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Abstract—We present an algebraic compression technique to
accelerate the computation of multiple monostatic radar cross
sections of arbitrary 3-D geometries. The method uses adaptive
cross approximation, followed by a recompression technique
to reduce the CPU time and the memory consumption. Each
scattering problem due to a single excitation is solved with
the multilevel fast multipole algorithm. The numerical results
demonstrate the efficiency and accuracy of the proposed method.

I. INTRODUCTION

There are many circumstances where the knowledge of the
radar cross section (RCS) of a target is crucially important. In
some cases, measurement of the RCS of a target may not be
possible or practical, leaving computation as the viable option.
Since most radars rely on the backscattering from a target,
computing the monostatic RCS (MRCS), where the incidence
and observation directions are the same, is needed more often
than the bistatic RCS. Computation of each MRCS value
requires a separate solution, which may be costly depending
on the size of the problem and the number of excitations. The
task becomes considerably harder when the goal is to compute
multiple MRCS values with high angular resolution [1].

Several methods are developed and used to speed up the so-
lution of problems with multiple right-hand sides (RHSs). For
instance, singular value decomposition (SVD) [2], interpola-
tive decomposition (ID) [3], and adaptive cross approximation
(ACA) [4] are algebraic methods that remove the redundancies
in the initial excitation RHS matrix and result in a fast solution.
Among these methods, ACA has two advantages: it has a low
computational cost and, unlike SVD and ID, it does not require
all elements of the excitation matrix, maintaining a relatively
low level of memory consumption [5].

In this paper, we propose a recompression technique that
incorporates SVD [6] on the matrices obtained from ACA
to reach a more efficient low-rank decomposition of the
RHS matrix. In other words, the main bottleneck of SVD,
i.e., its high computational complexity, is solved by applying
recompressed ACA (RACA) [7]. Due to the algebraic nature
of the proposed method, it can be used in combination with
all fast solvers [8], [9]. In this work, the solution of each
excitation (corresponding to a single RHS) is accelerated by
the multilevel fast multipole algorithm (MLFMA).

II. IMPLEMENTATION

The numerical solution of an electromagntic scattering
problem using the method of moments (MoM) requires a
discretization that yields a dense N × N matrix equation.
To accelerate the solution, various methods are proposed that
exploit the redundancies in the MoM matrix. One of the
most efficient methods is MLFMA, which has a complexity
of O(N logN) [8]. Alternatively, there are purely algebraic
methods. A subset of these methods is composed of solvers
based on hierarchical matrices [9]. We use MLFMA as a fast
solver for this work.

Although MLFMA may solve a problem with one RHS
rapidly, solving multiple MRCS problems is time consuming.
The matrix equation with an excitation matrix in the RHS can
be represented as

Z(N×N) ·X(N×M) = V (N×M), (1)

where Z ∈ CN×N is the matrix of interactions between N
testing and basis functions, X ∈ CN×M contains the unknown
coefficient vectors corresponding to the excitation vectors in
the RHS matrix V ∈ CN×M , and M is the number of
excitations. The matrix V (N×M) in (1) may contain linearly
dependent columns. For a given threshold ε, we use ACA to
compress and factorize the RHS matrix. Applying ACA on V
leads to

V (N×M) ≈ A(N×k) ·BH
(k×M), (2)

where A(N×k) ∈ CN×k, B(M×k) ∈ CM×k, and k denotes the
effective rank of V . To obtain a decomposition of V with an
effective rank k′ (k′ < k), we employ a recompression tech-
nique that incorporates the QR decomposition and computes
SVD in an efficient manner [6]. We apply a QR factorization
for A to get A(N×k) = QA(N×k) · RA(k×k) and for B to
obtain B(M×k) = QB(M×k) ·RB(k×k), where matrices QA

and QB are unitary matrices. Then, we perform a truncated
SVD with a given threshold ε on the product of RA and RH

B .
After this recompression, the final low-rank approximation
will be in the form of

V (N×M) ≈ ARACA
(N×k′) ·

(
BRACA

(k′×M)

)
H , (3)

where k′ is the effective rank of the RHS matrix and is smaller
than the rank k achieved by ACA. An approximate solution

745978-1-4799-3540-6/14/$31.00 ©2014 IEEE AP-S 2014



to (1) can be achieved by substituting (3) in (1) and rewriting
it as

X ≈
(
Z−1 ·A

)
·BH , (4)

where Z−1 denotes a standard solution, i.e., MLFMA in this
work, but other fast methods can also be used to accelerate
the solution.

III. NUMERICAL RESULTS

In this section, we investigate the 2-D MRCS values of
the Flamme geometry at a frequency of 4 GHz. As shown
in Fig. 1, the Flamme has a maximum length of 0.6 m.
The surface of the geometry is discretized with planar tri-
angles with an average mesh size of λ/10, which leads to
13, 386 unknowns. The Flamme geometry is illuminated

Fig. 1. Flamme geometry. The electrical size of the largest dimension of the
geometry is 8λ at 4 GHz.

with θ-polarized plane waves incident from an angular sector
defined by [θmin, θmax] = [30◦, 50◦] and [φmin, φmax] =
[45◦, 65◦]. The angular resolution is 0.5◦. The brute-force
(BF) simulations require 1681 runs. Figure 2 illustrates mul-
tiple 2-D MRCS results. The results obtained from RACA
are illustrated in Fig. 2(a). The relative error between the
proposed method (RACA) and BF runs is calculated via
100×|σBF − σRACA|/|σBF|max and illustrated in the Fig. 2(c).
The selected resolution of spherical incident angles, i.e.,
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Fig. 2. θθ-polarized 2-D MRCS of the Flamme. (a) 2-D MRCS obtained
from the RACA. (b) 2-D MRCS computed using the CS interpolation. (c) The
relative error of the RACA. (d) The relative error of the CS interpolation.

∆θ = ∆φ = 0.5◦, is less than the Nyquist resolution (i.e.,
∆θmax = ∆φmax = λ

2d = 3.58◦). As a consequence, the RHS
matrix will have linear dependencies. Using ACA algorithm
reduces the required solutions from 1681 to 43; the number
of solutions can be further reduced to 32 by incorporating
RACA. In other words, we have a compression rate of almost

98% in the RHS matrix. Table I summarizes all statistics of
this example, and as evident from the table, the simulation
time is reduced from almost 10.5 hours to about 18 minutes.
To analyze the efficiency of RACA, we use the cubic-spline
(CS) interpolation method to obtain 0.5◦ resolution from the
BF runs performed with 2.5◦ < 3.58◦ angular intervals. The
required number of BF runs in this case is 81. The results
of the CS interpolation are provided in Fig. 2(b). As shown
in Fig. 2(d), the error of the CS interpolation technique is
much higher than the error of RACA. The CS interpolation
method requires more runs and leads to a higher error rate that
indicates the efficiency of the RACA.

TABLE I
STATISTICS OF THE FLAMME SIMULATIONS

Number of Unknowns 13386
ACA & SVD Threshold 10−4

k in ACA 43
k′ of RACA 32

Time for BF Run (s) 38, 489.3
Time for RACA Run (s) 1, 058.7

Speed-up Factor 36.3

IV. CONCLUSION

We propose an efficient and low-complexity algorithm based
on RACA to accelerate the computation of multiple MRCS.
The results show that RACA is more accurate and more effi-
cient than interpolation techniques. The method incorporates
the QR decomposition and computes SVD in an efficient
manner. Due to the purely algebraic nature of the proposed
method, it can be combined with any fast solver.
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