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ABSTRACT

LARGE-SCALE SEMI-EMPIRICAL
PSEUDOPOTENTIAL ELECTRONIC STRUCTURE OF

SELF-ASSEMBLED INGAAS QUANTUM DOTS

Mustafa Kahraman

M.S. in Department of Physics

Advisor: Ceyhun Bulutay

August 2018

The so-called second quantum revolution emerged at the beginning of the sec-

ond millennium, opening up a path to realization of spin-qubit-based quantum

computing by means of controlling and protecting quantum coherent processes.

Thus, along this spirit, the self-assembled quantum dots (SAQD) made a tran-

sition from conventional optoelectronic devices to spin-qubit applications. One

specific problem that can benefit from this is the electron spin resonance (ESR)

of a single-electron in a SAQD which could not be reproduced after its demon-

stration for more than ten years. The lack of insight for the electronic structure

of SAQDs and g-factors changing with its properties might be the underlying

reason for the decade-old puzzle. Towards the goal of understanding the ESR,

atomistic large-scale semi-empirical electronic structures of InGaAs SAQDs hav-

ing different shapes, sizes and indium concentrations are calculated using linear

combination of bulk bands method. Two approaches to extract envelopes of the

wave functions are demonstrated since the resulting wave functions have the fast

fluctuations and understanding them might not be always possible. Calculated

electronic structures and wave functions are compared and were found to be in

agreement with the general theoretical and experimental findings paving the way

to the calculation of g-factors in accordance with our eventual aim.

Keywords: InGaAs quantum dots, electronic structure, semi-empirical pseudopo-

tential, linear combination of bulk bands .
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ÖZET

INGAAS KUANTUM NOKTALARININ BUYUK
OLCEKTE YARI-DENEYSEL POTANSIYELLERLE

ELEKTRONIK YAPISI

Mustafa Kahraman

Fizik Bölümü, Yüksek Lisans

Tez Danışmanı: Ceyhun Bulutay

Ağustos 2018

İkinci binyılın başlangıcında ortaya çıkan ikinci kuantum devrimi, spin-kübit ta-

banlı kuantum bilgisayara bir yol açtı. Bu devrim ile beraber kendiliğinden bir

araya gelmiş kuantum noktalar (KN) aygıt yapımı uygulamalarından ziyade spin-

kübit uygulamalarında kullanılmak amacıyla araştırılmaya başlandı. Gösterildiği

tarihten günümüze kadar, on yıllık süreçte bir KN’deki tek elektronun elektron

spin rezonansı (ESR) tekrarlanamadı. Bunun en büyük nedeni KN’lerin elek-

tronik yapılarının ve bu yapıların özellikleri ile değişen g-faktörünün teorik açıdan

iyi anlaşılmadığından olabilir. ESR’nin tekrarlanamamasının nedenlerini anlama

hedefine doğru, farklı şekil, boyut ve konsantrasyonlara sahip InGaAs (indiyum

galyum arsenit) KN’lerin büyük ölçekli yarı-ampirik atomik elektronik yapıları,

yığık bantların doğrusal bileşimi yöntemi kullanılarak hesaplanmıştır. Atomik

yapının hesaplarda göz önünde bulundurulmasından kaynaklı, dalga fonksiyon-

larının hızlı dalgalanmaktadır. Bundan ötürü dalga fonksiyonu zarflarını elde

etmek için iki yöntem geliştirilmiştir. Değişik yapılarda InGaAs KN’leri için hesa-

planmış elektronik yapılar ve dalga fonksiyonları karşılaştırılmış ve genel teorik

ve deneysel bulgular ile uyumlu olduğu saptanmıştır. Bu da nihai hedefimiz olan

g-faktörü hesapları için önemli bir aşama teşkil etmektedir.

Anahtar sözcükler : InGaAs kuantum noktalar, elektronik yapı, yarı-deneysel

potansiyel, yığık, bantların doğrusal bileşimi.
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Chapter 1

Introduction

For the past few decades, semiconductor nanostructures has been attracting a

great deal of interest which could be attributed to the rapidly developing, easily

applicable growth techniques and to the range of possible novel device applications

[2]. One of the most interesting quantum structures are self-assembled quantum

dots (SAQDs) which confines the carriers in all spatial dimensions so that the

energy spectrum becomes discrete. For this reason the cliche description is to call

them as artificial atoms [3, 4].

The driving force behind the research on SAQDs used to be optoelectronic de-

vice applications, like semiconductor lasers [2]. Conventional lasers use quantum

wells (QW) as the gain medium, but SAQDs were shown to be superior candidates

to replace QWs as they exhibit better temperature stability, high differential gain

efficiency and ultra-low threshold current density [5, 6, 7].

At the turn of the century there has been the so-called second quantum rev-

olution which promoted quantum technologies as a stand-alone discipline [8].

Within this second quantum revolution, the flagship application is quantum com-

puting which can be realized, among other alternatives, using QD spin qubits

[9, 10, 11, 12]. For a recent account from a theoretician’s perspective of the

prospects of QD spin qubits in various solid-state realizations, see [13]. As the
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electronic structure of QDs can be widely tuned by external magnetic, electric

as well as electromagnetic fields [14], this makes them ideal playgrounds for the

emerging arena of quantum simulators [15]. For spin-qubit gate operations a cru-

cial technique is electron spin resonance, which up to now has been demonstrated

by only one group [16]. The lack of reproducibility of this experiment partly

hinges upon our poor understanding of the electronic structure of SAQDs, and

how the g-factor changes by its physical properties. As other key components,

on-demand generation of non-classical light sources are needed for cryptology

and metrology applications. Due to their discrete energy levels, strong confine-

ment and Coulomb interaction, SAQDs can harbour excitons [17, 18] so that via

biexciton-exciton cascade recombination, SAQDs can generate single photon and

entangled photon pairs. InGaAs SAQDs show promising results for on-demand

single-photon emitters [19, 20, 21]. As a technical note, the transmission of in-

formation via fiber optics needs to be in O-band (1310 nm) or C-band (1550 nm)

for minimum loss [22, 23]. For this reason, there are intensive on-going research

on generating single-photons and polarization-entangled photon pairs that could

be transmitted in these bands, and sure enough InGaAs based emitters that are

emitting in the C-band are reported for both [24, 25]. To date, the best per-

formance for on-demand generation of polarization-entangled photon pair was

shown by Muller et. al. [26].

For the quantum information processing, the most important concern is the

coherence times of the qubits. Long coherence times of carriers confined in SAQDs

makes them good candidates for such applications [9, 10]. Apart from the carrier

spins, nuclear spins having transverse coherence times up to a millisecond can

be used for information storage [27]. Also, nuclear spins were demonstrated to

be good at taming the electron spin coherences [28]. It has been shown that the

dynamical decoupling sequences are also effective to increase the coherence time

of hole spins while suppressing the nuclear spin background [29, 30].

As the electronic structure of SAQDs depend on shape, size and composition,

the fabrication methods have substantial effects. The development and optimiza-

tion of growth techniques such as molecular beam epitaxy (MBE) [31] and metal

organic chemical vapor deposition (MOCVD) [32] allow SAQDs to be grown in
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high quality. Today, a mode of MBE, Stranski-Krastanov (SK) [33] depicted in

Fig. 1.1, is the state-of-art method to grow SAQDs [3]. First, InAs is deposited

onto a GaAs substrate as a thin film which forms the so-called wetting layer. If

InAs is deposited further, the mismatch between the lattice constants of InAs

(6.058 Å) and GaAs (5.653 Å) causes strain to accumulate since lattice constant

of InAs is larger than GaAs. In order to minimize the energy, InAs atoms relax

and the islands are shaped which are called freestanding SAQDs. If GaAs is de-

posited on top, they became embedded (also called capped) SAQDs [3, 34, 35].

As the thermodynamic effects are in charge in the growth process [36], the pro-

duced SAQDs can have different compositions. Therefore, in order to model

these complex structures accurately, atomistic methods are needed along with

the experimental transmission electron microscopy and spectroscopic data.

Figure 1.1: The formation of islands in SK mode. The figure is taken from ”Self-

assembling quantum dots for optoelectronic devices on Si and GaAs”, K. Eberl

et.al, Physica E: Low-dimensional Systems and Nanostructures, vol. 9, no. 1, p.

164–174,2001, Elsevier

1.1 In this thesis

In the light of recently developed semi-empirical pseudopotentials within our

group [1], our aim in this thesis is to develop computational atomistic tools for

the single-particle electronic structures of these SAQDs having various shapes

3



and different In/Ga concentrations. In chapter 2, we describe and derive the lin-

ear combination of bulk bands (LCBB) method for the calculations of electronic

structure [37, 38]. Chapter 3 is devoted to how wave function envelopes can

be extracted from LCBB wave functions. Since it is sometimes hard to identify

the atomistic wave functions or extracted envelopes, in this chapter we are also

demonstrating a method to identify the wave function envelopes with their angu-

lar momentum quantum number compositions. Results on electronic structures

of InGaAs SAQDs with different shapes, concentration and sizes are presented

and discussed in the chapter 4. The chapter 5 offers a self-critique of our approach

and the conclusion.

4



Chapter 2

Electronic structure up to million

atoms: Linear combination of

bulk bands

To predict the physical properties of the materials or to understand the underly-

ing physics of the these properties, accurate and scalable models are needed. The

nanostructures consist of up to million atoms which makes the quantum mechan-

ical calculations hard. These difficulties can be overcome by elegantly thought

series of approximations without losing the information needed. In this respect,

Wang, Franceschetti and Zunger proposed a technique intended for geometry-

independent large-scale atomic electronic structure calculations which exploits

the atomic nature of pseudopotentials for describing the crystal potential at the

same time leveraging the bulk Bloch bands of the materials for expanding the

wave functions, namely ”linear combination of bulk bands” (LCBB) [37, 38].

Today, there are a large number of methods to calculate the electronic struc-

ture. The most simple of them is the well-known k · p method which is used

in conjunction with the envelope function approximation (EFA) in the case of

nanostructures. To list few of the drawbacks of this method, it takes the geom-

etry of the structure as input since it is a continuum model and also it expands

5



the wave functions by the envelope functions on the Γ-point, thus it cannot gen-

erate atomistic results. Ab-initio calculations cannot tackle large-scale problems

involving several tens of thousands of atoms such as this work because of their

computational expenses [39]. Atomistic tight-binding method and LCBB method

are two sensible solutions to all of the problems listed above. The only drawback

is their non-self-consistent nature which also can be fixed [39].

As mentioned above, LCBB uses the Bloch function basis of the underlying

bulk constituents. In principle they are complete which means, for a given bulk

material µ (InAs or GaAs for an InGaAs SAQD) we have∫
V

φµn,k(r)∗φµn′,k′(r)d3r = δn,n′δk,k′ , (2.1)

where n is the bulk band index, k is the wave vector in first Brillouin zone (BZ)

and µ is the material index. This completeness enables us to expand the wave

functions of a nanostructure by the Bloch functions

ψj(r) =
1√
N

∑
n,k,µ

Cµj
n,kφ

µ
n,k(r) , (2.2)

where N is the number of primitive cells in the supercell, Cµj
n,k is the expansion

coefficient. Bloch functions can be expressed as

φµn,k(r) = eik·ruµn,k(r) , (2.3)

where u(r) is cell-periodic part. This can be expanded as well, in terms of the

plane waves of reciprocal lattice vectors G

uµn,k(r) =
1√
Ω0

∑
G

Bµ
n,k(G)eiG·r , (2.4)

where Ω0 is the volume of a primitive cell and Bµ
n,k(G) is the expansion coefficient.

After combining all of the expansions, the wave function becomes

ψj(r) =
1√
V

∑
n,k,µ

Cµj
n,k

∑
G

Bµ
n,k(G)ei(k+G)·r , (2.5)

where V = NΩ0 is the volume of the supercell. Expanding the wave functions

by the bulk Bloch functions allows us to choose intuitive basis sets for each

6



material. Its virtue comes from the fact that not all of the bands in BZ contributes

to the nanostructure states of interest and with a decisive choice the problem

dimensions can be reduced notably so that the large-scale nanostructures can be

easily tackled. Therefore, all of the corresponding summations given here are

limited to NB which is number of bands chosen for n, Nk number of chosen bulk

wave vectors k. Another approximation that is introduced is the cut-off energy

of the reciprocal lattice vectors G which limits the number of G to NG.

The single-particle nanostructure Hamiltonian is

Ĥ = T̂ + V̂xtal = − h̄
2∇2

2m0

+ V̂xtal , (2.6)

where T̂ is the kinetic energy, V̂xtal is the crystal potential energy operators, m0 is

the free electron mass. In order to find the energy eigenvalues and wave functions,

this needs to be diagonalized. The general eigenvalue equation can be written as∑
n,k,µ

〈n′k′µ′| T̂ + V̂xtal |nkµ〉Cµj
n,k = Ej

∑
n,k,µ

Cµj
n,k 〈n

′k′µ′|nkµ〉 , (2.7)

where Ej is the energy eigenvalue of the state j. The matrix elements of kinetic

energy term can be expressed in an open form

〈n′k′µ′| T̂ |nkµ〉 = − 1

N

∫
V

d3r
1√
Ω0

∑
G′

[
Bµ′

n′k(G′)
]∗
e−i(k

′+G′)·r

× h̄
2∇2

2m0

1√
Ω0

∑
G

Bµ
nk(G)ei(k+G)·r ,

(2.8)

where the integral is over the supercell. After taking the derivative and re-

expressing the volume (supercell) integral as summation of integrals on all prim-

itive cells, we have

〈n′k′µ′| T̂ |nkµ〉 =
∑
G,G′

[
Bµ′

n′k′(G
′)
]∗
Bµ
nk(G)

h̄2|k + G|2

2m0

× 1

N

∑
j

ei(k−k′)·Rj

︸ ︷︷ ︸
δk,k′

ei(G−G′)·Rj︸ ︷︷ ︸
1

1

Ω0

∫
Ω0

d3rce
i(G−G′)·rc︸ ︷︷ ︸

δG,G′

=δk,k′

∑
G

[
Bµ′

n′k′(G)
]∗
Bµ
nk(G)

h̄2|k + G|2

2m0

.

(2.9)

7



For the crystal potential term, we insert two identities Î =
∫
d3r |r〉 〈r| as

〈n′k′µ′| V̂xtal |nkµ〉 =

∫
d3r

∫
d3r′ 〈n′k′µ′|r〉 〈r| V̂xtal |r′〉 〈r′|nkµ〉 . (2.10)

The pseudopotentials we are using are local, therefore we have

〈r| V̂xtal |r′〉 = δ(r− r′)Vloc(r) , (2.11)

where Vloc is the total of local and spherically symmetric atomic pseudopotentials.

Putting this into Eq. 2.10 makes the primed integral to drop due to Dirac delta,

〈n′k′µ′| V̂xtal |nkµ〉 =

∫
d3r 〈n′k′µ′|r〉Vloc(r) 〈r|nkµ〉 . (2.12)

Vloc can be expressed as a summation of atomic pseudopotentials. So, the matrix

elements becomes

〈n′k′µ′| V̂xtal |nkµ〉 =
1

NΩ0

∑
G,G′

[
Bµ′

n′k′(G
′)
]∗
Bµ
nk(G)

×
∫
V

d3rei(k+G−k′−G′)·r
∑
j,α,µ′′

W µ′′

α (Rj)υ
µ′′

α (r−Rj − dµ
′′

α ).

(2.13)

where υµα(r −Rj − dµα) is the spherically symmetric screened atomic pseudopo-

tential for atom/basis α, Rj is the position vector pointing to the primitive cell

j and dµα is the position vector of basis α of material of type µ. W µ
α (Rj) is the

weight function which selects atom/basis α of material µ on the position Rj +dµα

and usually takes the discrete values of [0, 1]. We can set the origin to the center

of the each atom/basis by a change of variable r as r → Rj + rc + dµ
′′
α which

yields after reordering the terms

〈n′k′µ′| V̂xtal |nkµ〉 =
∑
G,G′

[
Bµ′

n′k′(G
′)
]∗
Bµ
nk(G)

∑
µ′′

1

Ω0

∑
α

ei(k+G−k′−G′)·dµ
′′
α

×
∫

Ω0

υµ
′′

α (rc)e
i(k+G−k′−G′)·rc 1

N

∑
j

W µ′′

α (Rj)e
i(k−k′)·Rj .

(2.14)

The last summation is basically a Fourier series which we can denote as

Wµ
α(k− k′) =

∑
j

W µ′′

α (Rj)e
i(k−k′)·Rj . (2.15)

8



Since the pseudopotentials are localized to the vicinity of the atomic sites, the

integral on the right hand side of Eq. 2.14 can be extended over all space as the

potentials will die out quickly. With the appropriate coefficients, it becomes a

Fourier transform which can be denoted as

Vµ′′α (|k + G− k′ −G′|2) =
1

χ0

∫ ∞
−∞

υµ
′′

α (rc)e
i(k+G−k′−G′)·rc , (2.16)

where χ0 = Ω0/Nµ′′ and Nµ′′ is the number of atoms/basis in the primitive cell.

So, we have

〈n′k′µ′| V̂xtal |nkµ〉 =
∑
G,G′

Bµ
nk(G)

[
Bµ′

n′k′(G
′)
]∗

×
∑
µ′′,α

1

Nµ′′
Vµ′′α (|k + G− k′ −G′|2)

×Wµ′′

α (k− k′)e−i(k+G−k′−G′)·dµ
′′
α .

(2.17)

In the light of this derivation, the overlap term on the right hand side of Eq.

2.7 can be reduced to

〈n′k′µ′|nkµ〉 = δk,k′
∑
G

[
Bµ′

n′k′(G)
]∗
Bµ
nk(G) . (2.18)

The spin-orbit interaction (SOI) can be described by the Hamiltonian [40, 41],

ĤSO =
∞∑
`=1

|`〉VSO,`(r)~̀ · ~σ 〈`| , (2.19)

where VSO,`(r) is the nonlocal SOI potential which arises from the relativistic

effects of core electron states, ` is the orbital angular momentum and ~σ is the

Pauli spin matrix. The matrix elements of this Hamiltonian in a plane-wave basis,

taking only ` = 1 can be written as

〈s,K| ĤSO |s′,K′〉 = −i 〈s|~σ |s′〉
[
12π

K×K′

KK ′
V SO
`=1(K,K′)

]
,

where K = k + G, |s〉 is the spin vector for spin-up and down and S(K′ −K) is

the structure factor of bulk crystal. V SO
` (K,K′) is

V SO
` (K,K′) =

∫ ∞
0

dr

Ω0

r2j`(Kr) V
SO
` (r) j`(K

′r) , (2.20)

9



where j` is the spherical Bessel function of the first kind. Here, V SO
` (r) is taken

as a Gaussian function.

Figure 2.1: Workflow of LCBB method to calculate atomistic electronic structure

of a nanostructure.

In this work, the semi-empirical pseudopotential parameters for InAs and GaAs

are taken from Çakan et. al. [1] and given in Table 2.1. The advantages of

using these parameters are the pseudopotential form factors were obtained after

tuning the local density approximation (LDA) results so that they can generate

quality wave functions, the pseudopotentials are cleared from non-local parts of

the potential, they can reproduce the band edges calculated by density functional

theory with various deformation potentials accurately and they are fitted to be

used in large-scale atomic calculations with an energy cut-off of 5 Ry.
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Local form factors GaAs InAs Slopes for PCHIP GaAs InAs

V s
0 -0.6421 -0.5469 ss0 0.0000 0.0000

V s√
3

-0.2350 -0.2070 ss√
3

0.0699 -0.1760

V s√
8

0.0150 0.0000 ss√
8

0.1250 0.1250

V s√
1

0.0729 0.0465 ss√
1

0.0596 -0.0062

V a
0 -0.1040 -0.0880 sa0 0.0000 0.0000

V a√
3

0.0760 0.0540 sa√
3

0.0250 -0.0350

V a√
4

0.0570 0.0466 sa√
4

-0.1150 -0.0900

V a√
1

0.0061 0.0070 sa√
1

-0.0100 -0.0220

Asymptotic parameters Hydrostatic strain parameter

a5 4.05 4.50 γ -1.7392 -0.1046

a6 0.39 0.41 Spin-orbit coupling parameter (Ry)

Cut-off energy (Ry) λS 0.0213 0.0205

Ecut−off 5.00 4.85

Table 2.1: Semi-empirical pseudopotential parameters for InAs and GaAs used

in this work. ”PCHIP” stands for ”piecewise cubic Hermite interpolating poly-

nomial”. The table is taken from Ref. [1].

An important aspect of our calculations is the strain. Naturally, the positions

of the atoms in InGaAs SAQD are not in their ordered zinc-blende sites due to

relaxation of stress so that to use the fast Fourier transform relies on an ordered

lattice and additional approximations and tables are needed as in Ref. [38]. In

this work, we are not employing this cumbersome approach by using the original

(disordered or ordered) lattice sites, while being content with the discrete Fourier

transform.
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Chapter 3

Wave function analysis of InAs

quantum dots

For the characterization of atomistic wave functions of any nanostructure, 3D

isosurface plots are not sufficient. For alloy QDs such as InxGa
1-x

As or for spher-

ical cut-plane QDs (hydrophobic, half sphere or lens) polar symmetry is broken

and thus, the wave functions will have a mixed characteristic in terms of angular

momentum. This mixing could only be understood by detailed wave function

analysis. However, in LCBB formalism, as in any atomistic approach, calculat-

ing angular momentum projections of an atomistic wave function is not an easy

task due to the fast oscillations of the cell-periodic part as sketched in the Fig.

3.1. These oscillations are the main obstacle for this task and must be somehow

gotten rid of. There is a simple remedy in the literature for this kind of oscilla-

tions of the wave functions. It is the famous envelope function approximation.

This approximation can, in principle, be used to calculate LCBB wave function

envelopes. In this chapter, two envelope extraction methods and the angular

momentum projection calculations of a wave function envelope was discussed.
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Figure 3.1: Due to the ionic potential of the atomic sites (below part), the wave

function wiggles (upper part). The line at the top is the slowly varying envelope.

The figure is taken from ”Spin-orbit coupling effects in two-dimensional electron

and hole systems”, Roland Winkler, Springer, 2010.

3.1 Envelope extraction methods

3.1.1 Gaussian smoothing

In image and signal processing, Gaussian smoothing (i.e filter) is an established

tool. It can simulate blur effect on an image and it can be useful for edge de-

tection. In signal processing it is used for suppressing white noise [42]. As the

Fourier transform of a Gaussian is also a Gaussian, this property can be very

useful. A Gaussian filter is a Gaussian function which is defined as

g(x) =
1√
2πσ

e−x
2/2σ2

, (3.1)

where σ is the standard deviation and it governs how strong the filter acts on the

function. Due to its spatial separability, this filter can be applied in 3D through

convolution and it smooths out the oscillations. For the oscillating isosurfaces,

the filter acts nicely and returns envelope-like isosurfaces. Increasing σ, increases

the smoothness of the isosurfaces. However, this freedom in σ cannot generate
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definite isosurfaces. Furthermore, the grid density also effects the isosurfaces.

Denser grids may need higher values of σ since the oscillations would be more

prominent.

The definition of an envelope function can vary as long as it filters out the high

frequency oscillations which makes this method legitimate. However, in terms of

performance and robustness, this method could be problematic. Still, since it is

computationally very cheap, it may be used if the purpose is to have a general idea

about the behavior of a wave function. Fig. 3.2 shows the same wave function

envelopes generated by using this method for two different σ values.

Figure 3.2: An atomistic wave function (left) and its envelopes after applying

Gaussian filter with different σ values.

3.1.2 Envelope function approximation in LCBB

Envelope function approximation suggests that a wave function can be expanded

in terms of the periodic part of the Bloch function at a given wave-vector, for

example Γ high-symmetry point for our case.

ψ(r) =
∞∑
n

fn(r)un,Γ(r) . (3.2)

The function fn(r) is the so-called envelope function which corresponds to the

contribution of bulk band index n to the whole wave function. Our aim here is

to find this envelope function within the LCBB formalism. Equating the wave
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function above with the LCBB wave function given in Eq. 2.5

ψ(r) =
∑
n

fn(r)un,Γ(r) (3.3)

=
1√
N

∑
n,k,µ

Cµ,j
n,ke

ik·ruµn,k(r) . (3.4)

The plane-wave (exponential) part on the right hand side of the equation is re-

sponsible for the slowly-varying oscillations and the cell-periodic part is responsi-

ble for the fast oscillations. To be able to suppress the fast oscillations, we project

the wave function to Γ-point. Multiplying both sides with
[
unΓ

]∗
and taking the

integral over all space we get,∑
n

∫
fn(r)uµn,Γ(r)

[
uµn,Γ(r)

]∗
d3r =

1√
N

∑
n,k

Cµ,j
n,k

∫
eik·ruµn,k(r)

[
uµn,Γ(r)

]∗
d3r .

(3.5)

As the envelope function and the plane-wave part is slowly varying with respect

to the cell-periodic part, we assume that they are constant within a unit cell, then

they can be taken out of the integral. Using the orthogonality of Bloch functions,

envelope function is found to be∑
n

fn(r) =
1√
N

∑
n,k,µ

Cµ,j
n,ke

ik·rδk,Γ
∑
G

Bµ
n,k(G)

[
Bµ
n,Γ(G)

]∗
. (3.6)

Taking care of the summation on the left hand side, the equation

f j(r) =
1√
N

∑
n,k,µ

Cµ,j
n,ke

ik·rδk,Γ
∑
G

Bµ
n,k(G)

[
Bµ
n,Γ(G)

]∗
, (3.7)

gives the envelope function for the state j. Fig. 3.3 shows the extracted envelope

by this method.
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Figure 3.3: Atomistic wave function (left) and the extracted envelope function

through envelope function approximation (right) for a QD state.

3.2 Angular momentum decomposition of en-

velopes

On the unit sphere, any square-integrable function of θ and φ can be expanded

in terms of spherical harmonics [43] as

g(θ, φ) =
∞∑
`=0

∑̀
m=−`

c`mY`m(θ, φ) , (3.8)

where c`m is denoting the expansion coefficients, l is the orbital angular momen-

tum quantum number and m is the magnetic quantum number. However, unlike

the function g(θ, φ), wave function envelopes depend on r so that the expansion

coefficients c`m will be r-dependent. Also, the wave equation is separable in spher-

ical coordinates [44] so that the envelopes can be separated with the r-dependence

[45] as

f(r, θ, φ) =
∑
`,m

R`m(r)Y`m(θ, φ). (3.9)

The coefficients Rlm(r) are

R`m(r) =

∫ 2π

0

∫ π

0

dφdθ sin(θ)Y ∗`m(θ, φ)f(r, θ, φ) . (3.10)
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To be able to calculate this integral in spherical coordinates Lebedev quadrature

of order 131 which corresponds to 5810 point-grid is used. This grid is designed

by Lebedev and Laikov so that it has octahedral rotation and inversion symmetry.

Lebedev quadrature gives the best numerical results for these type of spherical

integrals where the spherical harmonics are involved since the point weights are

determined to solve integrals of spherical harmonics exactly up to some order `

[46].

There are two paths that could be taken from here, calculating the change in

the compositions for linearly varying the radius and sampling Lebedev grids inside

the QD or we can calculate a weight which indicates the relative compositions for

the whole QD. As the former harbors much more information, it would be much

more effective to understand the characteristics of wave function envelopes than

the weights, the latter is simply the integral of the former. For the former for

each Lebedev grid, we calculate the compositions of angular momentum quantum

numbers as

b`(r) =

∑
m |rR`m(r)|2∑6

`=0

∑
m |rR`m(r)|2

. (3.11)

As we can only calculate this up to a certain values of ` instead of infinity for the

denominator, the result will yield some truncation error. As the wave functions

we are dealing with do not have any values of ` higher than 4 or at maximum 5,

this truncation error will be relatively small if ` is taken higher than these values.

The expression that gives the weight is [45]

w` =
∑̀
m=−`

∫ D/2

0

|rR`m(r)|2dr , (3.12)

where D is the diameter of the QD.

As a showcase, Fig. 3.4 shows the r-dependent orbital angular momentum

compositions of the wave function envelopes of the spherical In0.25Ga0.75As SAQD

of which the energy levels are given in Fig. 4.1(b).
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Figure 3.4: The orbital angular momentum compositions of the envelope func-

tions of the four valence states (first four figures) with the highest energies

and four conduction states (last four) with the lowest energies of spherical

In0.25Ga0.75As. The energy levels of this SAQD is given in Fig. 4.1(b). State

energies are in the increasing order from top-left to bottom-right.
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Chapter 4

Results

In this chapter, we present single-particle electronic bound-states for five different

InxGa1−xAs SAQDs. First, the calculation details are discussed. Then, the results

are presented while comparing the size, shape and concentration effects.

4.1 Calculational details

The electronic structure calculations are done by using a parallelepiped supercell

which is chosen big enough to prevent interactions between periodic image QDs.

As a matter of fact, for the lens structure, we also checked with a supercell larger

than the one that we used in our calculations and observed that the results did not

change by more than 10 meV which can be taken as a typical accuracy measure of

our results. The supercell is filled by using two-atom basis. The alloying is done

by distributing the gallium atoms in place of indium atoms randomly according

to the intended molar fraction of of the QD.

The k-grid from which the bulk basis states are chosen is taken as 9 × 9 × 9

rectangular mesh near the Γ high-symmetry point (the center of the mesh). Also,

in the literature near Γ-centered mesh is used for InGaAs SAQDs [47, 45]. The

bands that are chosen are between the band indices 3 − 16 including the spin
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degenerate bands and bulk bands of both matrix (GaAs) and core constituents

(InAs) with the total number of 28 bands.

As the calculations produce significant amount of surface states owing to bulk

bands of matrix material, these are cleaned with the help of a filter that checks

whether the state is core-derived or not in accordance with the condition [48]∑
n,k

∣∣CGaAs
n,k,j |2 ≤ F

∑
n,k

∣∣CInAs
n,k,j|2 , (4.1)

where Cµ
n,k,j are the wave function expansion coefficients (see Eq. 2.5) and F is

the filtering parameter which is taken as 0.1 for all of the calculations here. An

example of unfiltered and filtered electronic structures are given in Fig. 4.1(a,b).

The SAQDs in consideration have spherical, hydrophobic and lens geometries.

The number of atoms in the supercell is 476 656 for each SAQD. The hydrophobic

and the lens shapes are cut out by a plane from the spherical one. Normal vector

of this plane has a polar angle of 54.7◦. It should be noted that this choice of

plane is arbitrary. The spherical QD has a diameter of 10.75 nm and consists of

28 708 atoms. The diameter of the cut-plane of hydrophobic is about 9.3 nm and

this QD consists of 24 234 atoms. Lens shaped QDs have a diameter of about

10.5 nm, their height correspond to 4.3 nm and contains 10 116 atoms.

Due to the 6.7% lattice mismatch between InAs and GaAs and since the lattice

constant of GaAs is imposed all throughout the structure, the indium atoms are

under a hydrostatic compressive strain. Here, we do not relax the atoms so that

their atomic positions are in zinc-blende order.

4.2 Size and shape effects on electronic struc-

ture

To investigate the effects of the size and the shape, single-particle electronic struc-

ture of SAQDs with different geometries having the same indium mole fractions
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x = 0.25 are presented. The wave functions and their extracted envelopes are

shown in Figs. 4.2,4.3,4.4.

As the nanostructure sizes get smaller, the quantum confinement will be more

prominent and the HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest

Unoccupied Molecular Orbital) gap will open up. This is called quantum size

effect. This effect can be seen easily by comparing the energy gaps (Egap) of

given electronic structures. From spherical to lens, the number of QD atoms

are getting reduced, therefore, Egap increases while the number of bound states

decrease from spherical to lens geometries.

Change in the shape and size, drastically affects the valence state wave func-

tions and their envelopes as expected from the strong mixing among the valence

band states. For the conduction states, these changes are not as pronounced

as in the valence states. If we concentrate on the so-called p-shell of the con-

duction states: for the spherical QD the small energy splitting among the three

originates from the underlying crystallographic direction variations, whereas for

hydrophobic and lens QD cases the third p-states becomes energetically pushed

out significantly, as expected from the orientation of cutting plane.
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Figure 4.1: Energy levels of an electron in (a, b) spherical, (c) hydrophobic and

(d) lens shaped In0.25Ga0.75As/GaAs SAQD. The state energies are relative to

the valence band maximum of the bulk GaAs under spin-orbit interaction which

is taken to be zero.
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Figure 4.2: Atomistic wave functions and their extracted envelopes for HOMO

and LUMO of the spherical In0.25Ga0.75As/GaAs SAQD. The wave functions and

envelope isosurfaces are at a confidence interval of 99%. The green dots are in

the positions of arsenic atoms of the QD.
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Figure 4.3: Same as the previous figure but for a QD with hydrophobic geometry.

As a note, the atomic nature of the wave functions cannot be seen due to the

chosen grid size for the figures for spherical and hydrophobic QDs. A much more

denser grid could be used with a price of more computational expense, if it is

necessary to see the fast oscillations.
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Figure 4.4: Same as the previous figure but for a QD with lens geometry.

4.3 Effect of indium molar fraction

As there is a band gap difference between bulk InAs and GaAs, electronic struc-

ture will highly depend on the concentration of these constituents. Electronic

structures of SAQDs having the same geometry but different molar fractions are

presented in Figs. 4.4,4.6,4.7.
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Figure 4.5: Energy levels of an electron in lens shaped InxGax−1As SAQDs for

(a) x = 0.25, (b) x = 0.5 and (c) x = 1.

Comparing the figures, the most pronounced differences are in the Egap. In-

creasing the mole fraction of indium, decreases the HOMO-LUMO gap which cor-

roborates with the smaller band gap of InAs compared to GaAs. There are slight

changes in the LUMO energies but the valence state energies increase greatly with

increasing indium molar fraction. Also, the number of valence states increase as

the molar fraction of indium increases.
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Figure 4.6: Same as the Fig. 4.4 but for In0.5Ga0.5As/GaAs SAQD.
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Figure 4.7: Same as the previous figure but for pure InAs/GaAs SAQD.
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Chapter 5

Conclusion and a self-critique

A large-scale atomistic electronic structure calculations of five different

InxGa1−xAs SAQDs were presented and compared. Specifically, the effects of

size, shape and indium concentration on the electronic structures of these SAQDs

under the hydrostatic compressive strain were examined. As the isosurfaces for

atomistic wave functions can be hard to interpret due to their fast oscillating

behaviors, two methods for extracting the envelopes were shown in detail. Also,

a technique to calculate the orbital angular momentum quantum number com-

positions of envelopes were discussed.

The electronic structures were calculated by employing linear combination of

bulk bands method which is a non-self-consistent method. The self-consistency

can be implemented at the expense of additional coding as well as increased

computational budget. The ionic relaxation of stress of the supercells were not

taken into account. It is an important effect which changes the strain profiles of

the QDs, therefore, it affects the electronic structure. Also, the non-self-consistent

nature and the necessity for the physical intution-based choice of basis states

render the use of the technique more of an art than pure brute computational

force.

As a possible future work, the electronic structures of InGaAs SAQDs with
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relaxed atoms can be calculated. Also, in connection to QD spin-qubits g-factors

of carriers of an InGaAs SAQDs can be calculated using this atomistic approach,

as it could shed some light on the underlying reason for the electron spin resonance

experiment not being reproducible [16].
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[10] A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss,

M. Sherwin, and A. Small, “Quantum information processing using quantum

dot spins and cavity qed,” Phys. Rev. Lett., vol. 83, pp. 4204–4207, Nov 1999.

[11] E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, “Quantum information pro-

cessing with semiconductor macroatoms,” Phys. Rev. Lett., vol. 85, pp. 5647–

5650, Dec 2000.

[12] M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R.

Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum

states in quantum dot molecules,” Science, vol. 291, no. 5503, pp. 451–453,

2001.

[13] C. Kloeffel and D. Loss, “Prospects for spin-based quantum computing in

quantum dots,” Annual Review of Condensed Matter Physics, vol. 4, no. 1,

pp. 51–81, 2013.

[14] T. Ladd, “Quantum dots tuned for entanglement,” Physics, vol. 5, Jan 2012.

[15] P. Barthelemy and L. M. K. Vandersypen, “Quantum dot systems: a versa-

tile platform for quantum simulations,” Annalen der Physik, vol. 525, no. 10-

11, pp. 808–826.

[16] M. Kroner, K. M. Weiss, B. Biedermann, S. Seidl, S. Manus, A. W. Holleit-

ner, A. Badolato, P. M. Petroff, B. D. Gerardot, R. J. Warburton, and

K. Karrai, “Optical detection of single-electron spin resonance in a quantum

dot,” Phys. Rev. Lett., vol. 100, p. 156803, Apr 2008.

32



[17] A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies ver-

sus geometry and composition of inxga1−xAs/GaAs self-organized quantum

dots,” Phys. Rev. B, vol. 79, p. 075443, Feb 2009.
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Portalupi, F. Ding, P. Michler, and O. G. Schmidt, “Tuning emission energy

and fine structure splitting in quantum dots emitting in the telecom O-band,”

ArXiv e-prints, feb 2018.

33
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generation of indistinguishable polarization-entangled photon pairs,” Nature

Photonics, vol. 8, pp. 224 EP –, Feb 2014.

[27] R. Takahashi, K. Kono, S. Tarucha, and K. Ono, “Voltage-selective bidirec-

tional polarization and coherent rotation of nuclear spins in quantum dots,”

Phys. Rev. Lett., vol. 107, p. 026602, Jul 2011.

[28] R. Stockill, C. Le Gall, C. Matthiesen, L. Huthmacher, E. Clarke,
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