g., KAPIDAKI ([the one] that is at the door), BIZDEKI

([the one] which is in our [hand, home]).

It is possible to affix the relative suffix directly to a temporal adverb or

CHAPTER 3. THE TURKISH LANGUAGE 35

a noun adverbially used (e.g., DEMINKI (of a while ago), YARINKI (tomor-
row’s)), or to a directional adverb or an adverb of place (e.g., KARSIKI ([the
one] on the opposite side), ASAGIKI (the lower one)). The number of such

roots are quite limited.

In general, the relative suffix is not subject to vowel harmony. However, in
the following cases -KI changes into -KU: DUNKU (yesterday’s), BUGUNKU
(today’s), [O] GUNKU ([that] day’s), OBURKU (the other one).

A noun stem that received the relative suffix may take the plural suf-
fix and any case ending: e.g., BURADAKILER (those who are here), BU-
RADAKILERLE (with those who are here). In its singular form an N is put
between —KI and the case-ending: e.g. BURADAKINDEN (from the one who

is here).

3.4.2 Verb Paradigm

The verb paradigm is more complex than the noun paradigm. Its elements, in
order, are shown in Figure 3.3. Among these elements, the obligatory ones are

the root, the main tense suffix, and the person suffix.

There are four voices of verbs in Turkish: reflexive, reciprocal, causative,
and passive. Combination of these suffixes are possible, but they must ap-
pear in the indicated order, and the reflexive and reciprocal are mutually
exclusive: e.g. GORMEK (to see) — GORUSMEK (to see each other) —
GORUSTURMEK (to cause to see each other) — GORUSTURULMEK (to

be caused to see each other).

Neither the reflexive nor the reciprocal can be affixed to all verb roots;
thus, they can be considered as derivational suffixes: DOVMEK (to beat) —
DOVUNMEK (to beat oneself), but not KOGMAK — KOJUNMAK. ANLA-
MAK (to understand) — ANLASMAK (to understand one another), but not

OKUMAK (to read) — OKUSMAK.

The factitive voice of verbs takes various forms as follows [23]:

CHAPTER 3. THE TURKISH LANGUAGE 36
verbal | voice | negation | compound | main | question | second | person
root | suflixes | suffix verb s. tense s. | suffix | tenses. | suffix
voice suffixes reflexive reciprocal factitive passive
N IS “OHUR L
-{I}T -{I}N
=T -N
-{I}R
—-{A}R
negation suffixes -M{A} ~[YI{AIM{A}
compound verb ~[Y]{A}BIL -[Y{A}YAZ
suffixes -[Y][{A}DUR -[Y}[{A}KAL
-[Y}{I}VER -[Y{A}KOY
-[Y{A}GEL -[YHA}GOR
main tense -{D}{I} -S{A}
suffixes -M{I}$S -[Y){A}
[YJ{A}C{AHK} -M{A}L{1}
-({I}]R -®
-{A}R
-{I}]YOR
-M{A}KT{A}
question suffix -M{I}
second tense ~-[YK{D}I} -[Y]S{A}
suffixes -[YIM{I}S
person suffixes -M -[YKI}M ~[YHI}N
-N -S{I}N ~[YKI}N{I}Z
-® -[YKI}Z -S{I}NL{A}R
-K -S{I}N{1}Z
-N{I}Z -L{I}M
-L{A}R

Figure 3.3: The verbal model

CHAPTER 3. THE TURKISH LANGUAGE 37

Allomorph | Verb Stems Accepting The Allomorph Examples
-{A}R | CIK, COK,4GIT, KOP, ON CIKAR, GIDER
AS, BAT, BIT, DOG, DOY, DUY, ASIR, DOYUR,
SIS, TAS, YAT, YIT YITIR

AK, CARP,’ KOK, KORK, SAP,!6 AKIT, KORKUT,
~{I}T | SARK, URK URKUT

all polysyllabic stems ending with a AGLAT,
-T vowel or one of the consonants L or R | YONELT, AGART

~{D}{I}R | all other stems YEDIR, GORUSTUR

Table 3.7: Usage of allomorphs of the factitive verb suffix

-{DH{}R = -DIR | -DIR | -DUR | -DUR
= -TIR | -TIR | -TUR | -TUR

-{I}T = -IT | -IT | -uT | -UT
-T = -T

-{I}R = -IR | -IR | -UR | -UR
-{A)R = -AR | -ER.

Although five different groups of these 19 different forms do not present any
relationship at first sight, a close examination shows clearly that they are allo-
morphs. The set of rules applied to determine which allomorph is to be chosen
for a given verb is given in Table 3.7 [23]. The irregular factitive forms are GEL
(come) — GETIR (bring), GOR (see) — GOSTER (show), KALK (stand up)

— KALDIR (lift), EM — EMZIR.

CHAPTER 3. THE TURKISH LANGUAGE

—{I}L

Allomorph | Verb Stems Accepting The Allomorph Examples
all stems ending with a consonant SEVIL,
other than L YAPTIRIL

~{I}N

all stems ending with the consonant L

BULUN, BILIN

N

all stems ending with a vowel

DEN, BAGLAN

Table 3.8: Usage of allomorphs of the passive voice verb suffix

The factitive
(o
AR
YAP

YURU
KAPA

A

verb suffixes can be used repeatedly:

IClR — ICIRT

ASIR — ASIRT — ASIRTTIR
YAPTIR — YAPTIRT

YURUT — YURUTTUR

KAPAT — KAPATTIR — KAPATTIRT

The passive voice verb suffix also takes different forms as:

L =

~{}N

Il

-N =

-IL AL | -uL | -0L
-IN | <IN | -UN | -UN

~-N.

38

The allomorph to be chosen for a given verb is determined by the set of rules
listed in Table 3.8 [23]. Passive voice is also applied to impersonal use in Turk-
ish. Thus, double passive structure may be used for a passive and impersonal
verb. This is in fact superfluous. SOYLENDI (it was said) is clear enough but

SOYLENILDI may also be used.

The passive and reflexive forms of some verbs have the same structure, but

14The form COKTUR is also sometimes used.
15The form CARPTIR is also sometimes used.
16The form SAPTIR is also sometimes used.

CHAPTER 3. THE TURKISH LANGUAGE 39

they differ in their meanings. For example, the verb YIKANMAK is in passive
voice in the sentence Bulagik yikand:. (The dishes were washed.), where it is
in reflexive voice in the sentence Ali yikand:. (Ali washed himself.).

There are two suffixes which give a verb negative meaning: -M{A} (not)
and -[Y]{A}M{A} (can not). The suffix ~[Y]{A}M{A} is used to express
impossibility: SOYLEMEM (I don’t say), SOYLEYEMEM (I can’t say).

Compound verb suffixes can be affixed to verbs to add them some extra
meanings. Among them the potentiality and possibility suffix -[Y]{A}BIL
is the most frequently used one. It is used to express a physical or mental
ability or capability (e.g., YAZABILIR (he is able to write)), or permission
or possibility (e.g., GIDEBILIRSIN (you may go)). The acceleration suffix
~[Y]{I} VER is the next frequently used one. It is used to express acceleration
or quickness in an action (e.g., GELIVERDI (he just came)), or to request
someone to do something (e.g., ACIVER (please open)). To indicate contin-
uance in an action the continuance suffixes -[Y]{A}DUR, -[Y]{A}KQY, or
~[YI{A}KAL are used: e.g., YAZADUR (go on writing), YIKAYAKOY (go
on washing), BAKAKALDI (he continued to look). The approximation suffix
~[Y]){A}YAZ is rarely used. It indicates approximation to a state or situa-
tion: DUSEYAZDIM (I almost fell). More than one compound verb suffix
may be added to a verb: SOYLEYIVEREBILIR MISIN? (Could you please

say?), YAZADURUVER (please go on writing).

Some compound verb suffixes can not follow negation suffixes. For exam-
ple, except the potentiality suffix —[Y]{A}BIL none of them can be used after
the impossibility suffix -[Y]{A}M{A} (e.g., YAZAMAYABILIR (he may not
be able to write)). Similarly, the suffixes —[Y]{A}KOY, -[Y]{A}KAL, and
~[Y]{A}YAZ are not used after negation suffixes.

Main tense suffix is one of the obligatory suflixes for the verbs. There
are nine tenses: definite past (—{D}{I}), narrative past (-M{I}3), future (-
[Y]{A}CA{K}), aorist (-{I}R, -{A}R, -R), progressive (-{I}YOR, -M{A}K-
T{A}), conditional (-S{A}), optative (-[Y]{A}), necessitative (-M{A}L{I}),
and imperative (-®). The last four are not tenses in the strict sense of the

term, but their place in the verb model is the same as main tense suffixes.

In the tense system, the contrast between the definite past and the narrative
past is of particular interest. The definite past is used to describe events which
the speaker has personally witnessed, while the narrative past is used for actions
about which the speaker knows through report or inference.

CHAPTER 3. THE TURKISH LANGUAGE 40

Allomorph Verb Stems Accepting The Allomorph Examples
all mono-syllabic roots ending with a consonant YAPAR,
{A}R except the following ones:17AL, BIL, BUL, DUR, GEL, SEVER,
GOR, KAL, OL, OL, SAN, VAR, VER, VUR, and HISSEDER,
the compound verbs formed with the verb ETMEK ZANNEDER
all multi-syllabic stems ending with a consonant KAYBOLLUR,
{I}R except the compound verbs formed with the verh SURUL@,
ETMEK, and the mono-syllabic roots listed above ALIR, VERIR
R all stems ending with a vowel YER, OYNAR

Table 3.9: Usage of allomorphs of the aorist suffix

As factitive and passive voice suffixes, the aorist suffix also changes accord-
ing to some specific rules, which are listed in Table 3.9. In the negative form of
a verb which is in present tense the aorist suffix is not used. The first singular
and plural person suffixes are directly affixed to the negation suffix, while the

other person suffixes are affixed with the insertion of a Z in between:

VERMEM (I don’t give)
VERMEZSIN (you don’t give)
VERMEZ (he doesn’t give)
VERMEYIZ (we don’t give)
VERMEZSINIZ (you don’t give)
VERMEZLER (they don’t give).

The progressive tense suffix -[{I}]YOR causes a deformation on some stems

it is affixed to (see page 29). The same deformation occurs in the negation suffix
when it is followed by the suffix —-[{I}]YOR:

SEV + M{A} + -[{I}JYOR — not SEVMEYOR
but SEVMIYOR.

The suffix -M{A}KT{A} can also be considered as a progressive tense suf-
fix since it is used to indicate that an action continues in the present time.

There is no special suffix for imperative in Turkish. Whether a verb is in

17This list of 13 exceptions is given by Lewis {25], page 116.

CHAPTER 3. THE TURKISH LANGUAGE 41

imperative form is understood through its person suffix. Every verb stém can
be considered as in the second person singular imperative form (for positive
orders positive stems, for negative orders negative ones): e.g., GEL! (Come!),

KAPATMA! (Don’t close!).

The question suffix -M{I} is written separate from the word it follows; but it
is subject to vowel harmony. Its place within the verb is not consistent; it may
appear after the main tense suflix, or after the person suffix, depending on the
tense of the verb. It comes after the person suffix if the tense suffix is definite
past, conditional, or optative: e.g., GELDIN MI? (Did you come?), GELSEM
MI? (Should I come?), GELSIN Mi? (Do you want him to come?). For the
remaining tenses, the place of the question suffix is between the main tense
suffix and the person suffix: e.g., GELIR MIYIZ? (Do we come?), GELECEK
MISIN? (Will you come?). No matter in which tense the verb is, the question
suffix comes after the third person plural suffix: GELMELILER MI? (Must

they come?), GELIYORLAR MI? (Are they coming?).

In addition to the time concept coming from the main tense suffix, a second
time may be added to a verb through the second tense suffixes. These suffixes
are formed by removing the I from the definite past, narrative past, and con-
ditional forms of the verb IMEK, i.e., IDI. IMIS, ISE: e.g., GELIYORDUM
(I was coming), GELIRMISSIN ([I am told that] you come), GELECEKSEK
(if we will come). When these forms are used as independent words, without
being subject to the vowel harmony, they play the same role as the second
tense suffixes: i.e., GELIYOR IDIM, GELIR IMISSIN, GELECEK ISEK. The
second tense suffixes are affixed to verb stems ending with a vowel with the
insertion of a Y in between: e.g., GELSEYDI (if he came), GELEYMIS (I wish
he had come), GELMELIYSE (if he must come).

The compound imperfect and conditional forms of the definite past tense
can be used in two ways; the second tense suffix may come after or before the
person suffix: e.g., GELDINDI (you had come) or GELDIYDIN. GELDIKSE
(if we came) or GELDIYSEK. In the third person plural, the first form is
more frequently used than the second: e.g., GELDILERDI (they had come),
GELDILERSE (if they came). Similarly, no matter what the main tense
suffix is, the third person plural suffix can be used either before or after all
the second tense suffixes: e.g., GELIYORDULAR and GELIYORLARDI,
GELMELIYMISLER and GELMELILERMIS, and GELDIYSELER and GEL-

DILERSE are all valid.

None of the second tense suffixes can be used with the imperative suffix.

CHAPTER 3. THE TURKISH LANGUAGE 42

Additionally, the narrative second tense suffix can not be used with definite
past tense suffix, and the conditional second tense suffix can not come after the
optative and the conditional tense suffixes: i.e., OKUYDU, OKUDUYMUS,
OKUSAYSA are not valid.

The last obligatory suffix for verbs is the person suflix. Different suffixes
are used to represent the first, second, and third singular, and plural persons.
They also show differences depending on the main or second tense suffix they
are affixed to. For example, the second person plural suffix has 24 allomorphs

which can be grouped in 4 as follows:

-N{I}Z = -NIz | -NIZ | -NUZ | -NUZ
~S{I}N{I}Z = -SINIZ | -SINiZz | -SUNUZ | -SUNUZ
~[YHI}IN = -YIN | -YIN | -YUN | -YOUN
= -IN | -IN | -UN | -UN
-[Y{I}N{I}2 = -YINIZ | -YINIZ | -YUNUZ | -YONUZ
= -INIZz | -INIz | -UNUZ | -UNUZ

We can say that there are four different conjugations of person suffixes as
shown in Table 3.10 [1]:

GELDIM GELMELIYIM GELEYIM

GELDIN GELMELISIN GELESIN GEL
GELDI GELMELI GELE GELSIN
GELDIK GELMELIYIZ GELELIM

GELDINIZ GELMELISINIZ GELESINIZ GELINIZ
GELDILER GELMELILER GELELER GELSINLER

Different person suffixes may have the same form. For example, the sufix
~-S{I}N may be the second person singular suffix (see second and third rows of
Table 3.10), or the third person singular suffix (see last row of Table 3.10).

No suffix is used for the third singular person; if no person suffix exists
in the verb its person is accepted as the third singular person: GELDI (he
came), GELIRSE (if he comes). The imperative form shows an exception in
this rule. With this form, no suffix is used for the second singular person,
while the suffix ~-S{I}N is used for the third singular person: e.g., GEL! ([You]
comel), GELSIN! (Let him come!). Additionally, the iriperative forms of the

CHAPTER 3. THE TURKISH LANGUAGE

43

Person Suffix
Main Tense Second Tense
Suffix Suffix
1%p.s. 2ndps. | 3rdps, 1%tp.p. ondp . 3rip.p.
—-{DH{1} -[Y){D}{1} -M -N -P -K -N{1}2z -L{A}R
-8{A} -[Y}s{A}
-M{I}3
~[Y{A}CA{K}
~[{T}R
-{A}R -[YIM{I}$ ~-[Y){I}M | -S{I}N -® ~[YH{I}Z | -S{I}N{1}2 -L{A}R
-{I}YOR
-M{A}KT{A}
-M{A}L{I}
—[Y]{A} S[YIH{IDM | -S{I}N -9 -L{I}M | -S{I}N{I}Z -L{A}R
;) - ~S{I}N ~[YHI}N -S{I}NL{A}R
—-[Y]{I}NIZ

Table 3.10: Conjugation of person suffixes

first singular and plural persons are not present.

3.4.3 Verbal Nouns

In Turkish, sentences can be classified as verb sentences and noun sentences.
In verb sentences, there is an action, and this action is represented by a verb
within the sentence: e.g., Okula gittim. (I went to the school.). On the other

hand, in a noun sentence there is no explicit verb: e.g., Ogrenciyim. (I am a

student).

The noun sentences of Turkish correspond to the sentences formed by the
verb to be in English. In Turkish, instead of using an extra verb in such sen-
tences, some suffixes which play the role of the verb to be in English are added
to the subject of the sentence. These suffixes can be shown as in Figure 3.4.

The only obligatory suffix in this paradigm is the person suffix.

Negation concept show differences in noun and verb sentences. In a verb
sentence, it is obtained by adding a negation suffix to the verb of the sentence
(see page 39): e.g., Okula gitmedim. (I didn’t go to the school.). There is no
such a suffix for the verbal noun of a noun sentence. Instead, the word DEGIL

is used for this purpose: Ofgrenci dedilim. (I am not a student).

CHAPTER 3. THE TURKISH LANGUAGE 44

nominal | question | tense | person | probability

stem suffix | suffix | suffix suffix

question suffix -M{I}

tense suffixes ~[Y{D}{I}
-[YIM{I}3
-[YIS{A}

person suffixes -M -[YHI}M
-N -S{I}N
-K -[YKI}Z
-N{I}Z ~S{I}N{I}Z
-L{A}R

probability suffix —-{D}{I}R
Figure 3.4: The verbal noun model

As for the verb sentences, interrogative noun sentences are formed by adding
the question suffix: e.g., Okula gittim mi? (Did I go to the school?), Ogrenci

miyim? (Am I a student?).

Time concept is given with the help of the tense suffixes in a noun sentence.
As seen in Figure 3.4, there are three tense suffixes that can be added to a noun
stem. They correspond to the second tense suffixes in the verb model. Thus,
they are the definite past, narrative past, and conditional forms of the verb
IMEK (see page 41), and they may also be used as independent words, i.e.,
DI, IMIS, ISE: ie.. O"g”renciﬂm. and Odrenci idim. can both be used. To
express remaining tenses and modes apart from these three tenses in noun
sentences, the infinitive OLMAK (to become) is used: e.g., Ogrenci olacadim.

(I will be a student.), Ogrenci olmalyrm. (I must be a student.).

The person suffixes used with a verbal noun are those listed in the first
and second rows of the Table 3.10. Thus, when the tense is definite past or
conditional, the person suffixes in the first row, when it is narrative, those in
the second row are used. When no tense suffix exists, i.e., the sentence is in

present tense, the second row of the table is active:

CHAPTER 3. THE TURKISH LANGUAGE 45

OGRENCIYDIM OGRENCIYIM
OGRENCIYDIN OGRENCISIN
OGRENCIYDI OGRENCI
OGRENCIYDIK OGRENCIYIZ
OGRENCIYDINIZ OGRENCISINIZ
OGRENCIYDILER OGRENCILER.

As in the verb model, here also, the third person plural suffix may come
either before or after the tense suffix: e.g. ORADALARDI (they were there)
and ORADAYDILAR, ZAYIFLARMIS ([I heard that] they were thin) and
ZAYIFMISLAR, and OKULDALARSA (if they are at the school) and OKUL-
DAYSALAR are all valid. When this suffix should come after a plural noun,
one of the -L{A}R’s drops: e.g., OGRENCILER (students) — OGRENCI-
LERDI (they were students), not OGRENCILERLERDI, or OGRENCILER-
DILER.

The suffix -{D}{I}R is not an obligatory suffix. It is usually not used
in spoken language. In fact, it changes the meaning of the sentence a bit;
it adds a probability, or sometimes a definiteness concept. For example the
sentence Arkadaginiz burada. (Your friend is here.) means “I am sure that
he is here”, but Arkadaginiz buradadir. means “he must be here (perhaps, I
think, probably)”. However, it is certainly used in statements which express

permanent validities: e.g., Kedi bir hayvandir. (Cat is an animal.).

—{D}{I}R can also be used after the verbs in narrative past, progressive, or
prog

future tense, in necessitative mode, or in narrative form of one of these tenses:

GELMISTIR (he had [probably] come) GELMISMISTIR
GELiYORDUR ([I think] he is coming) GELIYORMUSTUR
GELMEKTEDIR ([probably] he has been coming) GELMEKTEYMISTIR
GELECEKTIR ([perhaps] he will come) GELECEKMISTIR
GELMELIDIR ([may be] he must come) GELMELIYMISTIR.

3.4.4 Participles

In Turkish, verb sentences can be transformed into a noun, adjective, or adverb
clause by adding certain suffixes to the verb of the sentence. These suffixes can

be listed in three groups as in Table 3.11.

During the transformation, the obligatory suffixes of the verb, i.e., main

CHAPTER 3. THE TURKISH LANGUAGE 46

Participles that form a(n)
Noun Adjective Adverb
-M{A}K} -[Y]{A}N -[Y]{I}P
-M{A} | -[YH{A}C{AHK} | -[Y]{A}R{A}K
S | -VI{ANS(D | [YHINC(A)
-{DHIHK} -[Y{A}L{I}
~-M{I}$ -[Y]KEN
_M{A}D{AIN
_M{A}KS{I}Z{T}N
-C{A}S{I}N{A}

Table 3.11: Participles

tense and person suffixes, are removed, and then the participles are affixed.
However, most of the participles still denote the time characteristic of the
verb. For example, -M{I}$ and -[Y]{A}C{A}{K} still denote narrative past
and future tenses, respectively. In addition, ~{D}{I}{K} denotes past, —
[Y]{A}S{I} future, and so on. Among the participles, only -M{A}D{A}N and
~-M{A}KS{I}Z{I}N can not be used with negation suffix since they include
negation in themselves: OKUYACAGINIZ (that you will read), GELMEYEN-
LER (those who don’t come), VERILMEDEN (before/without being given).

-M{A}{K} forms the infinitive form of the Turkish verbs. The infinitive can
be used as a noun, and may take any of the case endings but genitive. It never
takes possessive suffixes: e.g., OKUMAGA ; OKUMAKTAN are valid, but
OKUMAGIN, OKUMAKLARI are not. Similarly, all the participles listed in
the first and second columns of Table 3.11 may be used as a nominal root, i.e.,
they may take all the suffixes that a nominal root can take: e.g., GELISINIZE
(to your coming), VERDIKLERINDENDI (it was one of those that you gave).

The participles listed in the third column of Table 3.11 usually do not take
any suffixes. Some of them can take only certain suffixes. For example —
Y{A}R{A}K participle can take the suffix -{D}{A}N, which adds nothing to
its meaning: YAPARAK (doing [something]) — YAPARAKTAN. In addition,
~Y{I}NC{A} participle takes the suffix -[Y]{A} when it is used with the word

CHAPTER 3. THE TURKISH LANGUAGE 47

KADAR, and -[Y]{A}L{I} takes -{D}{A}N when it is used with the word
BERI: e.g., GELINCEYE KADAR (until [the person] comes), GIDELIDEN
BERI (since [the person] has gone).

~[Y]JKEN has a somewhat different usage than the other participles. Origi-
nally it is the ~[Y]{A}N relative participle of the verb IMEK [3]. Like the other
forms of this verb, it may be used as a suffix or as an independent word, i.e.,
IKEN. It is an invariable suffix, that 1s, it is not subject to the vowel harmony.
In accordance with the general meaning of the sentence, it shows past, present,
or future. It is affixed to a verb in the necessitative mode, or in any tense,

except the definite past:

OKUMUSKEN
OKUYACAKKEN
OKURKEN
OKUYORKEN
OKUMAKTAYKEN
OKUMALIYKEN.

It is not used with person suffixes, but it can follow the third person plu-
ral suffix ~-L{A}R: e.g., GELIRLERKEN (while they come). Second tense
suffixes are not used with ~[Y]KEN.

—[Y]KEN can also be affixed to a nominal stem causing a noun sentence
transform into a noun clause: e.g. OGRENCIYKEN, (when [the person] was
a student), EVDELERKEN (when they are/were at home).

~C{A}S{I}N{A} shows some similarities with —[Y]KEN. It is affixed to
certain tense bases, namely present, narrative past, and narrative of progressive

and future:

UCARCASINA
UCMUSCASINA
UQUYORMUSCASINA
UCACAKMISCASINA,

and it can also be affixed to nouns and adjectives: e.g., COCUKCASINA
(as if a child), CILGINCASINA (as crazy).

CHAPTER 3. THE TURKISH LANGUAGE 48

3.4.5 Derivational Suffixes

Derivational suffixes are the suffixes which produce a new word having a dif-
ferent meaning than the word they are aflixed to. As conjugational ones,
derivational suffixes which can be added to nouns and verbs form different
sets. Some derivational suffixes change the class of the word they are affixed
to. Thus, they make nouns from verbs, or verbs {from nouns. Others produce

new nouns [rom nouns, or new verbs from verbs.

Some derivational suffixes may be received by all of the stems in the class
that they belong to. The participles can be considered among them; i.c., they
may be affixed to all verbs. Another group of the derivational suffixes can be
attached to a great number, but not all, of the stems in their class. —-{C}{I},
-L{A}S, -L{I}{K} are some examples to such suflixes. On the other hand,
most of the derivational suffixes can be received by only a small number of
stems. For example, the suffix —[J]{A}R can only be affixed to numerals to
form distributive numerical adjectives: e.g., BIRER (one each), IKISER (two
each). As an extreme example, the suffix -KEK can only be affixed to the

noun ER (male), forming the noun ERKEK (man) {18].

There are hundreds of derivational suffixes in Turkish [1, 2, 18, 31, 23].
Some of them can only be added to some stems after they combine with some
others. Such combinations should be examined as a single suffix. For example,
the suffixes ~-L{A}N, -L{A}S, -L{A}T are the combinations of the suffix -
L{A} with the suffixes -N, —-[{I}]S, and -T, respectively [18]. Thus, although
~-L{A} can not be affixed alone to the nouns KUL (slave), YER (place), or
KIR (dirt) to form verbs, the verbs KULLANMAK (to use), YERLESMEK
(to settle down), and KIRLETMEK (to make dirty) are frequently used.

Examining all the derivational suffixes in Turkish necessitates a great effort
and too much time. Even if we knew all the derivational suffixes, we should
still examine all of the vocabulary of the language to determine which suflix
can really be affixed to which roots. Below, you can find a small sample list
of derivational suffixes, together with the class of the stems that they can be
affixed and the class of the resulting word,'® and a brief explanation about

them:

—{AJL{A}: V = V

18N represents a nominal stem, where V stands for a verbal stem.

CHAPTER 3. THE TURKISH LANGUAGE 49

It can be attached only to a small number of verbal roots: e.g., KOVALA-
MAK (to run after), SILKELEMEK (to shake off).

—-{CH{I}: N—= N

It is used to make the names of professions in the meaning of maker or seller
of something: e.g., SUCU (water seller), BOYACI (painter). Additionally,
it shows that one habitually or professionally occupies with something: e.g.,
EDEBIYATCL (person who deals with literature), HAYALCI (dreamer).

~[Y{I}C{I}: V - N

It is used to form attributive adjectives in the meaning of “doing someting
either continuously or temporarily”; they may also be used as nouns: e.g.,

SATICI (seller), DINLEYICI (listener).
“L{A}S: N =V

Although it was formed by combining the suffixes -L{A} and -[{I}]3, it
does not any more produce the reciprocal voice of the verbs formed by adding
the suffix -L{A} to nominal roots, it is now a different suffix. -L{A}-S and
-L{A}$ may produce verbs of different meanings from the same root: e.g.,

TERS-LE-S§-MEK (to scold each other), TERS-LES-MEK (to become bad-
tempered).

“L{I}{K}: N = N

It has too many usages [5]:

1. It is attached to adjectives and forms abstract nouns: e.g., IYILIK (good-
ness), BOSLUK (emptiness, blank, space).

2. It is attached to substantives to form adjectives showing the abundance
of a thing in a place: e.g., AGACLIK (grove), DAGLIK (mountainous).

3. It is attached to nouns to make nouns and/or adjectives showing the
purpose for which something is suitable or is intended: e.g., GOZLUK

(eye glasses), YAZLIK (summer house).

4. It is added to some nouns to make names of containers: e.g., TUZLUK
(saltshaker), SEKERLIK (sugar bowl).

5. It is attached to nouns preceded by a number to form adjectives meaning
“of so many” or “for”: e.g., BIN YILLIK (of thousand years), ALTI

CHAPTER 3. THE TURKISH LANGUAGE 50

SAYFALIK (of six pages).

6. It is added to some words showing the time to form temporal expressions:
e.g., SIMDILIK (for the time being), BUGUNLUK (for today).

-M{A}: V- N

It is added to verbs to form participles which can be used as nouns (sce
page 46): e.g., AYRILMANIZIN (of your departure), BAKMAN (your look-
ing). It should not be confused with the negation suffix. They may be used
together to form negative participles. For example, in the word BAKMAMA
(not looking), the first MA is the negation suffix and the second is the partici-

ple:

BAK + M{A} + M{A} — BAKMAMA.

Another possibility is that the first MA is the participle, and it is followed
by the first singular person possessive suffix —-[{I}]M and then by the dative

case suffix —[Y]{A}, giving the meaning “to my looking”:

BAK + M{A} + [{I})]M + [Y]{A} — BAKMAMA.

Similarly, in the word SEVMEMEME (to my not loving) there are three ME’s
following each other. First of them is the negation suffix, second is the partici-

ple, and third is the combination of the first singular person possessive suffix

and the dative case suffix:

SEV + M{A} + M{A} + [{I}JM + [Y{A} — SEVMEMEME.

This suffix is casted in some words: e.g., ASAMA (level), BALIKLAMA (head-
long).

Although it is claimed that Turkish is characterized by a great regularity
of patterns, the results of our research show that, in addition to its regularity,
Turkish shows many irregularities that cause the problem of spelling checking
for this language to become a very hard and interesting challenge. In the
following chapter, our approach to the problem along with a description of our

implementation will be presented.

Chapter 4

IMPLEMENTATION

4.1 General Structure

The scope of our current work is the implementation of a spelling checking
kernel that can be integrated to different applications on a variety of platforms.
Thus we have focused our efforts on solving the spelling checking problem

instead of building a special application program for this purpose.

Our approach to spelling error detection is based on checking individual
words in the text file by making a number of analyses with no attention to
the semantics or to the context. Thus, if a word is spelled correctly but is
the wrong word in the context, we have no intention for and way of flagging
it as erroneous. For example, in the sentence “Annem kardesime dovdid.”,
(My mother spanked my brother.) instead of the word kardegime (kardesim
+ DATIVE) the word kardegimi (kardesim + ACCUSATIVE) must be used.
Since the word kardegime is not misspelled when it is considered individually,
we do not report it as misspelled. Thus, as in all other spelling programs,
the text is examined with respect to words, not with respect to sentences. In
addition, we do not yet give any suggestion about the most likely correct words

after detecting a misspelled word, i.e., spelling correction is not done.

Figure 4.1 shows the general structure of the spelling checking kernel. A
list of Turkish words is given as input to the program, and the program checks
these words one by one, in the order they appear. The input words may be
entered either from the keyboard or from a text file. If the spelling of an input
word is incorrect, it 1s output as misspelled, either to the terminal or to a text

file.

51

CHAPTER 4. IMPLEMENTATION 52

Input
Words
Root
Dictionary
Word

Analysis
Phonological Morphological
Rules Rules

Misspelled

Syllable Structure

Rules

Words

Figure 4.1: General structure of the Turkish spelling checker

Turkish alphabet contains some special letters shown by the symbols (¢, C,
g, G,1,1,6 0,38, 1, U) that do not exist on the standard character set of
most of the computers, and on most of the keyboards. While a Turkish text is
being entered such letters must be represented in a certain way. Most of the
word processors have their own way to represent these letters. For example, in
IATpX ¢ is represented as \c{c}, U is represented as \"{U}, etc. In our kernel,
such letters are required to be entered by preceding the letter that it follows
in the alphabetical order with a special character, !. For example, the letter
¢ is entered as !c, U is entered as 1U. Thus, the sentence “Annem kardegimi
dovdi.” must be entered as “Annem kardelsimi dlovd/u.”. When the kernel
is to be integrated to a word processor, it is easy to replace the symbols used
by that word processor to represent these letters using this convention. For
example, if the checker is to be used with IATRX files, all \c{c}’s appearing in
them must be first replaced with !¢’s, and so on.

The external representation of the input word is converted into an internal
representation before it is analyzed. In-the internal representation, each letter

CHAPTER 4. IMPLEMENTATION 53

that is not special is represented with its ASCII uppercase version while special
letters are represented with lowercase letters preceding them in the alphabetical
order. Thus, for example the letters ¢ and G are represented by the character
¢, where i and U are represented by the character u. For consistency, the
letters 1 and I are represented by the character i, and i and I are represented

by the character I. The resulting character set is listed in Table 4.1.

After the external representation of the input word is converted into the

internal representation, this word is analyzed in four steps:

1. Syllabification check,
2. Root determination,
3. Morphophonemic check, and

4. Morphological analysis.

During these steps a dictionary of Turkish root words, and a set of rules for
Turkish syllable structure, morphophonemics, and morphology are used con-
currently. All these steps will be explained in detail in the following sections,

after a discussion of the data structures used in this implementation.

4.2 Data Structures

In the implementation, two main data structures are used. One of them is a
hash table in which words that have already been checked are placed, and the
other is an ordered sequential array in which the dictionary and the necessary
flags are stored. Using these two tables. dictionary look-up is handled in two

steps (see Figure 4.2).

4.2.1 Hash Table

The number of distinct words in a document often tends to be small. Therefore,
building a table which contains distinct words that have been seen in processing
a document helps to improve the analysis time: A word that has been examined
already need not be examined for a second time. Each word whose spelling is
checked is inserted into the table, together with a flag indicating whether its

CHAPTER 4. IMPLEMENTATION

Letters External Internal
Representation | Representation

a, A
b, B
c, C
Ie, IC
d, D
e, B
I F
g G
g, 'G
h, H
i, 11
i, 1
3
k, K
I, L
m, M
n, N
o, O
lo, 1O
p, P
r, R
s, S
s, IS
t, T
u, U
lu, U
v, V
v, Y
z, 7,

o o®
RN

K o e VLquchV»—hvm v o
NN LG CHENNI OO ZZ R~ mox0PEHoOQQw >

~

o oo BB

NHITYWO OZECRw— I O ED O >

< -
ST o 2
— w»

-

[
<

< g

=
N <z

N

Table 4.1: External and internal representations of Turkish letters

Ot
Ot

CHAPTER 4. IMPLEMENTATION

——= Input Word
search
found
Hash
Table <~
not found insert
Word
Analysis
search
Dictionary Index
Table

Figure 4.2: Data structures

spelling is correct or not. If this word occurs again in the same form as before,
it is not examined since we know whether it is misspelled or not by checking
the flag stored for this word into the table. Not to convert all of the words in
the document into their internal representations, words are stored with their
external representations in this table. If there is any difference between the
external representations of two words, they are considered as different words
even if they may be the same word. For example, if a word begins with a
lowercase letter somewhere in the text and with an uppercase letter somewhere
else in the same text (e.g., bu and Bu) they are considered as distinct words

and inserted into the table.

The table of distinct words is represented by a hash table in our implemen-
tation. This table has 256 elements, and the location of a word z in the table
is obtained by computing an arithmetic function fof z. fis defined by

length(z)

flz)=(Z z[i]) mod 256

=1

thus, the ASCII values of each character in z are added, and then the modulus
of this summation with respect to 256 is taken. As a result, flz) maps the

CHAPTER 4. IMPLEMENTATION 56

words onto the integers 0 through 255.1

Several different words may hash to the same location. In such a case a
collision is said to occur. The hash table contains one list for each possible
value of f, each list containing all the words which cause the function fto give
the same result. A search then involves computing the hash function f{z) and
examining only those elements in the list for fz). Since the sizes of these lists
are not known in advance, they are maintained as linked chains. Each element
of a chain consists of a word in its external representation, a flag showing
whether the spelling of that word is correct or not, and a pointer to the next
element of the chain. The end of the chain is identified with a null pointer.
The head of each chain is held in the table, and they are all initialized to a

null pointer.

When a new word 2 is to be inserted into the hash table, fiz) is computed,
and the corresponding chain of the table is searched. If its head contains a null
pointer, then 2 does not collide with any previous word, and this null pointer is
replaced with a pointer pointing 2. If the head is not null then z is inserted at
the front of the corresponding chain, i.e., the head points to z, while 2 points

to the word which the head was previously pointing.

As an example, let’s assume that the sentence “Bu ev, bu arsa ve bu araba
bizim.” (This house, this field and this car are ours.) is to be checked. First, the
hash table is initialized with null pointers. Then the first word, i.e., Bu (This)
is examined and found to be correct. The hash function for this word results in
the value f(Bu) = (66 4+ 117) mod 256 = 183. HashTable[183] is replaced with
a pointer pointing the element {Bu, CORRECT, nil}. Later comes the word ev
(house) which results the element {ev, CORRECT, nil} to be pointed by the
(1014 118) mod 256 = 219" element of the table. The next word to be checked
is again the word du, but since in this occurence it begins with a lowercase
letter, fgives a different result for the word bu than for the word Bu: f(bu) =
(98 + 117) mod256 = 215. So, this time HashTable[215] is replaced with a
pointer pointing the element {bu, CORRECT, nil}, and later HashTabhle[167] is
replaced with a pointer pointing the element {arsa, CORRECT, nil}. For the
following word ve (and) f gives the same result as for the word ev, thus they
collide. So the 219** element of the table is replaced with a pointer to the
element {ve, CORRECT, p(ev)}, where p(ev) is a pointer to the element {ev,
CORRECT, nil}. The next word bu is found in the table, further its spelling is
correct, so it is not examined. Finally the words araba (car) and bizim (our)

10bviously any other hash function that maps strings to integers can also be used (see

[19]).

(@3
-~

CHAPTER 4. IMPLEMENTATION

are inserted to the 247%™ and 27** chains in the table, and the hash table of

Figure 4.3 is obtained.

4.2.2 Dictionary

The dictionary is stored in an ordered sequential array. The words are placed
in a sorted order in this array. The order of the words is not really alphabetic,
because of the special Turkish letters. To preserve the real alphabetical order
of Turkish, a special coding system is to be used. But, for our purpose, it is
not necessary to keep the real alphabetical order. It will be sufficient if the
words are ordered in a certain consistent way. We chose the internal repre-
sentation given in Table 4.1 for the letters in Turkish alphabet. Consequently,
for instance, although the word GUNES (sun) comes before the word GUNEY
(south) according to Turkish alphabetical order, it appears after GUNEY in
our dictionary because its internal representation GulNEs comes after the in-
ternal representation of the other, i.e., GUNEY, according to the alphabetical

order of the computer.

To search a word in the dictionary the binary search method is used. In
the worst case, this method requires O(log n) key comparisons, where n is the

number of elements in the table (see [19]).

Since the table is sorted, all words beginning with the same letter follow each
other. Therefore, instead of searching the whole dictionary, it is enough only to
search those words beginning with the same letter as the word being searched
for. For this purpose, an index table based on the first letters of the words is
prepared. For each letter in the Turkish alphabet? (without considering the
case), this table holds the address of the first word in the dictionary beginning
with that letter, and the number of words with the same initial letter. During
a binary search only the portion of the dictionary indicated by the appropriate
index entry is searched. With this method the number of comparisons decreases

substantially since the number of elements to be searched, i.e., n, decreases.

Deciding the content of the dictionary presented some difficulties. It is ob-
vious that for an agglutinative language such as Turkish, including all possible
words of the language in the dictionary is neither an applicable nor a practical
approach. Storing only the root words in the dictionary is enough. However,
since not every root-suffix combination is valid, a misspelling which forms an

2Except the letter G since no word in Turkish begins with this letter.

CHAPTER 4. IMPLEMENTATION

27

167

183

215
216
217
218

219

247

255

58

cv

CORRECT

nil

nil
bizim | CORRECT | nil
— | arsa | CORRECT| nil
Bu | CORRECT| nil
bu | CORRECT| nil
nil
nil
nil
ve | CORRECT
— araba | CORRECT| nil
nil

Figure 4.3: A sample hash table

CHAPTER 4. IMPLEMENTATION 59

invalid combination may go undetected. After the root and the suffixes of a
word are found, it is necessary to examine whether they form valid combina-
tions according to the Turkish word formation rules. For this purpose we have
developed parsers which examine the suffixes in a word to determine whether
they can really be affixed to that root, and if their order is valid. These parsers

will be later explained in detail in Section 4.6.4.

The best source for the correct spelling of Turkish words is known to be
the Turkish Writing Guide.® So, as the first step, we entered all the words
appearing in this guide [46, 47] into our dictionary. This was a reasonable
beginning as mentioned in Section 2.4.1, but the resulting dictior:zry was rather
large (about 27,000 words). Later, we applied various criteriz to delete the

unnecessary entries.

The majority of the words listed in the Turkish Writing Guide are really the
root words. However, there are still some words which can be derived by affixing
certain suffixes (derivational or conjugational) to certain roots appearing in
the guide. It is not necessary to include such words in our dictionary if they
can be handled by the grammar rules of the parsers. For example, both the
root word BOYLE (such, so) and the word BOYLESINE (such) which can
be derived from this root by affixing first the third person singular possessive
suffix —[S]{I} and then the dative case suffix -[Y]{A} (see page 23)

BOYLE + [SH{I} + [Y]{A} — BOYLESINE

appear in the guide, although we do not need to hold the word BOYLESINE
in our dictionary. With careful analysis, most of such derived stems have been
deleted from the dictionary. The following is a list of word categories that have

been decided to be unnecessary to hold in the dictionary:

1. The passive forms of verbs: e.g., DUYULMAK (to be heard . ATANMAK
(to be appointed), BULUNMAK (to be present).

The verbs having the compound verbs inside them: e.g., GELIVERMEK
(to just come), BAKAKALMAK (to go on looking), OLEYAZMAK (to

almost die).

[SN)

3. The nominal stems that can be derived by affixing participial suffixes to
verbal roots:* e.g., YAPMA (made, done), BAKIS (look), GELECEK

3Tiirk¢e Yazim Kilavuzu _
4Not all words ending with such suffixes belong to this catagory. For example, the word

ASAMA (level) is not deleted because there is no verb as ASAMAK.

CHAPTER 4. IMPLEMENTATION 60

10.

11.

(future), GECEN (last), TANIDIK (acquaintance).

The group names (mostly biological) formed by the help of the plural
suffix: e.g., KARINCALAR (ants), SURUNGENLER (reptiles).

The adverbs formed by affixing the ablative case suffix ~{D}{A}N to
nominal roots: e.g., SONRADAN (subsequently), YENIDEN (again).

The adverbs formed by affixing the case suffix -YL{A} to nominal roots
alone or together with the third person singular possessive sufix: e.g.,

COGUNLUKLA (mostly), SIRASIYLA (respectively).

The adverbs iormed by affixing the dative case suffix after the third
person singular possessive suffix to nominal roots: e.g.,, BOYLESINE
(such), TERSINE (on the contrary).

The location words formed by affixing the locative case suffix ~{D}{A}
to nominal roots: e.g., ORADA (there), YUKARIDA (above).

The pronouns formed by affixing the third person singular possessive suf-
fix to nominal roots: e.g., BASKASI (someone else), COGU (the most).

The stems derived from numeral roots: e.g., ALTINCI (the sixth), BIRIN-
CILIK (being in first position), IKISER (two each), KIRKLAMAK (to
reach the 40 day after the birth of a baby).

The nominal and verbal stems derived by the derivational suffixes in-
cluded in the grammar rules of the parsers: e.g., KAPICI (doorman),

IYILIK (goodness), ZORLASMAK (to become harder).

In the Turkish Writing Guide all verbs are listed in their infinitive forms

(e.g.,

OKUMAK (10 read), SEVMEK (to love)). We decided that we did not

need to put the suffix -M{A}{K} at the end of the verbs; storing only the root
part was enough. So, the infinitive part of the verbal roots has been deleted
in our dictionary, thus the verbal roots are stored in their imperative forms as,
for instance, OKU. SEV, and they are marked as being verbal roots. A careful

analysis had to be made during this process because

1.

Not all of the words ending with M{A}K are infinitives (e.g., BASAMAK
(step), TOKMAK (mallet)). Such nouns should not be mixed with the
infinitive forms of the verbs, i.e.; the substring M{A}K at their ends

should not be removed.

CHAPTER 4. IMPLEMENTATION 61

2. Some infinitives are homonyms with some nouns (e.g., EKMEK (to sow)
and EKMEK (bread)). The nominal one is left as it is in our dictionary
while the root of the infinitive one (i.e., EK) is marked as a verbal root.

3. After the deletion of the infinitive part from the end of the verbs, a root
which can be used both as a nominal and a verbal root, thus, a nominal
root which is the homonym of a verb in the imperative form, happens
to occur twice in our dictionary (e.g., AK (white) and AK(MAK) ((to)
flow), TAT (taste) and TAT(MAK) ((to) taste)). One of such roots has

been deleted, and the remaining one is marked as being both a nominal

and a verbal root.

In the Turkish Writing Guide the proper nouns are represented by writing
their first letter in uppercase (e.g., Ankara (capital of Turkey), Ingiliz (English
[person])). The words which can be used both as a proper noun and as an
unproper noun are listed twice, one beginning with an uppercase letter, the
other one beginning with a lowercase letter (e.g., Agn (a city in Turkey) and
agri (pain), Misir (Egypt) and musir (corn)). Since no case distinction is present
in our dictionary representation, one of such words has heen deleted while the

other has been marked as being both a proper and an unproper noun.

After all these removals the size of the dictionary decreased substantially
(about 5 thousand words have been removed). With a more detailed analysis
it is still possible to delete many other unnecessary words, most of which are

words of foreign origin that are rarely used today.

Another disadvantage of selecting the Turkish Writing Guide as our dictio-
nary was the absence of certain classes words. There are many commonly used
words which do not appear in the guide. One class of such words comprise
the technical terms from different areas of science and engineering. There are
many dictionaries published by Turkish Language Society listing the technical
terms for such areas. Analyzing all of them to select the terms to include in
our dictionary would have taken a substantial amount of time, and probably
the size of the dictionary would grow too much. Instead of this, we added only
some frequently used terms which appeared in an unpublished dictionary that
had been prepared by a group in Middle East Technical University. Thus, our

dictionary still lacks a number of words.

Turkish Writing Guide includes many proper names such as nationality
names, countries and cities. In spite of this, it was necessary to include some
other proper names in our dictionary, such as personal names. Without using

CHAPTER 4. IMPLEMENTATION 62

any sources, we added a great number of personal names that we knew into

the dictionary, but of course still remain many others.

In order to determine the remaining words that should be added to our
dictionary, we have examined the output of the checker on real runs. A copy of
the output of the checker has been mailed to us after each test run. Examining
these words, we have determined which words indicated as misspelled are in
fact those which do not appear in our dictionary, and we have added these

words into our dictionary. Obviously, this is an ongoing process.

Nearly 23,500 words, each having 7 letters on the average, are listed in
our current dictionary. This amount may change (increase or decrease) in the

future.

As mentioned above, some items in the dictionary have to be marked as
having a certain property. For example, some must be marked as being a verbal
root, some must be marked as being a proper noun, and so on. For this reason,
for each word in the dictionary a series of flags representing certain properties
of that word are held. Thus, each entry of the dictionary contains a word in
Turkish and a series of flags showing certain properties of that word. It is
possible to hold 64 different flags for a single word because two long integers
are allocated for each dictionary item. If the bit corresponding to a certain
flag is set for an entry then it means that the word which this entry belongs
to has the property represented by that flag. Only 41 flags have been used
yet, but later it may be necessary to use the remaining ones. The list of these
flags together with some examples for which that flag is to be set is given in

Table 4.2.

For each flag, the list of the words which appear in our dictionary and which
have the property that is represented by that flag is prepared. Some of these
lists contain a large number of elements, while only a few words exist in some
of them. The lists for the flags IS.UDD, IS.STT, IS.KU, and F_UD are given

in Tables 4.3, 4.4, 4.5, and 4.6 respectively as examples to the lists containing

a small number of elements.

The flags for each entry of the dictionary is set by the help of a program.
This program loops on each word of the dictionary, searchs it in all lists, and
set the flags whose lists contain that word. When a new word is added into
the dictionary, it should also be added into the lists of the flags which must be
set for this word, and the program whieh sets the flags must be run.

CHAPTER 4. INMPLEMENTATION

63

the vowel harmony rules during agglutination

Flag Property of the word for which this flag is set Examples
CL_.NONE | belongs to none of the two main root classes RAGMEN, VE
CL_ISIM | is a nominal root BEYAZ, OKUL
CL_FIIL | is a verbal root SEV, GEZ
CL_BOTH | can be used both as a nominal and a verbal root TAT, YAZ
EK 1s a suffix that must be written separate from the word it follows Mi, IDi
IS_OA Is a proper noun AYSE, TCRK
IS.0C is a proper noun which has a homonym that is not a proper noun | MISIR, SEVGI
IS.SAYI | is a numeral BIR, KIRK
IS_.LIK is a nominal root which can take the suffix ~-L{I}{K} SENE, TUZ
IS.LAS |is é nominal root which can take the suffix ~-L{A}§ KENT, UYGAR
IS_.LAT | is a nominal root which can take the suffix -L{A}T AYDIN, KiR
IS.CI is a nominal root which can take the suffix —-{C}{I} DAVA, KAVGAL
IS_CILIK | is 2 nominal root which can take the suffix -{C}{I}L{I}{K} KAR, UMMET
IS.CA is a plural noun BAKLAGILLER
IS KI is a nominal root which can directly take the relative suffix -Ki . BERI, SIMDI
IS.KU is a nominal root which can directly take the relative suffix ~-KU BUGUN, OBUR
IS_.UU is a nominal root which does not obey the vowel harmony rules SAAT, NORMAL
during agglutination
IS.UUU | is a nominal root which has a homonym that does not obey SOL, YAR

Table 4.2: List of flags

CHAPTER 4. IMPLEMENTATION 64
Flag Property of the word for which this flag is set Examples
IS_SD 15 a nominal root ending with a consonant which is softened AMAC, PARMAK,
when a suffix beginning with a vowel is attached PSIKOLOG
IS.SDD | is a nominal root ending with a consonant which has a
homonym whose final consonant is softened when a suffix ADET, KALP
beginning with a vowel is attached
IS.KG | is a nominal root ending with the consonant K which changes | CELENEK, RENK
into a G when a suffix beginning with a vowel is attached
IS.ST is a nominal root ending with a consonant which is duplicated HAK, TIP
when a suffix beginning with a vowel is affixed
ISSTT | is a nominal root ending with a consonant which has a
homonym whose final consonant is duplicated when a suffix HAL, SIK
beginning with a vowel is affixed
IS.UD | is a nominal root which has a vowel {I} in its last syllable AGIZ, OGUL
that drops when a suffix beginning with a vowel is affixed
IS_.UDD | is 2 nominal root which has a vowel {I} in its last syllable
and which has a homonym whose last vowel drops when HAYIR, METIN
a suffix beginning with a vowel is affixed
IS_.UDOD | is a nominal root whose last vowel drops and the consonant
preceeding it changes when a suffix beginning with a vowel ZABIT
is affixed
IS_SI is a nominal root ending with a vowel, but when it takes the
third person singular possessive suffix the consonant S is not BAYI, SANAYI
inserted in between
IS.SII is a nominal root ending with a vowel, and when 1t takes the

third person singular possessive suffix the consonant S may
or may not be inserted in between

CAMI, MEVKI

Table 4.2 continued.

CHAPTER 4. IMPLEMENTATION

the suffix -{D}{I}R as the factitive suffix

Ilag Property of the word for which this flag is set Examples
IS_BILES | is a portmanteau word which was originally ADACAYT,
an indefinite compound YILBASI
IS.B.ST |is a portmanteau word ending with the third person ALINYAZISI,
singular possessive suflix -S{I} BALARISI
IS_B_.SD | is a portmanteau word wliose last consonant was softened AYAKUCU,
during combination RENGEYIGI
IS.B.UD | is a portmanteau word whose last word faced with ADEMOGLU,
a vowel ellipsis during combination GOKcCismi
IS.SU | is a nominal root which shows the irregularities that the AKARSU
root SU shows
IS.ZM | is a pronoun which shows some irregularities BU, Biz
FSD is a verbal root ending with a consonant which is softened | EMRET, GIT
when a suffix beginning with a vowel is attached
F_UD | is a verbal root which has a vowel {I} in its last syllable AYIR, SAVUR
that drops when the passiveness suffix —{I}L is affixed '
F_GUD | is a verbal root ending with a vowel {A} that changes ANLA, BENZE
into a {I} when the progressive suffix is affixed
F_.GUDO | is a verbal root ending with a vowel {A} that changes DL, YE
into a {I} when a suffix beginning with a Y is affixed
F_GIR | is a monosyllabic verbal root which takes the suffix -{I}R GEL, KAL
as the aorist suffix
F_GER | is a polysyllabic verbal root which takes the suffix ~{A}R HISSET
as the aorist suffix
F.DIR | is a verbal root ending with a consonant but does not take | GIT, OKSUR

Table 4.2 continued.

CHAPTER 4. IMPLEMENTATION

AKIT
HAMIL
HAYIR
KADIR
KATIL
KOYUN
METIN
NEFIS

Table 4.3: Word list [or the flag IS_.UDD

AD
HAL
SAK
SIK

Table 4.4: Word list for the flag IS.STT

BUGUN
DUN
GUN
OBUR

Table 4.5: Word list for the flag IS KU

AYIR
CEVIR
KAVUR
YOGUR
CAGIR
DEVIR
KAYIR
SAVUR
SIYIR
KIVIR

Table 4.6: Word list for the flag F_UD

CHAPTER 4. IMPLEMENTATION 67

4.3 Syllabification Check

The syllable types which can be found in Turkish words are of limited amount
(see Sections 3.2.1 and 3.2.2). The number of vowels and consonants which can
follow each other in the words formed by combining such syllables is also limited
(see Table 3.6). Analyzing all the words in Turkish Writing Guide [46, 47] and
all the suffixes in Turkish [1], we have constructed a regular expression and
a corresponding finite state automaton for validating if a word matches the

syllable structure rules of Turkish[40].

Previously a number of studies on Turkish syllable structures and hyphen-
ation have been made [2, 14], however they are inadequate in various aspects.
They only consider the basic syllable types and fail in some words of foreign
origin. Forinstance, Goneng [14] hyphenates the word KONTRBAS as KONT-
RBAS, however correct hyphenation is KONTR-BAS. Our analysis spans the
syllable structures of “Pure Turkish”, and handles all words of foreign origin

used in Turkish, not handled by previous studies.

The regular expression constructed for proper Turkish syllable structures
is used as a heuristic in our spelling checker. The heuristic is if a word does
NOT have the proper syllable structure of Turkish, it is misspelled. The word
whose spelling is to be checked is first processed with the regular expression. It
is reported as misspelled if its syllable structure can not be matched with this
expression, i.e., the letters of the word do not form valid sequences according
to Turkish syllable structures. On the other hand, if it can be matched, it
is further analyzed as it may still be a non-Turkish or misspelled word. This

expression can be given as follows:

(BEGV ((MIDC (MIDV MIDC)* ENDV) | ((MIDC MIDV)* ENDC))) |
(BEGC ((MIDV (MIDC MIDV)* ENDC) | ((MIDV MIDC)* ENDV))) |

ONEV

A simplified form of the finite state automaton for this expression is given in
Figure 4.4.
According to the regular expression and the corresponding automaton, a

word in Turkish can be formed by a single vowel (ONEV). Otherwise, if a
word begins with vowels (BEGV) then it may either just end with consonants

CHAPTER 4. IMPLEMENTATION 68

BEGV,

ONEV
BEGC

O

I'igure 4.4: The simplified finite state automaton for proper Turkish syllable
structure

(ENDC), or may be followed by some consonants (MIDC) and end with vow-
els (ENDV), or can be followed by any number of consonants-vowels series
((MIDC MIDV)~) and end with consonants, or can be followed by any number
of consonants-vowels-consonants series (MIDC (MIDV MIDC)*) and end with
vowels. On the other hand, if a word begins with with consonants (BEGC)
then it may either just end with vowels, or may be followed by some vowels
(MIDV) and end with consonants, or can be followed by any number of vowels—
consonants series ((MIDV MIDC)*) and end with vowels, or can be followed by
any number of vowels—consonants—vowels series (MIDV (MIDC MIDV)*) and

end with consonants.

In fact, the states in the automaton are non-deterministic FSA within

themselves, whose corresponding regular expressions are as below:

BEGV = V | VV
BEGC = C | CC | CCC

MIDV = V | VV | VVV

MIDC = C | CC | CCC | CCCC | CCCCC
ENDV = V | VV

ENDC = C | CC | CCC

ONEV = O

where V and C represent a vowel and a consonant respectively. These ex-
pressions are also more complicated, because not all sequences of consecutive
vowels or consonants are valid. Analyzing all root words and suffixes in Turkish,
the restricted values for those sequences that appear at the beginning, middle
and end of the words are determined and listed in Tables 4.7, 4.8, and 4.9

CHAPTER 4. IMPLEMENTATION 69

Transition | Sequence Values Examples
! A[EIUP AILE, AUT
BEGV L% IA IADE
01 OIL
[AEO]O AORT, OOSFER
CCC S[KPTIR STRATEJI
S[FKLMNPT] SKANDAL, SPOR
BEGC CcC [BFGKP][LR) BLUZ, KRAL
[DPTIR DRAJE, TREN
[KP]S PSIKOLOJI
C [BCCDFGHJKLMNPRSSTVYZ] BEN, ZARAR

Table 4.7: List of valid letter sequences that appear at the beginning of the

words

respectively with some examples. When all these restrictions are considered,
the real finite state machine for the expression contains nearly two thousand

states and more than five thousand transitions.

In the implementation of the finite state automaton, we have utilized one
of the standard UNIX utilities, lez (see Section 4.6.2). The regular expression
prepared has been given as the input specification to lez, and lex has produced

the C program to match it.

With the help of the syllabification check, most of the typographical errors
can be detected. For example, if the word YAPMAK (to make) were typed
as YPMAK or YAPMKA, thus, if a “one missing letter” or a “two transposed

5[xy] means the letter x or y.
8(x | y) means an x or y.
"There appears four consonants within a word when a suffix beginning with a consonant

is affixed to a word ending with three consonants.
88Set of the consonants that may appear in the beginning of a suffix.
9There appears three consonants within a word when a suffix beginning with a vowel is

affixed to a word ending with three consonants.
10There appears three consonants within a word when a suffix beginning with a consonant

is affixed to a word ending with two consonants.

CHAPTER 4. IMPLEMENTATION 70
Transition | Sequence Values Examples
(AA | EO | UI)I MAAILE
1'A'A% EiU MUDDEIUMUMI
[AI)[AEIIOOUU) SAUNA, SIIR
MIDV [EOUU][AEIQ] REIS, MUAF
[ETU][OU] SUORUMCEGI
VA% [ENG OGLEUSTU
I[AEIQ)] ACIORTAY
00 VIRTU0Z
LFSTR GOLFSTRIM
Cccccee NTRPL KONTRPLAK
[BKN]STR ENSTRUMAN
KSPR EKSPRES
N(GST | SKR) GANGSTER
CCCC NTR[BF] KONTRBAS
RNBL HORNBLENT
(3 consonants that can appear ROPDOSAMBRLA,
at the end)’[CCDGKLMST}® SOMESTRDE
MIDC BLD TABLDOT
[CS]PL ICPLAZMA
FT[YP) NEFTYAGI
KSP EKSPER
L(DM | HP | K[BSY] | PN) CELPNAME
L(T[BFRSY] | [FG]R) TELGRAT
M[PTJR EMPRESYONIST
N(CP | D[RV] | G{PR] | IM) ARANJMAN
N(K[RNY] | SF | T[BFHPRY])) HENTBOL
CCC | R(X[BY] | P[HR] | S[HPY! | T[BFNPRVY]) | SURPRIZ, ARTVIN

S(T[BNY] | [KPIR)
Y[FR | SB;
([FR]D | [KP]T | NP | NP | ZB)R

3 consonants that can appear at the end®

(2 consonants that can appear
at the end)!°[CCDGKLMST]

USTYAPI, ESPRI
BEYSBOL
BORDRO, ELEKTRIK
SOMESTRIN
KARTCA, AHENKLI,
ILKMIS, DANSTA

Table 4.8: List of valid letter sequences that appear inside the words

CHAPTER 4. IMPLEMENTATION

Transition | Sequence Values Examples
[ATIOU]A MUDATAA, DUA
[ADLII MESAIL Sii
[AU]O KAKAO, DUO
ENDV \a% [AI]I ~ MISRAI
E[EO] ZATUREE, STEREO
UU VUKUU
[0} TEMETTUU
(MB | ST)R ROPDOSAMBR
CCC NKS SFENKS
RTZ KILOHERTZ
[LMY]F GOLF, TAYF
[BKY]L MONOKL, KOKTEYL
[RY]N MODERN, EBEVEYN
[MS]P KAMP, GASP
ENDC [HY]S SUVEYS
[NR)[CDFGHKSSPTZ] AJANS, PARK
cC [FKP][ST) NEFT, ELIPS
[LY)[CHKMPST] FELC, OFSAYT
[MSS][KT] DISK, RUST
HT TAHT
R[IMV] SARJ, ALARM
V[CKMRT] SEVK, NAKAVT
TR GUATR
Z[KM] RIZK, TURIZM

Table 4.9: List of valid letter sequences that appear at the end of the words

71

CHAPTER 4. IMPLEMENTATION 79

letters” error was made, the word would not be matched by the expression and
its spelling would be reported incorrect. On the other hand, if it were written
as YAPMEK, where a vowel harmony error is made, it would pass the syllabi-
fication check, and would not be reported as misspelled until morphophonemic
checks. Most of the words from other languages (used within Turkish text)
can not pass the syllabification check. If the checked document contains such
words they are reported as misspelled during syllabification check, and no more
analyzed. However, some foreign words whose structures also obey the Turkish
syllabification rules (e.g., spelling, table) can pass this check, but are reported

as misspelled in the subsequent steps of word analysis.

Our alm to construct a regular expression to capture the syllable struc-
ture of Turkish words is the creation of a heuristic for the spelling checker
program. However, this work can later be integrated to different applications,
such as development of an automatic Turkish hyphenation function for word

processors.

4.4 Root Determination

Before analyzing the morphophonemic and morphological structures of a Turk-
ish word, the root has to be determined. If the word passes the syllabification
check, its root is searched in the dictionary using a maximal match algorithm.
In this algorithm, first the whole word is searched in the dictionary. If it is
found then the word has no suffixes and therefore its spelling is correct. Oth-
erwise, we remove a letter from the right and search the resulting substring.
We continue this by removing letters from the right until we find a root. If no
root can be found although the first letter of the word is reached, the word is

reported as misspelled.

The maximum length substring of the word that is present in the dictionary
is not always its root. If further analyses show that the word is misspelled,
a new root is searched in the dictionary, this time removing letters from the
end of the previous root. If a new root can be found the same operations are
repeated, otherwise the word is reported as misspelled. For instance, the root
of the word YAPILDIN (you were made) is first determined as the noun YAPI
(structure). However, the rest of the word does not form a valid sequence of
suffixes for 2 nominal root. Instead of reporting the word as misspelled, a new
root is searched, and the verbal root YAP (make, do) is found. Since this one
is the real root, the word’s spelling is found to be correct after the subsequent

CHAPTER 4. IMPLEMENTATION 73

analyses.

As another example consider the word KOYUNLARMI? (are the sheep?)
which has an incorrect spelling since the question suffix ~-M {I} has to be written
separate (see page 41). The maximal match algorithm first determines the
root as the nominal root KOYUN (sheep), which is the real root, but since
the rest of the word can not be parsed correctly, it assumes that the root
has been determined wrongly. Hence, a new root is searched and the nominal
root KOYU (dark) is found. However, the rest of the word can not be parsed
correctly with this root either. Next root determined is the root KOY. This
root may either be the nominal root KOY (small bay) or the verbal root KOY
(put). Both alternatives are tried but the results are unsuccessful. Since no

other root can be found, the word is reported as misspelled.

Root determination presents some difficulties when the root of the word
is deformed. For the root words which have to be deformed during certain
agglutinations (see Section 3.3.3), a flag indicating that property is set in the
dictionary (see Table 4.2). The individual cases such as the dative and plural
forms of personal pronouns are inserted into the dictionary and treated as
exceptions. For the other root deformations, the root of the word is found by
making some checks and some necessary changes. In the following paragraphs,
some examples are given to show how the real value of a deformed root is

determined.

As the first example, let’s consider the vowel ellipsis for nominal roots. In
the word OGLUN (your son) the nominal root OGUL (son) has taken the shape
OGL when it received the second person singular possessive suffix ~[{I}]N. In
order to determine this root correctly, when the substring OGL is not found in
the dictionary, since it is followed by a vowel, its last two letters are consonants,
and the third phoneme from its right end is a vowel, the possibility that it may
be a deformed root by vowel ellipsis is considered. The new candidate for the
root is obtained by inserting the proper vowel {I}, i.e., U, beiween the last
two consonants of the current candidate, i.e., between G and L. and the word
OGUL is searched in the dictionary. When it is found, the flag corresponding
to vowel ellipsis for nominal roots, i.e., IS_.UD, is checked. Since it is set for this
word, the root of the word OGLUN is determined as OGUL, and remaining
analyses are continued. If that word were written as OGULUN, it should be
reported as incorrect. In order to handle this case, when the root OGUL is
found in the dictionary, since it is followed by a vowel, the flag IS_UD is checked
to see whether it is a root whose last' vowel must drop when it is followed by
a vowel. Since it is set for this word, but the last vowel of the word has not

CHAPTER 4. IMPLEMENTATION 74

dropped, the algorithm decides that the root of the word OGULUN is not the
word OGUL. Later, a new root is searched and since no root can be found, the
word OGULUN will be reported as misspelled. As another interesting case,
both the words OGULUM (I am a son) and OGLUM (my son) have correct
spellings, because in the first one the root OGUL has received the first singular
person suffix —[Y]{I}M (see page 30), while in the second one it received the first
person singular suffix ~[{I}]M. Not to report the word OGULUM as misspelled,
when it is realized that the root OGUL is a root that has to deform when it is
followed by a suffix beginning with a vowel, the algorithm checks whether that
suffix may be one of the suflixes —-[Y]{I}M or -[Y]{I}Z.

Another root deformation is the change of the last consonant in some roots.
For example, in the word TABAGIM (my dish), final consonant of the nominal
root TABAK (dish), i.e., K, has changed into G, when the first person singular
possessive suffix is affixed. In this case, when the substring TABAG is not
found in the dictionary, since it is followed by a vowel, and its last phoneme
is one of the consonants B, C, D, G, and G, the possibility that it may be a
deformed root whose last phoneme has changed is considered. Since it does
not end with the substring LOG,' and the final phoneme is not preceded by
the consonant N,!? the final phoneme G is replaced with the consonant K,
and the word TABAK is searched in the dictionary. When it is found, the
flag corresponding to the change of the final consonant, i.e., IS_SD, is checked.
Since it is set for this word, the root of the word TABAGIM is determined
as TABAK. If that word were written as TABAKIM, it would be reported as

incorrect.

As another example, let’s consider the duplication of the final consonant
for some nominal roots. In the word HAKKINIZ (your right), the consonant
K at the end of the root HAK (right) is duplicated when it received the second
person plural possessive suffix. When the substring HAKK can not be found
in the dictionary, since it is followed by a vowel, its last two phonemes are
the same consonants, and the third phoneme from its right is a vowel, the
possibility that its last phoneme may have been duplicated is considered. Its
last phoneme is deleted and the word HAK is searched in the dictionary. When
it is found, the flag corresponding to the duplication of the final consonant, i.e.,
IS_ST, is checked. Since it is set for this word, the root of the word HAKKINIZ
is determined as HAK. If that word were written as HAKINIZ it would be

1T the word were PSIKOLOGA (to the psycholog), this condition would hold and G

would be replaced not with a K but with a G.
121f the word were RENGE, this condition would hold and no replacements would be done,

and later it would be reported as misspelled.

CHAPTER 4. IMPLEMENTATION 75

reported as incorrect. As another interesting example, the root of the word
TIBBIN (medicine’s) is the word TIP (medicine) where its last phoneme is
duplicated after changing into a B. In this case, as in the previous one, one
of the B’s is removed from the end of the word TIBB and the word TIB is
searched in the dictionary. When it is not found, since its last consonant is B,
it is changed into a P, and the word TIP is searched in the dictionary. When
it is found, both the flags IS_.ST and IS_SD are checked. Since both are set for
this word, the root is determined as TIP. If that word were written as TIPIN,

TIBIN, or TIPPIN, it would be reported as misspelled.

For all the other deformations such as vowel ellipsis in the verbal roots,
narrowance of the final wide vowel in the verbal roots, midfixing of the plural
suffix to the portmanteau words, etc., and their combinations, both the correct

and incorrect usage of the roots are determined by using similar methods to

the ones above.

For some roots both of the deformed and undeformed forms are valid. For
example, both METNI (accusative of text) and METINT (accusative of strong)
are correct although the root of both words is METIN (text, strong) because
this word can be used in two different meanings. Such cases are handled again
by the help of certain flags, IS_.UDD, IS_SDD, and IS_STT. For instance, to de-
termine the root of the word METNI as METIN, checking only the flag IS_UD
is enough. On the other side, not to report the spelling of the word METINT as
incorrect, when the root METIN is found, the flag IS_UDD is checked. Since
it is set for this word, the root is determined as METIN. Similarly, none of
the words ADEDI (ADET: amount), ADETI (ADET: custom), SIKKI (SIK:
option), or SIKI (SIK: chic) is reported as misspelled.

The algorithm for root determination sometimes requires a lot of searches
in the dictionary. To determine the root of the word OKULA (to the school),
two searches (one for OKULA and the other for OKUL) are enough. but to
determine the root of the word ALDIGIMIZ (that we took), the dictionary is
searched 13 times for the words ALDIGIMIZ, ALDIGIMI, ALDIGIM, ALDIGI,
ALDIGISI, ALDIG, ALDIK, ALDI, ALID, ALIT, ALT, and AL, respectively.

Our tests has shown that, to determine the root of one word, the dictionary is

searched 5-6 times on the average.

CHAPTER 4. IMPLEMENTATION 76

4.5 Morphophonemic Checks

After the root of the word is found, the rest of the word is considered as its
suffixes. Vowels and consonants within suffixes should obey certain rules during
agglutination (see Section 3.3). Therefore, the suffixes part of a word must be
checked to see whether any of the morphophonemic rules are violated. The
vowel harmony check may be done just after the root determination, but other

morphophonemic checks should be done during morphological analysis.

4.5.1 Vowel Harmony Check

According to the vowel harmony rules of Turkish (see Section 3.3.1), the first
vowel in the suffixes part must be in harmony with the last vowel of the root,
while the succeeding vowels must be in harmony with the vowel preceding
them. For example, the word YAPMEK (see page 72) can not pass the vowel
harmony check because the vowel E can not follow the vowel A. On the other
hand, special checks must be done for the suffixes, such as ~-KEN, whose vowels
never change. So, when a disharmony is found, we check whether it is the result
of such a suffix. For example, after the root of the word YANARKEN (while
it is burning) is found as YAN (side, burn), the suffixes part, i.e., ARKEN, is
checked to determine whether the word obeys vowel harmony rules. The first
vowel A is in harmony with the last vowel of the root, but the next vowel E is
not in harmony with the vowel preceding it. At this point, instead of deciding
that the word does not obey vowel harmony rules, the phonemes preceding
and following the current vowel are checked to determine whether that vowel
belongs to one of the suffixes which do not obey vowel harmony rules, i.e.,
to -[Y]JKEN, -[Y{I}VER, or -[Y]{A}GEL. Since it does, the word passes the
vowel harmony check. If this word was written as YANARKAN, it would
pass the vowel harmony check, but it would not be parsed correctly during

morphological analysis.

Before the vowel harmony check is done, some flags of the root must be
checked. For example, if the word is a word of foreign origin that does not
obey vowel harmony rules during agglutination (e.g., KONTROL (control)),
the vowel harmony check must be applied inversely. Thus, the first vowel in
the suffixes part must be in disharmony with the last vowel of the root (e.g.,
KONTROLLER (controls)). The flag IS_UU is checked to realize such cases.
Some roots that may be used in two meanings (homonyms) present another
interesting case. They obey vowel harmony rules when they are used with a

CHAPTER 4. IMPLEMENTATION 7

certain meaning, but disobey them when they are used in the other meaning.
For example, both SOLA (to the left) and SOLE (to the note sol) pass the
vowel harmony check since their root SOL has two meanings as “left” and “a
note in musics”.’® Such cases are handled by the help of the IS_UUU flag.

Another special case occurs when a root which does not obey vowel harmony
rules within itself deforms by vowel ellipsis. For example, the root of the word
NAKLI (its transfer) is the noun NAKIL (transfer). If the vowel harmony
check is done accepting the root as NAKL it fails because the vowel I can not
follow the vowel A. In such cases, not the deformed root but the real root
appearing in the dictionary must be considered, and the suffixes part must
be in harmony with the real root, i.e., in our example with the word NAKIL.
The wrong form, i.e., NAKLI would also be realized, but not during the vowel
harmony check, instead during root determination, because the proper vowel
to be inserted between the consonants K and L would be determined as I, and
the word NAKIL could not be found in the dictionary.

A more interesting case is caused by some roots which may deform or not
depending on the meaning that they carry. Such roots obey vowel harmony
rules when they are not deformed, but not when they are deformed (e.g., AD,
KALP). For such roots, the flags to be checked are IS.UUU, ISSSTT, and
IS_SDD. Therefore, while all the words ADI (AD: name), ADDI (AD: count),
KALPI (KALP: unreliable), and KALBI (KALP: heart) are correctly spelled,
the words ADDI,* KALPI, and KALBI can not pass the vowel harmony check.

4,5.2 Other Checks

To perform the other morphophonemic checks, the sufixes must be determined.
Because of this, these checks are done during morphological analysis, after each
suffix is isolated. During the lexical analysis, the suffixes are matched in their
surface forms. Thus, if any of the allomorphs of a suffix can be matched, it
is sent to the parser without checking whether the correct form of it is used.
These checks are done within the parser. Since the vowel harmony check is
done beforehand, only the remaining morphophonemic checks must be done
at that point. The consonant harmony checks are among these checks (see

Section 3.3.2).
Consider the words YAPDIKCA, YAPTIGCA, YAPTIKCA, YAPTIGCA,

13The word SOL is pronounced slightly different in the latter.
14The word ADI passes the check because such a word is present in the dictionary.

CHAPTER 4. IMPLEMENTATION 78

and YAPTIKCA. For all of them, the root will be determined as the verbal
root YAP (do). Additionally, all will pass the vowel harmony check. Fur-
thermore, for all of them the suffixes will be isolated as the participial suffix
—{D}{I}{K} and the external case suffix -{C}{A}, respectively, and they form
a valid sequence of suffixes for a verbal root. However, it is obvious that only
one of them (YAPTIKCA) has the correct spelling. In order to recognize the
misspelled ones consonant harmony checks must be done. When the suffix
—{D}{I}{K} is isolated, since it is a suffix whose initial phoneme changes de-
pending on the phoneme preceding it, the last phoneme of the root YAP is
checked. Since it is a harsh consonant, the suffix must begin with the conso-
nant T. Therefore, the word YAPDIK A can not pass this check. In addition,
the last phoneme of that suffix changes depending on the phoneme it precedes.
Since it is followed by a consonant, 1t must end with the harsh consonant IS.
Hence the spelling of the word YAPTIGCA is also wrong. Later comes the sul-
fix -{C}{A} whose first phoneme depends on the last phoneme of the stem it
is affixed to. The word YAPTIKCA can not pass this check because although
the suffix -{C}{A} comes after the harsh consonant K, it does not begin with
the harsh consonant . At this point, a shortcoming of the checker arises. If
two consonant harmony errors immediately follow each other, the checker can
not catch them. For example, in the word YAPTIGCA, since both suffixes are
used incorreétly, and this had caused a harmony between their consonants, the

word will not be reported as misspelled, although it is.

Usage of passing vowels or consonants are also checked during morphological
analysis (see Sections 3.3.1 and 3.3.2). For example, during the morphological
analysis of the word GELIYORKEN (while [the person] is coming}, when the
first suffix is determined as the progressive tense suffix —[{I}]YOR, since the
passing vowel {I} is used, the last phoneme of the root is checked to understand
whether it really ends with a consonant. Later, the participial suffix -[Y]KEN
is isolated. Since the passing consonant Y is not used, the phoneme preceding
it is checked to see if it is really a consonant. If this word were written as
GELYORKEN, GELIYORYKEN, or GELYORYKEN, it could not pass the
morphophonemic checks, although it obeys to vowel harmony rules and the

order of the morphemes are correct.

If a word can not pass any of the morphophonemic checks, considering the
possibility that the root may have been determined wrongly, a new root is

searched in the dictionary, and the process is repeated.

CHAPTER 4. IMPLEMENTATION 79

4.6 Morphological Analysis

What characterizes agglutinative languages is that stem formation by affixation
to previously derived stems is extremely productive, so that a given stem, even
though itself quite complex, can generally serve as the basis for even complex
words. Consequently, agglutinative languages contain words of considerable
morphological complexity, and spelling error detection for such languages ne-

cessitates a morphological analysis.

4.6.1 Morphological Parsing

Morphological parsing has attracted relatively little attention in computational
linguistics until recently. This attitude is predictable from the fact that vir-
tually all syntactic parsing research has been concerned with English, or with
languages morphologically very like English. Major properties of morphological

parsers can be given as follows [17]:

1. A morphological parser requires a morphophonological component which
mediates between the surface form of a morpheme as encountered in
the input text and the lexical form in which the morpheme is stored in
the morpheme inventory, i.e., a means of recognizing variant forms of

morphemes as the same.

2. A morphological parser also requires a morphotactic component which

specifies which combinations of morphemes are permitted.

Morphological parsing algorithms may be divided into affiz stripping and
root-driven analysis methods. Both approaches have been taken from very

early in the history of morphological parsing as we learn from the Hankamer

[17]:

Packard’s parser [32] for ancient Greek proceeds by stripping affixes
off the word, and then attempting to look up the remainder in
a lexicon. Only if there is an entry in the lexicon matching the

remainder and compatible with the stripped-off affixes is the parse

deemed a success.

Brodda and Karlsson [4] apply a similar method to the analysis
of Finnish, an agglutinative language, but without any lexicon of

CHAPTER 4. IMPLEMENTATION 80

roots. Suffixes are stripped off from the end of the word until no
more can be removed, and what is left is assumed to be a root.

Sagvall [37], on the other hand, devised a morphological analyzer
for Russian which first looks in a lexicon for a root matching an
initial substring of the word. It then uses grammatical information

stored in the lexical entry to determine what possible suffixes may
follow.

In the early 1980’s, three different approaches to morphological
parsing of agglutinative languages were developed independently:
for Quechua, [20, 21], for Finnish [22], and for Turkish [15]. These
three approaches are identical in the way that they treat morpho-
tactics. They all proceed from left to right, in the fashion of Sag-
vall’s parser. Roots are sought in the lexicon that match initial
substrings of the word, and the grammatical category of the root
determines what class of suffixes may follow. When a suffix in the
permitted class is found to match a further substring of the word,
grammatical information in the lexical entry for that suffix deter-
mines once again what class of suffixes may follow. If the end of
the word can be reached by iteration of this process, and if the last

suffix analyzed is one which may end a word, the parse is successful.

Koksal, in his thesis [23], has also suggested the same approach for auto-
matic analysis of Turkish words. We also use a very similar method. Our
spelling checker has two separate sets of rules for the two main root classes.

When the root of a word is found the class of the root determines which set of

rules are to be used for further parsing.

4.6.2 Utilities Used

For the implementation of the lexical analyzers and parsers in which the rules
are included, two standard UNIX utilities, lex and yace, have been utilized
respectively [26, 38]. Lex and yacc were designed as tools to help programmers
writing compilers and interpreters, but they have a wide range of applications.

Lez, so called because it generates a lexical analyzer, reads a stream of
bytes and groups them into tokens. The user provides a set of high-level,
problem-oriented specifications for regular expression matching, and lez pro-
duces a program in C programming language which recognizes those regular

CHAPTER 4. IMPLEMENTATION 81

expressions. We have used it to separate the suffixes of a word from left to

right.

Yacc (which stands for Yet Another Compiler-Compiler) is used to codify
the grammar of a language, and generates a parser. The parser examines the
input tokens and groups them into syntactical units. The value of the tokens
may be processed by action routines written in C. We have used yacc to parse

the suffixes using morphological rules of Turkish grammar.

4.6.3 Lexical Analyzers

Two sets of lex specifications, one per each root class, are prepared to generate
the lexical analyzers which are to be called by the parsers each time a new
token is needed. The specifications contain regular expressions that match
suffix tokens. The lexical analyzer corresponding to the category of the current
stem sends, as the next suffix token, the maximum length substring from the
left of the remaining suffixes part that matches to any allomorph of a suffix in

the permitted class.

The following is a small section from the lex specification®® for verbs:

A [AE]
I [{TUy)
%%

M{A}L{I} return (MALI);
M{A} return (MA);

Using this specification, the first suffix token of both the words YAPMALISIN

15This specification consists of two parts as definitions and rules section, which are seper-
ated by the symbol %%. The definition part contains some substitutions which define regular
expressions employed in the rules section. These definitions are then referenced by placing
braces ({}) around the desired substitution string. For detailed information on lez specifica-

tions refer [26] or [38].

CHAPTER 4. IMPLEMENTATION 82

(you must do) and GELMELIYIM (I must come) is isolated as the necessitative
suffix -M{A}L{I}. Thus, although the suffix -M{A} is also a substring of
those words, since its length is less than the suffix -M{A}L{I}, the longest
one is matched. If the wrong allomorph of the suffix were used in one of these
words, for instance, if the first one were written as YAPMELISIN, it would be

recognized during vowel harmony check.

The morphotactic structure of some words can be analyzed in more than
one form, but for our purpose, the real morphotactic structure of the word
is not important. Thus, if a word can be analyzed correctly in one form, no
other possible structures are analyzed. For example, the word EVININ may

be analyzed into two morphotactic structures as

EV 4+ [S{I} + [N{I}JN — EVININ (his house's), and
EV + [{I}JN + [NJ{I}N — EVININ (your house’s).
But using the following lex specification prepared for nouns, it is analyzed

as in the second form.

I [1IUy]
%%

N{I}N return (NIN);
{I}N return (IN);
N return (N);

Similarly, the maximum length suffix matched for the word KAPININ (the
door’s, or your door’s) is the genitive suffix -[NJ{I} N, although that word may
have been formed by combining the suffixes —[{I}]N and —[N]{I}N.

Although all the conjugational suffixes have been included into the specifi-
cations and the rules, only a small subset of the derivational suffixes have been
handled. The reasons for this are that majority of the derivational suffixes
may be received by only a small group of roots, and determining such groups
is a rather difficult and time-consuming job, and depends on various semantic

CHAPTER 4. IMPLEMENTATION 83

criteria (see Section 3.4). The derivational suffixes that may be affixed to all
of the roots in a class and those which can be affixed to large percentage, but
not all, of the roots in their class are among the included suffixes.

The lists of all the suffixes included into the grammar rules for each root
class can be found in Appendix A. Certain combinations of these suffixes are
matched as if a single suffix token by the lexical analyzers, so that some rules
can be simplified. For example, the combination of the negation suffix with the
progressive tense suffix is matched as a single suffix ~-M{I}YOR. to eliminate
the check for the deformation of the negation suffix (see page 40). On the other
hand, some suflixes are formed by the combination of more than one tokens
sent by a lexical analyzer. I'or example, instead of matching the third person
plural possessive suffix ~-L{A}R{I} as a single suffix token, when the lexical
analyzer for nouns sends the third person singular possesive suffix -[S]{I} after
the plural suffix -L{A}R, their combination is treated as the suffix ~-L{A}R{I}.

4.6.4 Parsers

The grammar rules for morphotactics of Turkish words have been described
in two yacc specifications, again one for each root class. The lexical analyzers
described in the previous section produce the suffix token stream. Yace gen-
erates the source files for the parsers. As a result, two parsers, a noun parser

and a verb parser, have been constructed.

All the models in Section 3.4 have been utilized in for generating the rules
used in the parsers. Additionally, all of the known exceptional cases, which are
also mentioned in the same chapter, have been considered. The correct order of
suffixes are coded as grammar rules, and necessary checks are done by the help
of action routines associated with the rules. Those routines are executed each
time the rule is matched. For example, when the lexical analyzer for the noun
parser sends —-{C}{I} as the suffix token for the word KITAPCI (book seller),
first the IS_CI flag of the root KITAP (book) is checked to understand whether
that root can really receive the suffix -{C}{I}. This flag is set for this root, but
one more check is necessary to determine whether the correct allomorph of the
suffix is used. The value of the vowel in the suffix has been proven to be correct
by the vowel harmony check, therefore, it is only necessary to prove that the
suffix must really begin with the consonant (in its this usage. Therefore, the
final phoneme of the stem it is affixed to is checked, and when it is seen that
it is the harsh consonant P, C is proven to be the correct allophone for {C},

CHAPTER 4. IMPLEMENTATION 84

1.e., the correct allomorph of the suffix is used. If the word were written as
KITAPCI it would not have passed this check. On the other hand, the word
SEVINCCI will not be parsed correctly because the nominal root SEVINC
(happiness) is not marked in the dictionary as a root which can receive the

suffix —{C}{I}.

To check whether the correct allomorph of a suffix is used is relatively
simple if only the phonetic conditions are to be considered. For the suffixes
whose allomorphs change depending on certain rules, such as the factitive verb
suffix, passive voice verb suffix, and aorist suffix (see Tables 3.7, 3.8, and 3.9),
extra checks must be done. As an example, let’s consider the aorist suffix.
When the lexical analyzer for the verb parser sends the aorist suffix as the
current suffix token, the parser controls whether the correct allomorph of the
suffix is used depending on the stem it is affixed to. If the -R allomorph of the
suffix is used, the final phoneme of the stem it follows must be a vowel (e.g.,
OYNAR (he plays)). If the —{I}R allomorph is used, the stem it is affixed to
must end with a consonant, and must contain more than one syllables but must
not be a compound verb formed with the verb ETMEK, i.e., the flag IS_.GER
must not be set for that root (e.g., KAYBOLUR (he disappears)), or must be
a mono-syllabic root for which the IS_GIR flag is set (e.g., VERIR (he gives)).
Otherwise, if the —{A}R allomorph is matched, the stem must again end with
a consonant, but this time must be mono-syllabic and the IS_GIR flag must
not be set (e.g., YAPAR (he does)), or it must be a compound verb formed
with the verb ETMEK (e.g., HISSEDER (he feels)). As a result of this check
the incorrect words such as KAYBOLAR, VERER, YAPIR, HISSEDIR will

be detected.

As an example for difficulties faced during such checks, consider the passive
voice suffix —{I} N, and the second person plural suflix for the imperative form
of verbs, i.e., ~[Y]{I}N. These two suffixes may sometimes take the same form
as in the word BULUN. In this word, the suffix ~-UN may be either of the
suflixes —{I}N or ~[Y]{I}N. Since the passive voice suffix takes different forms
depending on the stem it follows, some checks must be done when any of those
forms are matched. If the suffix ~-UN is considered as the passive voice suffix,
the check will be successful since the root BUL ends with the consonant L (see
the second row of Table 3.8). If the other possibility is considered, the word
will again be parsed correctly since the person suffix must be the last suffix.
On the other hand, while the word KAPATIN is being parsed, if the suffix -IN
is considered to be the passive voice suffix, it can not pass the check, where it
will be parsed correctly if it is considered as the person suffix. To solve this
problem, when the suffix —{I}N is matched as the last suffix of a word, it is

CHAPTER 4. IMPLEMENTATION 85

decided to be the person suffix, and therefore, no check for the passive voice
suffix is done. Otherwise, if there exists any suffix following that suffix, it is
considered to be the passive voice suffix and the check is done.

The two parsers are alternatively used. First parser to be used is determined
according to the class of the root, but as the parsing continues it may be
necessary to switch from one parser to another and continue there, or again
pass back to the previous one, since the class of a stem can change when it
receives certain suffixes. Ior example, while parsing continues in the noun
parser, if the derivational suffix ~-L{A}3, which makes a verb from a noun, is
matched, a jump to the verb parser must be done. Such jumps are not possible
using the C code generated by yacc as it is, so some modifications are done in

that code automatically after each time it is generated.

The switches between parsers can sometimes be very complicated. Some
suffixes can have two different usages. For instance, the suffix -M{A} can either
make a verb a noun or negate it (see page 50). In such cases both possibilities
have to be considered. For example, after the root of the word YAPMADIM
(I didn’t do) is determined as the verbal root YAP (do), the first suffix will
be isolated as ~-M{A} in the verb parser. First considering the possibility that
this suffix is used as a derivational suffix, the noun parser will be invoked. The
remaining part of the word can not be parsed by this parser. So accepting
~M{A} as the negation suffix, the verb parser will be returned to and parsing
will be continued there. On the other hand, since the same suffix is used as
a derivational suffix in the word YAPMANIZ (your doing), this word will be

parsed successfully in the noun parser, thus returning to the verb parser will

not be necessary.

If a word has received more than one derivational suffixes then many switches
between parsers will be necessary. In Table 4.10 an example to such switches
is given. In that example, the root of the word CEKOSLOVAKYALILASTIR-
MADIKLARIMIZDANMISSINIZ (vou had been one of those whom we did
not convert to a Czechoslovakian) is found as the noun CEKOSLOVAKYALI
(Czechoslovakian) in our dictionary. Then comes the suffix -L{A}3, therefore,
a switch to verb parser has to be made. Parsing continues there until the suffix
-M{A} is matched. Supposing that this suffix has changed the class of the
stem, the noun parser will be returned back. Since the remaining part can not
be parsed there, the verb parser is activated, and parsing will continue there
considering -M{A} as the negation suffix. Then comes the suffix -{D }{I}{K},
which is also a suffix that makes a noun from a verb, therefore, again a switch
to the noun parser will be made. Continuing in this parser, the word will be

CHAPTER 4. IMPLEMENTATION 86

Input Word: CEKOSLOVAKYALILASTIRMADIKLARIMIZDANMISSINIZ
Root: CEKOSLOVAKYALI

Input for Noun Parser Input for Verb Parser

LASTIRMADIKLARIMIZD ANMISSINIZ
TIRMADIKLARIMIZDANMISSINIZ

DIKLARIMIZDANMISSINIZ
DIKLARIMIZD ANMISSINIZ

LARIMIZDANMISSINIZ

Table 4.10: An example to parsing process and switch between parsers

parsed correctly.

For the roots that can take all the suffixes belonging to both nominal or
verbal classes, if parsing is unsuccessful in the first parser chosen, the other one
must also be tried. For example, the root of the word ACLAR (hungry people)
is AC. This root may either be used as a verb (open) or as a noun (hungry).
Parsing is first attempted with the verb parser, but it results unsuccessfully.
So we backtrack and use the other parser. With the noun parser the word can

be parsed successfully.

In Figure 4.5 an example yacc specification’® is given. These rules appear
within the grammar rules for the nominal roots. They are used to parse a word
whose root is a numeral. The terminal SAY| indicates that a numeral root has
been matched. The rules for the suffixes that a numeral root can receive are rep-
resented by the non-terminal sayi_ek. The rules for the non-terminal sayi_isim
says that a numeral root stays as a noun if it receives the suffixes —-[{I}]NC{I}
(the token INCI), -L{I}{K} (the token LIK), or a combination of them: e.g.,
BIiRINCI (first), BESLIK (set of five), UCUNCULUK (third place). The suffix
~[{I}]NC{I} must take the form -NC{I} when it follows a root ending with a
vowel (e.g., IKINCI (second)). Because of this, the usage of the passing vowel
{I} is checked by the routine Check. The non-terminal sayi_fiil shows that by

16This specification consists of two parts as declerations and rules section, which are seper-
ated by the symbol %%. Token definitions in the declerations section describe all possible
tokens that the lexical analyzer will return to the parser, thus the terminals. The con-
catenation and/or union of these tokens form nonterminals, which may themselves be used
as tokens in other rules. Actions can be associated with a rule. An action consists of C
code that will be executed each time the rule is matched. For detailed information on yacc

specifications refer [26] or [38].

CHAPTER 4. IMPLEMENTATION 87

affixing the suffix ~-L{A} or ~-L{A}T (the tokens LA and LAT respectively) to
a numeral root, a verb can be derived: e.g., KIRKLAMAK, DORTLETMEK.
The suffix ~[S]{A}R (the token SAR) may be affixed to a numeral root either
alone or after combining with one of the suffixes ~-L{I}{K} or -L{I} (the tokens
LIK and LI respectively): e.g., ALTISAR (six each), YEDISERLI (with seven
each), YUZERLIK (able to contain hundred each). Since the consonant § is
only used in this suffix when it is affixed to a root ending with a vowel, its
usage is checked by the routine Check_SAR. If the suffix ~-L{I} comes immedi-
ately after a numeral root, if it is followed by the substring YOR it may be the
deformed form of the suffix -L{A} (e.g., KIRKLIYORLAR), therefore, a call

to the verb parser is done, otherwise the class of the stem remains as a noun.

In current implementation, the grammar for verb parser consists of 230
rules in which 80 terminals and 81 nonterminals are used, and in the grammar
for noun parser, 263 rules, in which 68 terminals and 94 nonterminals appear,
are present. Simplifying both grammars may be possible by examining all the

rules carefully and eliminating the unnecessary ones (if any).

Figure 4.6 shows the details of the word analysis. Summarizing, first the
syllable structure of the word is checked. If it is wrong, the word is added
into the output list of misspelled words, otherwise the root is determined. If
no root can be found the word is reported as misspelled. If a root is found,
first the vowel harmony check is done. Then, according to the class of the
root, one of the parsers is activated. In the parsers, as the suffixes are isolated
one by one, necessary morphophonemic checks are done. Depending on the
suffixes, switches between the parsers are possible. When the end of the word
is reached, if no errors can be found then the spelling of the word is correct.
If any error is found in any of the parsers or during morphophonemic checks,
a new root is searched. If another root is found the same operations are done.
If no successful parsing can be done although the first letter of the word is

reached, the word is added into the output list.

CHAPTER 4. IMPLEMENTATION

% token SAYI SAR INCI LIK LAT LA LI

%%
ad . SAYIsayiek
sayi.ek : saylisim { callisim; }
sayifiil { calliil; }
sar sayi_oth
: LI { if (Next_-YOR) call fiil; else call isim; }
sar . SAR { Check SAR; }
sayidisim : INCI { Check I; }
: INCI LIK { Check I; }
LIK

sayifil : LAT
LA

sayioth : LIK
LI

Figure 4.5: Yacc specification for numerals

88

CHAPTER 4. IMPLEMENTATION

[Word

F Syllabification
Check

Overb suffix

verb root

Root

Determination

Vowel Harmony
Check

noun root

Verb

Parser

suffix

verb
suffix

noun
suffix

89

T

Morphophonemic
Checks

Noun

Parser

suffix

Q noun suffix

/
F

Misspelled
Words

Figure 4.6: Word analysis

Chapter 5

PERFORMANCE EVALUATION

This spelling checker has been implemented using the C programming language
in a UNIX environment, on SUN SPARC workstations at Bilkent University.

The current version of the spelling checker requires approximately 850
Kbytes of main memory space. More than 50 percent of this space is taken
by the dictionary. Each entry of the dictionary takes 20 bytes on the average:
4 bytes for the pointer to the string which holds the word, 7 bytes on the
average for that string, 1 byte for the end-of-string character, and 8 bytes for
two long integers which hold the flags. Since the current dictionary contains
nearly 23,500 entries, it requires nearly 470 Kbytes of memory space. In the
present implementation the whole dictionary is kept in the main memory as it
does not cause any problem, but the system is flexible so that when necessary,

other storage techniques can be used.

The checking kernel can be integrated to different word processing appli-
cations or it can be used as a separate application. We have integrated it to
GNU-EMACS text editor for use on IATgX documents. In this form, the pro-

gram is available for use within the university and around a number of sites on

Internet.

It is also possible to obtain some statistical information by running the
program with -s option. Table 5.1 presents certain statistical information ob-
tained from the test runs of the checker with 10 different documents on different
subjects, such as medicine, computer engineering, children psychology, etc. As
can be seen, the number of distinct words within a document is relatively
small, and more particularly, the percentage of distinct words to total words
processed increases as the length of the document decreases. Most of those
documents were prechecked manually, so the percentages of misspelled words

90

CHAPTER 5. PERFORMANCE EVALUATION

91

Total Number of Number of # of msp. wds. | # of msp. wds. | Total
Input # of distinct misspelled detected by detected by time

words words words syll. check other checks (sec)
DOC.1 | 13,677 | 3,111 (22.75%) | 636 (20.44%) | 245 (38.52%) | 391 (61.48%) | 4.91
DOC.2 | 7430|3312 (44.58%) | 63 (1.90%) | 19 (30.16%) | 44 (69.84%) | 4.64
DOC.3 6,519 | 2,473 (37.94%) | 157 (6.35%) | 51 (32.48%) | 106 (67.52%) | 3.51
DOC. 4 6,349 | 1,984 (31.25%) | 63 (3.18%)| 35 (55.56%) | 28 (44.44%) | 2.71
DOC.5 5311 | 2,063 (38.84%) | 350 (16.97%) | 128 (36.57%) | 222 (63.43%) | 2.59
DOC.6 4,303 | 1,486 (34.53%) | 97 (6.53%) | 5l (32.48%) | 46 (67.52%) | 2.27
DOC.7 2,658 | 1,292 (48.61%) | 135 (10.45%) | 57 (42.22%) | 78 (57.78%) | 1.53
DOC.8 | 1175 | 546 (46.47%) | 78 (14.20%) | 37 (4T.44%) | 41 (52.56%) | 0.81
DOC.9 941 701 (74.50%) 0 0.75
DOC._10 535 | 401 (74.95%) | 66 (16.46%) | 21 (31.82%) | 45 (68.18%) | 0.50

Table 5.1: Sta,tistica,l information for test runs of the checker

are small. Approximately 40% of the misspelled words are detected by syl-
labification check and the rest are detected by other checks. The last column
of Table 5.1 shows the total CPU times in seconds that the program spends
while checking the documents. The number of distinct words affect the exe-
cution time more than the total number of words. As seen in Figure 5.1. the
execution time increases proportionally as the number of distinct words within
a document increases. This is an expected result, because a word is fully an-
alyzed only once (see Section 4.2.1). The execution times listed in Table 5.1
are taken on SUN SPARC SERVER 490, which is a machine of 22 MIPS. In
the second column of Table 5.2, the average CPU times in milliseconds, spent
per word on the same machine are seen. These times include the times spent
for input/output, preprocessing, etc. The CPU times spent per word analysis
are listed in the third column. In general, the spelling checker can process at
1000-3000 words (roughly 2-6 pages) per second on this system, depending on

the document.

In Table 5.3, some information on each function of word analysis, obtained

from the tests of the first and last documents, are given. As seen in this table,

CHAPTER 5. PERFORMANCE EVALUATION 92

5.0

N
o
T

g
o
T

Total CPU time (sec)

1 L 1

0.0 1000.0 2000.0 3000.0 4000.0

Number of distinct words

Figure 5.1: Change of execution time as an effect of the number of distinct

words

the greatest percentage of the time taken by word analysis is spent for root
determination, because root determination requires multiple searches in the
dictionary (see page 75). Syllabification check may sometimes be an overhead,
especially when the percentage of the misspelled words to distinct words is too

small, since this check is applied to all of the distinct words.

The checker sometimes reports some correctly spelled words as incorrect
since those words are not included in the dictionary. For example, although
its spelling is correct, the checker reports the word anatomik as misspelled (see
Appendix B) because that word is not included in the dictionary. This problem
can easily be solved by adding the necessary words into the dictionary or by
allowing a user dictionary to be created. On the other hand, there are still
certain misspellings which may not be detected by the checker, because some

CHAPTER 5. PERFORMANCE EVALUATION

SUN SPARC SERVER 490
(22 MIPS)

Input Total | Time/ | Time/

time | word wd.an.

‘(sec) | (msec) | (msec)
DOC.1 4.91 0.36 0.23
DOC22 4.64 0.62 0.41
DOC.3 3.51 0.54 0.36
DOC4 2.71 0.43 0.29
DOC.5 2.59 0.49 0.32
DOC.6 2.27 0.53 0.36
DOC.7 1.53 0.57 0.37
DOC.8 0.81 0.69 0.42
DOC.9 0.75 0.80 0.57
DOC.10 | 0.50 0.93 0.63

Table 5.2: Timings

93

flags are not fully set for all of the words in the dictionary. For example, after
the verbal roots are marked correctly, all the remainings are marked as nominal
roots even though some of those roots can not really receive all of the suffixes
that a nominal root can take. The functional performance of the spelling
checker can be fine-tuned by analyzing the word list and inserting the additional
appropriate flags. Consequently, the reliability of the spelling checker can be
improved by adding more words into the dictionary and increasing the number

of flags.

CHAPTER 5. PERFORMANCE EVALUATION

94

DOC1 , DOC.10
Function % of word # of | Time/call % of word | # of | Time/call
analysis time | calls (msec) analysis time | calls (msec)
WordCheck 100.0% | 13,677 0.23 100.0% | 535 0.63
Exttolnt 2.8% | 3,130 0.03 8.9% | 403 0.07
SearchHash 6.7% | 13,677 0.02 0.0% | 535 0.00
InsertHash 2.6% | 3,092 0.03 2.2% | 399 0.02
CheckSyl 7.6% | 3,111 0.08 8.9% | 401 0.07
RootDet 36.4% | 3,456 0.33 34.7% | 452 0.26
VowelHarm 6.2% | 2,483 0.08 7.4% | 270 0.09
NounParser 13.1% | 2,072 0.28 15.9% | 193 0.28
VerbParser 9.3% | 1,401 0.28 9.6% | 130 0.25

Table 5.3: Some information on each function of word analysis

Chapter 6

CONCLUSIONS AND SUGGESTIONS

In this thesis, we have presented design and implementation of a spelling

checker for Turkish.

Today, numerous spelling programs for several natural languages are avail-
able as various word processors on the market. Computer users are increasingly
utilizing such functionalities. Although it is obvious that such a tool for Turk-
ish users is also necessary and will be very useful, no such program has been
developed until recently. The reason is that, due to its agglutinative nature,
Turkish presents special difficulties not encountered in spelling checkers for
other languages such as English. In those languages, spelling errors are mostly
caused by the difference between how a word sounds and is actually spelled,
but Turkish words are written the same as they sound. In Turkish (and in
other agglutinative languages) spelling errors are caused by some grammatical
aspects of the language. Turkish words include an important amount of gram-
matical information embedded by the addition of suffixes to a certain root.
Incorrect root-suffix combinations, wrong ordering of the suffixes, and errors
in phonetic harmonies introduce spelling errors in Turkish text. Therefore,
a series of phonological and morphological analyses have to be performed in

order to detect wrong spelling of Turkish words.

Turkish words are formed obeying certain phonetic and morphological rules.
It is claimed that those rules are well-defined and Turkish is a very regular
language. However, the results of our research have shown that, in addition
to its regularity, Turkish as used today shows many irregularities that cause
the problem of spelling checking for this language to become a hard and very
interesting problem. The results of our research on Turkish word formation
rules and their exceptions are given in Chapter 3. These results may hopefully

be helpful for future researchers on Turkish linguistics.

95

CHAPTER 6. CONCLUSIONS AND SUGGESTIONS 96

Many grammar books have been referred to collect Turkish word formation
rules. In those books, after each rule is defined, usually it is reminded that there
may occur some exceptions to that rule in some conditions, but mostly those
conditions can not be “well” defined. For example, in all Turkish grammar
books, it is said that “When a Turkish word ending with one of the consonants
P, C, T, K receives a suffix beginning with a consonant, that final consonant
is softened, but there are some such words whose final consonant does not
change.” However, none of the books says what the common property of those
words which do not obey to that rule is, because most probably it is not known
yet. In order to implement that rule correctly in the spelling checker, all words
having the indicated property have been examined, the list of the irregular
ones have been obtained, and special checks have been done to catch those

irregularities.

Some of the irregularities encountered in the Turkish language are even not
mentioned in any of the grammar books. For example, although in some (but
not all) of the grammar books we can see the rule “The verbal roots DE (say)
and YE (eat) changes as DI and YI respectively when they receive a suffix
beginning with the consonant Y”, it is mentioned nowhere that the root DE
does not always obey to this rule. For instance, it does not change when it
receives the suffix —[Y]{I}P, i.e., the resulting word is not DIYIP, as said in
the rule, but DEYIP. In order to implement that rule correctly, all the suffixes
beginning with Y have been examined, those which do not cause DE to change
have been somehow decided, and they have been handled specially.

In order to obtain reliable results from the spelling checker, all of the known
rules and their exceptions have been implemented, but we have missed some
rules. For example, it intuitively seems as if that the interrogative form of a
verb in optative mood is not valid for some persons (e.g., GELESIN Mi?), but
that rule is not included in our rules since it is met in none of the grammar

books. Hence, later it may be necessary to make minor modifications in our

grammar rules.

Some misspellings caused by affixing certain suffixes to some roots, which
in fact can not receive them, can not be detected by the spelling checker yet.
The reason is that, in the current implementation, all of the roots outside the
verbal ones are marked as nominal roots, and they are treated as if they can
receive all the conjugational suffixes which can be affixed to nominal roots.
However, this is not always true because some of those roots can not receive
all of those suffixes. For example, the root HEP (all) does not take the first

CHAPTER 6. CONCLUSIONS AND SUGGESTIONS 97

person singular suffix —[{I}]M although it takes the plural one,! i.e., HEPIMIZ
(all of us) is correct but HEPIM is not, but the checker can not detect it. To
solve this problem, the vocabulary of Turkish must be analyzed very carefully,
the root classes must be determined correctly, the number of root classes must
probably be increased, and which class can really receive which suffixes must
be decided. Obviously, this is a very difficult and time consuming job which
requires a good knowledge on Turkish vocabulary, and probably should be left

to linguists.

The spelling checker sometimes reports correct words as incorrect. One
reason of this is the absence of some words in our dictionary. Although the
dictionary is reasonably complete, there still remains many technical terms
and proper names which are not included. Adding more and more words will
obviously increase the functional performance of the checker. Another reason is
that, most of the derivational suffixes are not included into the rules. If a stem
that is derived by such a suffix is not present in the dictionary, it is reported
as misspelled. Additionally, for the derivation of suflixes that are included in
our rules, the list of the roots that they can be affixed to may not be fully
determined. This problem can also be solved by examining the dictionary.

The abbreviations are not considered in current implementation. Thus;
the words such as Dr., vb., T.B.M.M. are reported as misspelled. While the
abbreviations are written, both the punctuation and the case distinction are
important, for instance, tbmm must be detected as incorrect. However all
the punctuations in the input are removed before it is checked and no case
distinction (except for the first character to check proper names) is present.
This problem may be solved by holding the abbreviations in the external rep-
resentation in a separate table and searching each word in that table before
converting it into the internal representation and before removing the punc-
tuation. Since this will form a great overhead for the execution time of the

checker, the problem is left unsolved.

As seen in Chapter 3, the performance results of the checker are rather
satisfactory. The current dictionary contains some words of usually Arabic or
Persian origin which have lost their usage today. If such words are determined
and deleted from the dictionary, its size will decrease substantially. Addition-
ally, some of the currently used flags may be unnecessary, and removing them
will reduce the dictionary size. Furthermore, some compression techniques
may be applied to reduce the storage requirements of the dictionary, but those

1This rule is not written anywhere.

CHAPTER 6. CONCLUSIONS AND SUGGESTIONS 98

techniques must be carefully chosen so that the search time should not be in-
creased. In fact, decreasing the search time may be possible using a different

data structure for the dictionary but it may require more space.

The further work to extend the implemented spelling checker might be the
development of a spelling corrector for Turkish. As it is known, a spelling
corrector is more difficult to develop and maintain even for languages such as
English. Some standard algorithms have been developed to give suggestions for
typographical errors. Those can be used for Turkish too, but they may not be
enough. For spelling correction of morphological errors in Turkish, some intel-
ligent methods must be developed. For example, the word GELMEYECEGIM
(I will not come) should be suggested when the word GELMICEM is detected

as misspelled.

Appendix A

LISTS OF SUFFIXES

Suffixes included in grammar rules for nominal roots:

-L{A}R
~[{T}HM
-[{I}N
~[SK1}
~[{I}M{1}Z
~[{I}N{I}Z
-L{A}R{1}
~[Y{1}
-[Y{A}
-{DHA}
-{DHA}N
~[NKI}N
~[Y]L{A}
-{C}HA}
-L{I}
~S{1}Z

-KI (-KU)

-M{I} -{CHI}
YI{DHI} (IDI) -[{IIN{CHI}
~{YIM{I}$ (IMIS) -[S{A}R
-[Y]S{A} (ISE) -L{IHK}
-[Y)KEN (IKEN) -L{A}T
M -L{A}S
N -L{A}
-K

~N{1}Z

“[YHIIM

-S{I}N

-[YHI}Z

~S{I}N{I}Z

-{DHI}R

|

99

APPENDIX A. LISTS OF SUFFIXES 100

Suffixes included in grammar rules for verbal roots:

{DHI}R M
L N

{I}N K

N N{I}Z

-7 “L{A}R

“M{A} YHIIM
J[Y){A}M{A} S{I}N
~[Y]{A}BIL -[YH1}Z
_[Y[{A}DUR _S{I}N{I}Z
[Y{I}VER _L{I}M
[Y]{A}GEL {Y}{DN
[Y}{A}YAZ YHON{1}Z
[Y]{A}KAL _S{I}NL{A}R
_[Y[{A}JKOY “M{A}K)
-[Y}{A}GOR ~[YHI}S
-{(D}D [YHAIN
-M{I}$ —[Y]{A}S{I}
{YHAIC{AHK} ~{DHIHK}
IR {YH1}P
“{AIR _[YHAJR{AJK
~{I}]YOR [Y/{I}NC{A}
-M{A}KT{A} ~[Y{A}LA{T}
_S{A} _M{A}D{A}N
[Y){A} _M{A}KS{I}Z{I}N
_M{A}L{I} _C{A}S{I}N{A}
-M{D) YHD{C)D)

-[Y}{D}{1} (IDI)
-[Y]M{1}§ (IMIS)
~[Y]S{A} (ISE)
~[Y]KEN (IKEN)

Appendix B

EXAMPLE RUNS

The following text is taken from a news which was pressed in the Hirriyet
newspaper on June 1%, 1991. This text is written as it appears in the newspaper
in a JATEX file and checked by the spelling checker using -s option. The input
file and the output of the checker can be found in the following pages. The
same text is typed by a Turkish speaking foreigner in the required external
representation and given as input to the spelling checker. It is a good example
to see what kind of spelling errors can be made in a Turkish text, and which

of those errors can be detected by the checker.

101

APPENDIX B. EXAMPLE RUNS 102

“Anne karnindan hayata sarilig

Gegtigimiz glinlerde San Fransisco’daki California Universitesi'nde yapilan
bir operasyon sirasinda yaganan ilging bir olay, ameliyathanede biiyiik sagkinlik
ve heyecana yol agti. Universitenin Cocuk ve Yeni Dogan Klinigi Sefi Dr.
Michael Harrison ve ekibinin anne karnindaki bir bebek (Fetiis) tizerinde ger-
ceklestirdigi ameliyat sirasinda, yagamla 6liim arasinda savas veren beg aylik

minik canli, henliz gelismesini tamamlamamig elini uzatarak, doktorunun par-

“
magin sikica kavradi.

Cesitli anatomik bozukluklar: nedeniyle yagam ganslari zayiflavan ana kar-
nindaki bebeklerin anomalliklerini diizeltmek icin yapilan ameliyatlardan biri
olan islem sirasinda, operasyonun geregi olarak embriyonun sag kolu annenin

rahmine yapilan kesikten disar1 ¢ikarild.

Dr. Michael Harrison, o gline kadar on besten fazla bu tiir ameliyat yaptig:
halde, heniiz anne karnindaki bir bebegin adeta kurtaricisina tesekkiir ifadesi

tagiyan bu sicak tutunusuyla, mithig heyecanlanip, duygulandigin belirtti.

Son yillarda dogum oncesi teshis ve tedavide atilan biyiik adimlara ek
‘olarak Dr. Harrison ve ekibinin gerceklestirdigi, bebegin cesitli yap: bozukluk-
‘larimin ana karnindayken yapilan ameliyatla giderilebilmesi, diinyanin ileri ge-

len tip otoritelerince alkiglanacak bir bagar: olarak degerlendiriliyor. On yildir
bu konu iizerinde calisan ve yiizlerce gebe maymun ve koyunla bu tip ameli-
vatlarin klinik caligmasini yapan Dr. Harrison, bdylece operasyon teknigini
miikemmellestirdiklerini sdyledi. Dr. Harrison yapilan miidahalenin gergekten
yagam sansim arttirdigini ve bu arada anneye de zarar verilmedigini ispat-

ladiklarim belirtiyor.”

APPENDIX B. EXAMPLE RUNS 103

Input IATRX file:

Anne karn{\i}ndan hayata sar{\i}1{\i}\c{s}

Ge\c{c}ti\u{g}imiz g\"{ulnlerde San Fransisco’daki California
\'"{U}niversitesi’nde yap{\i}lan bir operasyon s{\i}ras{\i}nda
ya\c{s}anan ilgin\c{c} bir olay, ameliyathanede b\"{u}y\"{u}k
\c{s}ra\c{s}k{\i}n1{\i}k ve heyecana yol a\c{c}t{\i}.
\"{U}niversitenin \c{C}locuk ve Yeni Do\u{glan Klini\u{g}i
\c{S}efi Dr. Michael Harrison ve ekibinin anne karn{\i}ndaki
bir bebek (Fet\"{u}s) \"{u}zerinde ger\c{clekle\c{s}tirdi\u{gl}i
ameliyat s{\i}ras{\i}nda, yalc{s}amla \"{o}1\"{u}m aras{\i}nda
savalc{s} veren be\c{s} ayl{\i}k minik canl{\i}, hen\"{u}z
gelic{sImesini tamamlamam{\i}\c{s} elini uzatarak,

doktorunun parmal\u{g}{\i}n{\i} s{\i}k{\i}ca kavrad{\i}.

\c{C}re\c{s}itli anatomik bozukluklar{\i} nedeniyle ya\c{s}am
\c{s}tanslar{\i} zay{\i}flayan ana karn{\i}ndaki bebeklerin
anomalliklerini d\'"{u}zeltmek i\c{c}in yap{\i}lan ameliyatlardan
biri olan ilc{s}lem s{\i}ras{\i}nda, operasyonun gere\u{g}ti
olarak embriyonun sa\u{g} kolu annenin rahmine yap{\il}lan

kesikten d{\i}\c{s}ar{\i} \c{c}{\i}tkar{\i}1d{\i}.

Dr. Michael Harrison, o g\"{u}ne kadar on be\c{s}ten fazla
bu t\"{u}r ameliyat yapt{\i}\u{g}{\i} halde, hen\"{u}z anne
karn{\i}ndaki bir bebe\u{glin adeta kurtar{\i}c{\i}s{\il}na
te\c{s}ekk\"{u}r ifadesi ta\c{s}{\i}yan bu s{\i}cak
tutunu\c{s}uyla, m\"{u}thi\c{s} heyecanlan{\i}p,
duyguland{\iF\u{gt{\ikn{\i} belirtti.

Son y{\i}llarda do\u{gltum \"{o}ncesi te\c{s}his ve tedavide
at{\i}lan b\"{u}y\"{u}k ad{\i}mlara ek olarak Dr. Harrison
ve ekibinin ger\c{clekle\c{s}tirdi\u{gli, bebe\u{glin
\c{cre\c{s}itli yap{\i} bozukluklar{\i}n{\i}n ana
karn{\i}ndayken yap{\i}lan ameliyatla giderilebilmesi,
d\"{u}nyan{\i}n ileri gelen t{\il}p otoritelerince
alk{\i}\c{s}lanacak bir ba\c{s}ar{\i} olarak
de\u{glterlendiriliyor. On y{\i}1d{\i}r bu konu \"{u}zerinde
\c{c}al{\i}\c{s}an ve y\"{u}zlerce gebe maymun ve koyunla bu
tip ameliyatlar{\i}n klinik \c{c}al{\iF\c{s}mas{\i}n{\i}

APPENDIX B. EXAMPLE RUNS 104

yapan Dr. Harrison, b\"{o}ylece operasyon tekni\u{g}ini
m\"{u}kemmelle\c{s}tirdiklerini s\"{o}yledi. Dr. Harrison
yap{\i}lan m\"{u}dahalenin ger\c{c}ekten ya\c{s}am
\c{stans{\itn{\i} artt{\i}rd{\iF\u{g}{\i}n{\i} ve bu arada
anneye de zarar verilmedilu{gl}ini ispatlad{\i}klar{\i}n{\i}

belirtiyor.

Output of the check with -s option:

Fransisco

daki

California

nde

Dr

Dr Michael

Harrison

Fet\"{u}s

anatomik

anomalliklerini

Dr Michael

Checking this file took 1 seconds.

There were 206 words in this file.

162 (78.64%) of the words were unique.

11 (6.79%) of the distinct words were misspelled.

2 (18.18%) misspelled words were detected by syllable structure check.
9 (81.82%) misspelled words were detected by other checks.

APPENDIX B. EXAMPLE RUNS 105

Input file:

Anne Karn'!indan hayata sar!illi!s

Ge!cti!gimiz gl!unlerde San Fransisco daki California
!Universitesinde yap!ilan bir operasyon sirasinda ya!sanan
ilgin'c bir olay, ameliyathanede b!uy!uk 'sa!skanl!ik ve
heycaqna yola!ct'!i. !Universitinin !cocuk ve yeni do!gan
klini'!gi !sefi Dr. Michael Harrison ve ekipinin anne
karn!indaki bir bebek (Fet!us) !'uzerinde ger!cekle!sdirdil!gi
ameliyat siras!inda, ya'!samla !ol!um aras'!inda sava!s veren
be!s ayl!ik minik canl'i, henuz geli!smesini tamamlamami'!s

elini uzatarak, doktorunun parmal!g'!in'i s!ik!ica kavrad!i.

ICe!sitli anatomik bozukluklar'i nedenile ya'!sam !sanslar!i
zeyiflayan anna karn!indaki bebeklerin anomaliklerini d!uzeltmek
ilcin yap!ilan ameliyatlarda bir olan i!slem siras!inda,
operasyonun gere!gi olarak embriyonun sa kolu annenin rahimine

yap!ilan kesiktan di'sar!i !ctikar!ild'i.

Dr. Michael Harrison, o g'une kadar onbe!sten fazla butur
ameliyat yapt'!i halde, henuz anne karn!indaki bir bebegin adeta
kurtar!ic!is!ina te!s!sekkur ifadesi ta!sayan bu s!icak

tutunu!suyla, muti!s heycanlan'!ip, duguland'i'g!in!i belirtti.

Son yillarda do!ugum oncesi te!sis ve tedavide at!ilan b'uy!uk
ad!imlar!i ek olarak Dr. Harrison ve ekibinin
gerek!ceklestirdi!gi bebe!gin !ce!sitli yap!i bozukluklar'!in!i
ana karn!indaken yap'!ilan ameliyatla giderilebilmesi, d!unyan!in
ileri gelen tip otoritelerince alk!islancak bir ba!sar!i olarak
de!gerlendirliyor. On y'ild!ir bu konu uzerinde !cali!san ve
yuzlerce gebe maymun ve koyunla bu tip ameliyatlar!in kilinik
lcali!smas!ine yapan Dr. Harrison, boylece operasyon tekni!gine
m!ukemmelle!sdirdiklerini soyledi. Dr. Harrison yap'!ilan
mudahalenin ger!cekten ya!sam !sans!in!i artt!ird!ilgn!i ve bu
arada anneyede zarar verilmedi!gini !ispatlad!iklar!in!i

belirtiyor.

APPENDIX B. EXAMPLE RUNS

Output:

Fransisco

daki
California
sirasinda
Isal!skanl!ik
heycagna
yolalct!i
!Universitinin
Dr

Dr Michael
Harrison
ekipinin
Fet!lus
ger!cekle!sdirdi!gi
siras'!inda
henuz
tamamlamami!s
anatomik
nedenile
zeyiflayan
anna
anomaliklerini
sa

rahimine
kesiktan
di'sarii

Dr Michael
onbe!sten
butur

bebegin
te!s!sekkur
ta!sayan
tutunu!suyla muti!s
heycanlan'ip
duguland'il!g!in'i
yillarda
do!ugum

oncesi

106

APPENDIX B. EXAMPLE RUNS

telsis
gerek!ceklestirdi!gi
karn!indaken
alk!islancak
de!gerlendirliyor
uzerinde

!calil!san

yuzlerce

kilinik
!cali!smas!ine

boylece

tekni!gine m!ukemmelle!sdirdiklerini

soyledi

yap!ilan mudahalenin
artt!ird!ilgn!i
anneyede
lispatlad!iklar!in'i

107

References

[l
2]

[3]

[4]

[9]

[10]

[11]

Adali, O., “Turkiye Tirkgesinde bigimbirimler”, TDK, Ankara, 1979.
Banguoglu, T., “Trk¢enin grameri”, TDK, Ankara, 1936.

Bentley, J., “A spelling checker”, Communications of the ACM, Vol. 28,
No. 5, 456 — 461, May 1985.

Brodda, B., Karlsson, F., “An experiment with morphological analysis of
Finnish”, Papers from the Institude of Linguistics, University of Stock-

holm, Publication 40, Stockholm, 1980.

Can, K., “Yabancilar icin Tiirkce-Ingilizce aciklamali Tirkge dersleri”,

METU, Ankara, 1987.

Carlson, G., “Techniques for replacing characters that are garbled on in-
put”, Proceedings of 1966 Spring Joint Conference, AFIPS Press, 189 ~
192, Arlington, 1966.

Davidson, L., “Retrieval of misspelled names in airlines passenger record
system”, Communications of the ACM, Vol. 5, No. 3, 169 - 171. March
1962.

Damerau, F. J., “A technique for computer detection and correction of
spelling errors”, Communications of the ACM, Vol. 7, No. 3, 171 - 176,
March 1964.

Demircan, O., “Tirkiye Tiirkgesinde kok-ek bilegmeleri”, TDK, Ankara,
1977.

Deny, J., “Tiirk Dili Grameri (Osmanh Lehgesi)”, translated by A. Ulvi
Eléve, Istanbul, 1941.

Dodds, D. J., “Reducing dictionary size by using a hashing technique”,
Communications of the ACM, Vol. 25, No. 6, 368 - 370, Feb. 1982.

108

REFERENCES 109

[12]

[13]

[23]

[24]

[25]

Durham, I., Lamb, D. A, Save, J. B., “Spelling correction in user inter-
faces”, Department of CS, Carnegie-Mellon University, December 1982.

Freeman, D. N., “Error correction in CORC: The Cornell computing lan-
guage”, PH.D. Thesis, Department of Computer Science, Cornell Univer-

sity, Ithaca, New York, September 1963.

Géneng, G., Toreci E., “Tiirkgenin bazi ézelliklerinin bilgisayarlarla sayisal
¢oziimlenmesi”, Bilisim’75, No. 9, 42 - 78, Ankara, 1975.

Hankamer, J., “Turkish generative morphology and morphological pars-
ing”, a paper presented at Second International Conference on Turkish
Linguistics, Istanbul, 1984.

Hankamer, J., “Finite state morphology and left to right phonology”, Pro-
ceedings of the West Coast Conference on Formal Linguistics, Vol. 5, Stan-

ford University, 1986.

Hankamer, J., “Morphological parsing and the lexicon”, edited by William
Marslen-Wilson, MIT Press.

Hatiboglu, V., “Tlrkcenin ekleri”, TDK, Ankara, 1981.

Horowitz, E., Sahni S., “Fundamentals of data structures”, The Pitman

Press, Great Britain, 1981.

Kasper, R., Weber, D., “User’s reference manual for the C’s Quechua
adaptation program”, Occasional Publications in Academic Computing,

Number 8, Summer Institude of Linguistic, Inc., 1982.

Kasper, R., Weber, D., “Programmer’s reference manual for the C’s
Quechua adaptation program”, Occasional Publications in Academic
Computing, Number 9, Summer Institude of Linguistic, Inc.. 1982.

Koskenniemi, K., “Two-level morphology”, University of Helsinki, Depart-
ment of General Linguistics, Publication No. 11, Helsinki, Finland, 1983.

Koksal, A., “Automatic morphological analysis of Turkish”, Ph.D. Thesis,
Hacettepe University, Ankara, 1975.

Koksal, A., “Tirkcenin 6zdevimli bigimbilim ¢oziimlemesi”, Hacettepe

University, Ankara, 1976.

Lewis, G. L., “Turkish grammar”, Oxford, 1967

REFERENCES 110

[26] Mason, T., Brown, D., “lex & yacc”, edited by Dale Dougherty, O’Reilly
& Associates, Inc., USA, May 1990.

[27} McElwain, C. K., Evans, M. E., “The degarbler — a program for correct-
ing machine-read Morse code”, Inform and Control, Vol. 5, No. 4, 368 -
384, December 1962.

(28] Morgan, H. L., “Spelling correction in systems programs”, Communica-
tions of the ACM, Vol. 13, No. 2, 90 - 94, February 1970.

[29] Morris, R., Cherry, L. L., “Computer detection of typographical errors”,
IEEE Trans. Professional Comm. PC-18, 54 — 64, March 1975.

[30] Nix, R., “Experience with a space efficient way to store a dictionary”,
Communications of the ACM, Vol. 24, No. 5, 297 - 298, May 1981.

[31] Ozel, S., “Tirkiye Tirkcesinde sézcitk tiiretme ve bilegtirme”, TDK,
Ankara, 1977,

[32] Packard, D., “Computer-assisted morphological analysis of Ancient
Greek”, Computational and Mathematical Linguistics: Proceedings of

the International Conference on Computational Linguistics, Pisa Leo S.
Olschki, Firenze, 343 - 355, 1973.

[33] Peterson, J. L., “Computer programs for detecting and correcting spelling
errors”, Communications of the ACM, Vol. 23, No. 12, 676 - 637, Dec.
1980.

[34] Robinson, P., Singer, D., “Another spelling correction program”, Commu-
nications of the ACM, Vol. 24, No. 5, 296 ~ 297, May 1981.

[35] Sagay, Z., “Sozcik ¢ekimi”, Bilisim’78, Ankara, 1978.
[36] Sagay, Z., “A computer translation of English to Turkish”, M.S. Thesis,
METU, Ankara, 1981.

[37] Sagvall, A., “A system for automatic inflectional analysis implemented for
Russian, Data Linguistica 8, Almquist and Wiksell, Stockholm, 1973.

[38] Schreiner, A. T., Friedman, Jr., H. J., “Introduction to compiler construc-
tion with UNIX”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

[39] Sheil, B. A., “Median split trees : A fast look-up technique for frequently
occuring Keys”, Communications of the ACM, Vol. 21, No. 11, 947 — 958,

Nov. 1978.

REFERENCES 111

[40] Solak, A., Oflazer, K., “A finite state machine for Turkish syllable struc-
ture analysis”, Proceedings of the Fifth International Symposium on Com-
puter and Information Sciences, Vol. 2, Nevgehir, 1195 — 1202, 1990.

[41] Solak, A., Oflazer, K., “Design and implementation of a spelling checker
for Turkish”, Proceedings of the Fifth International Symposium on Com-
puter and Information Sciences, Vol. 2, Nevsehir, 1203 - 1212, 1990.

[42] Solak, A., Oflazer, K., “Bilgisayar ortaminda hazirlanmis Tirkce
metinlerde yanhs yazilmig sozciiklerin bulunmasi”, 8. Tirkiye Bilgisayar
Kongresi Bildiriler Kitab, Istanbul, 1991.

[43] Solak, A., Oflazer, K., “Bilgisayarla Tirkge sézclik yazimu kontrold”, a
paper submitted to Bilkon’91.

[44] Underhill, R., “Turkish”, Studies in Turkish Linguistics, edited by Dan
Isaac Slobin and Karl Zimmer, 7 — 21, 1986.

[45] “Tirkge sozlik”, TDK, Ankara, 1988.
[46] “Yeni yazim kilavuzu”, Ninth Edition, TDK, Ankara, 1977.

[47] “Yeni yazim kilavuzu”, Eleventh Edition, TDK, Ankara, 1981.

