

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 35, No. 3, pp. C237–C262

HYPERGRAPH PARTITIONING BASED MODELS AND METHODS
FOR EXPLOITING CACHE LOCALITY IN SPARSE

MATRIX-VECTOR MULTIPLICATION∗

KADIR AKBUDAK† , ENVER KAYAASLAN†, AND CEVDET AYKANAT†

Abstract. Sparse matrix-vector multiplication (SpMxV) is a kernel operation widely used in
iterative linear solvers. The same sparse matrix is multiplied by a dense vector repeatedly in these
solvers. Matrices with irregular sparsity patterns make it difficult to utilize cache locality effec-
tively in SpMxV computations. In this work, we investigate single- and multiple-SpMxV frameworks
for exploiting cache locality in SpMxV computations. For the single-SpMxV framework, we pro-
pose two cache-size–aware row/column reordering methods based on one-dimensional (1D) and two-
dimensional (2D) top-down sparse matrix partitioning. We utilize the column-net hypergraph model
for the 1D method and enhance the row-column-net hypergraph model for the 2D method. The
primary aim in both of the proposed methods is to maximize the exploitation of temporal locality in
accessing input vector entries. The multiple-SpMxV framework depends on splitting a given matrix
into a sum of multiple nonzero-disjoint matrices. We propose a cache-size–aware splitting method
based on 2D top-down sparse matrix partitioning by utilizing the row-column-net hypergraph model.
The aim in this proposed method is to maximize the exploitation of temporal locality in accessing
both input- and output-vector entries. We evaluate the validity of our models and methods on a
wide range of sparse matrices using both cache-miss simulations and actual runs by using OSKI.
Experimental results show that proposed methods and models outperform state-of-the-art schemes.

Key words. cache locality, sparse matrix, matrix-vector multiplication, matrix reordering,
computational hypergraph model, hypergraph partitioning, traveling salesman problem

AMS subject classifications. 65F10, 65F50, 65Y20

DOI. 10.1137/100813956

1. Introduction. Sparse matrix-vector multiplication (SpMxV) is an important
kernel operation in iterative linear solvers used for the solution of large, sparse, linear
systems of equations. In these iterative solvers, the SpMxV operation y ←Ax is
repeatedly performed with the same large, irregularly sparse matrix A . Irregular
access patterns during these repeated SpMxV operations cause poor usage of CPU
caches in today’s deep memory hierarchy technology. However, SpMxV operations
can possibly exhibit very high performance gains if temporal and spatial localities are
respected and exploited properly. Here, temporal locality refers to the reuse of data
words (e.g., x-vector entries) before eviction of the words from cache, whereas spatial
locality refers to the use of data words (e.g., matrix nonzeros) within relatively close
storage locations (e.g., in the same lines) in the very near future. In this work, the
main motivation is our expectation that exploiting temporal locality is more important
than exploiting spatial locality (for practical line sizes) in SpMxV operations that
involve irregularly sparse matrices.

In this work, we investigate two distinct frameworks for the SpMxV operation:
single-SpMxV and multiple-SpMxV frameworks. In the single-SpMxV framework,
the y -vector results are computed by performing a single SpMxV operation y←Ax .

∗Submitted to the journal’s Software and High-Performance Computing section November 8, 2010;
accepted for publication (in revised form) February 27, 2013; published electronically June 6, 2013.
This work was financially supported by the PRACE-1IP project funded in part by the EUs 7th
Framework Programme (FP7/2007-2013) under grant agreement RI-283493 and FP7-261557.

http://www.siam.org/journals/sisc/35-3/81395.html
†Computer Engineering Department, Bilkent University, Ankara, Turkey (kadir@cs.bilkent.edu.tr,

enver@cs.bilkent.edu.tr, aykanat@cs.bilkent.edu.tr).

C237

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C238 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

In the multiple-SpMxV framework, the y←Ax operation is computed as a sequence
of multiple input- and output-dependent SpMxV operations, y ← y + Akx for k =
1, . . . ,K , where A = A1 + · · ·+AK .

For the single-SpMxV framework, we propose two cache-size–aware row/column
reordering methods based on top-down one-dimensional (1D) and two-dimensional
(2D) partitioning of a given sparse matrix. The primary objective in both methods
is to maximize the exploitation of temporal locality in accessing x-vector entries,
whereas the exploitation of spatial locality in accessing x-vector entries is a sec-
ondary objective. The 1D partitioning based method relies on transforming a sparse
matrix into a singly bordered block-diagonal (SB) form by utilizing the column-net
hypergraph model given in [4, 7, 8]. The 2D partitioning based method relies on
transforming a sparse matrix into a doubly bordered block-diagonal (DB) form by
utilizing the row-column-net hypergraph model given in [11, 10]. We provide upper
bounds on the number of cache misses based on these transformations and show that
the objectives in the transformations based on partitioning the respective hypergraph
models correspond to minimizing these upper bounds. In the 1D partitioning based
method, the column-net hypergraph model correctly encapsulates the minimization of
the respective upper bound. For the 2D partitioning based method, we propose an en-
hancement to the row-column-net hypergraph model to encapsulate the minimization
of the respective upper bound on the number of cache misses.

For the multiple-SpMxV framework, we propose a matrix splitting method that
tries to maximize the exploitation of temporal locality in accessing both x-vector
and y -vector entries during individual y← y + Akx computations. In the proposed
method, we use a cache-size–aware top-down approach based on 2D sparse matrix
partitioning by utilizing the row-column-net hypergraph model given in [11, 10]. We
provide an upper bound on the number of cache misses based on this matrix splitting
and show that the objective in the hypergraph partitioning (HP) based matrix parti-
tioning exactly corresponds to minimizing this upper bound. For this framework, we
also propose two methods for effective ordering of individual SpMxV operations.

We evaluate the validity of our models and methods on a wide range of sparse
matrices. The experiments are carried out in two different settings: cache-miss sim-
ulations and actual runs by using OSKI (BeBOP Optimized Sparse Kernel Interface
Library) [39]. Experimental results show that the proposed methods and models out-
perform state-of-the-art schemes, and these results also conform to our expectation
that temporal locality is more important than spatial locality (for practical line sizes)
in SpMxV operations that involve irregularly sparse matrices.

The rest of the paper is organized as follows: Background material is introduced
in section 2. In section 3, we review some of the previous works about iteration/data
reordering and matrix transformations for exploiting locality. The two frameworks
along with our contributed models and methods are described in section 4. We present
the experimental results in section 5. Finally, the paper is concluded in section 6.

2. Background.

2.1. Sparse-matrix storage schemes. There are two standard sparse-matrix
storage schemes for the SpMxV operation: compressed storage by rows (CSR) and
compressed storage by columns (CSC) [5, 33]. Without loss of generality, in this
paper, we restrict our focus to the conventional SpMxV operation using the CSR
storage scheme, whereas cache-aware techniques such as prefetching and blocking are
outside the scope of this paper. In the following paragraphs, we review the standard
CSR scheme and two CSR variants.

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C239

The CSR scheme contains three 1D arrays: nonzero, colIndex, and rowStart. The
values and the column indices of nonzeros are, respectively, stored in row-major order
in the nonzero and colIndex arrays in a one-to-one manner. The rowStart array
stores the index of the first nonzero of each row in the nonzero and colIndex arrays.

The zig-zag CSR (ZZCSR) scheme was proposed to reduce end-of-row cache
misses [41]. In ZZCSR, nonzeros are stored in increasing column-index order in even-
numbered rows, whereas they are stored in decreasing index order in odd-numbered
rows, or vice versa.

The incremental compressed storage by rows (ICSR) scheme [27] is reported to
decrease instruction overhead by using pointer arithmetic. In ICSR, the colIndex
array is replaced with the colDiff array, which stores the increments in the column
indices of the successive nonzeros stored in the nonzero array. The rowStart array is
replaced with the rowJump array, which stores the increments in the row indices of
the successive nonzero rows. The ICSR scheme has the advantage of handling zero
rows efficiently since it avoids the use of the rowStart array. This feature of ICSR is
exploited in our multiple-SpMxV framework since this scheme introduces many zero
rows in the individual sparse matrices. Details of the SpMxV algorithms utilizing
CSR and ICSR are described in our technical report [2].

2.2. Data locality in CSR-based SpMxV. In accessing matrix nonzeros,
temporal locality is not feasible since the elements of each of the nonzero , colIndex
(colDiff in ICSR), and rowStart (rowJump in ICSR) arrays are accessed only once.
Spatial locality is feasible, and it is achieved automatically by nature of the CSR
scheme since the elements of each of these three arrays are accessed consecutively.

In accessing y -vector entries, temporal locality is not feasible since each y -vector
result is written only once to the memory. From a different point of view, temporal
locality can be considered as feasible but automatically achieved especially at the
register level because of the summation of scalar nonzero and x-vector entry prod-
uct results to the temporary variable. Spatial locality is feasible, and it is achieved
automatically since the y -vector entry results are stored consecutively.

In accessing x-vector entries, both temporal and spatial localities are feasible.
Temporal locality is feasible since each x-vector entry may be accessed multiple times.
However, exploiting the temporal and spatial localities for the x vector is the major
concern in the CSR scheme since x-vector entries are accessed through a colIndex
array (colDiff in ICSR) in a noncontiguous and irregular manner.

2.3. Hypergraph partitioning. A hypergraph H=(V ,N) is defined as a set
V of vertices and a set N of nets (hyperedges). Every net n ∈ N connects a subset
of vertices, i.e., n⊆V . Weights and costs can be associated with vertices and nets,
respectively. We use w(v) to denote the weight of vertex v and cost(n) to denote
the cost of net n . Given a hypergraph H = (V ,N), {V1, . . . ,VK} is called a K -way
partition of the vertex set V if vertex parts are mutually disjoint and exhaustive. A
K -way vertex partition of H is said to satisfy the balanced-partitioning constraint
if Wk ≤ Wavg(1 + ε) for k = 1, . . . ,K . Wk denotes the weight of a part Vk and is
defined as the sum of weights of vertices in Vk . Wavg is the average part weight, and
ε represents a predetermined, maximum allowable imbalance ratio.

In a partition of H , a net that connects at least one vertex in a part is said
to connect that part. Connectivity λ(n) of a net n denotes the number of parts
connected by n . A net n is said to be cut if it connects more than one part (i.e.,
λ(n) > 1) and uncut (internal) otherwise (i.e., λ(n) = 1). The set of cut nets of a
partition is denoted as Ncut . The partitioning objective is to minimize the cutsize

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C240 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

defined over the cut nets. There are various cutsize definitions. Two relevant cutsize
definitions are the cut-net and connectivity metrics [8]:

(2.1) cutsizecutnet =
∑

n∈Ncut

cost(n), cutsizecon =
∑

n∈Ncut

λ(n) cost(n).

In the cut-net metric, each cut net n incurs cost(n) to the cutsize, whereas in the
connectivity metric, each cut net incurs λ(n) cost(n) to the cutsize. The HP prob-
lem is known to be NP-hard [28]. There exist several successful HP tools such as
hMeTiS [26], PaToH [9], and Mondriaan [38], all of which apply the multilevel frame-
work.

The recursive bisection (RB) paradigm is widely used in K -way HP and is known
to be amenable to producing good solution qualities. In the RB paradigm, first, a
2-way partition of the hypergraph is obtained. Then, each part of the bipartition is
further bipartitioned in a recursive manner until the desired number K of parts is
obtained or part weights drop below a given part-weight threshold Wmax . In RB-
based HP, the cut-net removal and cut-net splitting schemes [8] are used to capture the
cut-net and connectivity cutsize metrics, respectively. The RB paradigm is inherently
suitable for partitioning hypergraphs when K is not known in advance. Hence, the RB
paradigm can be successfully utilized in clustering rows/columns for cache-size–aware
row/column reordering.

2.4. Hypergraph models for sparse matrix partitioning. Recently, sev-
eral successful hypergraph models have been proposed for partitioning sparse matri-
ces [11, 8]. The relevant ones are row-net, column-net, and row-column-net (fine-
grain) models. The row-net and column-net models are used for 1D columnwise and
1D rowwise partitioning of sparse matrices, respectively, whereas the row-column-net
model is used for 2D fine-grain partitioning of sparse matrices.

In the row-net hypergraph model [4, 7, 8] HRN(A)=(VC ,NR) of matrix A , there
exist one vertex vj ∈ VC and one net ni ∈ NR for each column cj and row ri ,
respectively. The weight w(vj) of a vertex vj is set to the number of nonzeros in
column cj . The net ni connects the vertices corresponding to the columns that have
a nonzero entry in row ri . Every net ni ∈ NR has unit cost, i.e., cost(ni) = 1. In
the column-net hypergraph model [4, 7, 8] HCN (A) = (VR,NC) of matrix A , there
exist one vertex vi ∈ VR and one net nj ∈ NC for each row ri and column cj ,
respectively. The weight w(vi) of a vertex vi is set to the number of nonzeros in
row ri . Net nj connects the vertices corresponding to the rows that have a nonzero
entry in column cj . Every net nj has unit cost, i.e., cost(nj) = 1. Note that these
two models are duals: the column-net representation of a matrix is equivalent to the
row-net representation of its transpose, i.e., HCN (A) = HRN (AT).

In the row-column-net model [11, 10] HRCN (A)=(VZ ,NRC) of matrix A , there
exists one vertex vij ∈ VZ corresponding to each nonzero aij in matrix A . In net set
NRC , there exists a row net nr

i for each row ri , and there exists a column net nc
j for

each column cj . Every row net and column net have unit cost. Row net nr
i connects

the vertices corresponding to the nonzeros in row ri , and column net nc
j connects

the vertices corresponding to the nonzeros in column cj . Note that each vertex is
connected by exactly two nets, and every pair of nets shares at most one vertex.

A sparse matrix is said to be in columnwise SB form if the rows of diagonal
blocks are coupled by columns in the column border, i.e., if each coupling column
has nonzeros in the rows of at least two diagonal blocks. A dual definition holds for
rowwise SB form. In [4], it is shown that row-net and column-net models can also be

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C241

used for transforming a sparse matrix into a K -way SB form through row and column
reordering. In particular, the row-net model can be used for permuting a matrix into
a rowwise SB form, whereas the column-net model can be used for permuting a matrix
into a columnwise SB form. Here we will briefly describe how a K -way partition of
the column-net model can be decoded as a row/column reordering for this purpose,
and a dual discussion holds for the row-net model.

A K -way vertex partition {V1, . . . ,VK} of HCN(A) is considered as inducing
a (K + 1)-way partition {N1, . . . ,NK ;Ncut} on the net set of HCN (A). Here Nk

denotes the set of internal nets of vertex part Vk , whereas Ncut denotes the set of cut
nets. The vertex partition is decoded as a partial row reordering of matrix A such
that the rows associated with vertices in Vk+1 are ordered after the rows associated
with vertices Vk for k = 1, . . . ,K − 1. The net partition is decoded as a partial
column reordering of matrix A such that the columns associated with nets in Nk+1

are ordered after the columns associated with nets in Nk for k = 1, . . . ,K−1, whereas
the columns associated with the cut nets are ordered last to constitute the column
border.

3. Related work. The main focus of this work is to perform iteration and data
reordering, without changing the conventional CSR-based SpMxV codes, whereas
cache-aware techniques such as prefetching and blocking are outside the scope of this
paper. So we summarize the related work on iteration and data reordering for irreg-
ular applications which usually use index arrays to access other arrays. Iteration and
data reordering approaches can also be categorized as dynamic and static. Dynamic
schemes [12, 13, 15, 19, 34] achieve runtime reordering transformations by analyz-
ing the irregular memory access patterns through adopting an inspector/executor
strategy [29]. Reordering rows/columns of irregularly sparse matrices to exploit lo-
cality during SpMxV operations can be considered as a static case of such a general
iteration/data reordering problem. We call it a static case [32, 36, 40, 41] since the
sparsity pattern of matrix A together with the CSR- or CSC-based SpMxV scheme de-
termines the memory access pattern. In the CSR scheme, iteration order corresponds
to row order of matrix A and data order corresponds to column order, whereas a dual
discussion applies for CSC.

Dynamic and static transformation heuristics differ mainly in the preprocess-
ing times. Fast heuristics are usually used for dynamic reordering transformations,
whereas much more sophisticated heuristics are used for the static case. The prepro-
cessing time for the static case can amortize the performance improvement during
repeated computations with the same memory access pattern. Repeated SpMxV
computations involving the same matrix or matrices with the same sparsity pattern
constitute a very typical case of such a static case. In the rest of this section, we
focus our discussion on static schemes, whereas a more comprehensive discussion can
be found in our technical report [2].

Space-filling curves such as Hilbert and Morton as well as recursive storage schemes
such as quadtree are used for iteration reordering in improving locality in dense matrix
operations [16, 17, 25] and in sparse matrix operations [18]. Space-filling curves [12]
and hierarchical graph clustering [19] are utilized for data reordering in improving
locality in n-body simulation applications.

Al-Furaih and Ranka [3] introduce an interaction graph model to investigate op-
timizations for unstructured iterative applications. They compare several methods to
reorder data elements through reordering the vertices of the interaction graph, such as
breadth first search (BFS) and graph partitioning. Agarwal, Gustavson, and Zubair [1]

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C242 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

try to improve SpMxV by extracting dense block structures. Their methods consist
of examining row blocks to find dense subcolumns and reorder these subcolumns con-
secutively. Temam and Jalby [35] analyze the cache-miss behavior of SpMxV. They
report that the cache-hit ratio decreases as the bandwidth of the sparse matrix in-
creases beyond the cache size, and they conclude that bandwidth reduction algorithms
improve cache utilization.

Toledo [36] compares several techniques to reduce cache misses in SpMxV. He
uses graph theoretic methods such as Cuthill–McKee (CM), reverse Cuthill–McKee
(RCM), and graph partitioning for reordering matrices and other improvement tech-
niques such as blocking, prefetching, and instruction-level-related optimization. He
reports that SpMxV performance cannot be improved through row/column reorder-
ing. White and Sadayappan [40] discuss data locality issues in SpMxV in detail. They
compare SpMxV performance of CSR, CSC, and blocked versions of CSR and CSC.
They also propose a graph partitioning based row/column reordering method which
is similar to that of Toledo. They report that they could not achieve performance
improvement over the original ordering, as also reported by Toledo [36]. Haque and
Hossain [20] propose a column reordering method based on the Gray code.

There are several works on row/column reordering based on traveling salesman
problem (TSP) formulations. TSP is the well-studied problem of finding the shortest
possible route that visits each city exactly once and returns to the origin city. The
TSP formulations used for row/column reordering do not require returning to the
origin city, and they utilize the objective of path weight maximization instead of path
weight minimization. So, in the graph theoretic aspect, this TSP variant is equivalent
to finding a maximum-weight path that visits each vertex exactly once in a complete
edge-weighted graph. Heras et al. [23] define four distance functions for edge weighting
depending on the similarity of sparsity patterns between rows/columns. Pichel et al.
[31] use a TSP-based reordering and blocking technique to show improvements in
both single processor performance and multicomputer performance. Pichel et al. [30]
compare the performance of a number of reordering techniques which utilize TSP,
graph partitioning, RCM, and approximate minimum degree.

In a recent work, Yzelman and Bisseling [41] propose a row/column reordering
method based on partitioning a row-net hypergraph representation of a given sparse
matrix for CSR-based SpMxV. They achieve spatial locality on x-vector entries by
clustering the columns with similar sparsity patterns. They also exploit temporal
locality for x-vector entries by using the zig-zag property of the ZZCSR and ZZICSR
schemes mentioned in section 2.1. This method will be referred to as sHPRN in the
rest of the paper.

4. Proposed models and methods. Figure 4.1 displays our taxonomy for re-
ordering methods used to exploit locality in SpMxV operations in order to better iden-
tify the proposed as well as the existing methods that are used as baseline methods. As
seen in the figure, we investigate single- and multiple-SpMxV frameworks. Reorder-
ing methods are categorized as bottom-up and top-down approaches. Methods in the
top-down approach are categorized according to the matrix partitioning method uti-
lized. Figure 4.1 shows the hypergraph models used for top-down matrix partitioning
methods as well as the graph model used in the bottom-up methods. Figure 4.1 also
shows the correspondence between the graph/hypergraph models used in reordering
methods for exploiting locality in SpMxV operations and graph/hypergraph models
used in data and iteration reordering methods for exploiting locality in other applica-
tions in the literature. The leaves of the taxonomy tree show the abbreviations used

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C243

CSR-based SpMxV Operation

SpMxV
Framework

Reordering
Approach

Matrix
Partitioning
Method

Sparse-Matrix
Model

Locality
Graph/Hypergraph
Model

Reordering
Methods

Locality
Exploitation

Primary

Secondary

Single SpMxV
y←Ax

Bottom-up

Bipartite
Graph

Spatiotemporal
Graph

sBFS
[34]

Spatiotemp.(x)

sRCM
[24]

Spatiotemp.(x)

Top-down

1D
Columnwise

Row-net
Hypergraph

Spatial
Hypergraph

sHPRN
[41]

Spatial(x)
Temporal(x)

1D
Rowwise

Column-net
Hypergraph

sHPCN
(Section 4.1.1)

Temporal(x)
Spatial(x)

Enhanced 2D
Nonzero-based

Row-column-net
Hypergraph

sHPeRCN
(Section 4.1.2)

Temporal(x)
Spatial(x)

Multiple SpMxVs
y ← y + Akx

Top-down

2D
Nonzero-based

Row-column-net
Hypergraph

mHPRCN
(Section 4.2.2)

Temporal(x,y)

Temporal Hypergraph

sHPCN
(Section 4.1.1)ti 4 1

Temporal(x)
Spatial(x)

(
sHPeRCNPP

(Section 4.1.2)S ti 4 1 2

Temporal(x)
Spatial(x)

(
mHPRCN

(Section 4.2.2)S ti 4 2 2

Temporal(x,y)

(

T

Fig. 4.1. A taxonomy for reordering methods used to exploit locality in SpMxV operations.
Shaded leaves denote proposed methods.

for existing and proposed methods, together with the temporal/spatial locality ex-
ploitation and precedence for the input and/or output vector(s). We should mention
that the taxonomy given in Figure 4.1 holds mainly for CSR-based SpMxV, whereas
it continues to hold for CSC-based SpMxV by performing 1D rowwise partitioning for
sHPRN instead of 1D columnwise partitioning and by performing 1D columnwise par-
titioning for sHPCN instead of 1D rowwise partitioning. Furthermore, for sHPeRCN,
enhanced 2D nonzero-based partitioning should be modified accordingly.

In section 4.1, we describe and discuss the proposed two cache-size–aware row/
column reordering methods for the single-SpMxV framework. In section 4.2, we de-
scribe and discuss the proposed cache-size–aware matrix splitting method for the
multiple-SpMxV framework.

4.1. Single-SpMxV framework. In this framework, the y -vector results are
computed by performing a single SpMxV operation, i.e., y ←Ax . The objective
in this scheme is to reorder the columns and rows of matrix A for maximizing the
exploitation of temporal and spatial localities in accessing x-vector entries. That is,
the objective is to find row and column permutation matrices Pr and Pc so that
y←Ax is computed as ŷ←Âx̂ , where Â = PrAPc , x̂ = xPc , and ŷ = Pr y . For the
sake of simplicity of presentation, reordered input and output vectors x̂ and ŷ will
be referred to as x and y in the rest of the paper.

Recall that temporal locality in accessing y -vector entries is not feasible, whereas
spatial locality is achieved automatically because y -vector results are stored and pro-
cessed consecutively. Reordering the rows with similar sparsity patterns nearby in-
creases the possibility of exploiting temporal locality in accessing x-vector entries.
Reordering the columns with similar sparsity patterns nearby increases the possi-
bility of exploiting spatial locality in accessing x-vector entries. This row/column
reordering problem can also be considered as a row/column clustering problem, and
this clustering process can be achieved in two distinct ways: top-down and bottom-up.

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C244 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

In this section, we propose and discuss cache-size–aware top-down approaches based
on 1D and 2D partitioning of a given matrix. Although a bottom-up approach based
on hierarchical clustering of rows/columns with similar patterns is feasible, such a
scheme is not discussed in this work.

In sections 4.1.1 and 4.1.2, we present two theorems that give the guidelines
for a “good” cache-size–aware row/column reordering based on 1D and 2D matrix
partitioning. These theorems provide upper bounds on the number of cache misses
due to the access of x-vector entries in the SpMxV operation performed on sparse
matrices in two special forms, namely, SB and DB forms. In these theorems, Φx(A)
denotes the number of cache misses due to the access of x-vector entries in a CSR-
based SpMxV operation to be performed on matrix A .

In the theorems given in sections 4.1 and 4.2, fully associative cache is assumed,
since misses in a fully associative cache are capacity misses and are not conflict misses.
That is, each data line in the main memory can be placed to any empty line in
the fully associative cache without causing a conflict miss. In these theorems, a
matrix/submatrix is said to fit into the cache if the size of the CSR storage of the
matrix/submatrix together with the associated x and y vectors/subvectors is smaller
than the size of the cache.

4.1.1. Row/column reordering based on 1D matrix partitioning. We
consider a row/column reordering which permutes a given matrix A into a K -way
columnwise SB form

Â = ASB = PrAPc =

⎡
⎢⎢⎢⎣

A11 A1B

A22 A2B

. . .
...

AKK AKB

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

R1

R2

...
RK

⎤
⎥⎥⎥⎦

=
[

C1 C2 . . . CK CB

]
.(4.1)

Here, Akk denotes the k th diagonal block of ASB . Rk = [0 . . . 0 Akk 0 . . . 0 AkB]

denotes the k th row slice of ASB for k = 1, . . . ,K . Ck =
[
0 . . . 0 AT

kk 0 . . . 0
]T

denotes the k th column slice of ASB for k = 1, . . . ,K , and CB denotes the column
border as follows:

(4.2) CB =

⎡
⎢⎢⎢⎣

A1B

A2B

...
AKB

⎤
⎥⎥⎥⎦ .

Each column in the border CB is called a row-coupling column or simply a coupling
column. Let λ(cj) denote the number of Rk submatrices that contain at least one
nonzero of column cj of matrix ASB , i.e.,

(4.3) λ(cj) = |{Rk ∈ ASB : cj ∈ Rk}|.
In other words, λ(cj) denotes the row-slice connectivity or simply connectivity of
column cj in ASB . Note that λ(cj) varies between 1 and K . In this notation,
a column cj is a coupling column if λ(cj) > 1. Here and hereafter, a submatrix
notation is interchangeably used to denote both a submatrix and the set of nonempty
rows/columns that belong to that matrix. For example, in (4.3), Rk denotes both
the k th row slice of ASB and the set of columns that belong to submatrix Rk .

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C245

The individual y←Ax can be equivalently represented as K output-independent
but input-dependent SpMxV operations, i.e., yk ← Rk x for k = 1, . . . ,K , where each
submatrix Rk is assumed to be stored in the CSR scheme. These SpMxV operations
are input-dependent because of the x-vector entries corresponding to the coupling
columns.

Theorem 4.1. Given a K -way SB form ASB of matrix A such that each
submatrix Rk fits into the cache, we have

(4.4) Φx(ASB) ≤
∑

cj∈ASB

λ(cj).

Proof. Since each submatrix Rk fits into the cache, for each cj ∈ Rk , xj will
be loaded to the cache at most once during the yk ← Rk x multiply. Therefore, for
a column cj , the maximum number of cache misses that can occur due to the access
of xj is bounded above by λ(cj). Note that this worst case happens when no cache
reuse occurs in accessing x-vector entries during successive yk ← Rk x operations
implicitly performed in y←Ax .

Theorem 4.1 leads us to a cache-size–aware top-down row/column reordering
through an A-to-ASB transformation that minimizes the upper bound given in (4.4)
for Φx(ASB). Minimizing this sum relates to minimizing the number of cache misses
due to the loss of temporal locality.

This A-to-ASB transformation problem can be formulated as an HP problem
using the column-net model of matrixA with the part size constraint of cache size
and the partitioning objective of minimizing cutsize according to the connectivity
metric definition given in (2.1). In this way, minimizing the cutsize corresponds to
minimizing the upper bound given in Theorem 4.1 for the number of cache misses due
to the access of x-vector entries. This proposed reordering method will be referred
to as “sHPCN,” where the lowercase letter “s” is used to indicate the single-SpMxV
framework.

Exploiting temporal versus spatial locality in SpMxV. Here we compare
and contrast the existing HP-based method [41] sHPRN and the proposed method
sHPCN in terms exploiting temporal and spatial localities. Both sHPRN and sHPCN

belong to the single-SpMxV framework and utilize 1D matrix partitioning for row/
column reordering. For the CSR-based SpMxV operation, the row-net model utilized
by sHPRN corresponds to the spatial locality hypergraph model proposed by Strout
and Hovland [34] for data reordering of unstructured mesh computations. On the
other hand, the column-net model utilized by sHPCN corresponds to the temporal
locality hypergraph proposed by Strout and Hovland [34] for iteration reordering.
Here, iteration reordering refers to changing the order of computation that accesses
specific data, and data reordering refers to changing the assignment of data to memory
locations so that accesses to the same or nearby locations occur relatively closely in
time throughout the computations. Note that in the CSR-based SpMxV, the inner
products of sparse rows with the dense input vector x correspond to the iterations
to be reordered. So the major difference between the sHPRN and sHPCN methods is
that sHPRN considers exploiting primarily spatial locality and secondarily temporal
locality, whereas sHPCN considers the reverse.

The above-mentioned difference between sHPRN and sHPCN can also be observed
by investigating the row-net and column-net models used in these two HP-based
methods. In HP with connectivity metric, the objective of cutsize minimization cor-
responds to clustering vertices with similar net connectivity to the same vertex parts.

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C246 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

Hence, sHPRN clusters columns with similar sparsity patterns to the same column
slice for partial column reordering, thus exploiting spatial locality primarily, whereas
sHPCN clusters rows with similar sparsity patterns to the same row slice for partial
row reordering, thus exploiting temporal locality primarily. In sHPRN, the uncut and
cut nets of a partition are used to decode the partial row reordering, thus exploiting
temporal locality secondarily. In sHPCN, the uncut and cut nets of a partition are used
to decode the partial column reordering, thus exploiting spatial locality secondarily.

We should also note that the row-net and column-net models become equivalent
for symmetric matrices. So, sHPRN and sHPCN obtain the same vertex partitions for
symmetric matrices. The difference between these two methods in reordering matrices
stems from the difference in the way that they decode the resultant partitions. sHPRN

reorders the columns corresponding to the vertices in the same part of a partition
successively, whereas sHPCN reorders the rows corresponding to the vertices in the
same part of a partition successively.

4.1.2. Row/column reordering based on 2D matrix partitioning. We
consider a row/column reordering which permutes a given matrix A into a K -way
DB form

Â = ADB = PrAPc =

⎡
⎢⎢⎢⎢⎢⎣

A11 A1B

A22 A2B

. . .
...

AKK AKB

AB1 AB2 . . . ABK ABB

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

R1

R2

...
RK

RB

⎤
⎥⎥⎥⎥⎥⎦ =

[
A′

SB

RB

]

=
[

C1 C2 . . . CK CB

]
.(4.5)

Here, RB = [AB1 AB2 . . . ABK ABB] denotes the row border. Each row in RB is
called a column-coupling row or simply a coupling row. A′

SB denotes the columnwise
SB part of ADB excluding the row border RB . Rk denotes the k th row slice of both
A′

SB and ADB . λ′(cj) denotes the connectivity of column cj in A′
SB . C′

B denotes
the column border of A′

SB , whereas CB = [C′T
B AT

BB]
T denotes the column border

of ADB . Ck =
[
0 . . . 0 AT

kk 0 . . . 0 AT
Bk

]T
denotes the k th column slice of ADB . Let

nnz(ri) denote the number of nonzeros in row ri .

Theorem 4.2. Given a K-way DB form ADB of matrix A such that each
submatrix Rk of A′

SB fits into the cache, we have

(4.6) Φx(ADB) ≤
∑

cj∈A′
SB

λ′(cj) +
∑

ri∈RB

nnz(ri).

Proof. We can consider the y←Ax multiply as two output-independent but input-
dependent SpMxVs: ySB ← A′

SB x and yB ← RB x , where y = [yTSB yTB]
T . Thus

Φx(ADB) ≤ Φx(A
′
SB)+Φx(RB). This upper bound occurs when no cache reuse hap-

pens in accessing x-vector entries between the former and latter SpMxV operations.
By the proof of Theorem 4.1, we already have Φx(A

′
SB) ≤

∑
cj
λ′(cj). In the yB ←

RB x multiply, we have at most nnz(ri) x-vector accesses for each column-coupling
row ri of RB . This worst case happens when no cache reuse occurs in accessing
x-vector entries during the yB ← RB x multiply. Hence, Φx(RB) ≤

∑
ri∈RB

nnz(ri),
thus concluding the proof.

Theorem 4.2 leads us to a cache-size–aware top-down row/column reordering
through an A-to-ADB transformation that minimizes the upper bound given in (4.6)

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C247

for Φx(ADB). Here, minimizing this sum relates to minimizing the number of cache
misses due to the loss of temporal locality.

Here we propose to formulate the above-mentioned A-to-ADB transformation
problem as an HP problem using the row-column-net model of matrix A with a part
size constraint of cache size. In the proposed formulation, column nets are associated
with unit cost (i.e., cost(nc

j) = 1 for each column cj), and the cost of each row net
is set to the number of nonzeros in the respective row (i.e., cost(nr

i) = nnz(ri)).
However, existing HP tools do not handle a cutsize definition that encapsulates the
right-hand side of (4.6), because the connectivity metric should be enforced for col-
umn nets, whereas the cut-net metric should be enforced for row nets. In order to
encapsulate this different cutsize definition, we adapt and enhance the cut-net removal
and cut-net splitting techniques adopted in RB algorithms utilized in HP tools. The
connectivity of a column net should be calculated in such a way that it is as close
as possible to the connectivity of the respective coupling column in the A′

SB part of
ADB . For this purpose, after each bipartitioning step, each cut row net is removed
together with all vertices that it connects in both sides of the bipartition. Recall
that the vertices of a cut net are not removed in the conventional cut-net removal
scheme [8]. After applying the proposed removal scheme on the row nets on the cut,
the conventional cut-net splitting technique [8] is applied to the column nets on the
cut of the bipartition. This enhanced row-column-net model will be abbreviated as the
“eRCN” model and the resulting reordering method will be referred to as “sHPeRCN.”

The K -way partition {V1, . . . ,VK} of HRCN (A) obtained as a result of the
above-mentioned RB process is decoded as follows to induce a desired DB form of
matrix A . The rows corresponding to the cut row nets are permuted to the end to
constitute the coupling rows of the row border RB . The rows corresponding to the
internal row nets of part Vk are permuted to the k th row slice Rk . The columns
corresponding to the internal column nets of part Vk are permuted to the k th column
slice Ck . It is clear that the columns corresponding to the cut column nets remain in
the column border CB of ADB , and hence only those columns have the potential to
remain in the column border C′

B of A′
SB . Some of these columns may be permuted

to a column slice Ck if all of its nonzeros become confined to row slice Rk and row
border RB . Such cases may occur as follows: Consider a cut column net nc

j of a
bipartition obtained at a particular RB step. If the internal row nets that belong to
one part of the bipartition and that share a vertex with nc

j all become cut nets in the
following RB steps, then column cj may no longer be a coupling column and may
be safely permuted to column slice Ck . For such cases, the proposed scheme fails to
correctly encapsulate the column connectivity cost in A′

SB . The proposed cut row-net
removal scheme avoids such column-connectivity miscalculations that may occur in
future RB steps due to the cut row nets of the current bipartition. However, it is clear
that our scheme cannot avoid such possible errors (related to the cut column nets of
the current bipartition) that may occur due to the row nets to be cut in future RB
steps.

Similar to sHPCN, the sHPeRCN method clusters rows with similar sparsity pat-
terns to the same row slice for partial row reordering, thus exploiting temporal locality
primarily, and also the uncut and cut column nets of a partition are used to decode
the partial column reordering, thus exploiting spatial locality secondarily.

4.2. Multiple-SpMxV framework. Let Π = {A1, A2, . . . , AK} denote a split-
ting of matrix A into K Ak matrices, where A = A1 + A2 + · · · + AK . In Π,
Ak matrices are mutually nonzero disjoint; however, they are not necessarily row

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C248 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

disjoint or column disjoint. In this framework, the y←Ax operation is computed
as a sequence of K input- and output-dependent SpMxV operations, y ← y + Akx
for k = 1, . . . ,K. Individual SpMxV results are accumulated in the output vector
y on the fly in order to avoid additional write operations. The individual SpMxV
operations are input-dependent because of the shared columns among the Ak matri-
ces, whereas they are output-dependent because of the shared rows among the Ak

matrices. Note that Ak matrices are likely to contain empty rows and columns. The
splitting of matrix A should be done in such a way that the temporal and spatial lo-
calities of individual SpMxVs are exploited in order to minimize the number of cache
misses.

We discuss pros and cons of this framework compared to the single-SpMxV frame-
work in section 4.2.1. In section 4.2.2, we present a theorem that gives the guidelines
for a “good” cache-size–aware matrix splitting based on 2D matrix partitioning. This
theorem provides an upper bound on the total number of cache misses due to the
access of x-vector and y -vector entries in all y← y + Akx operations. The order of
individual SpMxV operations is also important to exploit temporal locality between
consecutive y ← y + Akx operations. In section 4.2.3, we propose and discuss two
methods for ordering SpMxV operations: RB ordering and TSP ordering.

4.2.1. Pros and cons compared to single-SpMxV framework. In the
multiple-SpMxV framework, every splitting defines an access order on the matrix
nonzeros, and every access order on the matrix nonzeros can define a splitting that
causes it. Note that not all nonzero access orders can be achieved by row reordering.
So the single-SpMxV framework can be considered as a special case of the multiple-
SpMxV framework in which Ak matrices are restricted to being row disjoint. Thus,
the multiple-SpMxV framework brings an additional flexibility for exploiting tempo-
ral locality. Clustering A-matrix rows/subrows with similar sparsity patterns into the
same Ak matrices increases the possibility of exploiting temporal locality in access-
ing x-vector entries. Clustering A-matrix columns/subcolumns with similar sparsity
patterns into the same Ak matrices increases the possibility of exploiting temporal
locality in accessing y -vector entries.

It is clear that the single-SpMxV framework utilizing the CSR scheme suffers
severely from dense rows. Dense rows cause loading a large number of x-vector
entries to the cache, thus disturbing the temporal locality in accessing x-vector entries.
The multiple-SpMxV framework may overcome this deficiency of the single-SpMxV
framework through utilizing the flexibility of distributing the nonzeros of dense rows
among multiple Ak matrices in such a way as to exploit the temporal locality in the
respective y← y +Akx operations.

However, this additional flexibility comes at the cost of disturbing the following
localities compared to the single SpMxV approach. There is some disturbance in
the spatial locality in accessing the nonzeros of the A matrix due to the division of
three arrays associated with nonzeros into K parts. However, this disturbance in
spatial locality is negligible since elements of each of the three arrays are stored and
accessed consecutively during each SpMxV operation. That is, at most 3(K−1) extra
cache misses occur compared to the single SpMxV scheme due to the disturbance of
spatial locality in accessing the nonzeros of the A matrix. More importantly, mul-
tiple read/writes of the individual SpMxV results might bring some disadvantages
compared to the single SpMxV scheme. These multiple read/writes disturb the spa-
tial locality of accessing y -vector entries as well as introducing a temporal locality
exploitation problem in y -vector entries.

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C249

4.2.2. Splitting A into Ak matrices based on 2D matrix partitioning.
Given a splitting Π of matrix A , let Φx(A,Π) and Φy(A,Π), respectively, denote
the number of cache misses due to the access of x-vector and y -vector entries during
y← y+Akx operations for k = 1, . . . ,K . Here, the total number of cache misses can
be expressed as Φ(A,Π) = Φx(A,Π) + Φy(A,Π). Let λ(ri) and λ(cj), respectively,
denote the number of Ak matrices that contain at least one nonzero of row ri and
one nonzero of column cj of matrix A , i.e.,

(4.7a) λ(ri) = |{Ak ∈ Π : ri ∈ Ak}|,

(4.7b) λ(cj) = |{Ak ∈ Π : cj ∈ Ak}|.

Theorem 4.3. Given a splitting Π = {A1, A2, . . . , AK} of matrix A such that
each Ak matrix fits into the cache, we have

(a) Φx(A,Π) ≤
∑

cj∈A λ(cj);

(b) Φy(A,Π) ≤
∑

ri∈A λ(ri) .

Proof of (a). Since each matrix Ak fits into the cache, for any cj ∈ Ak , the number
of cache misses due to the access of xj is at most λ(cj) during all y ← y + Akx
operations. This worst case happens when no cache reuse occurs in accessing xj

during successive y← y +Akx operations.
Proof of (b). For any ri ∈ Ak , the number of cache misses due to the access of

yi is at most λ(ri) during all y ← y + Akx operations due to the nature of CSR-
based SpMxV computation. This worst case happens when no cache reuse occurs in
accessing yi during successive y← y +Akx operations.

Corollary 4.4. If each Ak in Π fits into the cache, then we have

(4.8) Φ(A,Π) ≤
∑
ri∈A

λ(ri) +
∑
cj∈A

λ(cj).

Corollary 4.4 leads us to a cache-size–aware top-down matrix splitting that mini-
mizes the upper bound given in (4.8) for Φ(A,Π). Here, minimizing this sum relates
to minimizing the number of cache misses due to the loss of temporal locality.

The matrix splitting problem can be formulated as an HP-based 2D matrix par-
titioning using the row-column-net model of matrix A with a part size constraint of
cache size and partitioning objective of minimizing cutsize according to the connec-
tivity metric definition given in (2.1). In this way, minimizing the cutsize corresponds
to minimizing the upper bound given in Corollary 4.4 for the total number of cache
misses due to the access of x-vector and y -vector entries. This reordering method
will be referred to as “mHPRCN,” where the lowercase letter “m” is used to indicate
the multiple-SpMxV framework.

4.2.3. Ordering individual SpMxV operations. The above-mentioned ob-
jective in splitting matrix A into Ak matrices is to exploit the temporal locality
of individual SpMxVs in order to minimize the number of cache misses. However,
when all SpMxVs are considered, data reuse between two consecutive SpMxVs should
be considered to better exploit temporal locality. Here we propose and discuss two
methods for ordering SpMxV operations: RB ordering and TSP ordering.

RB ordering. The RB tree constructed during the recursive hypergraph bipar-
titioning is a full binary tree, where each node represents a vertex subset as well as the
respective induced subhypergraph on which a 2-way HP is to be applied. Note that
the root node represents both the original vertex set and the original row-column-net

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C250 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

hypergraph model for the given A matrix and the leaf nodes represent the Ak matri-
ces. The preorder, postorder, and in-order traversals starting from the root node give
the same traversal order on the leaf nodes, thus inducing an RB order on the individ-
ual SpMxV operations of the multiple-SpMxV framework. In the RB tree, the amount
of row/column sharing between two leaf nodes (Ak matrices) is expected to decrease
with increasing path length to their first common ancestor in the RB tree. Since sibling
nodes have a common parent, the Ak matrices corresponding to the sibling leaf-node
pairs are likely to share a larger number of rows and columns compared to Ak matri-
ces corresponding to the nonsibling leaf node pairs. As this scheme orders the sibling
leaf nodes consecutively, the RB ordering is expected to yield an order on the Ak

matrices that respects temporal locality in accessing x-vector and y -vector entries.
TSP ordering. Let Π̂ = 〈A1, A2, . . . , AK〉 denote an ordered version of a given

splitting Π. A subchain of Π̂ is said to cover a row ri and a column cj if each Ak

matrix in the subchain contains at least one nonzero of row ri and column cj , re-
spectively. Let γ(ri) and γ(cj) denote the number of maximal Ak matrix subchains
that cover row ri and column cj , respectively. Let L denote the cache line size. Let

Φ(A, Π̂) denote the total number of cache misses due to the access of x-vector and

y -vector entries for a given order Π̂ of y ← y + Akx operations for k = 1, . . . ,K .
Theorem 4.5 gives a lower bound for Φ(A, Π̂), and Theorem 4.6 shows our TSP for-
mulation that minimizes this lower bound.

Theorem 4.5. Given an ordered splitting Π̂ of matrix A such that none of the
Ak matrices fit into the cache, we have

(4.9) Φ(A, Π̂) ≥
∑

ri∈A γ(ri) +
∑

cj∈A γ(cj)

L
.

Proof. We first consider the case L = 1. Consider a column cj of matrix A .
Then there exist γ(cj) maximal Ak matrix subchains that cover column cj . Since
none of the Ak matrices can fit into the cache, it is guaranteed that there will be no
cache reuse of column cj between two different maximal Ak matrix subchains that
cover cj . Therefore, at least γ(cj) cache misses will occur for each column cj , which

means that Φx(A, Π̂) ≥ ∑
cj
γ(cj). A similar proof follows for a row ri of matrix

A so that Φy(A, Π̂) ≥ ∑
ri
γ(ri). When L > 1, the number of cache misses may

decrease L -fold at most.
As in all top-down approaches, in the mHPRCN method, matrices are partitioned

until the size of the CSR storage of the matrix together with the associated x and y
vectors is slightly smaller than the size of the cache. This automatically achieves the
upper bounds given in Theorem 4.3 and Corollary 4.4. As the matrices are slightly
smaller than the cache size, we hypothesize that the lower bound given in Theorem 4.5
will still relate to the realized cache-miss count.

We define the TSP instance (G = (V , E), w) over a given unordered splitting Π
of matrix A as follows. The vertex set V denotes the set of Ak matrices. The weight
w(k, �) of edge ek� ∈ E is set to be equal to the sum of the number of shared rows
and columns between Ak and A�.

Theorem 4.6. For a given unordered splitting Π of matrix A , finding an order
on the vertices of the TSP instance (G, w) that maximizes the path weight corresponds

to finding an order Π̂ of Ak matrices that minimizes the lower bound given in (4.9)

for Φ(A, Π̂) .

The proof of Theorem 4.6 can be found in our technical report [2].

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C251

5. Experimental results.

5.1. Experimental setup. We tested the performance of the proposed methods
against three state-of-the-art methods, sBFS [34], sRCM [13, 24, 36], and sHPRN [41],
all of which belong to the single-SpMxV framework. Here, sBFS refers to our adap-
tation of the BFS-based simultaneous data and iteration reordering method of Strout
and Hovland [34] to matrix row and column reordering. Strout and Hovland’s method
depends on implementing BFS on both temporal and spatial locality hypergraphs si-
multaneously. In our adaptation, we apply BFS on the bipartite graph representation
of the matrix, so that the resulting BFS orders on the row and column vertices de-
termine row and column reorderings, respectively. sRCM refers to applying the RCM
method, which is widely used for envelope reduction of symmetric matrices, on the
bipartite graph representation of the given sparse matrix. Application of the RCM
method to bipartite graphs has also been used by Berry, Hendrickson, and Ragha-
van [6] to reorder rectangular term-by-document matrices for envelope minimization.
sHPRN refers to the work by Yzelman and Bisseling [41], which utilizes HP using the
row-net model for CSR-based SpMxV.

The HP-based top-down reordering methods sHPRN, sHPCN, sHPeRCN, and
mHPRCN are implemented using the state-of-the-art HP tool PaToH [9]. In these
implementations, PaToH is used as a 2-way HP tool within the RB paradigm. The
hypergraphs representing sparse matrices according to the respective models are re-
cursively bipartitioned into parts until the CSR storage size of the matrix/submatrix
(together with the associated x and y vectors/subvectors) corresponding to a part
drops below the cache size. PaToH is used with default parameters except the use of
heavy connectivity clustering (PATOH CRS HCC=9) in the sHPRN, sHPCN, and sHPeRCN

methods that belong to the single-SpMxV framework, and the use of absorption clus-
tering using nets (PATOH CRS ABSHCC=11) in the mHPRCN method that belong to the
multiple-SpMxV framework. Since PaToH contains randomized algorithms, the re-
ordering results are reported by averaging the values obtained in 10 different runs,
each randomly seeded.

Performance evaluations are carried out in two different settings: cache-miss simu-
lations and actual runtimes by using OSKI [39]. In cache-miss simulations, eight-byte
words are used for matrix nonzeros, x-vector entries, and y -vector entries. In OSKI
runs, double precision arithmetic is used. Cache-miss simulations are performed on
36 small-to-medium size matrices, whereas OSKI runs are performed on 17 large size
matrices. All test matrices are obtained from the University of Florida Sparse Matrix
Collection [14]. CSR storage sizes of small-to-medium size matrices vary between 441
KB to 13 MB, whereas CSR storage sizes of large size matrices vary between 13 MB
to 94 MB. Properties of these matrices are presented in Table 5.1. As seen in the
table, both sets of small-to-medium and large size matrices are categorized into three
groups as symmetric, square nonsymmetric, and rectangular. In each group, the test
matrices are listed in the order of increasing number of nonzeros (“nnz”). In the
table, “avg” and “max” denote the average and the maximum number of nonzeros
per row/column. “cov” denotes the coefficient of variation of the number of nonzeros
per row/column. The “cov” value of a matrix can be considered as an indication of
the level of irregularity in the number of nonzeros per row and column.

5.2. Cache-miss simulations. Cache-miss simulations are performed by run-
ning the single-level cache simulator developed by Yzelman and Bisseling [41] on
small-to-medium size test matrices. The simulator is configured to have a 64 KB,
2-way set-associative cache with a line size of 64 bytes (eight words). Some of the

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C252 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

Table 5.1

Properties of test matrices.

Number of nnz’s in a row nnz’s in a column
Name rows cols nonzeros avg max cov avg max cov

Small-to-medium size matrices
Symmetric matrices

ncvxqp9 16,554 16,554 54,040 3 9 0.5 3 9 0.5
tuma1 22,967 22,967 87,760 4 5 0.3 4 5 0.3
bloweybl 30,003 30,003 120,000 4 10,001 14.4 4 10,001 14.4
bloweya 30,004 30,004 150,009 5 10,001 11.6 5 10,001 11.6
brainpc2 27,607 27,607 179,395 7 13,799 20.2 7 13,799 20.2
a5esindl 60,008 60,008 255,004 4 9,993 12.7 4 9,993 12.7
dixmaanl 60,000 60,000 299,998 5 5 0.0 5 5 0.0
shallow water1 81,920 81,920 327,680 4 4 0.0 4 4 0.0
c-65 48,066 48,066 360,528 8 3,276 2.5 8 3,276 2.5
finan512 74,752 74,752 596,992 8 55 0.8 8 55 0.8
copter2 55,476 55,476 759,952 14 45 0.3 14 45 0.3
msc23052 23,052 23,052 1,154,814 50 178 0.2 50 178 0.2

Square nonsymmetric matrices
poli large 15,575 15,575 33,074 2 491 4.2 2 18 0.2
powersim 15,838 15,838 67,562 4 40 0.6 4 41 0.8
memplus 17,758 17,758 126,150 7 574 3.1 7 574 3.1
Zhao1 33,861 33,861 166,453 5 6 0.1 5 7 0.2
mult dcop 01 25,187 25,187 193,276 8 22,767 18.7 8 22,774 18.8
jan99jac120sc 41,374 41,374 260,202 6 68 1.1 6 138 2.3
circuit 4 80,209 80,209 307,604 4 6,750 7.8 4 8,900 10.5
ckt11752 dc 1 49,702 49,702 333,029 7 2,921 3.5 7 2,921 3.5
poisson3Da 13,514 13,514 352,762 26 110 0.5 26 110 0.5
bcircuit 68,902 68,902 375,558 6 34 0.4 6 34 0.4
g7jac120 35,550 35,550 475,296 13 153 1.7 13 120 1.7
e40r0100 17,281 17,281 553,562 32 62 0.5 32 62 0.5

Rectangular matrices
lp dfl001 6,071 12,230 35,632 6 228 1.3 3 14 0.4
ge 10,099 16,369 44,825 4 48 0.8 3 36 0.9
ex3sta1 17,443 17,516 68,779 4 8 0.4 4 46 1.4
lp stocfor3 16,675 23,541 76,473 5 15 0.7 3 18 1.0
cq9 9,278 21,534 96,653 10 391 3.5 5 24 1.0
psse0 26,722 11,028 102,432 4 4 0.1 9 68 0.7
co9 10,789 22,924 109,651 10 441 3.6 5 28 1.1
baxter 27,441 30,733 111,576 4 2,951 8.7 4 46 1.6
graphics 29,493 11,822 117,954 4 4 0.0 10 87 1.0
fome12 24,284 48,920 142,528 6 228 1.3 3 14 0.4
route 20,894 43,019 206,782 10 2,781 7.1 5 44 1.0
fxm4 6 22,400 47,185 265,442 12 57 1.0 6 24 1.1

Large size matrices
Symmetric matrices

c-73 169,422 169,422 1,279,274 8 39,937 20.1 8 39,937 20.1
c-73b 169,422 169,422 1,279,274 8 39,937 20.1 8 39,937 20.1
rgg n 2 17 s0 131,072 131,072 1,457,506 11 96 0.3 11 28 0.3
boyd2 466,316 466,316 1,500,397 3 93,262 60.6 3 93,262 60.6
ins2 309,412 309,412 2,751,484 9 303,879 65.3 9 309,412 66.4
rgg n 2 18 s0 262,144 262,144 3,094,566 12 62 0.3 12 31 0.3

Square nonsymmetric matrices
Raj1 263,743 263,743 1,302,464 5 40,468 17.9 5 40,468 17.9
rajat21 411,676 411,676 1,893,370 5 118,689 41.0 5 100,470 34.8
rajat24 358,172 358,172 1,948,235 5 105,296 33.1 5 105,296 33.1
ASIC 320k 321,821 321,821 2,635,364 8 203,800 61.4 8 203,800 61.4
Stanford Berkeley 683,446 683,446 7,583,376 11 76,162 25.0 11 249 1.5

Rectangular matrices
kneser 10 4 1 349,651 330,751 992,252 3 51,751 31.9 3 3 0.0
neos 479,119 515,905 1,526,794 3 29 0.2 3 16,220 15.6
wheel 601 902,103 723,605 2,170,814 2 442,477 193.9 3 3 0.0
LargeRegFile 2,111,154 801,374 4,944,201 2 4 0.3 6 655,876 145.9
cont1 l 1,918,399 1,921,596 7,031,999 4 5 0.3 4 1,279,998 252.3
degme 185,501 659,415 8,127,528 44 624,079 33.1 12 18 0.1

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C253
Table 5.2

Average simulation results (misses) to display the merits of enhancement of the row-column-net
model in sHPeRCN (cache size = part-weight threshold = 64 KB).

sHPRCN sHPeRCN

x x
Symmetric 0.54 0.47
Nonsymmetric 0.45 0.40
Rectangular 0.44 0.43

Overall 0.48 0.43

Table 5.3

Average simulation results (misses) to display the merits of ordering SpMxV operations in
mHPRCN (cache size = part-weight threshold = 64 KB).

Random ordering RB ordering TSP ordering
x y x+y x y x+y x y x+y

Symmetric 0.44 1.34 0.62 0.41 1.28 0.58 0.40 1.26 0.57
Nonsymmetric 0.37 1.60 0.54 0.34 1.55 0.50 0.34 1.54 0.50
Rectangular 0.27 1.39 0.40 0.26 1.35 0.39 0.27 1.36 0.40

Overall 0.35 1.44 0.51 0.33 1.39 0.49 0.33 1.38 0.48

experiments are conducted to show the sensitivities of the methods to the cache-
line size without changing the other cache parameters. In the simulations, since the
ICSR [27] storage scheme is to be used in the multiple-SpMxV framework as dis-
cussed in section 4.2, ICSR is also used for all other methods. The ZZCSR scheme
proposed by Yzelman and Bisseling [41] is not used in the simulations, since the main
purpose of this work is to show the cache-miss effects of the six different reordering
methods. In Tables 5.2, 5.3, 5.4, and 5.7, the performances of the existing and pro-
posed methods are displayed in terms of normalized cache-miss values, where each
normalized value is calculated through dividing the number of cache misses for the
reordered matrix by that of the original matrix. In these tables, the x , y , and x+ y
columns, respectively, denote the normalized cache-miss values due to the access of
x-vector entries, y -vector entries, and both. In these tables, compulsory cache misses
due to the access of matrix nonzeros are not reported in order to better show the
performance differences among the methods.

We introduce Table 5.2 to show the validity of the enhanced row-column-net
model proposed in section 4.1.2 for the sHPeRCN method. In the table, sHPRCN refers
to a version of the sHPeRCN method that utilizes the conventional row-column-net
model instead of the enhanced row-column-net model. Table 5.2 displays average per-
formance results of sHPRCN and sHPeRCN over the three different matrix categories as
well as the overall averages. As seen in the table, sHPeRCN performs considerably bet-
ter than sHPRCN, thus showing the validity of the cutsize definition that encapsulates
the right-hand side of (4.6).

We introduce Table 5.3 to show the merits of ordering individual SpMxV op-
erations in the mHPRCN method. The table displays average performance results of
mHPRCN for the random, RB, and TSP orderings over the three different matrix cate-
gories as well as the overall averages. As seen in the table, both RB and TSP orderings
lead to considerable performance improvement in the mHPRCN method compared to
the random ordering, where the TSP ordering leads to slightly better improvement
than the RB ordering. In the following tables, we display the performance results
of the mHPRCN method that utilizes TSP ordering. The TSP implementation given
in [21] is used in these experiments.

Table 5.4 displays the performance comparison of the existing and proposed meth-
ods for small-to-medium size matrices. The bottom part of the table shows the geo-
metric means of the performance results of the methods over the three different matrix

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C254 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

Table 5.4

Simulation results (misses) for small-to-medium size test matrices (cache size = part-weight
threshold = 64 KB).

Existing methods Proposed methods
Single SpMxV Multiple SpMxVs

sBFS [34] sRCM [24] sHPRN [41] sHPCN sHPeRCN mHPRCN

Modified (1D part.) (1D part.) (2D part.) (2D partitioning)
x x+y x x+y x x+y x x+y x x+y x y x+y

Symmetric matrices

ncvxqp9 0.51 0.59 0.52 0.60 0.37 0.48 0.28 0.40 0.28 0.40 0.31 1.19 0.47
tuma1 0.42 0.59 0.58 0.71 0.62 0.73 0.56 0.69 0.56 0.69 0.45 1.01 0.60
bloweybl 1.00 1.00 1.00 1.00 0.88 0.92 0.68 0.77 0.63 0.74 0.63 1.02 0.74
bloweya 1.00 1.00 1.03 1.02 1.18 1.12 0.65 0.75 0.73 0.81 0.45 1.03 0.62
brainpc2 0.88 0.90 0.89 0.91 1.33 1.27 1.08 1.06 0.66 0.73 0.28 1.04 0.43
a5esindl 1.11 1.09 0.83 0.86 0.84 0.87 1.12 1.10 0.40 0.52 0.28 1.03 0.43
dixmaanl 0.33 0.50 0.33 0.50 0.34 0.51 0.34 0.50 0.34 0.50 0.36 1.01 0.52
shallow water1 1.45 1.28 1.22 1.14 1.10 1.07 0.90 0.94 0.89 0.94 0.77 1.01 0.86
c-65 0.90 0.91 0.96 0.97 0.61 0.67 0.38 0.47 0.35 0.44 0.24 1.37 0.40
finan512 1.57 1.40 1.47 1.34 0.65 0.75 0.56 0.68 0.55 0.68 0.70 1.27 0.89
copter2 0.44 0.49 0.43 0.49 0.41 0.47 0.26 0.33 0.26 0.33 0.30 2.60 0.53
msc23052 0.46 0.51 0.42 0.47 0.52 0.57 0.40 0.46 0.44 0.49 0.35 2.65 0.57

Square nonsymmetric matrices

poli large 1.12 1.08 1.12 1.08 0.86 0.91 0.62 0.75 0.64 0.77 0.60 1.05 0.76
powersim 1.02 1.01 0.72 0.81 0.55 0.69 0.51 0.66 0.51 0.66 0.50 1.04 0.67
memplus 0.87 0.90 1.06 1.05 1.39 1.30 0.91 0.93 0.87 0.90 0.47 1.24 0.63
Zhao1 0.55 0.65 0.36 0.51 0.72 0.79 0.48 0.60 0.49 0.60 0.60 1.64 0.84
mult dcop 01 0.98 0.98 1.00 1.00 0.70 0.71 0.45 0.48 0.18 0.23 0.13 1.36 0.20
jan99jac120sc 1.20 1.15 1.30 1.22 0.92 0.94 0.51 0.62 0.52 0.63 0.63 1.41 0.83
circuit 4 1.52 1.39 1.83 1.62 1.45 1.34 0.94 0.95 0.87 0.91 0.41 1.16 0.60
ckt11752 dc 1 0.79 0.83 0.86 0.89 0.58 0.66 0.40 0.52 0.42 0.54 0.31 1.10 0.47
poisson3Da 0.09 0.11 0.09 0.11 0.14 0.15 0.09 0.10 0.09 0.10 0.09 6.32 0.18
bcircuit 0.60 0.67 0.58 0.66 0.32 0.44 0.26 0.39 0.26 0.39 0.27 1.10 0.42
g7jac120 0.75 0.76 0.26 0.30 0.44 0.47 0.21 0.25 0.23 0.28 0.18 2.51 0.31
e40r0100 0.82 0.86 0.74 0.79 0.76 0.81 0.63 0.71 0.66 0.73 0.54 1.94 0.84

Rectangular matrices
lp dfl001 0.30 0.33 0.31 0.34 0.34 0.36 0.18 0.21 0.20 0.23 0.10 2.57 0.19
ge 0.40 0.47 0.34 0.41 0.30 0.37 0.25 0.33 0.25 0.33 0.21 1.23 0.32
ex3sta1 1.75 1.47 1.14 1.09 1.23 1.14 0.86 0.91 0.81 0.88 0.81 1.09 0.91
lp stocfor3 1.74 1.48 1.64 1.42 0.79 0.86 0.80 0.87 0.80 0.87 0.79 1.02 0.87
cq9 0.40 0.44 0.39 0.43 0.45 0.48 0.30 0.34 0.38 0.42 0.18 1.54 0.27
psse0 0.45 0.64 0.43 0.63 0.44 0.64 0.41 0.62 0.41 0.62 0.28 1.01 0.53
co9 0.43 0.47 0.38 0.42 0.46 0.50 0.34 0.39 0.41 0.46 0.18 1.54 0.27
baxter 0.69 0.75 0.67 0.74 0.47 0.57 0.45 0.56 0.43 0.54 0.30 1.09 0.45
graphics 0.74 0.87 0.80 0.91 0.68 0.84 0.48 0.75 0.49 0.75 0.55 1.01 0.79
fome12 0.29 0.31 0.32 0.35 0.32 0.35 0.18 0.21 0.19 0.22 0.10 2.74 0.20
route 0.34 0.36 0.48 0.50 0.37 0.39 0.62 0.64 0.59 0.61 0.08 1.38 0.12
fxm4 6 1.54 1.41 1.23 1.18 0.86 0.89 0.70 0.77 0.71 0.78 0.75 1.17 0.85

Geometric means
Symmetric 0.74 0.80 0.73 0.79 0.67 0.74 0.54 0.64 0.47 0.58 0.40 1.26 0.57
Nonsymmetric 0.74 0.76 0.66 0.70 0.63 0.68 0.43 0.51 0.40 0.48 0.34 1.54 0.50
Rectangular 0.60 0.64 0.57 0.62 0.51 0.57 0.41 0.49 0.43 0.51 0.27 1.36 0.40

Overall 0.69 0.73 0.65 0.70 0.60 0.66 0.45 0.54 0.43 0.52 0.33 1.38 0.48

categories as well as the overall averages. Among the existing methods, sHPRN per-
forms considerably better than both sBFS and sRCM for all matrix categories, on the
average.

5.2.1. Comparison of 1D methods sHPRN and sHPCN . Here we present
the experimental comparison of sHPRN and sHPCN and show how this experimen-
tal comparison relates to the theoretical comparison given in section 4.1.1. As seen

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C255

Table 5.5

Sensitivity of sHPRN [41] and sHPCN to cache-line size (cache size = part-weight threshold =
64 KB).

Line Nonsymmetric Rectangular
size sHPRN sHPCN sHPRN sHPCN

(byte) x x x x
8 0.70 0.53 0.62 0.52
16 0.68 0.49 0.58 0.47
32 0.65 0.45 0.52 0.41
64 0.61 0.41 0.44 0.34
128 0.57 0.38 0.39 0.28
256 0.52 0.33 0.36 0.23
512 0.33 0.30 0.23 0.23

in Table 5.4, sHPCN performs significantly better than sHPRN, on the overall aver-
age. sHPCN performs better than sHPRN in all of the 36 reordering instances except
a5esindl, lp stocfactor3, and route. The significant performance gap between
sHPRN and sHPCN in favor of sHPCN even for symmetric matrices confirms our ex-
pectation that temporal locality is more important than spatial locality in SpMxV
operations that involve irregularly sparse matrices.

We introduce Table 5.5 to experimentally investigate the sensitivity of the sHPRN

and sHPCN methods to the cache-line size. In the construction of the averages reported
in this table, simulation results of every method are normalized with respect to those
of the original ordering with the respective cache-line size. We also utilize Table 5.5 to
provide fairness in the comparison of sHPRN and sHPCN methods for nonsymmetric
square and rectangular matrices. Some of the nonsymmetric square and rectangular
matrices may be more suitable for rowwise partitioning by the column-net model,
whereas some other matrices may be more suitable for columnwise partitioning utiliz-
ing the row-net model. This is because of the differences in row and column sparsity
patterns of a given nonsymmetric or rectangular matrix. Hendrickson and Kolda [22]
and Ucar and Aykanat [37] provide discussions on choosing partitioning dimension
depending on the individual matrix characteristics in the parallel SpMxV context. In
the construction of Table 5.5, each of the sHPRN and sHPCN methods is applied on
both A and AT matrices, and the better result is reported for the respective method
on the reordering of matrix A . Here the performance of CSR-based SpMxV y←ATx
is assumed to simulate the performance of CSC-based y←Ax . Comparison of the
results in Table 5.5 for the line size of 64 bytes and the average results in Table 5.4
shows that the performance of both methods increases due to the selection of a better
partitioning dimension (especially for rectangular matrices), while the performance
gap remains almost the same.

As seen in Table 5.5, the performance of sHPRN is considerably more sensitive to
the cache-line size than that of sHPCN. For nonsymmetric matrices, as the line size
is increased from eight bytes (one word) to 512 bytes, the average normalized cache-
miss count decreases from 0.70 to 0.33 in the sHPRN method, whereas it decreases
from 0.53 to 0.30 in the sHPCN method. Similarly, for rectangular matrices, the
average normalized cache-miss count decreases from 0.62 to 0.23 in the sHPRN method,
whereas it decreases from 0.52 to 0.23 in the sHPCN method. As seen in Table 5.5,
the performance of these two methods becomes very close for the largest line size of
512 bytes (64 words). This experimental finding conforms to our expectation that
sHPRN exploits spatial locality better than sHPCN, whereas sHPCN exploits temporal
locality better than sHPRN.

5.2.2. Comparison of 1D and 2D methods. We proceed with the relative
performance comparison of the 1D and 2D partitioning based methods, which will be

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C256 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

referred to as 1D methods and 2D methods, respectively, in the rest of the paper.
As seen in Table 5.4, on the average, 2D methods sHPeRCN and mHPRCN perform
better than 1D methods sHPRN and sHPCN. The performance gap between the 2D
and 1D methods is considerably higher in reordering symmetric matrices in favor of
2D methods. This experimental finding may be attributed to the relatively restricted
search space of the column-net model (as well as the row-net model) in 1D partitioning
of symmetric matrices. The relative performance comparison of 2D methods shows
that sHPeRCN and mHPRCN display comparable performance for symmetric matri-
ces, whereas mHPRCN performs much better than sHPeRCN for nonsymmetric and
rectangular matrices, on the average. mHPRCN performs 8.3% better than sHPeRCN

in terms of cache misses due to the access of x-vector and y -vector entries, on the
overall average.

As seen in Table 5.4, mHPRCN incurs significantly fewer x-vector entry misses
than sHPeRCN on the overall average. This is expected because the multiple-SpMxV
framework utilized in mHPRCN enables better exploitation of temporal locality in
accessing x-vector entries. However, the increase in the y -vector entry misses, which
is introduced by the multiple-SpMxV framework, does not amortize in some of the
reordering instances. As expected, mHPRCN performs better than sHPeRCN in the
reordering of matrices that contain dense rows. For example, in the reordering of
symmetric matrices a5esindl, bloweya, and brainpc2, which, respectively, contain
dense rows with 9993, 10001, and 13799 nonzeros, mHPRCN performs significantly
better than sHPeRCN. Similar experimental findings can be observed in Table 5.4
for the following matrices that contain dense rows: square nonsymmetric matrices
circuit 4, ckt11752 dc 1, and mult dcop 01 and rectangular matrices baxter, co9,
cq9, and route. Although shallow water and psse0 do not contain dense rows
(the maximum number of nonzeros in a row is only four in both matrices), mHPRCN

performs significantly better than sHPeRCN in reordering these two matrices. mHPRCN

incurs significantly fewer cache misses due to the access of x-vector entries while
incurring a very small number of additional cache misses due to the access of y -vector
entries. The reason behind the latter finding is the very small number of shared rows
among the Ak matrices obtained by mHPRCN in splitting these two matrices. For
example, in one of the splittings generated by mHPRCN, among the 81920 rows of
shallow water, only 785 rows are shared, and all of them are shared between only
two distinct Ak matrices.

5.2.3. Experimental sensitivity analysis. Table 5.6 shows the comparison
of the sensitivities of the proposed methods sHPCN, sHPeRCN, and mHPRCN to the
cache-line size. In the construction of the averages reported in this table, simulation
results of every method are normalized with respect to those of the original order-
ing with the respective cache-line size. In terms of cache misses due to access of
x-vector entries, the performance of each method compared to the original order-
ing increases with increasing cache-line size. However, in terms of cache misses due
to access of y -vector entries, the performance of mHPRCN compared to the origi-
nal ordering decreases with increasing cache-line size. So, with increasing cache-line
size, the performance gap between mHPRCN and the other two methods sHPCN and
sHPeRCN increases so that sHPeRCN performs better than mHPRCN for larger cache-
line size of 512 bytes. This experimental finding can be attributed to the deficiency
of the multiple-SpMxV framework in exploiting spatial locality in accessing y -vector
entries. We believe that models and methods need to be investigated for intelligent
global row reordering to overcome this deficiency of the multiple-SpMxV framework.

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C257
Table 5.6

Sensitivity of sHPCN , sHPeRCN , and mHPRCN to cache-line size (cache size = part-weight
threshold = 64 KB).

Line Single SpMxV Multiple SpMxVs
size sHPCN sHPeRCN mHPRCN

(byte) x x+y x x+y x y x+y
8 0.59 0.69 0.59 0.69 0.47 1.09 0.62
16 0.55 0.64 0.55 0.64 0.43 1.15 0.58
32 0.50 0.59 0.49 0.59 0.36 1.23 0.52
64 0.45 0.54 0.43 0.52 0.33 1.38 0.48
128 0.41 0.49 0.38 0.46 0.28 1.50 0.43
256 0.37 0.44 0.33 0.40 0.24 1.60 0.38
512 0.36 0.42 0.30 0.36 0.25 1.83 0.38

Table 5.7

Sensitivity of HP-based reordering methods to the part-weight threshold (cache size = 64 KB).

Part 1D partitioning 2D partitioning
size sHPRN [41] sHPCN sHPeRCN mHPRCN

(KB) x x+y x x+y x x+y x y x+y
512 0.79 0.81 0.71 0.75 0.69 0.73 0.63 1.08 0.69
256 0.68 0.72 0.61 0.67 0.57 0.63 0.49 1.15 0.58
126 0.62 0.68 0.51 0.59 0.48 0.56 0.39 1.28 0.52
64 0.60 0.66 0.45 0.54 0.43 0.52 0.34 1.42 0.50
32 0.59 0.66 0.43 0.52 0.42 0.51 0.33 1.53 0.51
16 0.60 0.66 0.43 0.52 0.42 0.51 0.34 1.57 0.52
8 0.61 0.67 0.43 0.52 0.42 0.51 0.35 1.61 0.54

We introduce Table 5.7 to display the sensitivities (as overall averages) of the HP-
based reordering methods to the part-weight threshold (Wmax) used in terminating
the RB process. The performance of each method increases with decreasing part-
weight threshold until the part-weight threshold becomes equal to the cache size. For
each method, the rate of performance increase begins to decrease as the part-weight
threshold becomes closer to the cache size. The performance of each method remains
almost the same with decreasing part-weight threshold below the cache size except
mHPRCN. The slight decrease in the performance of mHPRCN with decreasing part-
weight threshold below the cache size can be attributed to the increase in the number
of y misses with an increasing number of Ak matrices because of the deficiency of the
multiple-SpMxV framework in exploiting spatial locality in accessing y -vector entries.
These experimental findings show the validity of Theorems 4.1, 4.2, and 4.3 for the
effectiveness of the proposed sHPCN, sHPeRCN, and mHPRCN methods, respectively.
Although the proposed HP-based methods are cache-size–aware methods, those that
utilize the single-SpMxV framework can easily be modified to become cache-oblivious
methods by continuing the RB process until the parts become sufficiently small or
the qualities of the bipartitions drop below a predetermined threshold.

5.3. OSKI experiments. For large size matrices, OSKI experiments are per-
formed by running OSKI version 1.0.1h (compiled with gcc) on a machine with 2.66
GHz Intel Q8400 and 4 GB of RAM, where each core pair shares 2 MB 8-way set-
associative L2 cache. The generalized compressed sparse row (GCSR) format available
in OSKI is used for all reordering methods. GCSR handles empty rows by augment-
ing the traditional CSR with an optional list of nonempty row indices, thus enabling
the multiple-SpMxV framework. For each reordering instance, an SpMxV workload
contains 100 calls to oski MatMult() with the same matrix after three calls as a
warm-up.

Table 5.8 displays the performance comparison of the existing and proposed meth-
ods for large size matrices. In the table, the first column shows OSKI runtimes

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C258 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

Table 5.8

OSKI runtimes for large size test matrices (cache size = part-weight threshold = 2 MB).

Actual Normalized w.r.t. actual times on original order

Original Existing methods Proposed methods

order Single SpMxV Mult. SpMxVs

not tuned OSKI sBFS [34] sRCM [24] sHPRN [41] sHPCN sHPeRCN mHPRCN

(ms) tuned modified (1D part.) (1D part.) (2D part.) (2D part.)

Symmetric matrices

c-73 0.454 1.00 1.02 1.06 0.93 0.92 0.92 0.90

c-73b 0.456 1.00 1.01 1.07 0.93 0.92 0.91 0.89

rgg n 2 17 s0 0.503 0.95 0.92 1.07 0.89 0.82 0.76 0.91

boyd2 0.726 1.19 1.00 1.14 0.95 0.92 0.89 0.85

ins2 1.207 1.00 0.96 2.32 0.97 1.06 0.97 0.67

rgg n 2 18 s0 1.051 0.96 0.90 1.07 0.99 0.99 0.75 0.81

Square nonsymmetric matrices

Raj1 0.629 1.04 0.88 0.96 0.86 0.82 0.83 0.84

rajat21 0.953 1.07 1.01 1.16 1.00 0.95 0.96 0.90

rajat24 0.963 1.02 1.04 1.16 0.99 0.94 0.96 0.91

ASIC 320k 1.436 0.99 1.09 1.44 0.97 0.92 0.73 0.64

Stanford Berkeley 2.325 1.04 1.01 1.05 1.10 1.01 0.89 0.98

Rectangular matrices

kneser 10 4 1 0.694 1.02 0.70 0.87 0.81 0.67 0.89 0.68

neos 0.697 1.26 1.14 1.19 1.00 0.95 0.95 0.96

wheel 601 1.377 1.27 0.82 0.75 0.69 0.69 0.66 0.52

LargeRegFile 2.643 1.55 1.19 1.30 1.04 0.95 0.95 0.96

cont1 l 2.939 1.14 1.04 1.19 1.05 0.93 0.93 0.95

degme 2.770 1.04 0.77 1.26 0.87 0.77 0.78 0.74

Geometric means

Symmetric - 1.01 0.97 1.23 0.94 0.94 0.86 0.84

Nonsymmetric - 1.03 1.00 1.14 0.98 0.93 0.87 0.84

Rectangular - 1.20 0.93 1.07 0.90 0.82 0.85 0.78

Overall - 1.08 0.96 1.15 0.94 0.89 0.86 0.82

without tuning for original matrices. The second column shows the normalized OSKI
runtimes obtained through the full tuning enforced by the ALWAYS TUNE AGGRESSIVELY

parameter for original matrices. The other columns show the normalized runtimes
obtained through the reordering methods. Each normalized value is calculated by
dividing the OSKI time of the respective method by the untuned OSKI runtime for
the original matrices. As seen in the first two columns of the table, optimizations
provided through the OSKI package do not improve the performance of the SpMxV
operation performed on the original matrices. This experimental finding can be at-
tributed to the irregularly sparse nature of the test matrices. We should mention that
optimizations provided through the OSKI package do not improve the performance
of the SpMxV operation performed on the reordered matrices.

The relative performance figures given in Table 5.8 for different reordering meth-
ods in terms of OSKI times in general conform to the relative performance discussions
given in section 5.2 based on the cache-miss simulation results. As seen in Table 5.8,
on the overall average, the 2D methods sHPeRCN and mHPRCN perform better than
the 1D methods sHPRN and sHPCN, where mHPRCN (adopting the multiple-SpMxV
framework) is the clear winner. Furthermore, for the relative performance comparison
of the 1D methods, the proposed sHPCN method performs better than the existing
sHPRN method. On the overall average, sHPCN, sHPeRCN, and mHPRCN achieve sig-
nificant speedup by reducing the SpMxV times by 11%, 14%, and 18%, respectively,
compared to the unordered matrices, thus confirming the success of the proposed
reordering methods.

Table 5.9 shows cache-miss simulation results for large size matrices, and it is
introduced to show how the performance comparison in terms of cache-miss simula-
tions relates to performance comparison in terms of OSKI runtimes. In Table 5.9, the
tot column shows the normalized total number of cache misses including compulsory

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C259
Table 5.9

Simulation results (misses) for large size test matrices (cache size = part-weight threshold = 2
MB).

Existing methods Proposed methods
Single SpMxV M. SpMxVs

sBFS [34] sRCM [24] sHPRN [41] sHPCN sHPeRCN mHPRCN

modified (1D part.) (1D part.) (2D part.) (2D part.)
x+y tot x+y tot x+y tot x+y tot x+y tot x+y tot

Symmetric matrices

c-73 0.99 1.00 1.00 1.00 0.69 0.94 0.59 0.92 0.60 0.92 0.53 0.91
c-73b 0.99 1.00 1.00 1.00 0.69 0.94 0.59 0.92 0.60 0.92 0.53 0.91
rgg n 2 17 s0 0.97 1.00 1.02 1.00 1.10 1.01 1.14 1.01 1.02 1.00 0.98 1.00
boyd2 1.02 1.01 1.09 1.14 0.83 0.94 0.72 0.91 0.68 0.90 0.55 0.85
ins2 0.94 0.98 1.31 1.18 0.94 0.98 0.94 0.98 0.89 0.96 0.19 0.71
rgg n 2 18 s0 0.98 1.00 1.01 1.00 1.69 1.05 1.58 1.04 1.05 1.00 1.00 1.00

Square nonsymmetric matrices

Raj1 0.98 0.99 0.96 0.99 0.73 0.94 0.62 0.91 0.66 0.92 0.58 0.90
rajat21 1.36 1.08 1.37 1.08 1.15 1.03 0.88 0.97 0.98 1.00 0.75 0.95
rajat24 1.53 1.11 1.46 1.09 1.09 1.02 0.81 0.96 0.96 0.99 0.67 0.93
ASIC 320k 1.61 1.17 1.61 1.16 0.89 0.97 0.79 0.94 0.57 0.88 0.32 0.82
Stanford Berkeley 1.20 1.02 1.65 1.07 1.48 1.04 0.94 0.99 1.07 1.01 0.71 0.97

Rectangular matrices
kneser 10 4 1 1.33 1.09 1.50 1.13 1.18 1.05 0.85 0.96 1.14 1.04 0.85 0.97
neos 1.12 1.03 1.13 1.03 1.00 1.00 0.92 0.98 0.92 0.98 0.92 0.98
wheel 601 1.39 1.10 1.40 1.10 1.16 1.04 1.02 1.00 1.14 1.03 0.91 0.98
LargeRegFile 1.99 1.20 1.89 1.18 1.56 1.11 1.00 1.00 1.00 1.00 1.00 1.00
cont1 l 1.25 1.06 1.27 1.07 1.01 1.00 0.75 0.94 0.75 0.94 0.76 0.94
degme 0.35 0.86 1.06 1.01 0.68 0.93 0.36 0.86 0.43 0.88 0.21 0.83

Geometric means
Symmetric 0.98 1.00 1.07 1.05 0.94 0.98 0.87 0.96 0.78 0.95 0.55 0.89
Nonsymmetric 1.32 1.07 1.38 1.08 1.04 1.00 0.80 0.96 0.82 0.96 0.58 0.91
Rectangular 1.10 1.05 1.35 1.09 1.06 1.02 0.77 0.96 0.85 0.98 0.69 0.95

Overall 1.12 1.04 1.25 1.07 1.01 1.00 0.81 0.96 0.82 0.96 0.61 0.92

Table 5.10

Average normalized reordering overhead and average number of SpMxV operations required to
amortize the reordering overhead.

Existing methods Proposed methods
Single SpMxV Multiple SpMxVs

sBFS [34] sHPRN [41] sHPCN sHPeRCN mHPRCN

(1D part.) (1D part.) (2D part.) (2D partitioning)
Over- Amor- Over- Amor- Over- Amor- Over- Amor- Over- Amor-
head tization head tization head tization head tization head tization

Symmetric 17 465 194 3135 190 1716 514 3732 920 5097
Nonsymmetric 26 700 314 5078 304 2740 664 4822 1198 6640
Rectangular 23 621 383 6197 254 2292 620 4503 1240 6870

Overall 22 587 286 4620 245 2209 596 4327 1110 6149

cache misses due to the access of matrix nonzeros. The total numbers of cache misses
are also displayed since these values actually determine the performance of the re-
ordering methods in terms of OSKI times. Comparison of Tables 5.8 and 5.9 shows
that the amount of performance improvement attained by the proposed methods in
terms of OSKI times is in general considerably higher than the amount of performance
improvement in terms of the total number of cache misses. For example, sHPeRCN per-
forms only 4% fewer cache misses than the unordered case, whereas it achieves 14%
less OSKI runtime, on the overall average.

Table 5.10 is introduced to evaluate the preprocessing overhead of the reordering
methods. For each test matrix, the reordering times of all methods are normalized
with respect to the OSKI time of the SpMxV operation using the unordered matrix,

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C260 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

and the geometric averages of these normalized values are displayed in the “over-
head” column of the table. In the table, the “amortization” column denotes the
average number of SpMxV operations required to amortize the reordering overhead.
Each “amortization value” is obtained by dividing the average normalized reordering
overhead by the overall average OSKI time improvement taken from Table 5.8. Over-
head and amortization values are not given for the sRCM method since sRCM does
not improve the OSKI runtime at all.

As seen in Table 5.10, top-down HP-based methods are significantly slower than
the bottom-up sBFS method. The runtimes of the two 1D methods sHPRN and
sHPCN are comparable, as expected. As also seen in the table, the 2D methods are
considerably slower than the 1D methods, as expected. In the column-net hypergraph
model used in the 1D method sHPCN, the number of vertices and the number of nets
are equal to the number of rows and the number of columns, respectively, and the
number of pins is equal to the number of nonzeros. In the hypergraph model used
in the 2D methods, the number of vertices and the number of nets are equal to the
number of nonzeros and the number of rows plus the number of columns, respectively,
and the number of pins is equal to two times the number of nonzeros. That is, the
hypergraphs used in the 2D methods are considerably larger than the hypergraphs
used in the 1D methods. So partitioning the hypergraphs used in the 2D methods
takes a considerably longer time than partitioning the hypergraphs used in the 1D
methods, and the runtime difference becomes higher with increasing matrix density in
favor of the 1D methods. There exists a considerable difference in the runtimes of the
two 2D methods sHPeRCN and mHPRCN in favor of sHPeRCN. This is because of the
removal of the vertices connected by the cut row nets in the enhanced row-column-net
model used in sHPeRCN.

As seen in Table 5.10, the top-down HP methods amortize for a larger number of
SpMxV computations compared to the bottom-up sBFS method. For example, the
use of sHPCN instead of sBFS amortizes after 276% more SpMxV computations on
the overall average. As also seen in the table, the 2D methods amortize for a larger
number of SpMxV computations compared to the 1D methods. For example, the use
of mHPRCN instead of sHPCN amortizes after 178% more SpMxV computations.

6. Conclusion. Single- and multiple-SpMxV frameworks were investigated for
exploiting cache locality in SpMxV computations that involve irregularly sparse ma-
trices. For the single-SpMxV framework, two cache-size–aware top-down row/column-
reordering methods based on 1D and 2D sparse matrix partitioning were proposed
by utilizing the column-net and enhancing the row-column-net hypergraph models of
sparse matrices. The multiple-SpMxV framework requires splitting a given matrix
into a sum of multiple nonzero-disjoint matrices so that the SpMxV operation is com-
puted as a sequence of multiple input- and output-dependent SpMxV operations. For
this framework, a cache-size–aware top-down matrix splitting method based on 2D
matrix partitioning was proposed by utilizing the row-column-net hypergraph model
of sparse matrices. The proposed hypergraph partitioning (HP) based methods in
the single-SpMxV framework primarily aim at exploiting temporal locality in access-
ing input-vector entries, and the proposed HP-based method in the multiple-SpMxV
framework aims at exploiting temporal locality in accessing both input- and output-
vector entries.

The performances of the proposed models and methods were evaluated on a wide
range of sparse matrices. The experiments were carried out in two different settings:
cache-miss simulations and actual runs using OSKI. Experimental results showed that

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CACHE LOCALITY IN SPARSE MATRIX-VECTOR MULTIPLY C261

the proposed methods and models outperform the state-of-the-art schemes, and these
results also conformed to our expectation that temporal locality is more important
than spatial locality (for practical line sizes) in SpMxV operations that involve ir-
regularly sparse matrices. The two proposed methods that are based on 2D matrix
partitioning were found to perform better than the proposed method based on 1D par-
titioning at the expense of higher reordering overhead, where the 2D method within
the multiple-SpMxV framework was the clear winner.

REFERENCES

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair, A high performance algorithm using pre-
processing for the sparse matrix-vector multiplication, in Proceedings of Supercomputing
’92 (Minneapolis, MN), IEEE, Washington, DC, 1992, pp. 32–41.

[2] K. Akbudak, E. Kayaslan, and C. Aykanat, Hypergraph-Partitioning-Based Models and
Methods for Exploiting Cache Locality in Sparse-Matrix Vector Multiplication, Techni-
cal report BU-CE-1201, Computer Engineering Department, Bilkent University, Ankara,
Turkey, 2012; also available online at http://www.cs.bilkent.edu.tr/tech-reports/2012/BU-
CE-1201.pdf.

[3] I. Al-Furaih and S. Ranka, Memory hierarchy management for iterative graph structures, in
IPPS/SPDP, IEEE, Washington, DC, 1998, pp. 298–302.

[4] C. Aykanat, A. Pınar, and Ü. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[6] M. W. Berry, B. Hendrickson, and P. Raghavan, Sparse matrix reordering schemes for
browsing hypertext, in The Mathematics of Numerical Analysis, Lectures Appl. Math. 32,
AMS, Providence, RI, 1996, pp. 99–123.

[7] Ü. V. Çatalyürek and C. Aykanat, Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications, in Proceedings of the 3rd International Symposium on Solv-
ing Irregularly Structured Problems in Parallel, Irregular ’96, Lecture Notes in Comput.
Sci. 1117, Springer-Verlag, Berlin, 1996, pp. 75–86.

[8] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning based decomposition for parallel
sparse-matrix vector multiplication, IEEE Trans. Parallel Distributed Systems, 10 (1999),
pp. 673–693.

[9] Ü. V. Çatalyürek and C. Aykanat, PaToH: A Multilevel Hypergraph Partitioning Tool,
Version 3.0, Department of Computer Engineering, Bilkent University, Ankara, Turkey;
available online at http://bmi.osu.edu/∼umit/software.htm, 1999.

[10] Ü. V. Çatalyürek and C. Aykanat, A fine-grain hypergraph model for 2D decomposition of
sparse matrices, in Proceedings of the 15th International Parallel and Distributed Process-
ing Symposium, IEEE, Washington, DC, p. 118.

[11] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar, On two-dimensional sparse matrix partition-
ing: Models, methods, and a recipe, SIAM J. Sci. Comput., 32 (2010), pp. 656–683.

[12] J. M. Crummey, D. Whalley, and K. Kennedy, Improving memory hierarchy performance
for irregular applications using data and computation reorderings, Internat. J. Parallel
Programming, 29 (2001), pp. 217–247.

[13] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy, The design and imple-
mentation of a parallel unstructured Euler solver using software primitives, AIAA J., 1992
(1992), AIAA-92-0562.

[14] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.
Software, 38 (2011), p. 1.

[15] C. Ding and K. Kennedy, Improving cache performance in dynamic applications through data
and computation reorganization at run time, SIGPLAN Not., 34 (1999), pp. 229–241.

[16] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström, Recursive blocked algorithms and
hybrid data structures for dense matrix library software, SIAM Rev., 46 (2004), pp. 3–45.

[17] J. D. Frens and D. S. Wise, Auto-blocking matrix-multiplication or tracking blas3 perfor-
mance from source code, SIGPLAN Not., 32 (1997), pp. 206–216.

[18] G. Haase, M. Liebmann, and G. Plank, A Hilbert-order multiplication scheme for unstruc-
tured sparse matrices, Int. J. Parallel Emerg. Distrib. Syst., 22 (2007), pp. 213–220.D

ow
nl

oa
de

d
04

/0
8/

14
 to

 1
39

.1
79

.2
.2

50
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C262 KADIR AKBUDAK, ENVER KAYAASLAN, AND CEVDET AYKANAT

[19] H. Han and C. Tseng, Exploiting locality for irregular scientific codes, IEEE Trans. Parallel
Distributed Systems, 17 (2006), pp. 606–618.

[20] S. A. Haque and S. Hossain, A note on the performance of sparse matrix-vector multiplication
with column reordering, in Proceedings of the International Conference on Computing,
Engineering and Information, IEEE, Washington, DC, 2009, pp. 23–26.

[21] K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic,
European J. Oper. Res., 126 (2000), pp. 106–130.

[22] B. Hendrickson and T. G. Kolda, Partitioning rectangular and structurally nonsymmetric
sparse matrices for parallel processing, SIAM J. Sci. Comput., 21 (2000), pp. 2048–2072.

[23] D. B. Heras, V. B. Pérez, J. C. Cabaleiro, and F. F. Rivera, Modeling and improving
locality for the sparse-matrix-vector product on cache memories, Future Generation Comp.
Syst., 18 (2001), pp. 55–67.

[24] E. Im and K. Yelick, Optimizing Sparse Matrix Vector Multiplication on SMPs, in 9th SIAM
Conference on Parallel Processing for Scientific Computing, SIAM, Philadelphia, 1999.

[25] G. Jin and M. J. Crummey, Using space-filling curves for computation reordering, in Proceed-
ings of the Los Alamos Computer Science Institute Sixth Annual Symposium (published
on CD), Los Alamos National Labs, Sante Fe, NM, 2005.

[26] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar, hMeTiS: A Hypergraph Partitioning
Package Version 1.0.1, Department of Computer Science and Engineering, Army HPC
Research Center, University of Minnesota, Minneapolis, MN, 1998.

[27] J. Koster, Parallel Templates for Numerical Linear Algebra, a High-Performance Computa-
tion Library, Master’s thesis, Utrecht University, Utrecht, The Netherlands, 2002.

[28] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley–Teubner, Chich-
ester, UK, 1990.

[29] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley, Principles of
runtime support for parallel processors, in Proceedings of the 2nd International Conference
on Supercomputing, ICS ’88, ACM, New York, 1988, pp. 140–152.

[30] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera, Increasing data reuse of
sparse algebra codes on simultaneous multithreading architectures, Concurrency Comput.
Practice Experience, 21 (2009), pp. 1838–1856.

[31] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera, Performance optimization
of irregular codes based on the combination of reordering and blocking techniques, Parallel
Comput., 31 (2005), pp. 858–876.

[32] A. Pinar and M. T. Heath, Improving performance of sparse matrix-vector multiplication,
in Proceedings of the 1999 ACM/IEEE Conference on Supercomputing (CDROM), Super-
computing ’99, ACM, New York, 1999, p. 30.

[33] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[34] M. M. Strout and P. D. Hovland,Metrics and models for reordering transformations, in Pro-

ceedings of the 2nd ACM SIGPLAN Workshop on Memory System Performance (MSP04)
(Washington, DC), ACM, New York, 2004, pp. 23–34.

[35] O. Temam and W. Jalby, Characterizing the behavior of sparse algorithms on caches, in
Proceedings of Supercomputing ’92 (Minneapolis, MN), IEEE, Washington, DC, 1992,
pp. 578–587.

[36] S. Toledo, Improving memory-system performance of sparse matrix-vector multiplication,
IBM J. Research Development, 41 (1997), pp. 711–725.

[37] B. Ucar and C. Aykanat, Partitioning sparse matrices for parallel preconditioned iterative
methods, SIAM J. Sci. Comput., 29 (2007), pp. 1683–1709.

[38] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Rev., 47 (2005), pp. 67–95.

[39] R. Vuduc, J. W. Demmel, and K. A. Yelick, OSKI: A library of automatically tuned sparse
matrix kernels, J. Phys. Conference Series, 16 (2005), p. 521.

[40] J. White and P. Sadayappan, On improving the performance of sparse matrix-vector multi-
plication, in Proceedings of the International Conference on High-Performance Computing,
IEEE Computer Society, Los Alamitos, CA, 1997, pp. 578–587.

[41] A. N. Yzelman and R. H. Bisseling, Cache-oblivious sparse matrix–vector multiplication by
using sparse matrix partitioning methods, SIAM J. Sci. Comput., 31 (2009), pp. 3128–3154.

D
ow

nl
oa

de
d

04
/0

8/
14

 to
 1

39
.1

79
.2

.2
50

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

