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ABSTRACT

ANALYSIS OF LARGE MARKOV CHAINS
USING STOCHASTIC AUTOMATA NETWORKS

Oleg Gusak
Ph.D. in Computer Engineering
Advisor: Assoc. Prof. Tugrul Dayar
July, 2001

This work contributes to the existing research in the area of analysis of fi-
nite Markov chains (MCs) modeled as stochastic automata networks (SANs).
First, this thesis extends the near complete decomposability concept of Markov
chains to SANs so that the inherent difficulty associated with solving the un-
derlying MC can be forecasted and solution techniques based on this concept
can be investigated. A straightforward approach to finding a nearly completely
decomposable (NCD) partitioning of the MC underlying a SAN requires the
computation of the nonzero elements of its global generator. This is not feasi-
ble for very large systems even in sparse matrix representation due to memory
and execution time constraints. In this thesis, an efficient decompositional so-
lution algorithm to this problem that is based on analyzing the NCD structure
of each component of a given SAN is introduced. Numerical results show that

the given algorithm performs much better than the straightforward approach.

Second, this work specifies easy to check lumpability conditions for the
generator of a SAN. When there exists a lumpable partitioning induced by the
tensor representation of the generator, it is shown that an efficient iterative
aggregation-disaggregation algorithm (IAD) may be employed to compute the
steady state distribution of the MC underlying the SAN model. The results of
experiments with continuous-time and discrete-time SAN models show that the
proposed algorithm performs better than the highly competitive block Gauss-
Seidel (BGS) in terms of both the number of iterations and the time to converge

to the solution.

Finally, the performance of the TAD algorithm on continuous-time SANs



having relatively large blocks in lumpable partitionings is investigated. To
overcome difficulties associated with solving large diagonal blocks at each iter-
ation of the IAD algorithm, the recursive implementation of BGS for SANs is
employed. The performance of IAD is compared with that of BGS. The results

of experiments show that it is possible to tune TAD so that it outperforms

BGS.

Key words: Markov chain, Stochastic automata network, Near complete de-

composability, lumpability, iterative aggregation-disaggregation.
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OZET

BUYUK MARKOV ZINCIRLERININ RASSAL
OZDEVINIMLI AG KULLANILARAK COZUMLEMESI

Oleg Gusak
Bilgisayar Miuhendisligi, Doktora
Tez Yoneticisi: Dog. Dr. Tugrul Dayar
Temmuz, 2001

Bu ¢aligma, rassal 6zdevinimli ag olarak modellenen sonlu Markov zincirlerinin
¢oziimlemesi alaninda var olan arastirmaya katkida bulunmaktadir. Mk olarak,
bu tez Markov zincirlerinin neredeyse tamamen boltinebilirlik kavramin rassal
ozdevinimli aglara genisleterek, alttaki Markov zincirinin ¢oztilmesinde aslinda
var olan zorlugun kestirilmesini ve bu kavrama dayal c¢oziim tekniklerinin
aragtirilmasimi mumkin kilmaktadir. Bir rassal 6zdevinimli agin altindaki
Markov zincirinin neredeyse tamamen boltinebilir bloklara ayrigmig halini bul-
manin basit yolu, sisteme karsi gelen matrisin sifirdan farkli elemanlarinin
hesap edilmesini gerektirir. Bu, c¢ok buyik sistemler icin bellek ve uygu-
lama zamani sinirlamalarindan dolay: seyrek matris gosterimiyle dahi mimkin
degildir. Bu tezde, bu problem i¢in, verilen bir rassal 6zdevinimli agin herbir
bilegenini ¢oztimlemeye dayalh, bir etkili ayrigtirmali ¢6ztim algoritmasi sunul-
maktadir. Sayisal sonuglar, verilen algoritmanin basit yontemden ¢ok daha iyi

randiman verdigini gostermektedir.

Tkinci olarak, bu ¢aligma bir rassal 6zdevinimli aga karsi gelen matris i¢in
kontrol edilmesi kolay birlestirilebilirlik kogullar1 vermektedir. Sisteme kars
gelen matrisin tensor gosteriminin neden oldugu birlestirilebilir bir bolinme
var oldugunda, rassal 6zdevinimli ag modelinin altindaki Markov zincirinin
degismez durum dagihminin etkili bir dolayli birlestirme-ayrigtirma algorit-
mas1 kullanilarak bulunabilecegi gosterilmektedir. Sturekli-zamanli ve kesintili-
zamanh rassal 6zdevinimli ag modelleri tizerinde yapilan deneylerin sonuclari,
onerilen algoritmanin son derece ¢etin bir rakip olan blok Gauss-Seidel’den hem
ardigik tekrar sayisinda hem de ¢oziime yakinsama igin gecen siire yontunden

daha iyi randiman verdigini gostermektedir.



vil

Son olarak, dolayli birlegtirme-ayristirma algoritmasinin bagarimi, birlegtiri-
lebilir bolinmelerde nispi olarak biiyiik bloklara sahip strekli-zamanh rassal
ozdevinimli aglar tizerinde arastirilmaktadir. Dolayh birlestirme-ayrigtirma
algoritmasinin herbir ardigik tekrarinda, buyuk bloklari ¢6zmede kargilagilan
guclikleri agsmak i¢in rassal 6zdevinimli aglar i¢in blok Gauss-Seidel’in 6zyinele-
meli uygulamasi kullanilmaktadir. Dolayli birlestirme-ayristirma algoritmasinin
bagarimi blok Gauss-Seidel’inki ile kargilagtirilmaktadir. Deney sonuclari, dolayh
birlestirme-ayrigtirmay1 blok Gauss-Seidel’t gegecek sekilde ayarlamanin mim-

kiin oldugunu gostermektedir.

Anahtar kelimeler: Markov zinciri, rassal 6zdevinimli aglar, neredeyse tama-

men boliinebilirlik, birlestirilebilirlik, dolayl birlegtirme-ayrigtirma.
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Chapter 1

Introduction

In most cases, a system under investigation can be described in terms of states
and transitions among them. If the time spent in any state of the system
is exponentially distributed, the system can be modeled as a Markov process
[12,57]. If the state space of a Markov process is discrete, the Markov process
is called a Markov chain (MC) [4,29,35,40,44,62]. A continuous-time Markov
chain (CTMC) is a continuous-time stochastic process X (¢) that satisfies the
memoryless (Markov) property. In other words, for all integers n and for any

sequence to < {1 < ... <1, <t the following relation holds

Prob{X(¢) < z|X(to) = o, X(t1) = x1,..., X(1,) = 2, }
= Prob{X(t) < z|X(t,) = z.},

where z, k = 0,1,...,n, denotes the state of the Markov process at time ;.

For a discrete-time Markov chain (DTMC), the state of the system is ob-
served at a discrete set of times. Hence, the time parameters ¢, can be omit-
ted. As in the continuous-time case, the conditional probability p;; of mak-
ing a transition to state z,,, = j from state z, = ¢ is independent of the
states xg,x1,...,2,-1. The conditional probabilities p;; are called single-step
(or one-step) transition probabilities [4,62]. If p;; are independent of n, the
corresponding DTMC is said to be homogeneous. In this work, we consider

homogeneous DTMCs and CTMCs having finite state space.

A finite DTMC is described by the one-step transition probability matrix

1
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P in which the ijth entry is equal to p;; and }°; p;; = 1 for all 2. Similar to a
DTMC, a CTMC is represented by the transition rate matrix ) in which ¢;;
corresponds to the number of transitions from state i to state j per unit time

and 37, q;; = 0 for all 4.

When transitions between states of a MC are known, the steady state analy-
sis of the underlying system amounts to computing the steady state probability
vector 7 of the MC, where =; is the limiting probability of finding the MC in
state ¢ in the long run. Assuming that the DTMC has a single irreducible
subset of states and is aperiodic (see for instance [44,62] for classification of

states), # can be obtained from the system of linear equations
P =nx ||zl = 1. (1.1)

Hence, 7 is also a stationary distribution. When the system is modeled as a

CTMC, 7 can be obtained from the system of linear equations

Q@ =0, [|r[h =1L (1.2)

Introduced by A.A. Markov in 1907, over the years Markovian modeling has
become a well established theory. Nowadays, MCs are used for the analysis of
stochastic systems arising in different application areas, and in particular, for

modeling computer and communication systems.

Complexity of the current applications in communications and computer
systems is constantly increasing. Consequently, the complexity and the size of
the Markov chains employed in the analysis of these systems is an obstacle.

In the next section, we review basic methods that are used for the analysis of

large MCs.
1.1 Methods for the analysis of large Markov
chains

Various techniques have been developed for the analysis of large MCs. For a

large Markov chain having special structural properties, it may be possible to



vnAaAriiie 1. tiNtI lJJUU L HUIN D}

avoid the generation of the underlying state space. For instance, for product
form queueing networks [3,31,37], stationary probabilities can be obtained as
closed-form expressions. Another class of MCs having special structure lend

themselves to matrix-geometric solution methods [45,46].

Assuming that a large MC does not fall into the class of MCs having special
structural properties, two major difficulties need to be overcome during the
analysis of the underlying system. First, difficulties arise at the modeling stage
when a large system must be described in terms of states and transitions among
them. Difficulties of the second type arise when computing the stationary

probability vector of the underlying Markov chain.

To overcome difficulties when modeling large Markovian systems, the com-
putational low-level model that is the transition matrix of a MC should be
separated from the high-level model description [4,35]. This must be done due
to the following reasons. First, the high-level description gives a more clear un-
derstanding of the modeled system to the researcher. Second, compactness of
the high-level description can be utilized at the analysis step by storing in core
memory larger MCs than can be stored with a low-level description. Third,
a compact description avoids the generation of the low-level model and errors
associated with this process. Finally, a compact high-level description may
reveal properties of the MC that lead to a more efficient analysis. It should be
emphasized that high-level descriptions are usually applicable in MCs having
more or less repetitive (regular) structure. Otherwise, utilization of a high-level
formalism is not useful and brings only additional overhead to the analysis of

the model.

One of the high-level descriptions that is widely used for the generation of
large MCs is the generalized stochastic Petri net (GSPN) formalism [1,2,48,56].
It was originally introduced by C.A. Petri in 1962 in [49]. A Petri net (PN)
is a directed bipartite graph whose nodes are places and transitions. Arcs
of the graph are divided into two classes. Input arcs lead from input places
to transitions. Qutput arcs lead from transitions to output places. A finite
number of tokens is associated with a PN. Tokens are distributed among places
and each place may contain an arbitrary number of tokens. A marking or a

state of a PN is a possible assignment of tokens to the places of the PN.
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A transition of a PN is enabled and can be fired if each of its input places
contains at least one token. When a transition is fired, tokens are moved from
input places to output places according to arcs associated with the transition.
Change in the distribution of tokens among the places of a PN after firing a

transition corresponds to a state change in the PN.

In a GSPN, each transition has an associated firing time. The firing time
may be zero or exponentially distributed. Transitions that have zero firing time
can be fired immediately when they are enabled, whereas an enabled transition
with a nonzero firing time is triggered according to the exponential distribution
having the parameter associated with the transition. Recent results [11, p.
79] show that hierarchical representations arising in queueing network and
superposed stochastic Petri Net formalisms [7,10,11,14,21,39] lend themselves
naturally to distributed steady state analysis.

Another modeling paradigm called Stochastic Automata Networks (SANs)
[6,8,13,18,23-25,27,28,50-55,62,63,67] can be employed to model large finite
MCs. SANs provide a methodology for modeling large systems with interact-
ing components. The main idea is to decompose the system of interest into
its components and to model each component separately. Once this is done,
interactions and dependencies among components can be brought into the pic-
ture and the model finalized. With this decompositional approach, the global
system ends up having as many states as the product of the number of states of
the individual components. The benefit of the SAN approach is twofold. First,
each component can be modeled much easier compared to the global system
due to state space reduction. Second, space required to store the description
of components is minimal compared to the case in which transitions from each
global state are stored explicitly. However, all this happens at the expense of

increased analysis time [6,8,13,18,24,28,63,67].

Similar to the SAN formalism, the multilevel decomposition introduced in
[9] uses tensor products to represent the transition matrix of a MC. In this
approach, the transition matrix is partitioned into blocks, and each block of

the partitioning is represented by a sum of tensor products.

Somewhat distant from the methods described so far are stochastic bounding
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techniques. With these methods, lower and upper bounds on the stationary
probability vector of the original MC or parts of it are computed [60, 65].
Generally, the approach is coupled with some kind of state space reduction
technique so that the measure of interest can be obtained much easier than

using the original MC (see for instance [47]).

There are other techniques that can be used to cope with the state space
explosion problem in large MCs. A detailed review of such techniques can be

found in [36]. In this work, we concentrate on the numerical solution of MCs

modeled as SANs.

In the next section, we briefly mention existing analysis methods for SANs

and discuss what can be done to improve them.

1.2 Analysis of MCs modeled as SANs

Different solution methods with applications to SANs have been studied [6,8,
13,18,24,28,62,63,67]. The existence of an efficient vector-descriptor multipli-
cation algorithm [24] hints at employing iterative methods for computing the
stationary probability vector of the underlying MC. See chapter 3 in [62] for
the description of iterative methods for MCs. In [67], iterative methods based
on splittings (i.e., Jacobi, Gauss-Seidel, successive over-relaxation) and their

block versions are introduced for SANs. Results with iterative aggregation-

disaggregation (IAD) [19,20,41,59,61,64] type solvers for SANs appear in [6].

An important issue in choosing an efficient iterative solver for SANs is the
conditioning [43] associated with the underlying Markov chain. Recent nu-
merical experiments [20] show that two-level iterative solvers perform very
well with nearly completely decomposable (NCD) partitionings [17] having
balanced block sizes when the MC to be solved for its stationary probability
vector is ill-conditioned. Recall that a DTMC is said to be NCD if its one-step
transition probability matrix can be symmetrically permuted to a block form
in which all the off-diagonal blocks have relatively small elements compared to

the elements in the diagonal blocks [62, p. 286].
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It should be emphasized that iterative aggregation-disaggregation based on
NCD partitionings has certain rate of convergence guarantees [61] that may
be useful for very large MCs. On the other hand, standard iterative methods
applied to an ill-conditioned MC converge slowly. Hence, information about
NCDness of a MC can be used to suggest the appropriate iterative solver.
Thus, one of the directions that is worth investigating is the NCD analysis of
MCs modeled as SANs.

The compact SAN description can be also employed for studying structural
properties of the underlying MC that may lead to more efficient analysis. For
instance, if each block in a partitioning of the MC has constant row sums,
i.e., the MC underlying the SAN model is lumpable [38], the analysis can be
significantly simplified. Lumpability is especially important for discrete-time
SANs, which are usually evaded by researchers because of the relatively high

density of nonzeros in their transition probability matrices.

In the first part of this thesis, we extend the concept of near complete
decomposability to SANs so that the inherent difficulty associated with solving
the underlying MC can be forecasted and solution techniques based on this
concept can be investigated. In doing this, we utilize the graph theoretical

ideas for SANs given in [28].

In the second part, we specify lumpability conditions for SANs and introduce
an efficient iterative aggregation-disaggregation (IAD) algorithm for lumpable
SANs. We also model a wireless communication system as a discrete-time SAN,
show that it is lumpable, and demonstrate how difficulties associated with the

analysis of discrete-time SANs can be overcome using the introduced algorithm

for lumpable SANs.

In the next section, we discuss the organization of the thesis and briefly

describe the contents of each chapter.
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1.3 Layout of the thesis

In the first part of the next chapter, we introduce the SAN paradigm, review
its basic concepts, and give examples of continuous-time SANs. In its second
part, we make some assumptions regarding the description of a continuous-time
SAN model and show what can be done if the given model does not satisfy the

assumptions.

In chapter 3, we design a discrete-time SAN model of a current application
in wireless communications. We first introduce the descriptor of a discrete-time
SAN. Then we show how the SAN model described in [68] can be improved and
extended to a more general case by introducing an additional type of service

to the system.

In chapter 4, we present a three step algorithm that finds an NCD parti-
tioning of the MC underlying a SAN based on a user specified decomposability
parameter without computing the global generator matrix. In doing this, we
proceed step by step introducing definitions, stating propositions, making re-
marks, and illustrating with small examples the ideas on which our algorithm
is based. We also provide a summary of the complexity analysis of the NCD
partitioning algorithm and numerical results with the algorithm on three ap-

plications.

In chapter 5, we investigate block partitionings of a matrix that is a sum
of tensor products. Using these properties, we derive lumpability conditions
for discrete-time and continuous-time SANs and introduce an efficient TAD

algorithm for lumpable SANs.

In chapter 6, we analyze the discrete-time SAN model of the wireless com-
munication system using TAD for lumpable SANs and present the results of
numerical experiments with TAD and Block-Gauss Seidel (BGS) [58] on var-
ious continuous-time SAN models. In the end of the chapter, we discuss the
case of lumpable SANs having unfavorable partitionings and its implications

on the IAD algorithm.

Chapter 7 contains concluding remarks. The appendix includes definitions
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and properties of tensor operators, the continuous-time SAN models used in
the numerical experiments, the description of the state classification (SC) al-
gorithm whose output is used by the NCD partitioning algorithm and the TAD
algorithm for lumpable SANs, the NCD partitioning algorithm and its com-
plexity analysis, and the TAD algorithm for lumpable discrete-time SANs.



Chapter 2

SAN formalism

In the first section of this chapter we introduce the SAN formalism, give defini-
tions of its components and discuss their characteristics. The section ends with
two examples of continuous-time SAN models. In the second section, we spec-
ify our assumptions on the description of a SAN, define the equivalence of two
SAN descriptions and show how a SAN that does not satisfy the assumptions

can be transformed to an equivalent SAN that meets the requirements.

2.1 Overview

In a SAN (see [62], chapter 9), each component of the global system is mod-
eled by a stochastic automaton. When automata do not interact (i.e., when
they are independent of each other), description of each automaton consists of
local transitions only. In other words, local transitions are those that affect the
state of one automaton. Local transitions can be constant (i.e., independent
of the state of other automata) or they can be functional. In the latter case,
the transition is a nonnegative real valued function that depends on the state
of other automata. Interactions among components are captured by synchro-
nizing transitions. Synchronization among automata happens when a state
change in one automaton causes a state change in other automata. Similar to

local transitions, synchronizing transitions can be constant or functional.
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A continuous-time Markovian system of N components can be modeled
by a single stochastic automaton for each component. Local transitions of
automaton i (denoted by A?) are modeled by local transition rate matrix
Q;i). When the components of the system do not interact among each other,
the underlying continuous-time MC corresponding to the global system can
be obtained by the tensor sum of the local transition rate matrices of the

automata. We refer to the tensor representation associated with the CTMC as

the descriptor of the SAN.

Each of F synchronizing events introduces two types of matrices to the SAN
description. These matrices are called the synchronizing event matrix and the
diagonal corrector matrix. For automaton ¢ and synchronizing event j, we have
the synchronizing event matrix Q((jj) and the diagonal corrector matrix Qg) both
of order equal to that of the local transition rate matrix QEZ) The automaton
that triggers a synchronizing event is called the master, the others that get
affected are called slaves. Matrices associated with synchronizing events are
either transition rate matrices (corresponding to master automata) or transi-
tion probability matrices (corresponding to slave automata). When they are
rate matrices, each diagonal element in the diagonal corrector matrix is the
negated sum of the off-diagonal elements in the corresponding synchronizing
event matrix. When they are transition probability matrices, each diagonal
element of the corrector matrix is the sum of the corresponding row elements

in the synchronizing event matrix.

Synchronizing events introduce additional tensor products to the descriptor
thereby complicating the SAN formalism. Since a tensor sum may be written
as a sum of tensor products, it is possible to express the descriptor as a sum
of Ordinary Tensor Products (OTPs) in the absence of functional transitions.
When functional transitions are present, the descriptor is formed of Generalized

Tensor Products (GTPs, see [24], for instance).

Summarizing the above, we can express the descriptor of a SAN as

Q=Qi+Q.+Q., (2.1)
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where
N " E N E N
QZZ@QZ > Q6:Z®Q£ZJ)7 Q€:Z®Q£ZJ)7
=1 7=11=1 7=14=1
® is the tensor product operator, @ is the tensor sum operator (see appendix

8.1 for the definitions of the tensor operators). When there are functional

transitions, tensor operations become generalized tensor operations.

Assuming that automaton i has n; states, the global system has n = T[], n;
states. The global state s of the system maps to the state vector (s.A1), s A?),
oy 8ANN: that is, s« (s AD s AP s AN where s AP denotes the
state of A®),

An important issue in the analysis of a SAN is the concept of functional

dependency among the automata of the SAN.

Definition 2.1 We denote by AD[AW)] a functional dependency between au-
tomata AY and A® when the value of at least one functional transition of
AW depends on the state of A®). We say, A functionally depends on A®.
More generally, AD[AM AP . AW] indicates that values of the functional
transitions of AW depend on sAM s A® . s AW,

Before we define cyclic functional dependencies among automata of a SAN, we

introduce the definition of the dependency graph of a SAN.

Definition 2.2 The dependency graph G(V,E) of a SAN is the directed graph
(digraph) associated with the automata A®, i = 1,2,... N of the SAN in
which the vertex v; € V represents AY and the edge (v;,vx) € € if AD[A®)].

Definition 2.3 We say that there is a cyclic functional dependency among the
automata of a SAN if a topological ordering of its dependency graph does not

exist.

Detailed description of the topological ordering algorithm for digraphs can be
found in [15, pp. 485-487].
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We illustrate the SAN formalism on two simple continuous-time SAN models
that have respectively two and three automata. Observe that neither of the

SAN models have cyclic functional dependencies.

Example 2.1 Consider a SAN [62, pp. 470-472] thal is formed of two au-
tomata (N=2) having 2 and 3 states and two synchronizing events (F=2).

Automaton 1 is given by

R e B N R R
0 0 o Ay 0 “ 0 —\,

and automaton 2 is given by

om0 100 100
(2) _ _ (2) — 3 (2) —
Ql - 0 Ha M2 7@61 - 1 00 7@61 - 010 3
0 0 0 100 0 0 1
0 00 00 O
Q=10 00 |,QP=|00 o0
H3 00 0 0 —H3

From equation (2.1), the descriptor of the SAN can be obtained as

Q = Ql + Qe + Qe
2 ' 2 2 ' 2 2
- DL+ L@
=1 7=11:=1 7=11=1
— Q50+ QY 50+ Q) 5 0P + 0 & QP + QY 0 QL -
—(M + 1) 5} 0 A 0 0
0 —()\1 —|— /lg) H2 0 )\1 0
H3 0 —(/\1 + ,ug) 0 0 )\1
)\2 0 0 —()\2 + /Ll) H1 0
A2 0 0 0 —(A2 + p2) 2
)\2 + H3 0 0 0 0 —()\2 + ,ug)
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Example 2.2 In this example we consider a continuous-time SAN that con-
sists of 3 automata (N = 3) and 2 synchronizing events (F = 2). The second
automaton has three states and each of the other two automata has two states.
The local transition rate matrixz of the third automaton has the functional tran-
sition f. We have f = 3 when A" is in state 1, and f = 5 when AD is
in state 2. The master of synchronizing event 1 is A®) and the master of

synchronizing event 2 is A®. The matrices are

(1) -2 2 (2) =2l (3) - f
Ql = 7@1 = 2 _5 3 7@1 = )

o
)

, 10 01\
(1) — H(1) — (1) _ 1) —7
Qel Qel (0 0)7@62 (1 O)?QGQ )
00 1 00 5 50 0
QU =1100[.0P=1,g%=|000[|.Q¥=| 00 0|,
10 0 00 0 00 0

o= (20 )en= () 1)em-on-r

The generator matrixz of the underlying MC' is given by

—12 3 2 0 0 0 2 0 0 0 5 0

0 —14 0 2 5 0 0 2 0 0 0 5

2 0 —10 3 3 0 0 0 2 0 0 0

5 2 0 —12 0 3 0 0 0 2 0 0

1 0 3 0 -9 3 0 0 0 0 2 0

B 3 1 0 3 0 —11 0 0 0 0 0 2
0= 1 0 0 0 5 0 —-13 5 2 0 0 0
0 1 0 0 0 ) 0 -8 0 2 0 0

0 0 1 0 0 0 2 0 —-11 5 3 0

0 0 0 1 0 0 0 2 0 —6 0 3

0 0 0 0 1 0 1 0 3 0 =10 5

0 0 0 0 0 1 0 1 0 3 0 =5
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2.2 Continuous-time SAN description

There is no standard specification for the description of a continuos-time SAN
model. In this section, we state definitions and propositions that enable us to
transform a continuous-time SAN description to one that is more convenient

to work with when developing the algorithms introduced in chapters 4 and 5.

Before we introduce definitions and propositions regarding the description

of a SAN, we define the equivalence of two SAN descriptions.

Definition 2.4 Two SAN descriptions are said to be equivalent to each other

if and only if their global generator matrices given by equation (2.1) are equal.

Without loss of generality, we restrict ourselves to the case in which row

sums of synchronizing transition probability matrices are either 0 or 1.

Definition 2.5 A SAN description is said to be proper if and only if each

synchronizing transition probability matriz has row sums of 0 or 1.

The SAN descriptions of the three applications we consider in the numerical
experiments are proper. However, in a given SAN description, row sums be-
tween 0 and 1 can very well be present in synchronizing transition rate matrices.

Proposition 2.1 shows what should be done when such a case is encountered.

Proposition 2.1 The description of a SAN that is not proper can be trans-
formed to an equivalent SAN description that is proper.

Proof. Without loss of generality, consider a SAN description of N automata
and one synchronizing event. There are two possible cases. In the first case, row
sums of the synchronizing transition probability matrix Qg’f) corresponding to
slave automaton k are all equal to some constant 3 such that 0 < # < 1. This is
the trivial case; we can replace ng) with fof) = %ng) and ijl”) with ijl”) =
ﬁQg“), where m is the index of the master automaton of the synchronizing

event. Row sums of the transformed matrix ng) are 1. In the second case,
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row sums of Qg’f) are not equal and some are between 0 and 1. This implies
that transition rates of the master automaton m of the synchronizing event
depend on the state of automaton k. Therefore, it is possible to replace Q((ff)
with a matrix that has row sums of 0 or 1 by introducing functional transitions
to Qf;ln) as follows. Let 3, [ = 1,2,...,ng, be the sum of row [ in Q((ilf) We
replace ng) with fof) in which Qg’f)(z,]) = ng)(z,])/ﬁz if 0 < B < 1, else
Qg’f)(z,]) = Qg’f)(z,]), for y = 1,2,...,n,. We also replace Qg”) with Qg”) in
which QU (i,j) = BQUI(i,5) if 0 < By < 1, else QUM(i,j) = QU™M(i, j), for
i,j =1,2,...,n,, when A® is in state I. The transformed matrix lef) has

row sums of 0 or 1.

Given a synchronizing event, the above modifications must be made for each
of its synchronizing transition probability matrices that has row sums between 0
and 1. This implies that nonzero elements in the synchronizing event transition
rate matrix of the corresponding master automaton may need to be scaled
multiple times with values that depend on the state of multiple slave automata.
After modifying the synchronizing event matrices, the corresponding diagonal
corrector matrices must also be modified accordingly. The new SAN description
has synchronizing transition probability matrices with row sums of 0 or 1, and
therefore is proper. The generalization to F (> 1) synchronizing events is

straightforward. O

Observe that the transformation of a SAN description discussed in the proof
of Proposition 2.1 may cause the number of functional elements in the synchro-
nizing transition rate matrices of automata to increase. However, the number
of synchronizing events as well as the nonzero structure of the synchronizing

transition matrices of automata remain unchanged.

Now we introduce a definition related to the separability of synchronizing

transition rates from local transition rates.

Definition 2.6 Synchronizations are said to be separable from local transi-
tions in a given SAN description if and only if for any synchronizing event t

whose master is automaton m and 1,5 = 1,2,...,n,, Qg”)(z,]) # 0 implies

QI"(i.4) = 0.
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Definition 2.6 may seem to be specifying an artificial condition at first, yet
the condition is satisfied by the three applications we consider. As we shall see
in chapter 4, this property enables the preprocessing of local transition rate
matrices separately from synchronizing transition matrices which significantly
improves the complexity of the NCD partitioning algorithm we propose. Even
though the three SAN descriptions we consider have separable synchroniza-
tions, one may very well encounter those that do not satisfy this property.
Proposition 2.2 shows that a SAN description whose synchronizations are not

separable can be handled in the framework discussed in this paper.

Proposition 2.2 The description of a SAN having synchronizations that are
not separable from local transitions can be transformed to an equivalent SAN

description whose synchronizations are separable from local transitions.

Proof. Assume that the given SAN description does not satisfy the condition
in Definition 2.2. Without loss of generality, let ¢ be the event, m its master,
and (7, j) the indices of the problematic element. Decompose ng) into three

terms as
Q" = R + Qi )us] — Q" (i, jyusu]

where wu; is the 2th column of the identity matrix. Here R;m) is a transi-
tion rate matrix, the second term is a matrix with a single nonzero transition
rate at element (7,7) and the third term is the diagonal corrector of the sec-
ond term. Now, let R;m) be the local transition rate matrix of automaton
m and introduce the new synchronizing event v with master automaton m;
QU™ (= Q;Tr)(z,J)uzuf) is the rate matrix associated with automaton m and

synchronizing event v, and Qg”)(: —ng)(z,j)uzu?) is its diagonal corrector.
All other matrices corresponding to synchronizing event v are equal to identity.

Now, recall the following identity from tensor algebra
A2 @M +QI+QI @B = (A8QM e B)+(10Q e )+ (10QI o)

and compare its right-hand side with equation (2.1). The new SAN description

has separable synchronizations.

The generalization to the cases when event ¢ has more than one problematic
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element and the SAN description has more than one synchronizing event that

are not separable from local transitions is straightforward. O

The number of synchronizing events in the new SAN description obtained
through the transformation discussed in the proof of Proposition 2.2 is larger
than the number of synchronizing events in the original SAN. The difference
in the number of synchronizing events corresponds to the number of the syn-
chronizing events in the original SAN that are not separable. Nevertheless,
assuming that identity matrices are not stored explicitly, the described trans-
formation does not increase the number of nonzeros in the transformed SAN

description.

Our next definition related to the SAN description involves the number of
nonzero elements in synchronizing transition rate matrices. Without loss of
generality, we restrict ourselves to the case where all synchronizing events in a

SAN are simple.

Definition 2.7 Synchronizations in a given SAN description are said to be
simple if and only if for any synchronizing event t whose master is automaton

m, QU has only one nonzero element.
J et

In a SAN description whose synchronizations are simple, each synchronizing
event can be characterized by a value that corresponds to the synchronizing
transition rate of the event. In chapter 4, we show how to take advantage of
this property. In most of the cases, we will not encounter SAN descriptions
whose synchronizations are simple. The next proposition shows how SAN
descriptions that do not satisfy the condition of Definition 2.7 can be handled

in the framework of our approach.

Proposition 2.3 The description of a SAN having synchronizing events thal
are not simple can be transformed to an equivalent SAN description whose

synchronizing events are simple.

Proof. Assume that the given SAN description does not satisfy the condition
in Definition 2.7. Without loss of generality, let ¢ be the event, m its mas-

ter, and nz the number of nonzeros in Qg”) Decompose Qgr) into nz simple
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synchronizing transition rate matrices thereby creating nz new synchronizing
events with master automaton m. The slave automata of the new synchro-
nizing events are the slave automata of synchronizing event ¢. The transition
probability matrices and their diagonal correctors associated with the new slave
automata are respectively equal to the transition probability matrix and its di-
agonal corrector associated with the slave automata for synchronizing event ¢.
All other matrices corresponding to the new synchronizing events are equal to

identity. The new SAN description has simple synchronizations.

If the SAN description has more than one synchronizing event that are
not simple, the decomposition presented in this proof must be applied to each

synchronizing event that does not satisfy the condition of Definition 2.7. a

Application of the transformation described in the proof of Proposition 2.3
to a SAN description whose synchronizing events are not simple leads to an
increase in the number of synchronizing events. The number of the simple
synchronizing events in the new SAN description is equal to the number of
nonzero elements in the synchronizing transition rate matrices of the original
SAN. Note that the described transformation does not change the synchroniz-
ing transition probability matrices and their diagonal correctors. Hence, it is
possible to keep the number of nonzero elements in the new SAN description

the same as in the original SAN description.

2.3 Conclusion

In this chapter we presented basic definitions of SAN formalism, its components
and their description. We have shown that, in a SAN, a Markovian system of
loosely connected components is modeled by a stochastic automaton for each
component. In a continuous-time SAN, the description of each automaton
consists of a local transition rate matrix and two transition matrices per each

synchronizing event taking place in the system.

We have also seen that transitions in the matrices of automata can be con-

stant or functional. In the latter case, the value of a function depends on the
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state of other automata. Functional dependencies among automata can be
characterized by the dependency graph G that may be acyclic or may contain
cycles. As we will see in chapters 4 and 5, cyclic dependencies among automata

introduce additional problems to the analysis of SANs.

We also made assumptions regarding the description of a SAN which is
suitable to work with when developing the algorithms in chapters 4 and 5. We
showed that if the description of a SAN does not satisfy the requirements in
section 2.2, then it can be transformed to an equivalent SAN description that

meets the requirements.

In the next chapter, we introduce a wireless ATM system and model it as a

discrete-time SAN.



Chapter 3

Discrete-time SAN model of a
wireless ATM system

Similar to continuous-time SANs (see section 2.1), a discrete-time system of N
components can be modeled by a single stochastic automaton for each com-
ponent. When there are £ synchronizing events in the system, automaton k
has the corresponding transition probability matrix Pe(jk) that represents the
contribution of A®) to synchronization j € {1,2,..., E} (see [26, p. 333]).
The underlying discrete-time MC (DTMC) corresponding to the global system

can be obtained from

P :Zépgﬂ. (3.1)

7=1k=1
We refer to the tensor representation in equation (3.1) associated with the

DTMC as the descriptor of the discrete-time SAN.

The original formula introduced in [50] to study discrete-time SANs is given
by
P=@LY+3(Q R - NP, (3.2)
k sk k

k)

where L) are the local transition matrices, R¥) are the synchronization ma-

trices, and N(® are the normalization matrices. Note that this formula is the
same as the formula for continuous-time SANs (2.1) in which the tensor sum

is replaced with a tensor product for the local transitions.

20
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We consider the form of the descriptor in equation (3.1) rather than (3.2)
since it is compact and easier to work with. Note that (3.2) can be transformed

to (3.1) as

L*) 1<k<N, j=1

, 1<ESN, 1<s<S, j=s+1,
—N® k=1,1<s<S, j=5+s+1,
N® 2<E<N, 1<s<8,j=854s+1,

pk) —

€5

where S is the number of synchronizing events in (3.2) and £ =25 + 1.

The underlying DTMC of a discrete-time SAN is generally a dense ma-
trix unlike the CTMC corresponding to a continuous-time SAN. The matrices
Pe(jk) are relatively dense compared to their continuous-time counterparts im-
plying large number of floating-point arithmetic operations in the generalized
descriptor-vector multiply algorithm (see [24, p. 404]) used in iterative solution
methods. Hence, even though the DTMC need not be generated and stored

during SAN analysis, discrete-time SANs are often evaded by researchers.

In the next 3 sections, we introduce the wireless ATM model that is inves-
tigated. In doing so, we first describe the system, then introduce the basic
model with two types of services, and then add a third service giving a more

general model.

3.1 Description of the system

The application that we consider arises in wireless asynchronous transfer mode
(ATM) networks [30]. In [68], a multiservices resource allocation policy (MRAP)
is developed to integrate two types of service over a time division multiple ac-
cess (TDMA) system in a mobile communication environment. These are the
constant bit rate (CBR) service for two types of voice calls (i.e., handover calls
from neighboring cells and new calls) and the available bit rate (ABR) service
for data transfer. See [30] for a detailed description of CBR and ABR services.

A single cell and a single carrier frequency is modeled.

The TDMA frame is assumed to have (' slots. Handover CBR requests have
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priority over new CBR calls and they respectively arrive with probabilities py,
and p,. We do not consider multiple handover or new CBR call arrivals during

a TDMA frame since the associated probabilities with these events are small.

Each CBR call takes up a single slot of a TDMA frame but may span
multiple TDMA frames, whereas each data packet is small enough to be served
in a single TDMA slot. When all the slots are full, incoming CBR calls are
rejected. The number of CBR calls that may terminate in a given TDMA
frame depends on the number of active CBR calls, but can be at most M, and

hence is modeled as a truncated binomial process with parameter p;.

Data are queued in a FIFO buffer of size B and has the least priority. The
arrival of data packets is modeled as an on-off process. The process moves
from the on state to the off state with probability « and from the off state
to the on state with probability 4. The load offered to the system is defined
as A = #/(a + ). Assuming that the time interval between two consecutive
on periods is ¢, the burstiness of such an on-off process is described by the
square coefficient of variation, S¢ = Var(t)/[E(¢)]®>. In terms of A and Se,
B=2X1-X)/(Se+1—=X)and a=3(1 — )/

When the on-off process is in the on state, we assume that ¢ € {0,1,2,3}
data packets may arrive with probability pg. Then the mean arrival rate of
data packets is defined as p = 3°7_, ¢ X pg;. Hence, the global mean arrival rate
of data packets is given by I' = Ap. If the number of arriving data packets
exceeds the free space in the buffer plus the number of free slots in the current
TDMA frame, then the excess packets are blocked. The arrival process of
data and the service process of CBR calls we consider are quite general and
subsume those in [68]. Furthermore, when compared to the model in [68], our

SAN model is scalable since its number of synchronizing events is independent

of C.

The performance measures of interest are the dropping probability of han-
dover CBR calls, the blocking probability of new CBR calls, and the blocking
probability of data packets. Note that dropping refers to the rejection of an

existing call, whereas blocking refers to the rejection of a new call or packet.
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We model this system as a discrete-time SAN in which state changes occur
at TDMA frame boundaries. Regarding the events that take place in the
system, we make the following assumption. Data packet and call arrivals to
the system happen at the beginning of a frame, and data packet transmissions
finish and CBR calls terminate at the end of the frame. Since each data packet
is transmitted in a single slot, in a particular state of the system we never see

slots occupied by data packets.

3.2 The basic SAN model

The basic SAN model consists of 3 automata and 3 synchronizing events. For
convenience, we number synchronizing events starting from 0. States of all
automata are numbered starting from 0 as well. We denote the state index
of automaton k by s A®): A1) represents the data source, A represents the
current TDMA frame, and A® represents the data buffer. We define the three
synchronizing events eg, ey, ey that correspond to respectively 0, 1, 2 CBR
arrivals during the current TDMA frame. Synchronizing event e, happens with
probability ~v,, a € {0,1,2}, where v0 = pupr, Y1 = Pubh + PiPns Y2 = PhPn,
and ¢ = 1 — ¢ when ¢ € [0,1].

A®M has two states that correspond to the on and off states of the data
source. Transitions in this automaton happen independently of the other au-

tomata. Hence, we have

€0 €1 €2

PO — ph) — p() _ [ '

S i
QI ™
| I

The current TDMA frame is modeled by A that has (C +1) states. If
sA® =4, then the current TDMA frame has 7 active CBR connections. The

contribution of A®) to synchronization e,, a € {0, 1,2}, is given by the matrix
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P of order (C'+ 1) with ¢5th element

€a

%(,Ha,)piﬂ‘j(l—ps)j, t+a<C, 0<i+a—-j3< M
t+a—
C o . ) . )
Ya g1 = ps ), i+a>C,0<i+a—j<M
C—y
Yo k=i | . P (1 =pe)*, t+a<C,0<ita—j3=M
14+a—k
Yo Lie; Py (1 = pa)F, ita>C,0<ita—j=M
C —k
0, otherwise

fore,7=0,1,...,C.

The data buffer is modeled by A®) that has (B + 1) states. If sA®) =i,
then the buffer has ¢ data packets. Transitions of this automaton depend on

AM and A?) and we have

g1 pP-1 pP-2  P-3
g1 Po P-1 P-2  P-3
91 Pc-1 pPc-2 Pc-3 Pc-4 - P-3
pB — pPc pc-1 pc-2 pc-3 - P-2  P-3
60 - . . . . .
Pc pPc-1 Pc-2 Pc-3 - P2 G2
pPc pc-1 pPc-2 - P-1 G2
Pc pc-1 -+ Po 92
L pc I 41 92 |

The matrices Pe(f’) and Pef’) have the same (functional) nonzero structure as

that of P but different contents. For synchronization e,, the probability p;

€0

is obtained from
Pd(FS(a)-1)s sAM =1, 0< (F5(a)—=1) <3
=19 1, sAW =0, FS(a) =1 : (3.3)

0, otherwise

where FS(a) = [C — (sA®? 4 a)]* denotes the number of free slots in the
current TDMA frame taking into account up to a € {0,1,2} possible CBR
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arrivals. The values g; and g, are given by

3

c
g1 = Z b, g2 = Z P(-1)-

[=sA(3) I=B—sA(3)

The stochastic one-step transition probability matrix of the underlying Markov

chain is given by

3.3 A SAN model for VBR traffic

In this section, we consider a SAN model of a wireless ATM system that accepts
variable bit rate (VBR) calls. See [30] for a detailed description of VBR service.
We assume that an arrival associated with VBR traffic can be either a new call
or a handover just like CBR arrivals. Handover VBR requests have priority
over new VBR calls and they respectively arrive with probabilities p,; and
Prh- We do not consider multiple handover or new VBR call arrivals during a

TDMA frame since the associated probabilities with these events are small.

A VBR connection is characterized by a state of high intensity and a state
of low intensity. In the state of high intensity, the VBR source transmits data
with its highest rate, whereas in the state of low intensity, its transmission rate
is reduced. The reduced transmission rate in the low intensity state in fact
means that at some instances of time the slot in a TDMA frame allocated to
the VBR connection will not be used. Hence, slots reserved for VBR traffic in
a TDMA frame can be used by ABR traffic in two ways. First, a slot may have
been reserved for VBR traffic for which there is no active VBR connection.
Second, there is a VBR connection associated with the given slot, but the

connection is in the low intensity state and nothing is transmitted during this

TDMA frame.

A VBR connection moves from the state of high intensity to the state of low
intensity with probability a, and from the state of low intensity to the state
of high intensity with probability 3,. In terms of X\, = 3,/(a, + 8,) and its
square coefficient of variation S¢,, we have 38, = 2X,(1—=X,)/(S¢,+1—X,) and



vnAriiv o, Ji oA ViU, Ur A VWIRLLEDD AL VI O YO 1 vl 20

= B,(1 — A,)/ A, (see section 3.1). For the low intensity state, we introduce
the parameters pep,,e, and ppus,. The former is the probability of transition
from the state when the slot allocated to the VBR connection is busy to the
state when the slot is empty. The latter is the probability of transition from
the empty state to the busy state. We assume that when a VBR connection
(either a new call or a handover) is set up, it is in the high intensity state.
On the other hand, the connection can terminate in any state of the VBR
source. We also assume that when a VBR connection changes its state from

high intensity to low intensity, it enters the busy state.

The number of VBR calls that may terminate in a given TDMA frame
depends on the number of active VBR calls and the duration of each VBR call
is assumed to be a geometric process with parameter p,;. VBR arrivals to the
system are assumed to happen at the beginning of a TDMA frame, and state
changes of a VBR connection after it is set up are assumed to take place at

the end of a frame.

The performance measures of interest are the dropping probability of han-
dover VBR calls and the blocking probability of new VBR calls. We model
each slot reserved for VBR traffic in the current TDMA frame by a single au-
tomaton of 4 states. State 0 of the automaton corresponds to the case of an
idle slot, i.e., the VBR connection is not active. State 1 corresponds to the
state of high intensity, states 2 and 3 correspond to the state of low intensity.
In particular, state 2 indicates that the slot is busy and state 3 indicates that
it is empty.

Similar to CBR arrivals, in a given TDMA frame we can have at most two
VBR requests arriving simultaneously. Therefore, we define the 3 synchronizing
events fo, f1, f2 that correspond to respectively 0, 1, 2 VBR arrivals. Note
that VBR calls arrive to the system but not to a particular slot. Hence, if a
TDMA frame has V slots reserved for VBR traffic numbered from 1 to V', the
transition probability matrix Py, that corresponds to synchronizing event f3,

b e {0,1,2}, is given by

:ié Py =3P, ®((§V§)Pf )
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Here P}f) is the contribution of A®*) (corresponding to the kth VBR slot)
to synchronizing event f;, 4, is the probability of & VBR arrivals during the
current TDMA frame, and 49 = punpuh, Y1 = PonDuh + PobPon, and Yo = punpun-
Thus, only one synchronizing event matrix of synchronizing event f; needs to
be scaled by 7,. Hence, for convenience we define

(k) _ WwPY, k=1
To W 1 <k<V

where Pb(k) is the transition probability matrix describing the evolution of the

kth TDMA slot when there are & VBR arrivals.

The transition probability matrix Pék) is given by

1

Pus pvsozv pusav

Pus ﬁvsﬁv pvsﬁvpempty pusﬁupempty
Pus ﬁvsﬁv pvsﬂvpbusy ﬁusﬂu?busy

pM =

When a single VBR request arrives to the system, only one automaton
among those that are in the idle state (i.e., state 0) should change its state.
We choose the automaton that is in the idle state and that has the smallest
index. If all V automata are in active states (i.e., there are V active VBR
connections), the incoming VBR call is rejected. Observe that if an automaton
is in one of the three active states (i.e., states 1-3), the transition probabilities
out of the active state are the same as those for 0 VBR arrivals (see rows 2-4

of matrix Pék)). Thus, the transition probability matrix Pl(k) is given by

1_93(k)}5v5 gS(k)ﬁvsav gS(k)pusau

(k) Pus pvs&v ﬁvsau
P = - T o ,
Pus pvsﬁv pvsﬁvpempty pusﬂvpempty
Pus pusﬂu ﬁvsﬁvpbusy pusﬁuﬁbusy
where
k-1 ~ )
g3(k) = 1, sA® =0and 75 340 = & A0 — 0, sAD =0
0, otherwise ’ 1, otherwise

The difference between synchronizing events f; and f, is that when two

VBR requests arrive, two automata among those that are in the idle state
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should change their states. Hence, we only have to redefine the function gs(k).
The new function g4(k) should return 1 for the two automata that are in the

idle state and that have the smallest indices.

1, sA® =0and (X85 A0 =k or Y5540 =k — 1)
ga(k) =

0, otherwise

k)

Thus, the transition probability matrix Pz(k) is Pl( in which gs(k) is replaced

by ga(k).
Similar to the basic SAN model, the stochastic one-step transition proba-
bility matrix of the underlying Markov chain is given by

2V
S=Y @

b=0 k=1

3.4 The combined SAN model

The SAN model of the combined system consists of (3 + V') automata. The
first 3 are the automata of the basic SAN model and the last V' are the au-
tomata dedicated to VBR arrivals. We remark that the automata of the SAN
that handle CBR and VBR arrivals are mutually independent. Hence, in the
combined model the set of synchronizing events that correspond to new call
and handover arrivals is given by the Cartesian product Ecpr X Fvpr, where
Ecgr = {eo,e1,62} and Evgr = {fo, f1,f2}. Therefore, we denote by s,
the synchronizing event that is triggered by ¢ CBR arrivals and & VBR ar-
rivals. Then the synchronizing transition probability matrix of automaton

A®) ke {1,2,...,V 43}, and event s, for a,b € {0,1,2} is given by
(k)

b _ [ PO, 1<k<3

L PETY, 4<k<V 43

under the following conditions.

Each TDMA frame of the combined system that gives CBR, VBR, and
ABR service consists of (' slots reserved for CBR traffic and V slots reserved
for VBR traffic. ABR traffic can be pushed into any reserved, but unused slots.

Hence, data packets can be transmitted in the idle slots among the C' reserved
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for CBR traffic, in the idle slots among the V reserved for VBR traffic, and in
those slots among the V' that are in the empty state. Since data packets can
use effectively a maximum of (C' + V) slots, each C' in the matrix Pe(o?’) and the

expression ¢; should be replaced by (C' + V). Furthermore, the probability p,
in equation (3.3) and the function F'S(a) should be redefined as follows:

Pd(FS(a,b)—1)s sAW =1, 0 < (FS(a,b)—1) <3
1, sAW =0, FS(a,b)=1 :

0, otherwise

pi

where a and b are the indices of synchronizing event s,;,

FS(a,b)=[C—(sA® +a)* +[V - (Vf’ §(sAW =1) +Vi35(3,4<k> = 2)+b)]7,

and 6 denotes the Kronecker delta.

Finally, the underlying Markov chain of the combined system is given by

V43

P=3> QP

a=0b=0 k=1

3.5 Conclusion

In this chapter we introduced a discrete-time SAN model for a wireless ATM
system. First, we showed that in a discrete-time SAN, each automaton can be
modeled by a single transition probability matrix for each event taking place
in the system. The discrete-time Markov chain of the overall system is the
sum of the tensor products of the matrices of automata corresponding to each

synchronizing event.

The wireless ATM system is able to process CBR, VBR, and ABR arrivals.
The first two types are connection oriented calls that arrive rarely but may last
for a relatively long time. On the other hand, ABR calls that are essentially
data packets do not require the establishment of a connection, but arrive more
frequently compared to the first two types of requests. The system consists
of three main components corresponding to a data source that has two states

and controls the arrival of data packets, a TDMA frame that transmits the
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three types of requests, and a data buffer that stores arriving data packets
that cannot be transmitted in the given TDMA frame. We assumed that in
the TDMA frame duration at most one new CBR or VBR call and one CBR
or VBR handover can arrive. In other words, in the given TDMA frame there
can be 0, 1, 2 CBR or VBR arrivals. Hence, there are 9 synchronizing events in
the system. In addition to the three main components modeled by 3 automata,
there are V automata that model the V TDMA slots dedicated to VBR con-
nections. Matrices of all automata except the automaton corresponding to the

data source have functional transitions. Furthermore, the dependency graph

of the SAN is acyclic.

The next chapter consists of the SAN analysis part of the thesis. Therein, we
introduce the NCD partitioning algorithm that computes NCD partitions of a
SAN from the description of its automata [33]. We also present the complexity

analysis of the algorithm and discuss its efficiency on three continuous-time

SAN models.



Chapter 4

SANs and near complete

decomposability

The SAN formalism introduced in section 2.1 provides a compact description
of a Markovian system having a large number of states. The existence of an
efficient vector-descriptor multiplication algorithm enables the analysis of large
MCs modeled as SANs that practically cannot be handled by conventional
techniques. However, in some cases these advanced techniques may not be
sufficient for efficient analysis. Standard iterative methods applied to NCD
Markov chains converge to an approximate solution very slowly when solving
the system of linear equations (1.2). Fortunately, these MCs can be analyzed
more efficiently using an iterative aggregation-disaggregation technique as we

will show.

In this chapter, we present the NCD partitioning algorithm that determines
the NCD connected components (CCs) of the MC underlying a SAN for a
given decomposability parameter. Since we deal with large MCs, we aim at
computing the NCD CCs without generating the transition matrix underlying
the system under consideration. In the next section, we introduce the definition
of an NCD MC. In section 4.2, we discuss the NCD partitioning algorithm of
three steps. In section 4.3, we provide its complexity analysis and in the

subsequent section present results of experiments with three SAN models.

31
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4.1 Nearly completely decomposable MCs

NCD MCs [43] are irreducible stochastic matrices that can be symmetrically
permuted [17] to the block form

Pll P12 Pl]&
ann _ P21 P22 PQIX
Prv Pge ... Prr

in which the nonzero elements of the off-diagonal blocks are small compared
with those of the diagonal blocks [62, p. 286]. Hence, it is possible to represent
an NCD MC as

P = diag( P11, Paa, ..., Pkx) + F,

where the diagonal blocks P;; are square and possibly of different order and
| F'||oo, where || F||oe = max; Y-; F(i,7), is relatively small. The quantity || ||
is referred to as the degree of coupling and is taken to be a measure of the
decomposability of P. When the chain is NCD, it has eigenvalues close to 1,
and the poor separation of the unit eigenvalue implies a slow rate of convergence
for standard matrix iterative methods [19, p. 290]. Hence, NCD MCs are
said to be ill-conditioned [43, p. 258]. We should remark that the definition
of NCDness is given through a discrete-time Markov Chain. The underlying
CTMC of a SAN can be transformed through uniformization [62, p. 24] to a
DTMC for the purpose of computing its stationary probability vector as in

p=1+10, (4.1)
«

where o > maxi<i<n |Q(2,1)]. To preserve NCDness in this transformation, «

must be chosen as maxi<i<, |Q(z,7)|.

An NCD partitioning of P corresponding to a user specified decomposability
parameter € can be computed as follows (see [17] for details). First, construct
an undirected graph whose vertices are the states of P by introducing an edge
between vertices ¢ and j if P(i,5) > € or P(j,1) > ¢, and then identify its
connected components' (CCs). Each CC forms a subset of the NCD partition-

ing. Notice that for a given value of ¢, the maximum number of subsets in a

!Not to be mixed with the word component we have been using so far to mean subsystem.
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computed partitioning is unique.

In the next section, we present a three step algorithm that computes an NCD
partitioning of a MC modeled as a SAN from the description of its automata

using a user specified decomposability parameter.

4.2 NCD partitioning algorithm for SANs

The following is our proposed solution algorithm that computes NCD parti-
tionings of the MC underlying a SAN without generating @ (or P).

ALGORITHM 1
NCD partitioning of MC underlying SAN for given €

Step 1. ) — P transformation
Step 2. Preprocessing synchronizing events

Step 3. Constructing NCD connected components

Step 1 computes the scalar « in equation (4.1) that describes the transfor-
mation of the global generator () to a DTMC P through uniformization. In the
next subsection, we show how this can be achieved efficiently by inspecting the
diagonal elements in local transition rate matrices and the nonzero elements

in diagonal corrector matrices.

Step 2 considers the locations of off-diagonal nonzero elements in the global
generator (). Off-diagonal nonzero elements in local transition rate matrices
cannot contribute to the same nonzero element in ) due to the fact that these
matrices form a tensor sum. Hence, their analysis is straightforward. However,
off-diagonal nonzero elements in synchronizing transition rate matrices may
contribute to the same nonzero element in () since these matrices form a sum
of tensor products. Therefore, it is necessary to identify those synchronizing
events that may influence the NCD partitioning of the MC underlying the SAN
by contributing to the value of the same nonzero element in (). In subsection

4.2.2, we explain how this is done.
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Finally, Step 3 determines the NCD CCs by analyzing local transition rate
matrices and matrices corresponding to synchronizing events identified in Step
2 using € and the value of o computed in Step 1. This is discussed in subsection

4.2.3.

4.2.1 (@ — P transformation

The CTMC @ can be transformed to a DTMC P using equation (4.1) after
a = maxi<i<, |Q(2,7)| is computed. It is Algorithm 1.1 in appendix 8.4.1 that
computes « using local transition rate matrices, diagonal corrector matrices,

and dependencies among automata.

Since ) is a CTMC, we have Q(z,7) = — 32,4, Q(i,5) for i = 1,2,...,n.
Note also that only the off-diagonal elements in P contribute to NCDness.
Regarding the off-diagonal elements in (), which determine the off-diagonal

elements in P, we make the following observations.

Remark 4.1 Fach nonzero local lransition rate in a SAN contribules to a
different off-diagonal element in @); two or more nonzero local transition rates

cannot contribute to the same off-diagonal element in ().

This observation follows immediately from the term @; in equation (2.1)

and the definition of tensor sum [5].

Remark 4.2 A nonzero off-diagonal element in ) for a SAN with separa-
ble synchronizations is formed either of a nonzero local transition rate or of

nonzero synchronizing transition rates but not of both.

This observation follows from the definition of the SAN descriptor in equa-
tion (2.1) and Definition 2.6.

Remark 4.3 A nonzero off-diagonal element that is formed of synchronizing

transition rates in ) for a SAN can be represented as
N

> od I 4 (4.2)

JejEE* k=1,k#m
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Here qg“) is the synchronizing transition rate in Qg”), where m is the index of
the master automaton of event j; qgf) is a particular transition probability in
Q(g]), where k (# m) is the index of a slave automaton of event j. Finally, £
is the set of synchronizing events that contribute to the off-diagonal element
of interest in @, and |E*| < E. We have omitted the row and column indices
from qg”) and qgf), since only the form of equation (4.2) is important for the

current discussion.

From Remarks 4.1-4.3 and equations (2.1), (4.1), and (4.2), P without its

main diagonal, denoted by P*, can be computed as

N 1 : E N A i
=@ (-0f) + X ®e0, (4.3)
=1 7=11:=1

where

Q(i) _ iijj) if A®) is the master of event j
ej Q((j]) otherwise

Note that only rate matrices are scaled. What remains to be done is to compute

a. To that effect, we state two propositions.

Proposition 4.1 The diagonal element with maximum magnitude of Q) for a
SAN that does not have synchronizations and functional dependencies is given
by the sum of diagonal elements with maximum magnitude of the local transi-

tion rate matrices. Thus,

N

E max |Qz k)l

1

Proof. Recall Remark 4.1. Also note that the rates of transitions out of state
k of automaton z all appear in the same row of (), and consequently they
contribute the value Q;i)(k, k) to the diagonal element of @ in that row. Since
the state space of the global system is all possible combinations of the automata
states, there is a global state in ) for which the off-diagonal row sums of all

automata are maximized. O

Remark 4.4 Dependencies among automata may arise either as explicit func-

tions whose values depend on the states of automata other than the ones in
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which they are defined or implicitly by the existence of zero rows in synchroniz-
ing evenl matrices associated with slave automata. The lalter case corresponds
to the disabling of the synchronized transition when the slave automaton is in

local state corresponding to the zero row.

From now on, by dependencies we refer to both explicit and implicit depen-
dencies as discussed in Remark 4.4. As an extension to Proposition 4.1, we

have the next one.

Proposition 4.2 The diagonal element with maximum magnitude of Q) for a

SAN that does not have dependencies can be obtained from

N

a = max
— 1<k<n;

(4.4)

(Q?”(k,k)ir > Q&j)(k,k)),

Jre; EM;

where M; is the set of synchronizing events whose master is automaton t.

Proof. Observe that local and synchronizing transitions of a master automaton
that emanate from the same local state appear in the same row of (). The rest
of the proof follows from an argument similar to that for Proposition 4.1. Note
that equation (4.4) is also valid for the case in which synchronizing transition
probabilities are less than 1. In this case, the synchronizing transition rate
in the master automaton is split according to transition probabilities in slave
automata. However, these fractional synchronizing transition rates still appear
in the same row of @); that is, they contribute to a diagonal element of @) the

corresponding diagonal element of the diagonal corrector matrix. O

Example 4.1 Now lelt us show the computation of the diagonal element with
mazimum magnitude of Q) for the SAN in Example 2.1 with (A, Ay, pi1, pro, pi3) =
(2,3,3,2,1). According to Proposition 4.2, we have
1 A 2 A
o = max Q1" (k.k) + QL) (k. R)| + max [QF (k. k) + Q) (k. k)|

= max{A, Ao} + max{p, p2, p3} = A2 + 1 =6,
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which can be verified on

-5 3 0 2 0 0

0o -4 2 0 2 0

0= 1 0 -3 0 0 2
3 0 0 -6 3 0

3 0 0 0 -5 2

4 0 0 0 0 —4

Example 4.2 Consider the SAN presented in Example 4.1 with the following
modificalion: Qg)(l,l) =0 and Qg)(l,Z) = 0. Note that the modified SAN
still does not have functional transitions defined explicitly. However, the rate
of synchronizing event 1 is in fact a function, and it depends on the state of
automaton 2 (see Remark 4.4). When automaton 2 is in state 1, the synchro-
nizing transition rate is ) since it is disabled due to the modification, else il
is 3. It is not possible to apply Proposition /.2 to this SAN, since it would

produce the incorrect result o = 6 which can be seen from

-5 3 0 2 0 0
0 -4 2 0 2 0
o_| 103 00 2
0 0 0 -3 3 0
3 0 0 0 -5 2
4 0 0 0 0 —4

For SANs having dependencies, equation (4.4) cannot be used. A naive
solution 1s to compute explicitly each diagonal element of @) and to find the
element with maximum magnitude. However, this is expensive. To reduce the

complexity, we propose to partition automata into dependency sets.

Definition 4.1 Let G'(V,E) be a digraph in which v; corresponds to A9 and
(vi,v;) € € if transitions in AY depend on the state of AY) either explicitly or
implicitly as discussed in Remark 4.4. Then, the dependency sets of a SAN, de-
noted by Dy, k = 1,2,..., Np, are the connected components of the dependency

graph G'.
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We assume that for each automaton of the SAN, the set of automata with
which it is involved in a functional dependency relationship is known. Regard-
ing implicit dependencies that originate from synchronizations (see Remark
4.4), we make the following observation. If the diagonal corrector matrix Q((jj)
of slave automaton 7 has at least one row with a zero diagonal element, then
the master automaton of event j is dependent on the state of automaton :.
Note that we do not need to scan each synchronizing event diagonal corrector
matrix to detect such dependencies. Each row of a diagonal corrector matrix
that is a probability transition matrix can have at most one nonzero element
per row. Hence, if the number of nonzeros in Qg) is less than the order of the
matrix (i.e., n;), then the master automaton of event j depends on automaton

7.
We refer to

max Dy = max| P diag(Qy))—l— > X diag(@&?) (4.5)

i,.A(i)EDk jve] EMDk i,A(i)EDk
as the maximum of the dependency set Dy, where diag returns a vector con-
sisting of the diagonal elements of its matrix argument, and Mp, is the set of

synchronizing events whose masters are in Dy.

Proposition 4.3 The diagonal element with maximum magnitude of Q) for a
SAN can be oblained from

Np
o= Z max _Dj. (4.6)
k=1

Proof. From the definition of dependency sets, automata in a dependency set
are independent of automata in other dependency sets. Now, consider a new
SAN description of Np automata and E synchronizing events. In the new
description, AP®) k= 1,2,..., Np, corresponds to the dependency set Dy,
Q™ = @ avren, Q1 QPY = ®; uvrep, QU and Q"W = ®; 4wep, QY
where j = 1,2,..., E. We define A(P%) as the master of synchronizing event j
if the master automaton of event j in the original SAN description is a member
of Dy. By construction, the new SAN does not have dependencies. Hence, we
can apply Proposition 4.2. Substituting in equation (4.4) the matrices QSD’“)
and Qg)k), we obtain equation (4.6). O
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Propositions 4.1, 4.2, and 4.3 are valid for irreducible MCs underlying SANs.
When transient states and/or multiple essential subsets of states are present,
the diagonal element with maximum magnitude given by equation (4.6) may
not belong to the essential subset of interest. In the following, we refer to the

states other than the ones in the essential subset of interest as uninteresting.

In the presence of uninteresting states, we can compute o by finding the
maximums of all Np dependency sets (see equations (4.5) and (4.6)). For de-
pendency set Dy, this task amounts to the enumeration of []; 4ep, n: states
and an equal number of floating-point comparisons. Now, observe that to
max_D; of the dependency set Dy corresponds a state Sp. Hence, if the
global state s that corresponds to 57,57, ..., Sy, maps into the essential sub-
set of interest, then « given by equation (4.6) is taken as the diagonal ele-
ment with maximum magnitude. However, if s is an uninteresting state, we
omit from further consideration the element that corresponds to max_Dj for
k=1,2,..., Np, and proceed as in the while-loop of Algorithm 1.1 in appendix
8.4.1.

In the first step, for £ = 1,2,..., Np we find the next largest value denoted
by next_max_Dj from equation (4.5) and the corresponding state Si. In order

to find next_max_D; rapidly, the vectors

@ diang@)+ Y @ diag@)|,
i, A eDy Je;€EMp, i ADED,,
where £ = 1,2,..., Np, should be stored as sorted. In the second step, we
find ¢ such that next_max_D; > next_max_ Dy, for k = 1,2,..., Np. Finally,
we replace max_D; with next_max_D;, S; with S't, and omit the element cor-
responding to next_max_D; from further consideration. If the updated global
state s maps to a state in the essential subset of interest, then « given by equa-
tion (4.6) is taken as the diagonal element with maximum magnitude. Else we
go back to the first step. Since finite MCs have at least one recurrent state in

each essential subset, the algorithm is terminating.

Our final remark is about the special case of a SAN with a single dependency
set; that is, Np = 1 and D; = {AM, A® . AN} In this case, finding

a = max_D; amounts to enumerating all diagonal elements of () since we have
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the equality @; 40ep, diag(Qf”) + Ty, entn, @i acren, diag(QY) = diag(Q).
Therefore, for a SAN with a single dependency set, there is no need to sort and
store diag((Q)) as suggested. When finding the maximum of diag(@), we test
an element of diag(@) only if its index corresponds to a state in the essential
subset of interest. Although it is implemented, this case is omitted from the

presentation of Algorithm 1.1 in appendix 8.4.1.

Example 4.3 This example shows the computation of the diagonal element
with mazximum magnitude of Q) for the SAN model of Example 2.2. The SAN
has two dependency sets: Dy = { AN, A®} and Dy = {AP}. Note that A®)
functionally depends on the state of A" due to functional transition [ as well
as due to synchronizing evenl 1 (see Qg)) Hence, the diagonal element with

maximum magnitude of () is comprised of two terms. The marimum of Dy is

given by
max _D; = max |diag( 51)) @ diag(Ql(S)) + diag(Qg)) ® diag(@fj))‘
-2—f 0 -5 0
—2-0 -5 -2 -5
= max + = max + =T.
—1-f 0 —6 0
—-1-3 0 —4

On the other hand, Dy is a singleton, and therefore the mazimum of Dy is

given by
-2 -5

max D, = max ‘diag(Q?Q)) + diag(@fj))‘ =max|| =5 | + 0oll=7.
—4 0

Since the underlying MC'is irreducible, « = max "Dy +max Dy = 14 as verified
on @ (see Example 2.2).

As pointed out at the beginning of this subsection, an NCD partitioning of P
that corresponds to a user specified decomposability parameter € is determined
by the off-diagonal elementsin P. Having found «, we can obtain P* by scaling

each transition rate matrix of the SAN with 1/« (see equation (4.3)).
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4.2.2 Preprocessing synchronizing events

As it 1s mentioned in Remark 4.3, transition rates from different synchronizing
event matrices may sum up to form a nonzero element in the generator matrix
(). Hence, in some cases it may not be possible to determine the value of an
off-diagonal element in () by inspecting each automaton separately. The aim
of Step 2 in Algorithm 1 is to find sets of those synchronizing events that may
influence the NCD partitioning of (). We name these sets as potential sets of

synchronizing events.

The potential sets are disjoint, and their union is a subset of the set of
synchronizing events. It is Algorithm 1.2 in appendix 8.4.2 that finds these
potential sets using synchronizing event matrices, €, and a computed in Step
1. The output of Algorithm 1.2 is Np potential sets denoted by P,, r =
1,2,..., Np.

There are two cases in which synchronizing events may influence the NCD
partitioning of Q). First, a simple synchronizing event has the corresponding
transition rate greater than or equal to ae. Second, a set of synchronizing
events contribute to the same element in ), and the sum of the synchronizing

transition rates of the events in the set is greater than or equal to ae.

In the first case, each synchronizing event with transition rate greater than
or equal to ae forms a potential set that is a singleton. When the transition
rate of a synchronizing event is a function, its value can be evaluated only
on the global state space. This can be done in Step 3 of Algorithm 1 when
NCD CCs of the SAN are formed. Hence, if the synchronizing transition rate
is a function and the maximum value of the function is not known in advance,
then the corresponding synchronizing event also forms a potential set that is a

singleton.

Regarding the second case, we make the following observation. The position
of a synchronizing transition rate in () is uniquely determined by all synchro-
nizing transition matrices that correspond to the synchronizing event. This

can be seen from equation (2.1). Hence, we have the following proposition.
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Proposition 4.4 In a SAN with simple synchronizalions, the set £ of syn-
chronizing events contribute to the same nonzero element of Q) if and only if

there exists at least one nonzero element with the same indices in the malrices

Q((jj) foralle; €& andv=1,2,...,N.

Proof. The proof follows from equation (2.1), definition of tensor product,
Definitions 2.6 and 2.7. O

Example 4.4 Consider Example 2.1. We remark thal synchronizing events
1 and 2 are simple. By inspecting the synchronizing event matrices of AW
and AP we see that Qg) and Qg) have a nonzero element with the same
indices (2,1), and Qg) and Qg) have a nonzero element with the same indices
(3,1). Hence, lransition rates that correspond to ey (i.e., A\s) and ey (i.e., p3)
conlribute to the same element of () (see element Q(6,1)).

Those synchronizing events that are not classified as potential sets of sin-
gletons must be tested for the condition in Proposition 4.4. The test of two
events, t and u, for the condition requires the comparison of the indices of
nonzero elements in Q((jt) and Qg;) forz =1,2,...,N; that is, we test N pairs
of matrices. For k events, the number of matrix pairs that need to be tested
is Nk(k — 1)/2. Note that for three events, ¢, u, and v, the fact that the
pairs (Qg?, qu)) and (qu), ijv)) each have at least one nonzero element with
the same indices for + = 1,2,..., N does not imply that the events ¢ and v

also satisfy the condition. In other words, the condition is not transitive. This

further complicates the test for the condition in Proposition 4.4.

In order to avoid excessive computation associated with the test, we consider
the set of synchronizing events P as a potential set if for all e, € P there exists
e, € P such that the condition in Proposition 4.4 is satisfied for synchronizing
events v and v, and the sum of transition rates of synchronizing events in P is
greater than or equal to ae. According to this definition, we form potential sets
as follows. Let £ be the set of synchronizing events that are not classified as
potential sets of singletons. We choose event e, € L, remove it from L, and test
e, with each event in £ for the condition in Proposition 4.4. Let K be the set

of events that satisfy this condition. Then, if the sum of the transition rates of
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synchronizing event v and those in K is greater than or equal to ae, we remove
the events that are in K from £ and form the potential set P = {e,} UK. We

repeat this procedure for all events in £ until £ = §.

Example 4.5 Let us consider the application of Algorithm 1.2 to the SAN in
Example 2.2 for which a = 14. Let ¢ = 0.3 implying ce = 4.2. The transition
rate of the master automaton of simple synchronizing event 1 is 5 and greater
than ae. See QQ)(Q, 1) in Ezxample 2.2. Hence, the first potential set, Py, con-
sists of synchronizing event 1 only. The second synchronizing event of the SAN
also forms a potential set. See Qg)(l,i’)) Jor justification. Thus, Py = {e1} and
Py = {ex}. Now, consider the case in which ¢ = 0.4 implying ae = 5.6.
Both transition rates of synchronizing events 1 and 2 are less than ae. Hence,
we have to lest these two events for the condition in Proposition 4.4; that is,

we check if each of the three pairs of matrices (QU), Q1)), (Q?) Q(z)), and

er s ey e We
(QS), QS)) have at least one nonzero element with the same indices. However,
the condition in Proposition 4.4 is not satisfied. Thus, the number of potential
sets for the case of € = 0.4 is zero. This implies that neither of the synchro-
nizing events influence the NCD partitioning of the underlying MC. Therefore,
synchronizing events of the SAN are omitted from further consideration in Step

3 of Algorithm 1 when ¢ = 0.4.

4.2.3 Constructing NCD connected components

Asindicated in Remark 4.2, a nonzero element in the global generator of a SAN
originates either from a local transition rate or from one or more synchronizing
transition rates. Hence, NCD CCs of the underlying MC are determined by
(i) constant local transition rates that are greater than or equal to ae, (ii)
functional local transition rates that can take values greater than or equal to
ae, or (iil) transition rates of synchronizing events that are in the potential
sets P, r = 1,2,..., Np. These three different possibilities are implemented
in Algorithm 1.3 that appears in appendix 8.4.3. The input parameters of
the algorithm are local transition rate and synchronizing event matrices, €, a
computed by Algorithm 1.1, and potential sets formed by Algorithm 1.2. The
output of Algorithm 1.3 is the set of NCD CCs of the underlying MC.
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First, we consider possibility (i) in which local transition rates are constant,
and assume that ¢ = @Q; (see equation (2.1)). Using ae, we can find the
NCD CCs of Q), i =1,2,...,N. Let C% be the set of NCD CCs of Q"
where a member of C1, denoted by ¢, is a partition of states from A,
Let B and H be sets in which each member of either set is also a set. In
other words, B as well as H is a set of sets. We define the binary operator
© between the two sets B and H as BOH = {bxh | b € B,h € H},
where x is the ordinary Cartesian product operator. Then, based on the graph
interpretation of the tensor sum operator discussed in [28], the set of NCD CCs
is given by C = CM ©C? @ ... ©CWN). Observe that if C¥, i =1,2,..., N,
are singletons, then C is a singleton as well; that is, the underlying MC is not
NCD for given €. One can take advantage of the same property when there
are only K (< N) C% that are singletons. In this case, we renumber the
automata so that these K sets assume indices from (N — K+ 1) to N. Then
these K sets can be replaced with the set CIN=K+1 = {112 ny_g41} x

{1,2,...,71]\7_](} X oo X {1,2,...,?1]\7}}.

Now we bring into the picture functional local transition rates and consider
possibility (ii). Let us assume that the automata of the given SAN can be
reordered and renumbered so that transitions of automaton ¢ depend (if at
all) on the states of higher indexed automata, but they do not depend on the
states of lower indexed automata (see [24] for details). Since Cartesian product
is associative,  is also associative, and one can rewrite the expression for C as

C = (c(l) o (C(Z) @0 ((j(N—l) ® C(N)) )) . (4.7)
Given €l = (W @ (c*V @@ (CV-D ™M) ...}), the union of all
members of C*¥! is a set that is equivalent to the product state space of A®)
Ak AN Therefore, taking into account the assumed ordering of au-
tomata, functional transition rates of A®) can be evaluated and NCD CCs of
CH can be updated accordingly. More formally, let Q;k)(sk, 3) be a functional
element, i.e., ng)(sk, 3%) = f. Then the NCD CCs cl¥ ¢* ¢ CIHl must be joined

if (Sk,Skt1,...,8N) € clkl, (Sky Sk41y- -+, SN) € ¢fl and F(Sky Skt1y-. -y 8N) =

QeE.

Example 4.6 We illustrate possibilities (i) and (ii) on the SAN of Erample

2.2 by omutting synchronizing events 1 and 2. Synchronizing events are treated
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in possibility (iii). We set € = 0.3 implying ae = 4.2 and assume that the au-
tomata are ordered as A?, A®), AN First, we find the NCD CCs of all local
transition rate matrices as in possibility (i) treating functional transition rates
as zero. Inspection of local transition rate matrices shows that local transition
rates of all automata are less than ae. Hence, we have CY = {{1,},{2,}},
C? = {{15},{2:}, {32}}, and C® = {{13},{25}}. The subscripts in the slates
enable us to distinguish between states with identical indices but that belong
to different automata. According to equation (4.7), we form the NCD CCs
of OV @®QP, ice., ¥ ©CM = {{(1s, 1)}, {(15,21)}, {(25, 1)}, {(25, 21)} }.
Then we continue with possibility (ii). The value of the functional transition
rate Ql(g)(l,Z) (= f) depends on the state of AY) only. Hence, we can evaluale
f when C® @ CY is formed. The functional transition rate f evaluates to 5,
which is larger than ae, when A" is in stale 2. Therefore, we join {(13,21)}
and {(23,21)}. Finally, the NCD CCs of Q); are given by

c = cPoPech)
= {12}, {2}, {32} © {{(1s, 1)}, {(15,21), (25, 21) }, { (23, 1) }}
= {{(12, 15, 1)}, {(12, 25, 10) }, {(22, 13, 1) }, {(22, 25, 11) },
{(32, 13, 11)}, { (32, 23, 11) }, {(12, 13, 21), (12, 23, 21) }
{(22,13,21), (22,25,21) }, {(32, 13, 21), (32, 25, 21) } }

Now we consider possibility (iii). When possibilities (i) and (ii) are handled,
the union of all members in C is a set that corresponds to the global state
space of the SAN. The transition rate of synchronizing event ¢ can be taken
into account as follows. Let (s1,89,...,8n5) € c and (81, 32,...,8n) € &, where
c,& € C. Then c and & must be joined if TTY, Qg‘;)(si, ;) > ae. Since the global
state space of the SAN is usually very large, it may take a significant amount
of time to find all pairs ¢ and ¢ that satisfy this condition. Fortunately, the
situation can be improved. Let p, 1 < p < N, be the smallest index among
automata involved in event ¢, i.e., Qg? =1, fort=1,2,...,p—1. We rewrite
the first two terms of equation (2.1) as

N . E N p—1 p—1
D'+ @t = () @ar'+ (@) @i+
i=1 i=1 i=1

ji=1i=1

> XY, (4.8)

jAti=1

E
j=1j
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where Qgp] = @f\;p Qgi), and Q[gz] = ®f\;p Qg) From the definition of tensor
sum (see appendix 8.1), the first two terms of expression (4.8) can be written

(Zé:; ng)) @QE?] + (g ]m) ® [p] (@ le ) @ (QEP] + Q[ezz]) . (49)

From (4.9), it can be seen that the transition rate of synchronizing event ¢
can be taken into account on the smaller state space co) et oL ..ol
The same idea can be extended to the potential sets formed in Step 2. In
other words, if for P,, there exists o,, 1 < o, < N, such that Q((j]) = [, for
1 =1,2,...,0,—1and all ¢; € P,, then transition rates of synchronizing events
in P, can be taken into account when the set Clorl — elor) g elortl) oo o W)
is formed. We remark that for the assumed ordering of automata, all functional
transitions that may be present in synchronizing transition matrices of events

in P, can be evaluated when Clo"! is formed.

Example 4.7 We continue with the illustration of Algorithm 1 on the SAN of
Example 2.2. For ¢ = 0.3, each of the two synchronizing events of the SAN
is classified as a potential set. We assume the same ordering of automala,
ie., A®, AC) - AD - After renumbering the automata, let the new indices of
the automata be 1, 2, 3, respectively. For the given ordering of automata, the
smallest index among automata involved in event 1 as well as in event 2 is
1. Hence, the transition rates of events 1 and 2 can be taken into account
when C = C is formed. Due to the transition rate of synchronizing event
1, we join the NCD CCs that have the members (13,23,11) and (32,13, 11),
(22,23,11) and (1a,15,11), (32,23,11) and (12, 15,11). Similarly, due to syn-
chronizing event 2, we join the NCD CCs that have the members (15,13,11) and
(32,13,21), (12,15,21) and (3q,13,11), (12,23,11) and (32,25,21), (1a,23,24)
and (32,23,11). For justification, see C formed in the Frample 4.6 and the
SAN in Example 2.2.

Our next remark is about cyclic dependencies. When the automata of a
SAN have cyclic dependencies, they cannot be ordered as discussed. Such

cases can be handled as follows.
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Definition 4.2 The SCC graph GS°C(V5°C £59C) of a SAN is the digraph in
which each vertex corresponds to an SCC of G(V, E), and the edge (vi°C, v €

i J
E5CC if (vi,v1) € € with vy, € v2°C and v, € vfcc.

Observe that G59C(V59C £5°C) is acyclic by construction. Assuming that
automata of the SAN are ordered topologically with respect to G°°¢, let p
be the smallest index among cyclically dependent automata. Then we can
evaluate all functional transitions in the cyclically dependent automata when
Cl?l is formed. This observation is omitted from Algorithm 1.3 presented in
appendix 8.4.3. The special case in which a cyclic dependency is created by
transitions in the synchronizing transition matrices of a particular event can be
handled in the same way as discussed in possibility (iii). There, the potential
set P.,r € {1,2,..., Np}, is taken into account when Cl"l is formed. Assuming
that the automata are ordered topologically with respect to G5¢“ all functions
in the matrices of synchronizing events that belong to P, can be evaluated when

Clorl is formed.

Our final remark is about a SAN with more that one essential subset of
states and/or transient states. As in subsection 4.2.2, we refer to the states
other than the ones in the essential subset of interest as uninteresting. For
1 <2 < N, we do not have a one-to-one mapping between the global state
space and the union of all members in C). Hence, we cannot say whether a
member of cl! € Cl! maps to a state in the essential subset of interest or to an
uninteresting state. Therefore, the decomposition of C as in (4.7) that allows
us to handle functional local transition rates and synchronizing transition rates
on a smaller state space cannot be used. This is because one or both of the
members that belong to the joined NCD CCs may map to an uninteresting

state.

For a SAN with uninteresting states, possibilities (ii) and (iii) should be
considered on the global state space. Hence, the NCD CCs ¢,¢ € C should
be joined only if the members under consideration from each of the two sets
map into the essential subset of interest. When we compute C = CV) @
COD ... C(N), uninteresting states must also be omitted from considera-

tion. From the definition of the binary operator @, if s; and §; are in the
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same NCD CC of C%, then it must be that (81,82, vy Sic1, Siy Sit1 -« -5 SN)
and (s1,82,...,8i-1,8,8i+1...,5n) are in the same NCD CC of C. When
uninteresting states are present, we exercise the additional constraint that
(81,825 vy Sic1,8iySit1 ..., SN) and (81, 82,...,8i-1, 8, Sit1 ..., Sn) must belong

to the essential subset of interest.

In the next subsection, we summarize for Algorithm 1 the detailed space and
time complexity analysis that appears in appendix 8.5, and apply the results
to Example 2.2.

4.3 Complexity analysis of the NCD parti-

tioning algorithm

The core operation performed by an algorithm that finds the NCD CCs of a MC
is floating-point comparison. Hence, we provide the number of floating-point
comparisons performed in Algorithm 1. Regarding the algorithm’s storage
requirements, we remark that its three steps are executed sequentially. Hence,
the maximum amount of memory required by Algorithm 1 is upper bounded

by an integer array of length O(n).

As in appendix 8.5, we assume that the MC underlying the SAN is ir-
reducible. In Step 1, the number of floating-point comparisons is given by
EQ;DI [L; a)ep, ni- For the best case in which each dependency set is a sin-
gleton, the number of floating-point comparisons reduces to %, n;. On the
other hand, if all automata form a single dependency set, we have the upper
bound [IY,n; = n. In Step 2, the lower bound on the number of floating-
point comparisons is F, and it corresponds to the case in which the transition
rate of each simple synchronizing event is greater than or equal to ae. The
upper bound is equal to %E(E + 1) floating-point comparisons. This num-
ber of floating-point comparisons is achieved when the transition rate of each
simple synchronizing event is less than ae and the transition rates of synchro-

nizing events do not sum up in ). The number of floating-point comparisons
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in Step 3 depends strongly on the number of functional transitions and syn-
chronizing events as well as the automata ordering. Assuming that in Step
2 of Algorithm 1 synchronizing event r is classified as the potential set P,,
r=1,2,..., F, and the automata are ordered as discussed in possibility (iii) in
subsection 4.2.3, the number of floating-point comparisons in Step 3 is given by
SN nzl(i) +x i H;V:Z»H n;+3F H;V:UT my nzgz), where nzl(i) is the num-
ber of nonzero off-diagonal elements in Q;i), n f; is the number of functional
transitions in Qgi), nz(gi) is the number of nonzeros in ijr), and m, is the in-
dex of the master automaton of event r. Finally, the number of floating-point
comparisons performed in Algorithm 1 is given by £ + Zf\il(nz + nzl(z)) +
SN fi H;-V:H_l n; + 38, H;-V:Uh#mT nzéi) in the best case, and n + E(F +
1)+ Zf\;l nzl(i) + Zf\sl nf; ij:iﬂ n; + Zf;l H?f:gh#mT nzéi) in the worst case.

Step 3 of Algorithm 1 also incurs floating-point multiplications when syn-
chronizing events are handled. Computation of a single nonzero transition

originating from synchronizing event r requires (N — o,) floating-point multi-

N

A (4)
izo, j#m, T7¢)) elements.

plications. For synchronizing event r, we compute []
Hence, the maximum number of floating-point multiplications in Algorithm
1.314s =2 (N —a,) ij:w’#mT nz]. Observe that this expression is almost
the same as the last term of the expression for the number of floating-point
comparisons performed in Algorithm 1. Hence, assuming that the time it takes
to perform floating-point multiplication and floating-point comparison are of
the same order, the time complexity of Algorithm 1 is roughly the number of

floating-point comparisons.

Example 4.8 As an example, we calculate the number of floating-point com-
parisons performed by Algorithm 1 to find an NCD partitioning of the MC
underlying the SAN in Example 2.2. We use the same input parameters for
Algorithm 1 as in subsection 4.2.3; that is, ¢ = 0.3 and the automata are
ordered as A®, A®) AN The SAN in Frample 2.2 has two dependency
sets, D; = { AN, A®} and Dy = { AP, Hence, Step 1 of Algorithm 1 takes
ning + ny = 7 floating-point comparisons. The diagonal element with maxi-
mum magnitude of the SAN is 14 and ae = 4.2. This SAN has two simple
synchronizing events. Transition rates of the master automata of these events

are greater than ae. Hence, each synchronizing event is classified as a potential
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set, and the number of floating-point comparisons in Step 2 is 2.

In Step 3, we first find the NCD CCs of local transition rate matrices. This
operation takes 7 floating-point comparisons and corresponds to the number of
off-diagonal nonzero elements in the local transition rate matrices. The value
of the functional transilion rate in Ql(g) depends on the state of AV, Hence,
for the given ordering of automata, the value of the function can be evaluated
when COCW) is formed (see Algorithm 1.3). The number of these evaluations
is equal to the number of states in A", Hence, the number of floating-point
comparisons due to the functional transition rate is 2. Recall that in Step
2, each synchronizing event is classified as a potential set. Hence, transition
rates of both events must be taken into consideration in Step 3. For the given
ordering of automata, let the new indices of the automata be 1, 2, and 3, re-
spectively. For potential set 1, we have oy = 1, and for potential set 2, we have
oy = 1. Hence, the number of floating-point comparisons due to synchronizing
events of the SAN s nzg)nz(gf) + nzg)nzg’) = 7. Finally, the total number
of floating-point comparisons performed in Algorithm 1 is 25. The number of
floating-point multiplications performed to process synchronizing events 1 and
2is (N — 1)(nz{nz® 4+ nzUnz)) = 14. When the global generator is stored

in sparse format, the total number of floating-point comparisons performed by
the straightforward algorithm that finds the NCD CCs is 57, which s almost

two times as large as the corresponding value of Algorithm 1.

4.4 Numerical experiments with the NCD par-

titioning algorithm

We implemented the SC algorithm (see appendix 8.3) and Algorithm 1 in
C++ [66] as part of the software package PEPS [54]. We ran all the experi-
ments on a SUN UltraSparcstation 10 with 128 MBytes of RAM. To verify the
NCD partitionings obtained for a given SAN, we compared our results with
the straightforward approach of generating in core the submatrix of @) corre-
sponding to the essential subset of states obtained using the SC algorithm and
finding its NCD CCs. We remark that the same data structure for NCD CCs
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is used in Algorithm 1 and the straightforward approach.

The input parameters of Algorithm 1 are the user specified decomposability
parameter €, the vector output by the SC algorithm in which states correspond-
ing to the essential subset of interest are marked, and a file in PEPS format
that contains the description of the SAN under consideration. The only modi-
fication we introduced to the PEPS descriptor file format is a matrix appended
to the end which describes the dependency among automata. This matrix is
in the same sparse matrix format used for automata matrices in PEPS. Note
that the new descriptor file format is compatible with the previous version of
PEPS. We remark that the first step of Algorithm 1 (i.e., @ — P transforma-
tion) does not introduce any explicit changes to the original input description
of the SAN. In other words, € is multiplied by « once and rates are compared
with e on the fly. Hence, upon termination of the algorithm, the description
of the SAN remains unchanged and can be used in further processing. The
only modification that we make on the SAN is the transformation of each syn-
chronizing event to the simple form (if the SAN is not already in that form).

Note that this transformation is taken into account in the reported results.

Table 4.1: Results of the resource sharing problem (U, S).

n Ness NZess SC € |[CCs| | NCDS | Gen. NCD.N
32,768 16,384 210,664 0.69 | 0.04 1 0.46 | 0.61 0.04
(15,7) 0.08 16,384 0.44 0.04
65,536 39,203 563,491 1.57 | 0.04 1 1.06 | 1.64 0.13
(16,8) 0.08 39,203 1.03 0.12
131,072 65,536 960,858 3.29 | 0.04 1 2.15 | 3.06 0.22
(17,8) 0.08 65,536 2.12 0.21
262,144 155,382 2,514,678 7.24 | 0.04 1 4.96 8.02 0.57
(18,9) 0.08 155,382 4.83 0.55
524,288 262,144 4,319,100 15.31 | 0.04 1 9.76 | 15.03 0.85
(19,9) 0.08 262,144 9.83 0.91
1,048,576 616,666 11,102,426 | 33.43 | 0.04 1 22.03
(20,10) 0.08 616,666 22.31
2,097,152 1,048,576 19,188,796 | 70.58 | 0.04 1 44 .98
(21,10) 0.08 1,048,576 45.45
4,194,304 2,449,868 48,587,212 | 152.56 | 0.04 11| 100.79
(22,11) 0.08 2,449,868 | 101.71
8,388,608 4,194,304 84,438,360 | 319.53 | 0.04 11 205.24
(23,11) 0.08 4,194,304 | 206.98
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As test problems, we use three SAN models in appendices 8.2.1, 8.2.2, and
8.2.3. We name them resource sharing, three queues, and mass storage. The
SAN model of the resource sharing problem has single dependency set. In our
experiments, we used A; = 0.04 and g; = 0.03 for ¢ = 1,2,...,U (see appendix
8.2.1 for detailed description of the parameters of the SAN model). The three
queues problem has two dependency sets, D; = { A1), AB) AG)Y and D, =
{AMY, In our experiments, we used Ay = 0.4, Ay = 0.3, pg = 0.6, py = 0.5,
ps, = 0.7, and ps, = 0.2. Detailed description of the three queues problem
can be found in appendix 8.2.2. The SAN model of the mass storage system
(see appendix 8.2.3) has three dependency sets, D; = {AM) AM2) AM)1
Dy = {AD}, and D5 = {AED}. We used R =5, H = 0.95, L, = 0.75, and
the values of the other parameters in [18] except C, nq, ng, nz. The detailed

description of the parameters appears in [18].

Results of experiments for the resource sharing, three queues, and mass
storage problems are presented respectively in Tables 4.1, 4.2, and 4.3. All
timing results are in seconds. In these tables, n denotes the number of states
in the global state space of the particular SAN under consideration, n.s; de-
notes the number of states in the essential subset when the underlying MC is
reducible, nz.s, denotes the number of nonzero elements in the submatrix of
() corresponding to the essential subset of states, and SC denotes the time for
state classification. For each problem, we indicate in parentheses under n the
values of the integer parameters used. The column e denotes the value of the
decomposability parameter used and |C'C's| denotes the number of NCD CCs
corresponding to € when transient states are removed. The column NCD_S
contains timing results for Algorithm 1. The columns Gen. and NCD_N re-
spectively contain timing results to generate in core the submatrix of ) cor-
responding to the essential subset of states and to naively compute its NCD
partitioning for given € after the SC algorithm is executed. We have varied the
value of € in each problem to see how the performance of Algorithm 1 changes

for different number of NCD CCs.

We remark that the difference between the time required to generate in core
the submatrix of () corresponding to the essential subset of states for a given

SAN and the time to find the corresponding NCD partitionings using Algorithm
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1 1s noticeable. Compare columns Gen. and NCD_S in Tables 4.1-4.3, and also
compare the sum of columns Gen. and NCD_N with column NCD_S. Moreover,
there are cases in each of the three tables for which it is not possible to generate
in core the submatrix of () corresponding to the essential subset of states on the
particular architecture. Hence, the straightforward approach of finding NCD
partitionings is relatively more restricted with memory and is slower than using

Algorithm 1.

Table 4.2: Results of the three queues problem (Cy, Cy, C3).

n Ness NZess SC € |CCs| | NCDS | Gen. NCD.N
37,800 20,160 112,242 0.44 | 0.10 1 0.06 | 0.21 0.02
(12,14,15) 0.22 364 0.12 0.04
0.25 2,520 0.07 0.04
0.35 20,160 0.05 0.04
68,850 36,720 207,279 0.82 | 0.10 1 0.10 | 0.39 0.05
(18,17,15) 0.22 544 0.22 0.09
0.25 4,590 0.13 0.07
0.35 36,720 0.11 0.06
202,400 106,260 608,474 2.63 | 0.10 1 0.30 | 1.24 0.17
(23,22,20) 0.22 924 0.68 0.28
0.25 10,120 0.38 0.24
0.35 106,260 0.33 0.23
390,000 202,800 1,168,676 4.91 | 0.10 1 0.56 | 2.40 0.32
(26,24,25) 0.22 1,200 1.37 0.54
0.25 15,600 0.71 0.47
0.35 202,800 0.58 0.45
756,000 390,600 2,264,460 9.83 | 0.10 1 1.03 | 4.58 0.62
(30,28,30) 0.22 1,652 2.46 1.04
0.25 25,200 1.37 0.92
0.35 390,600 1.12 0.90
1,414,875 727,650 4,239,795 | 19.04 | 0.10 1 1.88 | 8.37 1.16
(35,33,35) 0.22 2277 | 4.60 1.94
0.25 40,425 2.46 1.71
0.35 727,650 2.02 1.56
4,050,000 2,070,000 12,143,950 | 56.91 | 0.10 1 5.02
(40,50,45) 0.22 4,200 | 12.66
0.25 90,000 6.74
0.35 2,070,000 5.53
6,875,000 3,506,250 20,632,250 | 96.37 | 0.10 1 8.63
(50,55,50) 0.22 5,445 21.85
0.25 137,500 11.57
0.35 3,506,250 9.18
9,150,625 4,658,500 27,445,825 | 131.34 | 0.10 1 11.25
(55,55,55) 0.22 5,995 33.04
0.25 166,375 14.24
0.35 4,658,500 12.44




LhoAriiie 4. OAIND ANNGD (NvAnn CUMEP LIVE L JLUUMIEUYADILEL Y  O%

The time spent for state classification does not involve any floating-point
operations, whereas the time spent to generate in core the submatrix of )
corresponding to the essential subset of states primarily involves floating-point
arithmetic operations. The overhead associated with evaluating functions slows
down both tasks dramatically. Compare columns SC and Gen. in Tables 4.1-
4.3 with columns NCD_S and NCD_N. The time spent by the SC algorithm
is larger than the time spent by Algorithm 1 in all experiments. This is not
surprising since the former is based on finding SCCs while the latter is based
on finding CCs. The difference is more pronounced when there are multiple

dependency sets for which Algorithm 1 can bring in considerable savings.

The resource sharing problem is the most difficult of the three problems
considered since it has a single dependency set, is reducible, and contains a
significant number of functional transitions. Hence, the time to find its NCD
CCs using Algorithm 1 is the largest for a given problem size. Compare column
NCD_S in Table 4.1 with those in Tables 4.2 and 4.3. However, even for this
problem, Gen. is larger than NCD_S since we are able to take advantage of
the constant transition values in automata matrices which makes Algorithm 1

worthwhile to use.

The case of |C'Cs| = 1 corresponds to smaller € and implies the largest
number of nonzeros taken into account from automata matrices in Algorithm
1 and from the submatrix of ) corresponding to the essential subset of states in
the naive NCD partitioning algorithm. The case of |CCs| = n.ss corresponds
to larger € and implies larger temporary data structures being used by both
algorithms when determining NCD CCs. Hence, for increasing €, the results
in columns NCD_S and NCD_N either increase then decrease (Table 4.2) or
they decrease then increase (Table 4.3). NCD_S for intermediate ¢ values for
the mass storage example seem to have benefited significantly from its larger
number of dependency sets, irreducibility, and the improvements introduced

by possibilities (ii) and (iii) discussed in subsection 4.2.3.
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Table 4.3: Results of the mass storage problem (C, Ny, Ny, N3).

(= Ness) NZess SC € |CCs| | NCDS | Gen. NCD.N
30,240 199,440 0.46 | 0.01 1 0.05 | 0.43 0.05
(10,12,14,12) 0.05 5 0.03 0.05
0.15 10 0.02 0.05
0.22 720 0.03 0.05
0.25 22,680 0.04 0.06
0.40 30,240 0.05 0.08
69,120 462,720 1.08 | 0.01 1 0.13 1.05 0.12
(10,16,18,16) 0.05 5 0.07 0.12
0.15 10 0.06 0.13
0.22 960 0.07 0.14
0.25 56,160 0.14 0.16
0.40 69,120 0.14 0.15
184,320 1,232,640 2.95 ] 0.01 1 0.16 2.78 0.35
(38,16,16,16) 0.05 5 0.11 0.33
0.15 10 0.11 0.37
0.22 2,880 0.12 0.34
0.25 149,760 0.27 0.41
0.40 184,320 0.30 0.43
372,680 2,524,060 6.21 | 0.01 1 0.45 | 6.12 0.67
(30,22,22,22) 0.05 5 0.27 0.66
0.15 10 0.26 0.69
0.22 3,080 0.33 0.69
0.25 304,920 0.62 0.79
0.40 372,680 0.71 0.85
760,000 5,130,000 | 13.09 | 0.01 1 0.45 | 12.35 1.38
(90,20,20,20) 0.05 5 0.37 1.33
0.15 10 0.34 1.40
0.22 7,600 0.58 1.32
0.25 646,000 1.21 1.71
0.40 760,000 1.22 1.82
1,572,160 10,773,920 | 28.90 | 0.01 1 2.19
(35,34,34,34) 0.05 5 1.34
0.15 10 1.32
0.22 5,440 1.88
0.25 1,340,960 3.11
0.40 1,572,160 3.48
3,510,000 23,985,000 | 65.93 | 0.01 1 2.08
(126,30,30,30) 0.05 5 1.73
0.15 10 1.72
0.22 15,600 3.31
0.25 3,042,000 5.78
0.40 3,510,000 6.29
5,573,750 38,220,000 | 108.92 | 0.01 1 3.53
(126,35,35,35) 0.05 5 2.88
0.15 10 2.84
0.22 18,200 5.80
0.25 4,777,500 9.32
0.40 5,573,750 10.01
9,280,000 63,800,000 | 189.80 | 0.01 1 5.91
(140,40,40,40) 0.05 5 5.14
0.15 10 5.07
0.22 23,200 10.18
0.25 8,120,000 17.31
0.40 9,280,000 17.96
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4.5 Conclusion

In this chapter, we designed the NCD partitioning algorithm that computes
NCD CCs of a SAN for a user specified decomposability parameter € from the
description of its components. The algorithm consists of three steps. Since the
definition of NCDness is given through the transition probability matrix of a
DTMC, the MC underlying a continuous-time SAN should be transformed to
the discrete-time form using equation (4.1). In other words, in the first step the
diagonal element with maximum magnitude of the SAN under consideration,
a, is computed. In order to do it efficiently, we partition the automata of the
SAN into dependency sets and find the maximum diagonal element of each
dependency set. The diagonal element with maximum magnitude of the SAN
is obtained as the sum of the maximum diagonal elements of the dependency

sets.

In the second step, those synchronizing events that may influence the NCD
partitioning of the SAN are selected. Synchronizing events influence the NCD
partitioning in two ways. First, the transition rate of a simple synchronizing
event is greater than or equal to ae. Second, a set of synchronizing events
contributes to the same nonzero element in the generator underlying the SAN
and the sum of the transition rates of these synchronizing events is greater

than or equal to ae. The sets of selected events are named as potential sets.

The aim of the third step is to compute the NCD CCs using the description
of the automata and the information obtained in steps 1 and 2. In subsection
4.2.3, we showed that it is relatively easy to find the NCD CCs of a SAN
that does not have synchronizing events. Using the operator ©, we gave a
compact expression for the NCD CCs of a SAN. We pointed out that the
operator () is associative, and hence, NCD CCs of a SAN can be computed in
a sequential manner starting from the last automaton. We also described how
synchronizing events that form the potential sets can be taken into account.

Finally, we discussed implementation issues for the case of cyclic dependencies.

The complexity analysis presented in section 4.3 shows that the time and

space complexities of the NCD partitioning algorithm depends on the number
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of automata, the number of synchronizing events, the number of functions,
the number of essential states, the sparsity of automata matrices, the number
of dependency sets, and the ordering of automata. These results are verified
with numerical experiments on three continuous-time SAN models. The exper-
iments also showed that the developed algorithm performs much better than a
straightforward algorithm that computes NCD CCs of a continuous-time MC

from its transition rate matrix.

In the next chapter, we concentrate on finding the stationary probability
vector of a MC modeled as a SAN. Taking advantage of the compact SAN
description and the block structure induced by the tensor product, we de-
rive conditions that allow us to identify lumpable SANs from the descrip-
tion of automata. For lumpable SANs, we introduce an iterative aggregation-

disaggregation algorithm and discuss its implementation.



Chapter 5

SANs and lumpability

Various methods have been developed for solving the underlying MC of a SAN
for its stationary probability vector, 7. In this chapter we contribute to the
existing results in this area. Continuing the research in [6] and [67], we take ad-
vantage of the block partitioning of the MC underlying a SAN model. First, we
derive conditions for having equal row sums in the blocks of a matrix that is a
sum of tensor products. Then, we extend the derived conditions to the descrip-
tor of a SAN. We also introduce an efficient iterative aggregation-dissagregation

algorithm for lumpable SANs

5.1 Block structure of the tensor product and

its properties

Let A be the tensor product of N square matrices A®, k=1,2,.... N, as in
N

A=) AK), (5.1)
k=1

where ny, is the order of A®). Similar to the global state of a SAN, each row of
A can be mapped to the vector (rA(l), rA@ rA(N)), where rA®) denotes

the row index of A®). In the same way, we can map each column of A to

(cAM cA®) . cAN)) where cA®) denotes the column index of A®). From

38
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the definition of tensor product (see appendix 8.1), for any m € {2,3,..., N}

the matrix A can be partitioned into K? blocks of the same order as

An A .0 Ak
S N | 52
Akg1 Ax2 ... Agrk
where K = [[7 ne,
N m—1 N
Aij =& Q AW = (H A(k)(rA(’“),cA(’“))) &R AW, (5.3)
k=m k=1 k=m

i (rAW rA@ A Cand § s (cAD) AP A1) Now, et

us assume that the matrices A%*) may have functional elements such that the

?

value of the function depends on the row index of A. Similar to the notation
for the functional dependency among automata of a SAN (see Definition 2.1),
we denote by A®[AD] a functional dependency between the matrices A*) and
AW when the value of at least one element in A®) depends on rA"). We say,
A®) functionally depends on AD.

The following theorem specifies a simple and easy to check condition for

equal row sums in all blocks A;; of the partitioning in equation (5.2).

Theorem 5.1 Fach block A;; in equation (5.2) has equal row sums for any
m € {2,3,..., N} if the matrices A®), k =1,2,..., N, in equation (5.1) can
be reordered and renumbered so that AR [AD] implies | € {1,2,...,k —1} and

each A®) k=m,m+1,...,N, has equal row sums.

Proof. We must show in equation (5.2) that A;;u = l;;u for ¢,7 =1,2,..., K,
where [;; is a constant value that depends only on ¢ and j, and u represents the
column vector of 1’s with appropriate length. The value A®)(rA*) cA®)) in
equation (5.3) may be a function of rA®) for some I € {1,2,...,k — 1}, but is
still fixed for the particular mapping ¢ « (rA(l), rA® T‘A(m_l)). Further-
more, ®p_, A®) may very well depend on rA® for some [ € {1,2,...,m —1}.

Hence, it suffices to show that (&; @1, A®)u = l;u for some constant

value [;; that depends only on ¢ and m. We are dropping m from [;; since m is
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fixed for the chosen partitioning. By the assumption regarding equal row sums
in the statement of the theorem, we have AWy = vy for k =1,2,..., N and

for some constant value v(*) that depends only on k. Then

N N N N
(6 @ AWu = &; Q@ (AW un,) = & Q (W un,) = (&5 T vV,
k=m k=m k=m k=m

where u,, denotes the column vector of ny 1’s. Hence, when all A®) have equal
row sums, each block A;; in equation (5.2) under the assumed ordering of the

matrices retains the equal row sums property, and I;; = &; [Tre,, ¥, a

Similar to the dependency graph of a SAN (see Definition 2.2) we associate
the dependency graph G(V, £) with the matrices A¥) k= 1,2,..., N, in which
the vertex v, € V represents A®) and the edge (vg,v7) € E if AB®[AD], Then
we say that there is a cyclic functional dependency among the matrices A% if

and only if a topological ordering of G does not exist.

Now, we state a more relaxed version of Theorem 5.1 for the case of cyclic

functional dependencies.

Theorem 5.2 There exists m € {2,3,...,N} and an ordering and renum-
bering of matrices A%k = 1,2,..., N, such thal each block A, 1,5 =
1,2,..., K, in equation (5.2) has equal row sums if the digraph associated with
the matrices A% has more than one strongly connected component (SCC) and

each A®) k=m,m+1,...,N, has equal row sums.

Proof. Without loss of generality, let the N matrices be partitioned into two
SCCs & = {AMW, AD) A=Y and 8, = {AU) AU+ AN Tet
S, be formed of cyclically dependent matrices (i.e., N —m > 0). Note that
it is possible for the matrices in S; to depend on rA®, where A®) € S,,
or vice versa, but both type of functional dependencies cannot be present
simultaneously. That is, the matrices in &; and the matrices in Sy cannot be
mutually dependent; otherwise we could not have two partitions §; and 8.
Now, let 8;[S1]; in other words, there is at least one k € {m,m+1,..., N} for
which A®) depends on rAY) for some I € {1,2,...,m — 1}. If 5;[S,] were the

case, one could exchange Sy and &j.
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The equal row sums property of each block A;; follows from two arguments.
First, the scalars &; in equation (5.3) are independent of the row indices of
A® for k = m,m + 1,..., N, and they can still be computed in the same
way since each &;; is the product of (m — 1) values, the Ith one coming from
a specific element of AY, where I = 1,2,...,m — 1. Even when S, is formed
of cyclically dependent matrices (implying m > 1), each ;; is a well defined
constant. Second, the matrices (&; ®@n_, A®))in equation (5.3) still have equal
row sums since, by the assumption in the statement of the theorem, each A*)
for k =m,m+1,..., N has equal row sums. Hence, each block A;; in equation

(5.2) has equal row sums for the particular value of m.

When there are S > 2 SCCs S,, p = 1,2,...,5, in the digraph associ-
ated with the matrices A®) the theorem also holds since there are no cyclic
functional dependencies among the S, and they can be reordered and then
renumbered so that for p=2,3,...,5 §,[S,] implieso € {1,2,...,p—1}. In
this order, there are clearly (S — 1) partitionings for which each square block

A;; in equation (5.2) has equal row sums. O

Next, we state a result that extends Theorems 5.1 and 5.2 to a square matrix

given as the sum of K tensor products.

Corollary 5.1 [f there exists the same value of m for which each tensor prod-
uct @, B® in B = YF QN B®, where B®) is of order ny for e =
1,2,..., FE, satisfies the conditions of Theorems 5.1 or 5.2, then each block
Bij, 1,5 =1,2,..., K, in the parlitioning of B specified by m as in equalion

(5.2) has equal row sums.

When B is a stochastic or generator matrix that satisfies the conditions of

Corollary 5.1, B is said to be lumpable [38, p. 124].

In the next section, we extend the conditions of having equal row sums in
the blocks of a matrix that is a sum of tensor products to the descriptor of a

continuous-time SAN. Then we introduce conditions for which the underlying

MC of a SAN is lumpable.
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5.2 Lumpable continuous-time SANs

@ in equation (2.1) can be considered as a sum of two terms. The first term
is Q; and the second term is the sum of Q. and Q.. Q; is the tensor sum of N

matrices and can be written as a sum of tensor products as follows:

N N
Q=PQ" =31, 0L,9..0L,_2Q"al,, © 0L, &, (54)

where [,,, 1s the identity matrix of order nj. Identity matrices have row sums of
1 and Q;k) have row sums of 0. Hence, Corollary 5.1 applies through Theorem
5.2 if the digraph (G associated with the matrices ng) has more than one SCC.

Now, consider the second term composed of Q. and Q.. We can omit Q.
from further consideration since Q. contributes only to the diagonal elements
of Q. Hence, it influences only the diagonal blocks in a given partitioning of
Q). Once we prove that the off-diagonal blocks of a partitioning have equal
row sums, the property immediately follows for its diagonal blocks since () is

a generator matrix (i.e., Qu = 0).

Q). is a sum of tensor products. Hence, we can again resort to Corollary 5.1.
However, the condition regarding equal row sums can be violated in two ways:
(i) in synchronizing transition rate matrices of master automata, (ii) in syn-
chronizing transition probability matrices of slave automata. A synchronizing
transition rate matrix need not have equal row sums of 0. On the other hand,
assuming that the SAN description is proper (see Definition 2.5), a synchroniz-
ing transition probability matrix has row sums of 1 or 0. Hence, the equal row
sums property may not hold for synchronizing transition probability matrices

either.

We remark that the case in which a synchronizing transition probability ma-
trix has zero rows corresponds to an implicit functional dependency between
the master automaton of the synchronizing event and the slave automaton
whose synchronizing transition probability matrix has zero rows (see Remark
4.4). The next lemma shows that implicit functional dependencies are equiva-

lent to explicit functional transitions.
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Lemma 5.1 By introducing functional transitions, a SAN which contains im-
plicit functional dependencies can be transformed to an equivalent SAN which

does not contain implicit functional dependencies.

Proof. Without loss of generality, consider a SAN of N automata and 1 syn-
chronizing event that contains implicit functional dependencies. Let A®) be
the master automaton of synchronizing event 1. We denote by Z®*) the set of
states of A®), k # ¢, for which the corresponding rows of Qg’f) are zeros. In
order to obtain an equivalent SAN that does not contain implicit functional

dependencies, we replace each nonzero element Qg)(z, J) with the function

QW) for all .k # 1,5A%) ¢ 26

0, otherwise

) :{

We also modify each lef), k # t, so that if sA®) € Z*) then lef)(sfl(k), s AWK
(which is 0) becomes 1. In the same way, we redefine the transitions in Qg)
and Qg’f), k # t. The new SAN description does not contain implicit functional

dependencies.

In the general case when there are £ > 1 synchronizing events, we apply
the same kind of modification to ng) and ng) of each event 5 € {1,2,..., K}
that introduces an implicit functional dependency to the SAN description. The
new SAN description does not contain implicit functional dependencies, and
hence, all synchronizing transition probability matrices have equal row sums

of 1. O

Next, we introduce three definitions concerning functional dependencies and

suitable orderings of automata for lumpability.

Definition 5.1 A SAN that does not contain implicilt functional dependencies

is said to be in its explicit form.

Definition 5.2 A proper ordering of the automata of a SAN is a reverse topo-
logical ordering of its dependency graph.

The reason behind using the reverse of the topological ordering in Definition 5.2
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is the direction of the arcs we choose in G to represent dependencies between

automata (see Definition 2.2).

When there are cyclic functional dependencies, a proper ordering of the
automata of a SAN does not exist. In that case, using Definition 4.2 for the
SCC digraph G599 (V59Y £59¢) of the SAN, we search for a quasi-proper
ordering of the automata of the SAN.

Definition 5.3 A quasi-proper ordering of the automata of the SAN is a re-
verse topological ordering of its SCC digraph G5°C (V5°C €590 when |V5°C| >
1.

From Definitions 5.1 and 5.2 follows the first part of the next proposition.
From Definition 5.3 follows its second part. The theorem that follows the
proposition specifies sufficient conditions for the lumpability of the generator

of a continuous-time SAN.

Remark 5.1 A proper ordering is a special case of a quasi-proper ordering.
Furthermore, a quasi-proper ordering of a SAN in its explicit form exists if

and only if the digraph G of the SAN has more than one SCC.

Theorem 5.3 The generator underlying a SAN in its explicit form is lumpable
if there exisls a quasi-proper ordering of the automata and the synchronizing
transition rate maltrices of all automata have equal row sums. For the given
quasi-proper ordering of automata, there are (|V5°C| — 1) lumpable partition-

ings, where V39 is introduced in Definition 5.3.

Proof. Proof of this theorem follows from equation (2.1), Corollary 5.1, and
Remark 5.1. First, each local transition rate matrix has equal row sums. Since
there are no implicit functional dependencies, each synchronizing transition
probability matrix has equal row sums as well. Furthermore, synchronizing
transition rate matrices of master automata have equal row sums by the as-
sumption of the theorem. Second, by the assumption of the theorem regarding

the existence of a quasi-proper ordering, the digraph G of the SAN has at least
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two SCCs. Hence, there exists at least one m in Theorem 5.2 such that transi-
tions in AW, 1 =1,2,...,m—1, do not depend on sA® k=m,m+1,...,N.
This essentially proves that each off-diagonal block in the partitioning specified
by m has equal row sums. Thus, the partitioning is lumpable. For the given
ysoe|

quasi-proper ordering, m can assume (| 1) distinct values. O

As pointed out before, the equal row sums property is unlikely to be satisfied
for synchronizing transition rate matrices. Fortunately, the situation is not
hopeless. For some cases in which synchronizing transition rate matrices do not
have equal row sums, the generator underlying the SAN can still be lumpable

as we next prove.

Theorem 5.4 Let (v, v599 ... v39Y) be a quasi-proper ordering of a SAN

in its explicit form as in Definition 5.3. Then the generator underlying the SAN
is lumpable if there exists s € {2,3,...,8} such that each A®) € U, v7°¢

satisfies one of the following conditions:

(i) A®) is not the master of any synchronizing event;

(ii) if A®) is the master of synchronizing evenl 1, then Qg’:) has equal row

sums;

(iii) if A®) s the master of synchronizing event t and Q(k) does not have equal

scc

row sums, then it must be that each automaton in \J3=] vP°C is not involved

i event L.

Proof. Assume that the automata are renumbered so that their indices in the

given quasi-proper ordering are ascending. First, consider the case in which
lele)

each automaton in Ui, v;

satisfies either condition (i) or (ii). According to
the assumption of the theorem, the SAN is given in its explicit form. There-

fore, conditions (i) and (ii) imply equal row sums in synchronizing transition
lele;

maftrices of automata in UZ s U

. Hence, from Theorem 5.3, the generator

underlying the SAN is lumpable and the m in its proof is equal to the smallest
el

index of the automata in [J7_, v

Now, let A®) satisfy condition (iii). Without loss of generality, let ng)

the only synchronizing transition rate matrix that does not have equal row
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sums. Recall that equal row sums in the off-diagonal blocks of the partitioning
of @) specified by m imply equal row sums in the diagonal blocks. Observe
that the off-diagonal blocks in the partitionings of @); and Zle,#t RN, ng)
specified by m have equal row sums as we already proved. What remains is to
show that the off-diagonal blocks in the partitioning of Q= R, Qg’:) specified
by m have equal row sums. From equation (5.3), the ¢jth block of Q is given
by Qi; = (ITi5' QW ik, i) @1, QE), where i > (i1, iz, . .. ,imoy)) and j <
(71,725 - - -+ Jom=1))- 1[4 # 7, it must be that for at least one k € {1,2,...,m—1},
ir # Jr. From condition (iii), we have Q(k) =1, fork=1,2,...,m—1. Hence,
for off-diagonal blocks, ¢ # j imply []}.; Qe )(zk,]k) = 0. Consequently, each
off-diagonal block in the partitioning of Q specified by m is zero, and therefore
has equal row sums. Thus, the generator underlying the SAN is lumpable.

The generalization to the case in which A®) has more than one synchronizing

transition rate matrix with unequal row sums and to the case in which more
-lele

than one automaton in U2 S U

satisfies condition (iii) is immediate. O

In the next subsection, we show that it is not difficult to apply Theorem 5.4

to a continuous-time SAN model.

5.2.1 A lumpable continuous-time SAN

As an example of a lumpable continuous-time SAN, we consider a model of a

robotic tape library named as the mass storage problem (see appendix 8.2.3).

The SAN model of the mass storage problem consists of 5 automata and 3
synchronizing events. All local transition rate matrices have equal row sums of
0. Hence, we omit them from further consideration, but remark that transitions
in ng) depend on the state of A). Furthermore, A(") is not involved in the
first two events, i.e., Q((;jl) = ngl) = 1,,. A" is a slave automaton of event
1 and is not involved in the other two events. Observe that Qf(jj?) has constant
row sums of 1. A=) is a slave automaton of event 1 and ngjf’) has constant
row sums of 1. AU#) acts as the master of event 2, and does not participate
in event 3. A© is not involved in event 1 (i.e., Qg; = I¢); but it is a slave

automaton of events 2 and 3 such that Qg) and Qgg has constant row sums
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Table 5.1: Summary information for the mass storage problem

Event Master Slave(s) Dependencies
1 AlerD o An2) - g(n3)
2 Amz)  A©) A2)[A(a)]
3 Alm)  A(€) A1) [ A(11)]

of 1. Finally, A" is the master automaton of event 1; but it is not involved

in the other two events.

Now, let us check the lumpability conditions of Theorem 5.4 using the in-
formation in Table 5.1 and the matrices of the SAN model. First, none of
the synchronizing transition probability matrices have zero rows. Hence, the
SAN model of the mass storage problem is in its explicit form. Second, from
the last two lines in Table 5.1, the digraph G of the SAN has the two edges
(Vg Upy) and (vp,, v, ). This digraph is acyclic and it has S = N =5 SCCs.
Therefore, there exists a proper ordering of the automata of the SAN. Any
ordering in which A is placed after A" and A) is a proper ordering.
Consider, for instance, the proper ordering (A®M, A®) AG) A® AG)) where
1 denotes erl, 2 denotes 73, 3 denotes 7y, 4 denotes ', and 5 denotes n,. For
any s € {2,3,4,5}, the partitioning of the generator specified by s is lumpable

as we next explain.

We first remark that A®) and A satisfy condition (i) of Theorem 5.4
meaning neither A) nor A©) is the master of any synchronizing event. This
implies lumpability when s € {4,5}. Second, A®) satisfies condition (iii) im-
plying lumpability when s = 3. This is because A is the master of synchro-
nizing event 3, ngl) does not have equal row sums, and A, 7 = 1,2, are not
involved in synchronizing event 3. Similar to A®), A®?) also satisfies condition
(iii) implying lumpability when s = 2. In synchronizing event 2, A() acts as
the master, Qggi*) does not have equal row sums, and A" is not involved in
synchronizing event 2. Thus, for the chosen proper ordering of automata, there

are 4 lumpable partitionings of the generator for s € {2,3,4,5}.

In the next section we introduce the efficient iterative aggregation-disaggregation

algorithm for lumpable SANs and discuss details of its implementation.
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5.3 IAD algorithm for lumpable SANs

Assuming that the MC underlying a SAN model is lumpable with respect to the
partition in (5.2) and is irreducible, we propose the following modified form
of Koury-McAllister-Stewart’s IAD algorithm [61] to compute its stationary
probability vector, 7. The proposed algorithm is different from the TAD algo-
rithm of Koury-McAllister-Stewart in that the aggregation step is invoked only

once and each subsequent iteration consists of the disaggregation step only.
IAD algorithm for lumpable continuous-time SANs

1. Let #(® = (ﬂo), 71'50), . W}?)) be a given initial approximation of #. Set

it = 1.
2. Aggregation:

(a) Compute the lumped matrix L of order K with ¢jth element [;; =
max(Q;;u).

(b) Solve the singular system 7L = 0 subject to Y&, 7 = 1 for 7 =
(T1, 725+, TK).

3. Disaggregation:

(a) Compute the row vector

(it—1) (it—1) (it—1)

(it) _ (71 Wl, " Ty - T )
it—1 ) it—1 ’ y TR it—1 '

[Ea T e S B3 %

(b) Solve the K nonsingular systems of which the ith is given by

200, = plit

7 [

for 71'2(#), 1 =1,2,..., K, where
b = - (Z SRR W](‘”)Qﬁ) :
i>i j<i

4. Test 7 for convergence. If the desired accuracy is attained, then stop
and take 7(**) as the stationary probability vector of Q. Else set it = it +1
and go to step 3.
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Here, we provide the algorithm for a continuous-time SAN. The algorithm for
a discrete-time SAN given by equation (3.1) or (3.2) is straightforward and
appears in appendix 8.6.

It is known that TAD exhibits fast convergence if the degree of coupling
| F'||oo (see section 4.1) is small compared to 1. The study of local and global
convergence of TAD (with the possibility of using iterative solution methods

for the aggregation step) appear in [42] and [41].

The motivation behind proposing TAD rather than BGS [58, p.102] for
lumpable SANs is that the lumped partitioning we consider is a balanced one
with blocks of equal order, the aggregate matrix in IAD needs to be formed
only once due to lumpability, and faster convergence will be achieved when
| F'||co is small. In [41], the convergence of a framework of TAD methods is
studied. The TAD algorithm considered therein is different in that there is no
requirement of a small degree of coupling in the partitioning. Furthermore, a
number of relaxations (i.e., smoothings) of the power method kind is performed
at the fine level. The authors prove that the errors at the fine and coarse lev-
els are intimately related, and for a strictly positive initial approximation, the
IAD approximation converges rapidly to the stationary probability vector as
long as one is very precise in computing at the coarse level and a sufficiently
high number of smoothings is performed at the fine level. Numerical results
on randomly generated stochastic matrices with varying degrees of coupling
and blocks of equal order, which are all tridiagonal, show that convergence is
practically independent of the degree of coupling. See [20] for recent results on

the computation of the stationary probability vector of a Markov chain.

Assuming that for the given ordering of automata there exists a lumpable
partitioning and the indices of automata are ascending, the lumped matrix L
is of order K = [[7-}' ni, where m is the smallest index among the automata
that form the blocks of the partitioning (see equations (5.2) and (5.3)). In the
IAD algorithm, L is computed at the outset and solved once for its stationary

probability vector 7. As for the disaggregation phase (i.e., a BGS iteration),
(i1)

we need to look into how the right-hand sides b; "’ at iteration ¢f are computed.

gﬁ) involves only the off-diagonal blocks
(it)

7

First, observe that the computation of b

Qii, i # j. Hence, Q. is omitted from the computation of b Second,
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assuming that (Q.);; is the ¢jth block in the partitioning of (). as in equation
(5.2), we have (Q.);; = LI, €PTY, where £§) = [I15' QW (rQ®, cQ®),
i o (rQW,rQB), . rQIr), j e (eQW), Q... eQlY), and TV =
R, QW (cf. equation (5.3)). Third, we have

b = - (Zzﬁ’Wzéﬁ?T;”)+Ew§”><Zfﬁ?Tﬁ)>)
t=1

>t i<t t=1

o (Z ST 1YY 5§§)<w§“>T]<f>>)

7> t=1 7<i t=1

forz = 1,2,..., K. Since Tj(t) is composed of (N — m) tensor products, the
vector-matrix multiplications z](it)Tj(t) and W](it)Tj(t) turn out to be expensive
operations. Furthermore, they are performed a total of K(K — 1)E times
during each iteration and constitute the bottleneck of the iterative solver. This
situation can be improved at the cost of extra storage. Note that the subvectors
z](.it)Tj(t) and W](-it)T]-(t) in the two summations appear in the computation of

multiple bgit). Therefore, at iteration i, these subvectors of length [Tr, 14
can be computed and stored when they are encountered for the first time for a
specific pair of 7 and ¢, and then they can be scaled by fj(f) whenever necessary.
Thus, when solving for 7(*) in step 3(b) of the IAD, we first compute fj(;), check
if it is nonzero, and only then multiply z](it) or 7r](-it) with Tj(t) if this product
was not computed before. With such an implementation, no more than one
multiplication of z](ﬁ) or ’R'](it) with Tj(t) is performed.

In summary, the proposed solver is limited by max(K?, (F + 2)n) amount
of double precision storage assuming that the lumped matrix is stored in two
dimensions. The 2 vectors of length n are used to store the previous and current

approximations of the solution.

5.4 Conclusion

In this chapter, we derived lumpability conditions for MCs modeled as SANs.
First, we identified the properties of a matrix that is a sum of tensor prod-
ucts of smaller matrices all of the same order. We showed that each block in

the partitioning induced by the tensor representation has equal row sums if
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each of the matrices involved in the tensor products has equal row sums. We
emphasized that when the matrices have functional elements, the ordering of
the matrices in the tensor products is important. In the presence of functional
elements, the matrices must be reverse topologically ordered with respect to
the dependency graph (G associated with the matrices. We also discussed the
case of cyclic functional dependencies and showed that each block in the par-
titioning will have equal row sums if G has more than one SCC and all the

matrices have equal row sums.

We extended results of section 5.1 to the descriptor of a continuous-time
SAN and derived lumpability conditions for the MC underlying the SAN.
For lumpable SANs, we introduced an efficient TAD algorithm and discussed
its implementation. The introduced algorithm is a modified form of Koury-
McAllister-Stewart’s TAD algorithm and consists of two phases. In the aggre-
gation phase, the lumped matrix is computed. The disaggregation phase is
a BGS iteration on the transition matrix underlying the SAN. Since the MC
is lumpable, the lumped matrix is solved for its stationary probability vector

once. Hence, each iteration of IAD consists only of the disaggregation phase.

In the next chapter, we present results of experiments with IAD on various
SAN models. We use the TAD algorithm to compute measures of interest for
the discrete-time SAN model introduced in Chapter 3. We also compare per-
formance of TAD with BGS on continuous-time SAN models and discuss the
difficulties associated with solving lumpable SANs having unfavorable parti-

tionings.



Chapter 6

Experiments with lumpable

SANs

The goal of this chapter is to demonstrate application of the lumpability result
discussed in the previous chapter and to compare performance of the introduced

IAD algorithm with the other existing solvers.

In the next section, we present analysis of the discrete-time SAN model
of the wireless ATM system designed in chapter 3. We discuss difficulties
associated with the analysis of the SAN model using conventional techniques,
show that the underlying MC is lumpable and employ the IAD algorithm for
lumpable SAN to compute performance measures of interest. In section 6.2,
we compare [AD with BGS on two continuos-time SAN models and in section
6.3 we show how lumpable SANs having unfavorable lumpable partiotionings

can be analyzed efficiently.

6.1 Analysis of the discrete-time SAN model
of the wireless ATM system

The discrete-time SAN model of the combined system (see section 3.4) has

(3+V) automata and 9 synchronizing events. The first 3 automata respectively

72
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have 2, (C'+ 1), (B + 1) states and the last V' automata each have 4 states
giving us a global state space size of n = 2(C + 1)(B + 1)4Y. The automaton
A®) that models the data buffer depends on all the other automata, and each
automaton A®, k € {5,6,...,V 43}, that models VBR traffic depends on the
automata AW AG) . AF=1) The probability matrices associated with the

automata are all relatively dense except the ones that correspond to the data

buffer when s A1) = 0.

Now, we are in a position to consider an example and discuss its implications.
We set A = 0.1, Se = 1, (pao, pa1, a2, pas) = (0.05,0.1,0.25,0.6) (amounting
to an average of p = 2.5 packet arrivals during a TDMA frame), (p,, pr, ps) =
C(5x107%,107°,5 x 107%), A\, = 0.5, Scy, = 10, (Pempty, Pousy) = (0.9,0.1),
(Puns Pons Pos) = V(5 x 1075,107%,5 x 107%). For the problem (C,V,B) =
(8,2,15) with at most 2(= M) CBR departures during a TDMA frame, we
have n = 4,608 and nz = 1,618,620 (number of nonzeros larger than 1071 is
1,174,657). Here nz denotes the number of nonzeros in the underlying DTMC.
In the problem (C,V, B) = (12,3,15) with M = 3, we have n = 26,624 and
nz = 39,042,922 (number of nonzeros larger than 107'¢ is 19,979,730). For
the larger problem (C,V, B) = (16,4,15) with M = 4, we have n = 139,264,
but are not able to determine its number of nonzeros in a reasonable amount
of time. Hence, in this problem, we not only have state space explosion, but
we also have a relatively dense global DTMC hindering performance analysis

by conventional techniques. However, the situation is not hopeless.

Observe that each transition probability matrix of each automaton of the
SAN model have equal row sums (see description of the SAN model in sections
3.2 and 3.3). Note also that the automata of the SAN model can be reordered
and then renumbered from 1 to N so that A®[AD] for k € {2,3,...,N}
imply [ € {1,2,...,k — 1}. For our problem, such an ordering implies that
the automaton corresponding to the data buffer be placed in the last position
and the automata corresponding to VBR traffic be placed in any position
other than the last as long as they are ordered according to increasing index
among themselves. For instance, one possibility is A®), A®H AG)  AV+3),
AW AG) " Hence, from equation (3.1) and Corollary 5.1, the SAN model of
the ATM system is lumpable and there are (N — 1) lumpable partitionings
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for the given ordering of automata. In contrast to continuous-time SANs, the
requirements of Corollary 5.1 are likely to be satisfied for a larger number
of discrete-time SAN models. More importantly, the performance analyst has
some flexibility in reordering the automata and the luxury of choosing m, which

determines the partitioning.

6.1.1 Results of experiments

The TAD algorithm for lumpable discrete-time SANs (see appendix 8.6) that we
name as [AD is implemented in C++ [66] as part of the software package PEPS
[54]. We timed the solver on a Pentium IIT with 128 MBytes of RAM under
Linux although the experimental framework in most problems could fit into 64
Mbytes. We order the automata as A®, A®) .. AV+3) AQ) - A AG) and
choose m = N — 1 for the partitioning in equation (5.2). Hence, each of the
K nonsingular systems to be solved in step 3(b) of IAD is of order 2(B + 1)
and the lumped matrix to be solved in step 2 of the algorithm is of order

K =4"(C+1).

In each experiment, we use a tolerance of 107® on the approximate error
|7 — 715 in step 4 of the IAD algorithm. We remark that the approxi-
mate residual ||7(#*) — 70 P||, turns out to be less than the approximate error
upon termination in all our experiments. Furthermore, for all combinations of
the integer parameters we considered, there is sufficient space to factorize in
sparse format (that is, to apply sparse Gaussian elimination to) the K diagonal
blocks in step 3(b) of IAD at the outset. Hence, we use sparse forward and
back substitutions to solve the K nonsingular systems at each iteration of the
algorithm. If this had not been the case, we would suggest using point Gauss-
Seidel as discussed in [67] with a maximum number of 100 iterations and a
tolerance of 1072 on the approximate error for the K nonsingular systems at

each iteration of the TAD algorithm (see [20]).

Regarding the solver for the lumped matrix formed in step 2 of the algo-
rithm, we use Grassmann-Taksar-Heyman (GTH) method (see [19] and the
references therein) when K is on the order of hundreds. When the lumped ma-

trix is of considerable size and density with a number of nonzeros on the order
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of millions, we solve it using sparse IAD as discussed in [19] with a tolerance
of 10712 on its approximate error. In doing this, when the lumped matrix to
be solved is NCD with a small degree of coupling [20], hence ill-conditioned,
we employ an NCD partitioning. Otherwise we take advantage of the fact that
the lumped matrix is also lumpable (see section 5.3) and try to use a balanced
partitioning by separating the first (N — 2) automata in the chosen ordering

into two subsets.

As for the performance measures of interest, the dropping probability of

handover CBR calls is given by P,

carop = || Tsa@=c|li, whereas the blocking

probability of new CBR calls is given by P.

Chlock HT‘-S.A(2)ZC—1H1' By the nota-

tion ||Teondition ||1, we mean the sum of the stationary probabilities of all states
that satisfy condition. Similarly, the dropping probability of handover VBR

calls is given by Py, = |7 a0 vke(a;5,..v 13} |11, and the blocking probability

drop
Of new VBR’ Calls iS given by PUblock = H’R-S.A(k)zo for only one kE{4,5,...,V+3} Hl FinallY?

the blocking probability of data packets is given by

2 Pl1 ty slot P2 ty slot
Pa:P[OemptYSlots]—l—(pd2+ pas) P[1 emply slot] + pas P| empysos]7

p
where
P[0 empty slots] = [|7 ) A sa@=pll1;
Pl empty slot] = [[T(,1) A s4®=B) v (0(0) A sa®=B-1)ll1;
P2 empty slots] = [[T(,2) A sA®=B) v (o(1) A sA®=B-1) v (0(0) A sA®=B—2)[l15

and ¢(7) is true if #°5(0,0) = 4, otherwise, it is false.

We remark that P and P, are independent of ABR and VBR traffic.

Cdrop Chlock
Similarly, P,, ~ and P, , are independent of ABR and CBR traffic. Hence,

when €' = V = M and the real valued parameters for CBR and VBR traffic

are the same, we have Peyow = Pogyop and P, , = P, In Figure 6.1, we
set (P, Py ps) = C(5x107°,107°,5x 107°), M = C and plot P,,, and P,

versus C'. We verify that P, ,
and P,

Cdrop *

is larger than P. and that larger C' implies

Cdrop?

smaller P,

Next we consider the three problems (C,V, B) € {(8,2,15),(12,3,15),
(16,4,15)} that are respectively named small, medium, and large (see begin-

ning of section 6.1). We set (pdo, pa1, paz, pas) = (0.05,0.1,0.25,0.6), (pn, pr, ps) =
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Figure 6.1: P.

Cblock

(solid) and P, (dashed) vs C.

C(5x1076,107%,5 x 107%), M =V, and (pyn, pun, pus) = V(5 x 1076,107°, 5 x
107%). We choose (a, ) so as to satisfy A € {0.1,0.3,0.5,0.7,0.9} and S¢ €
{1,10} (see section 3.1). As for the VBR arrival processes, we set (a,,[3,)
so as to have A\, = 0.5 and S¢, = 10 (see section 3.3). Finally, we set
(Pemptys Pousy) = (0.9,0.1) so that the rate of each VBR arrival process in the
low intensity state is 10% that of its high intensity state. In Figure 6.2, we
plot P, versus A for the problems small, medium, and large when (a) S = 1,
(b) Sc = 10. We observe that P, increases with A and S¢ though the increase
with S¢ happens slowly.

Note that the lumped matrices of the small problems are all the same. The
same argument follows for the lumped matrices of the medium and large prob-
lems. This is simply because the parameters that we alter in the experiments
of Figure 6.2 are only those of s AM"), which happens to be among the last two
automata in the chosen order of automata. Even though « and 3 change, the

row sums of the blocks P;; in equation (5.2) are the same because PWy =u

Sab
for all a,b € {0,1,2}.

Since data packets can use VBR slots when a VBR connection is active
but in the low intensity state, we expect P, to depend weaker on p,s than
on ps. To that effect, we consider the problem (C,V,B) = (4,4,15). We set
(pdo, pa1, paz, pas) = (0.05,0.1,0.25,0.6), A = 0.5, and choose S € {1,10}.
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Figure 6.2: P, vs A for (0, A, %) =

Se = 10.

0 L L L L L L
09 0.1 02 03 04 05 06 07 08 0.9

(small, medium,large) when (a) Sc = 1,(b)

Figure 6.3: P, vs pys (ps = 5C x 107¢, dashed), P, vs ps (pos = 5V x 1076,
solid) for (C,V, B) = (4,4,15) and A = 0.5 when (a) S¢ =1, (b) S¢ = 10.

For the VBR arrival processes, we set (a,,[,) so as to have A, = 0.5 and

Scy = 10, and we set (Pempty s Phusy) = (0.9,0.1). Furthermore, we set (p,, pr) =
(PunsPor) = C(5 x 107%, x107%), and M = 4. In Figure 6.3, we plot P, versus
pus = 1V x107% 4 € {1,3,5,7,9}, for fixed p, = 5C x 107° using a dashed curve,
and we plot P, versus p, = 1C'x107%,4 € {1,3,5,7,9}, for fixed p,, = 5V x107°
using a solid curve on the same graph when (a) S¢ =1, (b) S¢ = 10.

In the last set of experiments, we again consider the problem (C,V,B) =

(4,4,15). We set (pqo, pa1, paz, pas) = (0.05,0.1,0.25,0.6), A = 0.5, and choose

Sc € {1,10}. We set (pn, ph,Ps) = (Puns Pohs Pus) =

C(1075,5 x 10~%,10-°),
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Figure 6.4: P, vs A\, when A = 0.5, S¢ = 1 (solid), S¢ = 10 (dashed) for
(C,V,B) = (4,4,15) and S¢, = 10 when (a) (Pempty, Prusy) = (0.9,0.1), (b)
(Pemptys Phusy) = (0.5, 0.5).

M =4, and S¢, = 10. In Figure 6.4, we plot P, versus A, € {0.1,0.3,...,0.9}
when (a) (Pemptys Pousy) = (0.9,0.1), (b) (Pemptys Pousy) = (0.5,0.5). We observe
that when the VBR arrival process behaves more like the CBR arrival process
as in part (b), P, is larger. Furthermore, the increase in P, with respect to A,

is smoother for larger Sc.

The underlying DTMCs of the SAN models in Figures 6.1, 6.3, and 6.4 are
irreducible. Those of Figure 6.2 are reducible with a single subset of essential
states. When a reducible discrete-time SAN has a single subset of essential
states and each subset of the partition in equation (5.2) includes at least one
essential state (which is the case in the problems of Figure 6.2), the lumped
matrix computed in step 2 of the TAD algorithm is still irreducible. With such a
partitioning, if one starts in step 1 with an initial approximation having zero el-
ements corresponding to transient states, successive approximations computed
by IAD will have zero elements corresponding to transient states as well. This
simply follows from the fact that in step 3(a) the nonzero structure of z is
the same as that of the previous approximation. Consequently, in step 3(b)
each computed b; has zero elements corresponding to transient states. Hence,
the solutions of the K nonsingular systems at step 3(b) have zero elements

corresponding to transient states.

In the problems of Figure 6.2, we start with a positive initial approximation
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just like the other problems and observe that all elements that correspond to
transient states become zero at the second iteration in the small and medium
problems and at the third iteration in the large problem. Once the elements
that correspond to transient states in an approximate solution become zero,
they remain zero by the argument in the previous paragraph. This is also
confirmed experimentally. Hence, there is no need to run the time consuming
SC algorithm (see appendix 8.3) for each of the 30 experiments in Figure
6.2, since the matrices in each of the three problems have the same nonzero

structure.

Regarding the solution times of numerical experiments, we provide a rep-
resentative group of results in Table 6.1 which are for the problems of Figure
6.2. We remark that among small, medium, and large, the DTMC of only the
first can be stored on the target architecture (see parameters of the problems
in section 6.1). The degree of coupling, ||F'||c, associated with the partitioning
in equation (5.2) for the three problems is respectively 0.9909, 0.9991, 0.9999
in four decimal digits of precision. Hence, none of the lumpable partitionings
we consider in IAD is NCD. However, the smallest degree of coupling we find
for each of the 10 small problems using the algorithm in [17] is on the order
of 107°. The same value for each of the 10 medium problems is also on the
order of 107°. We are not able to determine the value for the large problem
due its order and density, but it is very likely that again we will have a value
on the order of 107°. This all means that although the lumpable partitionings
we consider for the problems in Figure 6.2 are not NCD partitionings, there
exist highly NCD partitionings for each one, and therefore they are all very
ill-conditioned. Nevertheless, we are fortunate that the IAD algorithm does

not require NCD partitionings for convergence [41] as discussed in section 5.3.

We solve the lumped matrix (n;, = 144 and nz;, = 7,644) of the small
problem using GTH in nearly 0 seconds. We solve the lumped matrix (n;, = 832
nzr, = 188,094) of the medium problem in 0.5 seconds and 16 iterations using
sparse IAD with an NCD partitioning of 4 blocks (with orders varying between
117 and 351) and a degree of coupling on the order of 107>. We solve the
lumped matrix (n, = 4,352 and nzz, = 3,980,512) of the large problem in
48.7 seconds and 22 iterations using sparse IAD with an NCD partitioning of
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16 blocks (with orders varying between 17 and 1,377) and a degree of coupling
on the order of 107*. Hence, much larger problems than can fit explicitly into

a given architecture may be solved by the proposed approach.

The reported times in Table 6.1 correspond to the iterative part of IAD and
they exclude the time spent for solving L. Regarding the number of iterations
taken by the TAD algorithm to convergence, the highest values are encountered
when A € {0.7,0.9} and S¢c = 10. They are iteration numbers greater than or
equal to 35, and are for the cases in which a and  are highly unbalanced. As
a result, the corresponding solution times are considerably larger than other
combinations of A and S¢. If we exclude these six cases, the small problem
can be solved within 12 seconds, the medium problem within 169 seconds, and
the large problem within 4,430 seconds. On the other hand, the smallest time
to obtain a solution for the small, medium, and large problems is respectively
8, 77, and 851 seconds. In general, the solution times are very satisfactory if

we keep in mind the number of nonzeros of the underlying DTMC.

Table 6.1: Timing results in seconds and # of IAD iterations for Figure 5.2

Problem S¢ A=0.1 A=0.3 A=05 A=0.7 A=0.9
Time #it Time F#it Time Fit Time #it Time  #it
small 1 8§ 18 9 21 8§ 17 9 20 1127
10 8§ 18 8§ 19 8§ 19 15 35 38 89

medium 1 77 9 85 10 85 10 86 11 138 18
10 146 19 168 22 94 12 309 41 824 110

large 1 889 4 990 5 803 4 1,742 9 3622 19

10 3,813 20 4,381 23 1,005 5 8,531 45 23,119 122

6.2 Results of experiments with lumpable

continuous-time SANs

Similar to the TAD algorithm for discrete-time SANs, we implemented TAD
algorithm for continuos-time SANs in C++ [66] as part of the software package
PEPS [54]. We timed the solver on a Pentium IIT with 128 MBytes of RAM
under Linux. In all experiments we use a stopping tolerance of 1078 on the

norm of the difference between consecutive approximations. We compare the
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running time of TAD with BGS. We use the recursive implementation of BGS
for SANs as discussed in [67]. In order to provide a fair comparison, IAD and
BGS both use the same ordering of automata and partitioning of the generator.
Furthermore, the implementations of both solvers use the same routines to
generate and solve the diagonal blocks of the partitioning. The timing results

are all in seconds.

We first consider the mass storage problem (see appendix 8.2.3). We use its
four instances in [67] that we number from 1 to 4. The integer parameters of
these four problems are given in Table 6.2. Parameter C' denotes the number
of states in A(é), n; denotes the number of states in A", i = 1,2,3, and
A€ has 5 states. Columns n and nz respectively correspond to the number
of states and nonzeros in the generator underlying the SAN. Generators of the

mass storage problem are irreducible.

Table 6.2: Integer parameters of the mass storage and the modified three queues

SAN models

mass storage three queues (modified)
Prob C N; n nz C; n Ness NZegs
1 26 6 6,480 39,960 20 160,000 84,000 486,800
2 51 11 73,205 479,160 25 390,625 203,125 1,185,625
3 76 16 327,680 2,191,360 30 810,000 418,500 2,454,300
4 101 21 972,405 6,575,310 35 1,500,625 771,750 4,541,075

In the first set of experiments, the automata are ordered as A, A7)
Alm), A(é), AU2) - As we indicated in subsection 5.2.1, there are 4 lumpable

partitionings for this proper ordering of automata. We partition the automata

Table 6.3: Results of experiments with the mass storage problem, first ordering

Prob  Solver w4 time dbgen Lgen Lsolve perit
1 BGS 102 2.59 0.04 0.03
IAD 34 1.00 0.04  0.03 0.00 0.03

2 BGS 106 44.79 0.68 0.42
IAD 40 13.03 0.68  0.02 0.00 0.31

3 BGS 201 417.98 8.53 2.03
TAD 47 75.01 8.53  0.06 0.12 141

4 BGS 323 1,932.39 42.25 5.85

TAD 58 303.16 42.25 0.14 0.39 4.49
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as AT A=) - Am) | A(é), A1) 5o that there are 5nyns blocks of order Cn,.
For this partitioning, the size of core memory was sufficient to store the LU
factors of all diagonal blocks in each experiment. Hence, diagonal blocks are
generated and factorized only once. Then the computed LU factors are used
at each iteration to solve the K mnonsingular systems in step 3(b) of the IAD

algorithm.

The results of the first set of experiments are given in Table 6.3. Column
1t# gives the number of iterations performed till convergence, time gives the
total time to solve the problem, dbgen gives the time to generate and factorize
diagonal blocks at the outset, Lgen gives the time to generate the lumped
matrix L, Lsolve gives the time to solve L, and perit gives the time to perform
one iteration of the corresponding solver. The values in column perit are
calculated as (ttme — (Lgen + Lsolve + dbgen))/(it#). Note that for BGS,

columns Lgen and Lsolve are naturally zero.

In the first problem, L is stored as a two-dimensional matrix and solved
using the GTH method (see [19]). In the last three problems, L is of order
605, 1,280 and 2,205, respectively. Hence, it is more feasable to store L in
sparse format and solve it using IAD with a balanced partitioning (if possible)
having a small degree of coupling (see [19,20]). In all problems, the smallest
degree of coupling for L is on the order of 1072. For this degree of coupling,
the partitioning of I has 5 blocks of equal order.

Even though step 3(a) of IAD does not exist in BGS, the experiments with
the particular ordering and partitioning of automata show that time per it-
eration in TAD is smaller than that in BGS due to the gain obtained from
computing the products z](it)jS and W](it)Qﬁ once at the expense of some stor-
age space as discussed in subsection 5.3. Furthermore, IAD converges to the
solution in a smaller number of iterations in all problems in agreement with
expectations since it uses exact aggregation with a BGS disaggregation step.
Hence, the solution time with IAD is considerably smaller than that with BGS
although there is extra work associated with forming and solving the aggre-

gated system.
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Table 6.4: Results of experiments with the mass storage problem, second or-
dering

Prob  Solver it# time dbgen Lgen  Lsolve  perit

1 BGS 33 1.28 0.04 0.04
TAD 8 0.46 0.04 0.03 0.03 0.05
2 BGS 25 14.88 0.35 0.58
TAD 7 6.94 0.35 1.14 0.76  0.67
3 BGS 23 70.63 1.49 3.01
TAD T 4274 1.49  10.34 5.85  3.58
4 BGS 30 293.39 4.48 9.63
TAD 7 236.25 4.48 129.14 27.10 10.79

In the second set of experiments with the mass storage problem, the au-
tomata are ordered as A", .A(é), Alm) - Ali) - A2) - Observe that for this
ordering, there are only 2 lumpable partitionings of the generator which are
given by A AC) - A0m) - A02) | A(2) and AD | AC) ) Am) - A() - A(2),
Furthermore, the latter partitioning has blocks of order n/5 and is unfavorable
due to the relatively large order of blocks for large n. Thus, we present the re-

sults of the second set of experiments in Table 6.4 using the former partitioning

which has 5Cnns blocks of order V.

As in the first set of experiments, the diagonal blocks are generated and
factorized once and the LU factors are stored in core memory. The lumped
matrices of the four problems are of order 1,080, 6,655, 20,480, and 46,305,
respectively. Therefore, in all problems we solve the lumped matrix using
sparse [AD and employ the same kind of partitionings as in the last three

problems of the first set of experiments.

In step 3(b) of the IAD algorithm, we use the optimized recursive BGS
implementation discussed in [67] rather than the implementation described
in section 5.3, since the blocks are relatively small in the partitioning under
consideration. In other words, the same routine is used in BGS and in the
disaggregation step of IAD. Together with the fact that there is overhead as-
sociated with step 3(a) of the IAD algorithm, this implies slightly larger time
per iteration in TAD than in BGS.

In the experiments of Table 6.4, both solvers converge in a smaller number
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Table 6.5: Results of experiments with the modified version of the three queues
problem

C; Solver it# time SC  dbgen Lgen Lsolve perit
20 BGS 341 189.82 1.31 6.59 0.53
TAD 180 75.08 1.31 6.59  0.02 0.10 037
25 BGS 404 585.20 3.22  24.89 1.39
IAD 201 209.43  3.22 2489 0.03 0.25 0.90
30 BGS 456 1,312.06 6.78 72.70 2.70
IAD 221 483.73  6.78  72.70  0.06 0.65 1.85
35  BGS 502 2,864.87 12.70 185.75 5.31

TAD 241 1,017.49 12.70 185.75  0.09 1.21  3.39

of iterations when compared with the results of the first set of experiments.
Nevertheless, it is not surprising to see that TAD still converges in a smaller
number of iterations than BGS. We also remark that in the last problem, the
time to generate the lumped matrix takes more than half the time to solve the
problem. Hence, a very unbalanced partitioning with small order of blocks and

a large lumped matrix seems to be unfavorable for large problems.

The second problem we use to test IAD is the three queues problem that
appears in appendix 8.2.2. In that model, when customers of type 1 find queue
3 full, they are blocked, whereas in the same situation customers of type 2 are
lost. Here, we consider a modified version of the three queues problem in which
customers of both types are lost when queue 3 is full, i.e., Qg?l) has the same
functional nonzero structure as Qg’r‘)) (see the description of the SAN model in

appendix 8.2.2). In our experiments, we use the real valued parameters in [67].

We use four instances of the modified version of the three queues problem
and number them from 1 to 4. The integer parameters are given in Table 6.2.
We set €y = Oy = (3 with values given in column C;. Since the generator has
transient states, we first run the SC algorithm (see appendix 8.3) to classify
the states into essential and transient subsets. Columns n.s, and nz., respec-
tively give the number of essential states and the number of nonzero elements
in the corresponding submatrix of the generator. Alternatively, when the per-
formance analyst has information about the particular SAN model under con-
sideration, it may be possible to define on the global state space a reachability

function that returns 1 for essential states and 0 for transient states, thereby
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enabling the identification of the subset of essential states in advance. See [22]
for example SAN models and their reachability functions. In any case, once
the essential subset of states is identified, the elements in #(®) corresponding to
transient states are set to zero and omitted from further consideration when

running [AD.

The SAN model of the modified version of the three queues problem is in
its explicit form. There are functional transitions in synchronizing transition
probability matrices of A1) and A®2). Functional transitions of A®1) depend
on the state of A®2) and those in A®2) depend on the state of A®1) implying a
cyclic dependency. Hence, a proper ordering of the automata in this SAN does
not exist. We consider the quasi-proper ordering AM, A2 ABGD AG2) which
has two lumpable partitionings given by A1, A®) | 4B AB2) and AN | A2,
AGD - AG) - We remark that in the original SAN model of the three queues
problem, there exists a single lumpable partitioning having 'y blocks of order
C1C2. Here we experiment with the partitioning A1), A®) | 4B AB2) which
has C1Cy blocks of order C2.

In the four instances of the three queues problem we consider, the lumped
matrices are irreducible and of order 400, 625, 900, and 1,225, respectively. We
solve the lumped matrices using sparse TAD with block partitionings having
degree of coupling on the order of 107!. The results of these experiments are
presented in Table 6.5. Time spent for state classification is negligible (see
column SC'). The values in column time include those in SC. Numerical
results show that IAD converges in a smaller number of iterations than BGS.
Furthermore, time per iteration in IAD is smaller than that in BGS again due
to the balanced nature of the partitioning. Finally, solution time with TAD is

less than half of that with BGS in all experiments.

In the next section, we discuss difficulties associated with the analysis of
SANs having relatively large blocks in lumpable partitionings, and we experi-

ment with two SAN models having such unfavorable partitionings.
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6.3 Lumpable SANs with unfavorable parti-

tionings

The TAD algorithm introduced for SANs works only with lumpable partition-
ings. Obviously, the number of lumpable partitionings of a particular SAN
model is limited. Moreover, the existing lumpable partitionings of a SAN may
have relatively large blocks which is unfavorable for IAD. At each iteration in
step 3(b) of IAD, K systems of linear equations each of order equal to the order
of blocks in the given partitioning are solved. When a lumpable partitioning of
a SAN has blocks of relatively small size, it is more reasonable to generate all
diagonal blocks once, compute the LU factors of each block and store them in
core memory. On the other hand, generation of large blocks is unfavorable due
to two reasons. First, the generation of large diagonal blocks is almost equiv-
alent to the generation of the underlying MC and hence, may take significant
amount of time. Second, the size of core memory may be insufficient to store

all the diagonal blocks.

As a remedy for unfavorable lumpable partitionings, BGS may be employed
to solve the K nonsingular systems in step 3(b) of the IAD algorithm. Similar
to block A;; defined in equation (5.2), each diagonal block of the given par-
titioning of the MC underlying a SAN can be expressed as a sum of tensor
products. Hence, if m in equation (5.2) is less than N, each diagonal block
of the partitioning can be partitioned into subblocks as in equation (5.2) as
well. In other words, the recursive implementation of BGS discussed in [67]
can be used to solve the diagonal blocks of the partitioning. Thus, the diagonal
blocks can be partitioned into subblocks so that all diagonal subblocks of the
diagonal blocks can be generated and factorized once, and their LU factors can

be stored in core memory.

In the next subsection, we present the results of numerical experiments [32]
with TAD and BGS on two continuous-time SAN models having unfavorable

lumpable partitionings.
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Table 6.6: Integer parameters of the three queues and pushout SAN models

three queues pushout
Cs n Ness NZess B+1 n Ness NZess
25 390,625 203,125 1,170,625 250 125,000 62,750 374,500
30 810,000 418,500 2,482,200 500 500,000 250,500 1,499,000
35 1,600,625 771,750 4,499,425 750 1,125,000 563,250 3,373,500

6.3.1 Results of experiments

The framework of the experiments presented in this subsection is the same
as that in section 6.2. In particular, the solver is timed on a Pentium III
with 128 MBytes of RAM under Linux; the stopping tolerance on the norm of
the difference between consecutive approximations is 107%; the running time
of TAD is compared with the recursive implementation of BGS for SANs as
discussed in [67]; IAD and BGS both use the same ordering of automata and
the same routines to generate and solve the diagonal blocks of the partitioning.

The timing results presented in Tables 6.7 and 6.8 are in seconds.

The first problem we use to test TAD is the three queues problem (see
appendix 8.2.2). The SAN model of the three queues problem has functional
transitions in synchronizing transition probability matrices of A®) and A,
Functional transitions of A(®) depend on the state of A® and those in A®
depend on the state of A®) implying a cyclic dependency. Hence, a proper
ordering of the automata in this SAN does not exist. We consider the quasi-
proper ordering A, AN AB®) A® which has a single lumpable partitioning
given by A®) | A1 AG) AW,

In our experiments, we use the real valued parameters in [67]. The integer
parameters are given in Table 6.6. In the first set of experiments with the three
queues problem we set C; = (' = C3 with values given in column C;. Since
the generator has transient states, we first run the SC algorithm to classify the
states into essential and transient subsets. Columns n.s, and nz.,s respectively
give the number of essential states and the number of nonzero elements in the
corresponding submatrix of the generator. Once the essential subset of states

0)

is identified, the elements in (% corresponding to transient states are set to
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zero and omitted from further consideration when running TAD.

The diagonal blocks in the lumpable partitioning of the three queues prob-
lem are of order C1C2 and the lumped matrix is of order Cy. At each iteration
of TAD, we use BGS to solve the large diagonal blocks with a stopping toler-
ance of 107° on the norm of the difference between consecutive approximations.
We experiment with two partitionings of the diagonal blocks: A®?) | A1) A®G)
[A®] and A®) | AW [ABG) AM]. Here, the square brackets separate the au-
tomata that form the subblocks. In the experiments with BGS, we use the
two partitionings A®, AW AG) [AD] and A®), AD [AC) AW] where the
square brackets separate the automata that form the blocks. We do not ex-
periment with the partitioning A® [AM, A®) A®]. First, this partitioning
is the same as the lumpable partitioning used for TAD. Hence, an iteration of
TAD would be different than an iteration of BGS only in the disaggregation
step 3(a) which takes negligible amount of time. Second, the lumped matrix
of this partitioning is small and can be generated and solved (see step 2 of
the TAD algorithm) almost in no time. Third, for the same partitioning, TAD
always converges in a smaller number of iterations than BGS. In both of the
partitionings for BGS as well as in the two partitionings for TAD, the blocks
input to the BGS solvers are generated and factorized once in the outset and

the LU factors are stored in core memory.

The results of experiments for the three queues problem with different par-
titionings of @) for BGS and different partitionings of the diagonal blocks for
IAD are presented in Table 6.7. IAD with the partitioning A® | A1) [A®G),
A®] converges in a smaller number of iterations and a smaller amount of time
than BGS with the partitioning A®?), A1, A®) [AD] or AP, AD) [AB) AW,
Observe also that TAD with the partitioning A®) | AM, AG) [AM] performs
better than BGS with the partitioning A®?), AM AG) [A®] but worse than
BGS with the partitioning A®), AM [AG), A9,

The goal of the second set of experiments, which we do not tabulate, is to
observe the speed of convergence of TAD with different orders of the lumped
matrix. In other words, we vary C while keeping C'; and (5 constant. When
('3 = 10, the number of iterations it takes to converge for TAD is the same

as the corresponding values in Table 6.7. When (3 = 5, the increase in the
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Table 6.7: Results of experiments with the three queues problem (unfavorable
partitionings)

C; =25 C; =30 C; =35
it #  time it #  time it #  time
IAD, A®) | A [AG) A®] 389 437 447 1,098 497 2,368
BGS, A AM [AB) A®] 496 654 573 1,508 640 3,323
TAD, A® | A AG) [A®)] 540 693 622 1,741 691 3,872
BGS, A AN AB) [A®] 744 1,071 862 2,447 965 5,295

number of iterations is less than 3%, and when Cy = 2, the increase in the
number of iterations is less than 36%, 48%, 58% for the instances in which

Cy = C3 = 25,30, 35, respectively.

The second example of a lumpable SAN we use in our experiments is the
pushout SAN model described in appendix 8.2.4. There is a single irreducible
subset of states in this model. Hence, as with the three queues problem, we
first run the SC algorithm to identify transient states. We set the \; = 0.2,
An = 0.5, and X, = 0.1. The integer parameters are given in Table 6.6. We
experiment with the quasi-proper ordering A", A®) A®) There is a single
lumpable partitioning in which blocks are formed by the last two automata

and the lumped matrix is of order 2.

The results of experiments with the pushout model for different values of
buffer size B, load L, and square coefficient of variation C? of the two state
automaton that models the arrival process of high priority packets are presented
in Table 6.8. With BGS we use the partitioning A", A®?) [A®)], and with IAD
we use the partitioning A" | A®) [A®)] in which the diagonal blocks of order
(B + 1)* are solved using BGS. As in the experiments with the three queues
problem, all the blocks of order (B + 1) that are input to the BGS solvers are
generated and factorized once in the outset and the LU factors are stored in

core memaory.

When the diagonal blocks of the lumpable partitioning are solved with a
stopping tolerance of 10~°, IAD converges in a smaller number of iterations but
in a larger amount of time than BGS in almost all experiments. With a stopping

tolerance of 1072 for the diagonal blocks, IAD converges in a smaller amount
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Table 6.8: Results of experiments with the pushout problem (unfavorable par-
titionings)

BGS IAD, 10°° IAD, 1073
B+1 (C? L it#  time it #  time it #  time
250 1 0.9 693 149 282 139 618 126
250 10 0.1 990 212 397 246 982 188
250 10 0.9 1,050 224 726 272 1,021 201
250 1 0.1 1,140 242 506 263 1,137 216
500 1 09 1,225 1,093 429 877 1,204 913
500 10 0.9 1,94 1,413 1,011 1,549 1,594 1,190
500 10 0.1 1,613 1,374 556 1,429 1,607 1,243
500 1 01 1,888 1,603 767 1,608 1,886 1,410
750 1 09 1,746 3,478 565 2,760 1,739 3,176
750 10 0.9 2,110 4,198 1,255 4,651 2,107 4,002
750 10 0.1 2,230 4,383 692 4,305 2,199 3,841

750 1 01 2,600 6,489 1,081 4,817 2,597 4,529

of time and number of iterations than BGS except the problem (B + 1) = 500,
C? =10, L = 0.9 for which the number of iterations for BGS and TAD are the

same.

6.4 Conclusion

In this chapter, we presented results of numerical experiments with various
lumpable SANs. The first model we considered is the discrete-time SAN of
the wireless ATM system in chapter 3. We indicated that the transition prob-
ability matrix of the underlying MC is a dense matrix. Moreover, transition
probability matrices of automata of the SAN have large number of functional
transitions. All this hints at difficulties in analysis of the SAN using conven-
tional methods. At the same time, using the result of Corollary 5.1, we showed
that the MC underlying the SAN model is lumpable with respect to the parti-
tioning in equation (5.2). We analyzed the SAN model with the IAD algorithm
for lumpable SANs and demonstrated its performance on selected instances of

experiments.

In section 6.2, we concentrated on analysis of lumpable continuous-time

SANs. We used two lumpable SAN models to compare performance of the



UHAr L 0. DACLIEVIEUIN LD Wil il LUNMEPA DI OAIND

TAD algorithm with the highly competitive BGS. We observed that in all ex-
periments [AD converged in smaller number of iteration and a smaller amount

of time than BGS.

In section 6.3, we studied performance of IAD on SANs having unfavorable
lumpable partitionings with relatively large blocks. To overcome difficulties in
solving large diagonal blocks at each iteration of IAD, we employed recursive
implementation of BGS for SANs discussed in [67]. The experiments with two
SAN models having unfavorable partitionings showed that it is possible to tune

IAD such that it outperforms BGS.



Chapter 7

Concluding remarks

In this thesis we considered methods for the efficient analysis of large, finite
MCs modeled as SANs. First, we implemented a state classification algorithm
for SANs that classifies each state in the global state space as essential or
transient. The output of the state classification algorithm is used by the NCD
partitioning algorithm for SANs and the IAD algorithm for lumpable SANs
that we developed.

Second, we extended the NCD concept to SANs. The definitions, proposi-
tions, and remarks presented in section 2.2 and chapter 4 enabled us to devise
an efficient algorithm that computes NCD partitionings of the MC underlying
a SAN. The approach is based on determining the NCD connected compo-
nents of a SAN from the description of individual automata without gener-
ating the global transition matrix. The time and space complexities of the
NCD partitioning algorithm depend on the number of automata, the number
of synchronizing events, the number of functions, the number of essential states
of interest, the sparsity of automata matrices, the dependency sets, and the

ordering of automata.

Third, we derived easy to check conditions for the lumpability of the MC
underlying a SAN model with functional dependencies. For lumpable SANs,
an efficient two-level iterative algorithm that uses exact aggregation with a

BGS disaggregation step is introduced. We gave a discrete-time SAN model
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of a current application in mobile communications and pointed out the diffi-
culties associated with the analysis of discrete-time SANs using conventional
techniques. By applying the theorems in chapter 5, we showed that the MC
underlying the particular discrete-time SAN model is lumpable and hence can
be analyzed with the help of the devised TAD algorithm. Experiments with two
lumpable continuous-time SAN models with functional dependencies show that
the proposed TAD algorithm performs much better than the highly competitive
BGS for the same ordering and partitioning of automata. It is also observed
that some orderings and partitionings of automata lead to faster convergence

than others.

We compared the performance of IAD for lumpable continuous-time SANs
with the highly competitive BGS solver on two SAN models having unfavor-
able lumpable partitionings in which blocks are of relatively large order. To
overcome the difficulties associated with solving large diagonal blocks at each
iteration of TAD, we used a recursive implementation of BGS. Numerical ex-
periments with the two SAN models show that it is possible to tune the IAD
solver so that it performs better than BGS. The time and the number of it-
erations it takes IAD to converge depends on the accuracy with which the
relatively large diagonal blocks are solved and the order of the relatively small
lumped matrix. When solving the diagonal blocks of a lumpable partitioning
using BGS within the TAD framework, it is important to choose a balanced

partitioning of diagonal blocks that results in faster convergence.
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Chapter 8

Appendix

8.1 Tensor algebra

In this section, we give definitions of tensor product and tensor sum and state
their basic properties. In the following, we use A,,«, for a matrix of dimension

m x n and I, for the identity matrix of size m.

Definition 8.1 Let A,,y, and By, be two matrices as

aix - dip 511 511

Um1 Amn bkl e bkl

Then, the tensor product of A and B, Cixm = A® B s given by

ClllB e CllnB
B - ap, B

Definition 8.2 The tensor sum of lwo square malrices A, x, and B xm,

Crmxnm = A @ B is defined as

101
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Below we list properties of the tensor operators as they appear in [24]. Note

that the matrices A, B, (', and D are square.

e Associativity:

A2 (BeC)=(A®B)®Cand A& (B C)= (A& B)& C.

e Distributivity over ordinary matrix addition:

(A+B)@(C+D)=AC+BeC+A@D+ B D.

e Compatibility with ordinary matrix multiplication (case I):
(A-B)@(C-D)=(A®C)-(B® D).

e Compatibility with ordinary matrix multiplication (case II):

N . N .
® AW = H L1 ®AD @ Ii1.n,
=1 =1
where A is a square matrix of order n;, i = 1,2,..., N, I.; is the identity

matrix of order Hi:i ng.
e Compatibility with ordinary matrix inversion:

(A B) ' =A@ B

e Pseudo commutativity:

N N ,
R AV = P, A°D P,
=1 =1
where o is a permutation of set of integers {1,2,...,N} and P, is a

permutation square matrix of order [T, ny.

Further information related to properties of tensor algebra can be found
in [5,16] and information related to definitions and properties of generalized

tensor algebra can be found in [24].



UHAriiin o, ArriiaNiJiA 1U9o

8.2 Examples of continuous-time SANs

This section provides the description of SAN models used as test problems in
the numerical experiments of chapters 4 and 6. The original SAN models of
appendices 8.2.1 and 8.2.2 appear in [24], the SAN model of appendix 8.2.3 is
introduced in [18], and the SAN model of appendix 8.2.4 appears in [22].

8.2.1 SAN model of the resource sharing problem

This SAN models a system that consists of U processes of which at most S
can be simultaneously accessing the resource. Each process alternates between
sleeping and resource using states. The transition rates between these two
states for process ¢ are characterized respectively by A\; and p;, 0 =1,2,...,U.
We consider the case S < U; otherwise, all processes are independent from
each other and the problem can be modeled as a trivial multidimensional MC.
In the SAN model [24], each process is represented by a two-state automaton
in which state 0 corresponds to the sleeping state and state 1 to the resource
using state. There are U such automata implying a state space size of n = 2Y.
This SAN does not have synchronizing events, i.e., £ = 0. There is a single
subset of essential states whose size depends on S with respect to U. Since
S < U, process ¢ cannot acquire the resource if it is already being used by
S processes. Hence, )\; is a functional transition rate, and the value of the
function (i.e., whether the transition is enabled or disabled) depends on the

state of all other automata. The local transition rate matrix of automaton ¢ is

o = ( —Af NS )
{ 0 o 3

given by

where

f=6 (iasmi) =1) < S) ;

=1
and 6 is the Kronecker delta.
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8.2.2 SAN model of the three queues problem

The three queues problem is an open queueing network that consists of three
queues with capacities (C; —1), (Ca—1), and (C5—1). Customers from queues
1 and 2, called respectively as type 1 and type 2 customers, try to join queue
3. When type 1 customers try to join queue 3 and find it full, they are blocked,
whereas type 2 customers in the same situation are lost. Queue ¢ has arrival
rate \; and service rate p;, ¢ = 1,2. The service rate of queue 3 depends
on the type of customer and is either ps, or ps,; moreover, type 1 customers
have priority over type 2 customers in service. The system is modeled by 2
synchronizing events and 4 automata A1), A®) ABD AG2) with respectively
C1,Cq,C5, (5 states. The states of the automata are numbered starting from
0 and correspond to the number of customers in a particular queue. The first
synchronizing event corresponds to the departure of a type 1 customer from
queue 1 and its arrival to queue 3. The second synchronizing event models the
departure of a type 2 customer from queue 2 and its arrival to queue 3 (if there
is an empty space in it). The state space size is given by n = C1C3yC5 and there
is a single subset of C1CyC5(C3 + 1)/2 essential states. Functional transition

rates appear in local transition rate and synchronizing event matrices.

A®M models the number of customers in queue 1 and we have

B S VA | B | o 0 0 --- 0
0 =X XN pp 00 - 0
Q;l): 0 7@4(91): 0 )
0 0 M\ M Fm 000
0 0 0 0 0 U
0 0 0 0
0 —p O
/7 ISR B}
0 0 —p1 O
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1Yo

For A® that models the number of customers in queue 2, we have

- 0
0 =X X
Q" =
0 0 =X
0 0 0
0 0 0
0 —pe O
o=
0 --- 0
0 --- 0

0

0
K2
D=1 0
0
0
L QY
0
H2

0 0 0
0 0 0
H2 0 0
0 p2 0O

102 = Qg)

A1) models the number of type 1 customers in queue 3 and its transition

matrices are given by

0 0 0
M3, —H3; 0
Q=10 -
M3, —H3;
0 0 13,
f 0 0
0 f 0
S
0 --- 0
0 --- 0
where

S

Q)
0
0
Q)
0
0

]OSZQ

[ =06(sABY 4+ sAB) < (Cy — 1)),

0
/
ol
0 0 f
0 0

(31)

ez )

Finally, A®2) models the number of type 2 customers in queue 3 and we
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have
H3:9 —H3:9 0 e 0
‘ H3,9d —H3, 9 0
0 s 0 M3, 9 —H3,9
1—f f 0 - 0
01—/ 7 :
QS)Q) _ : o |, Q£32) =1Ic, = Q£32) — Qgiﬂz)’
0 e 0 1—-f f
0 0 0 1

where g = §(sABY = 0).

8.2.3 SAN model of the mass storage problem

The SAN model of the mass storage system consists of two layers of stor-
age. The first layer provides fast access based on magnetic disks. The second
layer (i.e., nearline storage) utilizes a robotic tape library. The system which
describes the interaction between read/write requests and these two layers is
modeled by a SAN of 3 synchronizing events and 5 automata with functional
transitions. The automata are denoted by A©), Am) AM2) A(=) gD and
they respectively have ne = [(H — L)(C — 1)| + 1, ny, ng, ns, R states, where
H(L) is the high (low) water-mark for the disk cache. The state space size is
n = ngninang R, and the corresponding MC is irreducible. We use the same
notation for the parameters of the SAN model as in [18] where detailed descrip-
tion of the underlying physical model, its parameters, and the design decisions

can be found.
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For A", we have

=X (1 =hy) A, (1—hy) 0 0
0 =X (1 = hy) Ay(1 = hy) :
Q" = : - - - 0
0 =Xy (1 = hy) Ay(1 = hy)
0 0 0
0 0 0
min{1,¢}u 0
QUM = 0 min{2, 4} - L e
: ' ' 0 0
0 0 min{n; — 1,4} p O
0 0 0 0
0 —min{l,t}p 0 :
ngl) =10 0 —min{2,t;}p . 0 )
: : ' ' 0
0 0 0 —min{n, — 1,4}p

and QU1 = QI = QU = QY = I,

For A™) we have:

0 0 0 e 0
g =g 0
ng = 0 galt  —gap 0 ;
. . . 0
0o - 0 g1l —Gno—1ft

where ¢; = min{i,1,,}, and ¢, is a function of s.A"). We also have

fo fi v faaer 0 o0
0 fo fii - fao1 :
QP =11t o 0 o o fu |

0 fO fn3—2

0 «or cer e 0 0 fo
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where fy, fis. .., fas—1 are functions whose values depend on s.A") and sA"=).
The rest of the synchronizing transition probability matrices of A) are iden-

tity of order nj.

The local transition rate matrix ang’) is a zero matrix, and the synchronizing

transition matrices of A=) are given by

0 -0
0 -0 _ _
ngg) I T ngs) = ans) = ans) = In,,
10 0
0 A 0 0 - 0 0 0
0 0 A : 0 =X :
Q= | i o [Lam=| s o
0 A : -2 0
0 0 0 0 0

For A, we have:

—Ry Ry 0 0
0 —Ry Ry
Q=1+ 0o |-
0 0 —Ry Ry
0 0 0 0
0 0 0 0 0 0

Qgerl): 7@267‘1): 7
! 0 0 --- 0 ! 0 --- 0 0

Ry 0 --- 0 0 --- 0 —Ry
and the rest of the synchronizing transition probability matrices are identity

of order R.
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For A(é), the local transition rate matrix Ql(c) is a zero matrix,

hy h, 0 - 0 01 0 -0

0 h, h, . 0 0 1 .
Qf(zzc): N | angc): el e o0 ]

0 0 h, h, 0 0 1

h, 0 hy 1 0 0

where h, = 1—h,. The rest of the synchronizing transition probability matrices

of A© are identity of order n¢.

8.2.4 SAN model of the pushout problem

This SAN example models a priority queue that receives high and low priority
packets. Low priority packets can receive service only if there are no high
priority packets in the buffer. The buffer has a limited capacity. Hence, an
arrival is lost when the buffer is full. To avoid the loss of high priority packets,
signaling cells are used that precede the arrival of a burst of high priority
packets. Upon the arrival of a signaling cell, all low priority packets that are

present in the buffer are lost.

The SAN model of the pushout probelm consists of 3 automata numbered
consecutively from 1 to 3. The first automaton having two states, 0 and 1,
models the arrival process of high and low priority packets. The last two au-
tomata model a buffer of size B that accommodates high and low priority
packets served by a single server with rate p. Upon transition of automaton 1
from state 0 to state 1, all low priority packets are removed from the buffer.
This behavior is modeled by the only synchronizing event. States of A®) and
A®) are numbered starting from 0 and correspond to the number of high and
low priority packets in the buffer, respectively. The SAN model contains func-
tions in the matrices of the last two automata which cyclically depend on each
other. The values of the functions in the matrices of the second automaton,
which models the number of high priority packets in the buffer, also depend

on the state of the first automaton.
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For A, we have

(1): 0 0 (1): 0 (87 7(1): —Q 0
Ql (ﬂ —ﬂ)’Qel (00 7Qel 0 0 )

where a and 3 are transition rates from state 0 to 1 and from state 1 to 0,

respectively.

For A®), we have

I I 0 0
o =+ fr) n - :
Q=1 o o 0 |, QY = QY = Ipp,
: po —(p+fr) fa
0 0 ,u —

where f = (8(sA® = 1)\, +6(s AV = 0)A,) §(sA® + sA®) < B), Ay and
A, are the arrival rates of high priority packets when the data source is in state

1 and state 0, respectively.

For A®), we have

_fl fl 0 0
it f) | . 10 0
(3) A ﬂ l _l ) ' 3) 10 --- 0
Ql = 0 . . . 0 7@@1 = . . . . )
: ' po—(u+fi) ) 10 .- 0
0 0 7 —

and QS) = I(B41), where f; = )\15(3./4(2) + s AB®) < B) and ); is the arrival rate
of low priority packets.

8.3 State classification algorithm for SANs

The SC algorithm is based on an algorithm that finds SCCs of a digraph using
depth first search (DFS) algorithm. When the digraph corresponds to the MC
underlying a SAN, for each global state s of the SAN, we have to find all states
3(# s) such that Q(s,3) # 0. Recall that the global state s can be represented



UHAriiin o, ArriiaNiJiA 10L

as a vector (sq,8z,...,5n), where s = sA(k) (see section 2.1). According to
Remarks 4.1 and 4.2, a nonzero element in () can originate either from a local
transition or from one or more synchronizing transitions. If Q(s, 3) originates
from the local transition Q;k)(sk, 3k), then it must be that § corresponds to the
global state (s1,...,8k—1, 3k, Sk+1,--.,5n). If Q(s,8) is formed of transitions
of synchronizing event j, then ng)(sk, 3) #0for k=1,2,..., N (see Remark
4.3). The implementation of a DFS algorithm for SANs is straightforward once
these observations are made. The output of the SC algorithm is an integer
array of length n with states corresponding to the essential subset of interest
marked. Assuming that the matrices of the SAN description are stored in
sparse format, the number of times global states are visited by the SC algorithm
is Zf\;l nzl(i) ch\;l’k# ny + Zle Hf\;l nzgj), where nzl(i) is the number of off-
diagonal nonzero elements in QEZ) and nzgj) is the number of nonzero elements

in QSJ)

8.4 Algorithm 1. NCD partitioning algorithm
for SANs

This section contains the description of the three step NCD partitioning algo-
rithm introduced in chapter 4. The description of the algorithm also appears

in [34].

8.4.1 Algorithm 1.1. Q — P transformation

Computing a.

Input:

e Q. QY i=1,2,... N, j=1,2,...,E
e Dy is kth dependency set, k = 1,2,..., Np, as in Definition 4.1

o integer array of length n with essential subset of interest marked by SC algo-

rithm
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Output:

e « as discussed in subsection 4.2.1

Notation:

Sp: state that corresponds to max_Dy

e Mop,: set of synchronizing events whose masters are in Dy,

s: global state that corresponds to 51,5%,..., 9N,

Diagy: double precision array of length [[; 4i)ep, n

fork=1,2,...,Np,
Diagy = \@®; atep, diag(Qgi)) + 2 e emp, Biatven, diag(c?é?)\
sort elements of Diagy in non-increasing order
find max_Dj = max; Diagi(i), and corresponding state S
set element corresponding to max_Dy to 0 in Diagy

while global state s does not map into essential subset of interest,
for k=1,2,..., Np, next_max_Dj; = max; Diagy(i)
find ¢ such that next_max_D; > next_max_Dj, for k =1,2,...,Np
let S, be state corresponding to next_max_D;
max_D; =next_max_D;
set element corresponding to max_D; to 0 in Diag;, and Sy = 5}

o= Ef\;Dl max_Dy,

8.4.2 Algorithm 1.2. Finding potential sets

Finding potential sets.

Input:

e QY i=1,2,..,N,j=1,2,...,F
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e a computed by Algorithm 1.1

Output:

e P, is rth potential set, r = 1,2,..., Np, as discussed in subsection 4.2.2

Notation:

e ||P;]|: sum of transition rates of synchronizing events in P,!

e Qi) = Q)

& holds if Q((f) and ng) have at least one nonzero element with same

indices (see second if-statement in innermost for-loop)

Remark:

e r = Np upon termination

for: =1,2,..., F, set synchronizing event e; to unmarked
r=20
fori=1,2,..., F,
if €; is unmarked then
r=r+1
Py ={e:}
if [|Pr]| < ae then
forj=i+1,0+2,..., F,
if e; is unmarked and ||{e;}|| < ac then
it Q) = QW) for k= 1,2,..., N then P, = P, U {e;}
if ||P;|| < ae then
P=0
r=r—1
else mark each e, € P,

else mark e;

!Note that P, is a set and ||.|| should not be mixed up with the norm operator
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8.4.3 Algorithm 1.3. Constructing NCD connected com-
ponents

Constructing NCD connected components.

Input:

° QEZ)ng)vtz 1’27...7ZV,j: 1’27'”7E

with A() reordered/renumbered as discussed in subsection 4.2.3

e a computed by Algorithm 1.1

e P, is rth potential set, r = 1,2,..., Np, computed by Algorithm 1.2

Output:

¢ C: NCD CCs of MC underlying SAN as discussed in subsection 4.2.3

Notation:

e C): set of NCD CCs of Q1)
e 0,: smallest index among automata involved in synchronizing events in P,

e (O: binary operator as defined in subsection 4.2.3

fori=1,2,..., N,
using ae, find C() by treating all functional transition rates as 0
let K be the number of C()s that are singletons
reorder /renumber AW guch that C¥), i = N—-K+4+1,N—K,..., N, are singletons
if K >0thenC={{1,2,...,nn_r+1} x{1,2,...,nnv_k}X...x{1,2,...,nn}}

else
C =cWN)
K=1

fork=N-K,N—-K-1,...,1,
c=c®pc
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for each functional rate f = ng)(sk, k)
for each pair ¢, € C such that
(Sky Sk41s---,8N) € ¢ and (8, Sk41,...,5n) € € and
F(SkySkg1y- .-, 8N) > €
join ¢ with &
if there exists r such that o, = k& then
for each pair ¢, € € C such that
(Sky Sk41s---,8n) € ¢ and (8, 8k41,...,8n) € € and
Yper, [Tk QL) (50 50) > ac

join ¢ and ¢

8.5 Complexity analysis of Algorithm 1

In this section we present the detailed complexity analysis of each step of the

Algorithm 1. The detailed complexity analysis also appears in [34].

The time complexity analysis of Algorithm 1 is complicated in that it re-
quires one to make assumptions regarding the number of nonzero elements in
automata matrices, the dependency sets, the ordering of automata, the num-
ber of functions, and the number of states in the essential subset of interest.
Nevertheless, in the following three subsections, we provide some results con-
cerning time and space complexity. In order to simplify the analysis of the
algorithm, we assume that the MC underlying the given SAN description is
irreducible. We remark that the algorithm and automata matrices are coded in
sparse format. Most diagonal corrector matrices in applications turn out to be
identity. To reduce storage requirements further and to improve the complexity

of operations with identity matrices, we do not store identity matrices.

8.5.1 Algorithm 1.1

According to our simplifying assumption, the MC underlying the given SAN

description is irreducible. For an irreducible SAN, the diagonal element with
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maximum magnitude is given by equation (4.6), which is the sum of the maxi-
mums of dependency sets. The operation of finding the maximum of a depen-
dency set requires []; 4)ep, 1s floating-point comparisons. Since this operation
is performed Np times, the total number of floating-point comparisons is given
by Zivfl [L; a»ep, ni- For the best case in which each dependency set is a
singleton, the total number of floating-point comparisons reduces to Y%, n;.
On the other hand, if all automata form a single dependency set, we have the

upper bound [TY, n; = n.

When the MC underlying the SAN has uninteresting states, the vectors
@i,A(i)EDk dlag(le)> + EL%EMDR ®i,A(i)EDk dlag(ng)) 5 k = 17 27 s 7ND7 are

stored as sorted. For a dependency set Dy, sorting of an array of length

np, = [1; aep, 7i requires O(np, log np,) floating-point comparisons. Thus,
the total number of floating-point comparisons performed before the while-
loop in Algorithm 1.1 is Y02 O(np, lognp,). The number of iterations of
the while-loop depends on the number of essential states of interest and their
global state indices. If the number of essential states is n.s, the number of
iterations performed of the while-loop is less than or equal to (n — n.ss). The

memory requirement of Algorithm 1.1 consists of a double precision array of

length Y232, no, (< n).

8.5.2 Algorithm 1.2

Each potential set P, is described by its member synchronizing events, the
sum of scaled transition rates ||P,||, and o,, which is the smallest index among
automata involved in the synchronized events in P,. Since we can have at most
FE potential sets, Algorithm 1.2 requires at most two integer arrays of length

E and one double precision array of length K.

Algorithm 1.2 does not involve any floating-point arithmetic. Therefore, its
time complexity depends on the relation between ae and the transition rate of
each simple synchronizing event in the SAN description. See the comparison
between ||P,|| and ae in the second if-statement of Algorithm 1.2. Hence, we

give lower and upper bounds on the total number of floating-point comparisons.
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The lower bound corresponds to the case where the transition rate of each
simple synchronizing event is greater than or equal to ae. In this case, the SAN
under consideration has F potential sets and each rate is compared against ae
only once since the algorithm never enters the innermost for-loop. Thus, the

smallest total number of floating-point comparisons is F.

The upper bound is achieved when the transition rate of each simple syn-
chronizing event is less than ae and the transition rates of synchronizing events
do not sum up in Q). See the innermost if-statement in Algorithm 1.2. In this
case, the outermost for-loop is executed F times, and for each value of 7, the
innermost for-loop is executed (F — 7) times. Hence, the total number of

floating-point comparisons with ae is 1E(F 4 1).

8.5.3 Algorithm 1.3

It is clear that Algorithm 1.3 requires the largest amount of storage since it
works with the global state space of the SAN. The computed NCD partitioning
is kept in the structure C which requires an integer array of length O(n). The
exact amount of storage for C depends on the particular implementation which
must be sophisticated enough so that operations of the form “join ¢ and ¢&”
can be executed rapidly. This data structure must also grant fast access to a
specific element in a particular NCD CC. On the other hand, the data structure
CY) requires an integer array of length at most (2n; +1). The first n; elements
of this array contain a permutation of the state indices of A®, its (n; + 1)st
element contains the number of NCD CCs, and its last n; elements contain the
number of states in each NCD CC since we may have n; NCD CCs. Thus for
N automata, we need a maximum of N 4+ 2% n; integer locations for C®.

The total amount of storage is then upper bounded by O(n) integer locations.

For the time complexity of Algorithm 1.3, we consider floating-point com-
parisons and also count floating-point multiplications performed to compute

transition rates. Floating-point comparisons take place when C) are deter-
mined. For A®, this means nzl(i) comparisons are performed, where nzl(i)
(1)

is the number of off-diagonal nonzeros in Q;Z). Hence, we have YN, nz

floating-point comparisons for N automata. Floating-point comparisons also
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take place when evaluating functions. The number depends on the order-
ing of automata and the number of functions to evaluate in each automaton.
The number of floating-point comparisons performed due to one functional
transition in Q;Z) is Hj‘vzi+1 n;. The total number of such floating-point com-
parisons is SN 7' nf; H?T:Z-H n;, where nf; is the number of functional transi-
tions in Q;Z) Based on our assumption regarding dependency among automata
and their ordering, the Nth automaton cannot contain functional transitions
and is excluded from the summation. To estimate the number of floating-
point comparisons due to synchronizing events, we assume that each synchro-
nizing event in the SAN is classified as a potential set P., where r corre-
sponds to the index of the event in P,, implying £ potential sets. Let m, be
the master automaton of event r. Then, for synchronizing event r, we have

Y nzgi) floating-point comparisons, where nz(gi) is the number of nonze-

J=0r,j#Fmy
N nzl)

ros in Q((jr) The total number of such comparisons is 37 =0, j#m, "2e;

Hence, the total number of floating-point comparisons in Algorithm 1.3 is given
by Zf\il nzl(i) + Zf\sl nf; H?;H n; + Ele H;y:ah#mr nzgi) This expression
depends strongly on the number of functional transitions and synchronizing
events in a SAN as well as the automata ordering. Thus, an optimal ordering
that minimizes the total number of floating-point comparisons from the per-
spective of synchronizing events is one in which there is no automaton with

index greater than o, uninvolved in event r.

For floating-point arithmetic operations incurred when handling synchro-
nizing events, we make the following observations. Computation of a sin-
gle nonzero transition originating from synchronizing event r requires (N —
o,) floating-point multiplications. For synchronizing event r, we compute

H;‘V:ar,j;émr nzgﬁ) elements. Hence, the maximum number of floating-point mul-

tiplications in Algorithm 1.3 is % [(N — o,) [T%

, . (4)
J=0or,j#Fmr nzer ]

8.6 IAD algorithm for lumpable discrete-time
SANs

1. Let 79 = (ﬂo), 71'%0), el W}?)) be a given initial approximation of =. Set
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it = 1.
2. Aggregation:

(a) Compute the lumped matrix L of order K with ¢jth element [;; =

max(Pjju).
(b) Solve the singular system 7(I — L) = 0 subject to ||7||; = 1 for

T=(T1,T2.. ., TK).
3. Disaggregation:

(a) Compute the row vector

W(n_n ﬂ_(it—l) W(n_n

(3t) _ ( 1 2 . TK

2 = (M e TR )
(e s P [F Sl (K%M

(b) Solve the K nonsingular systems of which the ith is given by
71'2(“)(] — P“) = bl(lt)

for 7, i = 1,2,..., K, where

i

bgit) = Z Z]('it)P]" + Z W;it)Pji.
i>i j<i
4. Test 7 for convergence. If the desired accuracy is attained, then stop
and take 7(*) as the stationary probability vector of P. Else set it = it +1
and go to step 3.



