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ABSTRACT

OPTIMIZATION FRAMEWORK FOR SIMULTANEOUS
TRANSMIT AND RECEIVE OPERATIONS IN

WIRELESS LOCAL AREA NETWORK

Ege Bilaloğlu

M.S. in Industrial Engineering

Advisor: Oya Karaşan

May 2022

Full duplex communication technology draws substantial interest among wireless

network operators due to its ability to increase the network capacity through

concurrent transmissions. Despite this advantage, interference issue caused by

close distances between stations makes it challenging to integrate simultaneous

transmit and receive mode into wireless networks. Motivated by the objective

of minimal overhead in full duplex transmissions of access points, we provide an

optimization framework to minimize the latest completion time of transmissions.

In this problem, we aim to find an optimal schedule of transmissions that maxi-

mizes concurrent operations in order to reduce the makespan. We formulate the

problem for both single and multiple concurrency assumptions separately. For

single concurrency, we provide a mixed integer programming (MIP) model using

scheduling based formulation along with a greedy heuristic. Modeling the prob-

lem as a matching problem between two disjoint sets of supplies and demands, we

develop a linear programming (LP) model with a totally unimodular constraint

matrix. We utilize Hopcroft-Karp algorithm for solving the resulting maximum

cardinality bipartite matching problem. For multiple concurrency; we formulate

a flow based integer programming model, demonstrate properties of the extreme

points in its LP relaxation, develop valid inequalities and optimality cuts. As an

extension, we add due dates for each station to complete their transmissions and

formulate an MIP model and develop an algorithm for this variant. Additionally,

we provide a proof for NP-completeness of minimum total tardiness problem with

single concurrency. To evaluate the performance of the proposed formulations,

we perform a range of computational experiments. Finally, we conduct sensitivity

analyses to evaluate the effects of the parameters on the objective value and the

solution times.
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ÖZET

KABLOSUZ YEREL ALAN AĞINDA EŞ ZAMANLI
İLETİM VE ALIM ENİYİLEMESİ

Ege Bilaloğlu

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Oya Karaşan

May 2022

Tam çift yönlü iletişim teknolojisi, eşzamanlı iletimlerle ağ kapasitesi artırma etk-

isiyle kablosuz ağ operatörlerinden büyük ilgi görmektedir. Buna karşın; istasyon-

lar arasındaki yakın mesafe kaynaklı çakışma sorunu, eşzamanlı gönderme ve alma

modunu kablosuz ağlara dahil etmeyi zorlaştırmaktadır. Bu çalışmada, erişim

noktalarının tam çift yönlü sinyal iletimlerini en az maliyetle gerçekleştirilebilme

motivasyonu doğrultusunda sinyal iletimlerinin son tamamlanma süresini ena-

zlama yöntemi sunulmuştur. En son tamamlanma süresini enazlamak amacıyla

eşzamanlı operasyonları en üst düzeye çıkaran iletim çizelgelemesi hede-

flenmiştir. Problem tekli ve çoklu eşzamanlılık seçenekleri ayrıştırılarak ik-

isi için de çözümlenmiştir. Tek eşzamanlılık varsayımında sezgisel algoritma

yönteminin yanı sıra çizelgelemeye dayalı karma tamsayılı doğrusal programlama

formülasyonı geliştirilmiştir. Problemin iki ayrık arz ve talep kümeleri arasındaki

eşleşme sayısını maksimuma çıkarma amacında yorumlanmasıyla, eşleştirmeye

dayalı tamamen tek modüler doğrusal programlama modeli sunulmuştur. Aynı

zamanda, Hopcroft-Karp algoritması maksimum iki parçalı grafik eşleştirmesi

için kullanılmıştır. Çoklu eşzamanlılık için ise akış tabanlı tamsayı modeli

ve doğrusal gevşetme modeli oluşturup kesişme noktalarının sayısal özellikleri

kanıtlanmıştır. Ek olarak, istasyonlara zaman sınırı eklenerek karma tam-

sayılı doğrusal programlama modelive sezgisel algoritma geliştirilmiştir. Tek

eşzamanlılık varsayımında istasyonların toplam gecikme süresini enazlama prob-

leminin NP-zorluğu kanıtlanmıştır. Formülasyonların performansını ölçmek için

sayısal analizlerle birlikte duyarlılık analizi de yapılarak problem parametrelerinin

en iyi çözüm değeri ve süreleri üzerindeki etkileri saptanmıştır.

Anahtar sözcükler : sinyal çizelgeleme, maksimum eşleştirme, matematiksel pro-

gramlama, ayrık eniyileme, ağ tasarımı.
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Chapter 1

Introduction

1.1 Background Information

Full duplex technology has attained tremendous interest among mobile operators

in recent years. Even though it was first introduced more than a decade ago,

its continuous benefits for efficient usage of the spectrum channel in the com-

munication networks have augmented its popularity [1]. Especially in wireless

networks, most of the devices used in the communication operations are aimed to

be designed with full duplex technology rather than half duplex technology. In

order to understand the advantages of the full duplex technology, it is important

to comprehend the inner workings of the duplex communication systems.

Duplex communication systems are used for signal transmission. The system

structure composes of two or more connection nodes (devices or parties) that can

communicate with each other using both directions. Simultaneous communica-

tion property in both directions is the primary reason why they are employed

in various communication networks. According to the preceding advancements

in the telecommunication field, duplexing can be either achieved by using half-

duplex technology or full-duplex technology [2].
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Figure 1.1: Half duplex and full duplex technology comparison

The key distinction of full duplexing is that it enables communication devices

to transmit and receive signals simultaneously. For instance, during a telephone

conversation, as the first speaker is talking, the microphone of the first speaker

can transmit its message. At the same time, the second speaker can hear that

message since earphone reproduces the talking of the other speaker through full

duplex technology. On the other hand, half duplex technology is only limited to

communication between both parties but incapable of simultaneous transmission

of input and output signals; allowing only one direction communication at a time

[3]. Whenever people do internet surfing on a daily basis, they have to wait for

the response from the network after searching due to limitation of the half duplex

technology in the computer network. The difference between half duplex and full

duplex technologies is depicted in Figure 1.1.

The deficiency of half duplex communication mode results from self-

interference, which occurs as an outcome of disparity between the signal strengths

of the receiver and transmitter. In wireless networks specifically, most of the de-

vices are classified with half duplex property. This is because transmission signals

that wireless device produces are more powerful than the ones that wireless device
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receives [4]. Having affected by self-interference, performance of the receiver is

degraded as the input signal is overwhelmed by disparity. Since wireless devices

do not have full duplex property due to practical limitations, having full duplex

access point and half duplex clients at the same time creates interference. This

issue is illustrated in Figure 1.2. In contrast, full duplex system accomplishes

cancellation of self-interference and makes it possible for radios to receive and

transmit on the same frequency level [5]. Subsequently, capacity of the signal

transfer in the communication system can double.

Figure 1.2: Interfering half duplex clients in a wireless network

As a requirement to efficiently deploy the emerging trends like 5G systems

technology and next generation wireless local area networks (WLANs), most of

the wireless networks such as cellular networks and computer networks are de-

signed in a way to implement full duplex technology [6]. In an attempt to enable

full duplex communications in infrastructure based wireless networks, medium ac-

cess control (MAC) protocol designs are developed. MAC stands for the network

data transfer policy deciding on how the data is transmitted from one computer
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terminal to another through the network cable [7]. The principle behind MAC

protocol design is to facilitate the transfer of data packets among computer ter-

minals so as to make sure that no collision between computer terminals occurs.

Since collision takes place when more than one computer terminal transmit the

data simultaneously, full duplex implementation into computer networks is chal-

lenging to employ.

Commonly known as Wi-Fi, the most popularly used computer networks are

WLANs which are based on the IEEE 802.11 standards [8]. Simple illustration

of the wireless network topology is provided in Figure 1.3. Adopting full duplex

technology in IEEE 802.11 standard requires the implementation of simultane-

ous transmit and receive (STR) mode into the next generation WLANs. While

there have been proposed solutions generally based on investigating physical layer

aspects (PHY) of the wireless network, MAC layer solutions are also offered to

enhance full duplex communication in WLANs [9]. Those protocols are aimed to

address the issues that hinder providing the increased user throughputs and to

carry out successful transmission in busy deployments by increasing the perfor-

mance of WLANs.

Figure 1.3: Wireless network topology
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Integrating full duplex communication mode into 802.11 networks brings about

several difficulties. The challenging part is to respond these issues with as minimal

protocol modifications as possible. First of all, there is coexistence issue of full

duplex (FD) and half duplex (HD) nodes in the network. Even after enabling

STR mode to the network, there will be FD and legacy HD nodes at the same

time [10]. At the beginning of FD transmissions, it is essential for FD nodes to

autonomously discover which nodes have FD capability. This capability discovery

due to coexistence issue can engender expenses caused by legacy frame structure

modifications.

STR mode in WLANs produces two types of wireless links: unidirectional full

duplex (UFD) and bidirectional full duplex (BFD) links. In BFD transmission,

the pair of access point and station that are FD capable can transmit and receive

simultaneously among each other. However, through the UFD links, only the

access point can simultaneously transmit signal to an FD or HD capable station

whilst receiving signal from another station. Enabling these two links is desired

to obtain maximal benefit of FD technology, but modification to legacy channel

could create backward compatibility for half duplex transmissions that need to be

avoided. Backward compatibility means that current system has interoperability

with the older legacy system. It is a drawback since larger bill of materials are

required to support older versions that is costly.

Stations and access point can process BFD transmission after discovering that

stations have FD capability whereas this is not the case for UFD transmission.

In UFD transmission, node selection decision must be made to complete the

communication. No matter which type of capability the stations have, either HD

or FD, each station should satisfy a given criteria. If two stations are in the

interference range of each other, then access point cannot simultaneously receive

signal from one and transmit signal to another. That’s why access point needs

to possess extra function to decide on the set of nodes that are eligible for the

second transmission after the first transmitter node is given. This functionality

requirement adds overhead cost to the communication network.

5



1.2 Motivation

In this thesis, in order to assess the full duplex technology in communication

networks, we mainly investigated simultaneous transmit and receive operation

in next generation IEEE 802.11 WLANs. We narrowed down the scope of our

investigation by focusing only on Unidirectional Full Duplex (UFD) genre of

wireless links. Provided that not all the stations can become part of the UFD

transmission since two nodes simultaneously served by an access point must be

out of interference range, we primarily dealt with node selection process of an

access point for the UFD transmission.

To incur minimal overhead for the whole process, our goal was to determine

the set of stations to incorporate into the simultaneous transmit and receive

mode taking into account the interference restrictions. We evaluated the overhead

cost incurred to the communication network as the time slots used to broadcast

station transmissions. For this reason, we have chosen our performance measure

as the number of time slots and our motivation was to minimize the total time

to complete all UFD transmissions.

Perusing the issue from an industrial engineer perspective, we redefined the

problem as supply and demand scheduling through a base station where access

point gets supply from transmitters and provides demand to receivers in the

communication network. We have developed a mathematical modeling approach

by assigning each supply or demand station to a time slot allowing at most two

transmissions in an individual slot so that latest time slot is minimized.

Due to the complexity of the mathematical model having station time slot

assignments, we obtained the optimal results after long computation times. This

motivated us to identify the dimension of time slot set so that our model can be

used in optimization. Therefore, a greedy heuristic methodology was followed to

find and upper bound on the number of time slots required. The result of the

heuristic was used as an input to our mathematical model and solution times

have been significantly decreased.
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As we analyzed the properties of our problem, we realized that the supply and

demand stations can be considered as two disjoint sets since in our initial problem,

UFD transmission did not allow two receivers or two transmitters processed in

the same time slot. This prompted us to explore the problem within the scope

of graph theory where disjoint data sets were represented as a bipartite graph.

Using this graph modeling approach, we were able to recast our problem as a

maximum cardinality matching problem. Indeed, accomplishing maximum simul-

taneous receive and transmission operations as matchings could lead to minimum

total duration of operation times due to the least number of unmatched signals.

In other words, we maximized time slot utilization in terms of benefiting signal

capacity of each time slot.

Based on maximum cardinality matching, an equivalent optimization model

providing the same results within much less solution times is formulated.

Hopcroft–Karp algorithm was also employed in order to find the optimal solution

with reasonable solution times for large scale problems. The matching principle

of supply and demands was followed within the cases where we extended our

problem to the twice concurrent stations. With this extension, we allowed two

supplies and two demands to be processed in the same time slot. To model this

consideration, four indexed and two indexed formulations are developed.

Elaborating the scope of our problem under single concurrency, we consid-

ered the deadline constraints for each station transmission as another extension.

Restricting each station to meet the deadline criteria for completing the total

of supply and demand operations, the minimum total tardiness objective is em-

braced. The mathematical model for this restriction is formulated and a greedy

algorithm is developed. We proved that this problem is NP-complete by demon-

strating that the special case of our problem is identical to another NP-complete

problem found in machine scheduling literature.

When we removed the deadline criteria, we inserted concurrent broadcasting

allowance of stations with multiple signals at a time, expanding the interference

7



constraint from twice concurrency into multiple concurrency cases. Instead of cre-

ating supply and demand copies for each station, we developed flow based mixed

integer linear programming formulation where we aimed to achieve maximum

concurrent flow of signals meeting the supply and demand amounts.

Performing LP relaxation on the flow based formulation, we analyzed the nu-

merical properties of extreme points of the new model. The analysis was carried

out by utilizing the knowledge of linear programming and graph theory. We have

proved several theorems for our problem, which enabled us to observe the behav-

ior of optimal results. As a result, we were able to provide a valid inequality and

an optimality cut for the flow model.

1.3 Overview

The remaining chapters of this thesis are organized as follows:

Chapter 2 consists of the detailed review of literature about our problem and

corresponding methodologies developed in the past studies. In this chapter, we

focused on previous studies on broadcast scheduling problem in general, then we

provided the machine scheduling literature related to our problem. At the end

of this chapter, different approaches for maximum cardinality matching problem

are reported.

Chapter 3 corresponds to the problem definition and includes the explana-

tion for the essential notations, parameters and descriptions used throughout the

thesis. In this section, different extensions of the problem are also introduced

in brief. The problem setting with the network structure, preliminaries and our

general approach are also provided.

In Chapter 4, the problem is investigated for the minimization of the latest

completion time in the communication network. First, single concurrent stations

are assumed in the network and scheduling based model formulation and greedy
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heuristic for the model are given. Matching based formulation and Hopcroft-

Karp algorithm are provided afterwards for the single concurrency. Secondly,

twice concurrency and multiple concurrency are studied and formulated with

MILP models. For the extreme points of the LP relaxation of the flow model,

significant properties are proved and further supported with valid inequalities and

optimality cuts.

In Chapter 5, deadline criteria is introduced to the problem. The objective of

minimum total tardiness is analyzed for the problem and the model formulation is

provided with detailed explanation of its constraints and objective function. The

algorithm that we developed for deadline criteria is also presented. Eventually,

NP-completeness proof for the minimum total tardiness problem under single

concurrency is provided.

Chapter 6 is devoted to the computational experiments and analyses for all

the formulations and algorithms defined in this thesis. In addition, we provide

sensitivity analyses and discuss the results of the experiments in detail. Finally

in Chapter 7 we conclude our discussion and propose future research directions

that can be undertaken.
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Chapter 2

Literature Review

Even though full duplex technology is remarkably promising to aggrandize the

communication in wireless networks, the literature on the optimization of medium

access control to manage FD wireless communication is relatively narrow. As we

initially approach to the node selection problem from scheduling perspective, we

primarily focus on review of literature on scheduling problems. Broadcasting

is mostly performed in local area network (LAN) technologies [11]. Since the

main concept of broadcasts in computer networking also faces with interference

issue in scheduling, we examined broadcast scheduling problem. Moreover, we

inspect machine scheduling literature by considering the notion of incompatible

job families around minimum total tardiness and minimum makespan objectives.

Finally, since we also assess the problem with maximal matching motivation, we

examine maximum cardinality matching problem and its solution methodologies

studied in the literature.

2.1 Broadcast Scheduling

Broadcast scheduling problem is extensively studied in the literature. In any

wireless network, broadcast is the fundamental operation. However, broadcast
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scheduling in wireless networks is known to be challenging since it is difficult

to deal with interference. Most of the existing literature explores the problem

by modeling the wireless networks using graphs G = (V,E) where vertices in

V = {1, . . . , n} represent stations and set of edges E corresponds to transmission

links indicating reachability from one station to another.

The problem of finding an optimal protocol to minimize the maximum time

of broadcasting in radio network is proved to be NP-hard in [12]. In this

study, Chlamtac and Kutten introduce a polynomial time algorithm in which

a greedy heuristic generates a collision-free broadcast spanning tree and assigns

transmission to all nodes. Ephremides and Turong [13] demonstrate the NP-

completeness of throughput optimization problem in multi-hop radio networks

subject to interference-free broadcasting schedules. Polynomial time centralized

and distributed algorithms that produces maximal schedules are developed.

Lloyd and Ramanathan [14] introduce novel algorithms for both link and

broadcast scheduling. For the tree networks, the proposed algorithm yields opti-

mal solutions and for the other networks an upper bound for the schedule length

is produced. That’s why they introduce the notion of network thickness (θ) of

a graph and prove that the performance of the algorithm guarantees of O(θ) in

broadcast scheduling for an arbitrary network. Another algorithm is presented

in [15] which is based on an artificial neural network model. For an n−node
m−timeslot radio network problem, this algorithm requires (n ×m) processing

elements that is verified by excessive simulation runs.

Broadcast scheduling algorithms in radio networks are examined by Huson

and Sen [16]. Demonstrating the limitations of previous graph representations

of network models in these algorithms, they introduce algorithms structured on

planar-point graphs in a network model to represent neglected connections be-

tween network transceivers. Su et. al [17] consider the problem of minimizing

average response time of users in scheduling data broadcasts. They formulate a

deterministic dynamic optimization problem to provide optimal broadcast sched-

ule. Due to low implementation complexity, their policy can be generalized into
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multiple broadcast channels.Hung et. al [18] propose several protocols in multi-

hop wireless networks to reduce latency and avoide collisions. Protocols are de-

signed based on Set-Covering scheme and Independent-Transmission-Set scheme

to achieve desired objectives.

Maximization of revenue in mobile advertising that uses SMS text messaging

is analyzed in [19] by proposing broadcast scheduling system. Given a limited

capacity of broadcast time slots, Reyck and Degraeve optimizes the broadcast

scheduling system introducing an integer programming model. Developed sys-

tem reduces the total time required to schedule ad broadcasts and balances the

preferences of both retailers and customers solved in multiobjective setting.

Salcedo-Sanz et. al [20] combine Hopfield neural network and a genetic algo-

rithm to develop two stage algorithm for NP-hard broadcast scheduling problem.

First stage finds a feasible solution and second stage outputs maximal trans-

mission packing. In this study, the throughput of the system is calculated as∑
tj stj where stj denotes the allowance of station j to transmit in time slot t.

It is noted that more stations transmitting at the same time slot provide bet-

ter channel utilization for the radio system. In contrast, Behzad and Rubin [21]

claim maximization of cardinality of independent sets does not always increase

the throughput of the network by taking into account aggregated effect of inter-

ference which is neglected in Protocol Interference Model. Thus, they provide

probabilistic analysis of previous graph based algorithms under the assumptions

of Protocol Interference Model and show that unacceptable values of SINR at

intended receivers are resulted.

Chen et. al [22] propose a low complexity broadcast scheduling algorithm. This

study introduces the idea of factor graph. The factor graph strategy enables to use

local constraints breaking down the complex task into simple tasks processed in

parallel. Representing the graph as a bipartite graph consisting of variable nodes

and agent nodes, each variable to be solved is associated with a variable node and

each local constraint rule is associated with an agent node. To iteratively optimize

the broadcast schedule, the proposed algorithm exchanges the soft-information

among agent nodes and variable nodes in the factor graph.

12



Lee et. al [23] distinguish the interference from collision and provide a con-

stant approximation algorithm that minimizes the makespan. The algorithm us-

ing both forward & backward transmissions enhances breadth-first-search (BFS)

strategy and guarantees worst case performance O(α2) for an arbitrary inter-

ference factor α ≥ 1. Wang and Henning [24] propose Deterministic Distributed

TDMA Scheduling approach. The aim of this study is to increase energy efficiency

of wireless sensor nodes. In this procedure, each node is able to schedule their

own TDMA slots depending on the neighborhood information so that collisions

are avoided during scheduling. Simulation results indicate better performance of

DD-TDMA in schedule length, running time and message complexity.

Huang et. al [25] investigate the broadcast scheduling problem utilizing 2-Disk

and the signal-to-interference-plus-noise-ratio (SINR) models. They propose a

constant approximation algorithm for both models. The SINR model is explained

to give a more realistic and precise analysis since the accumulative interference

of nodes outside the interference range is not neglected such that many far-away

nodes could still prevent simultaneous transmission due to interference. Menon

and Gupta [26] introduce set covering formulation for the broadcast scheduling in

packet radio network. This formulation is optimally solved by branch and price

algorithm which is based on column generation solution procedure.

Together with regarding conflicts occurring inside the transmission ranges of

the nodes, Mahjourian et. al [27] take into consideration other important sources

of conflict such as collision at receiver, interference at receiver and contention at

sender in parallel transmissions and they develop a conflict-aware network model.

Under this network, a constant approximation algorithm to minimize latency in

broadcast scheduling is presented and proved.

Minimizing the number of packets that miss the deadline is studied in [28]

by Zhan and Xu. Focusing on network coding in broadcast scheduling, they

formulate an integer linear programming using a weighted graph model and prove

that the problem is NP-hard. The idea behind their proposed algorithm for this

problem is to assign vertex weight as a decreasing function of the deadline that

yields maximum weight clique in the graph. This algorithm effectively reduces
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the deadline miss ratio.

Tiwari et. al [29] study interference-aware broadcast scheduling in both 2D and

3D wireless sensor networks. They devise efficient coloring methods and greedy

heuristics for both networks. Yeo et. al [30] develops a sequential vertex coloring

algorithm for time division multiple access (TDMA) frame in ad-hoc networks.

The aim of their study is to find the optimal collision-free time slot schedule that

minimizes the system delay and maximizes the slot utilization.

Cheng and Ye [31] contribute to the literature by investigating multicast ap-

plications in multihop wireless network. Since the traditional link-based conflict

graph model fails to address conflict relation in multicast, they propose a node-

based conflict graph model and build a linear programming model to compute

the schedule minimizing total network delay. Ji et. al [32] deal with Cognitive

Radio Networks (CRNs) studying the Minimum-Latency Broadcast Scheduling

problem. Providing a Mixed Broadcasting Scheduling algorithm, they achieve to

significantly reduce both broadcast latency and broadcast redundancy.

2.2 Machine Scheduling

Each station served by an access point in wireless networks can be considered

as jobs to be processed by single machine. Since we focus on minimum total

tardiness and minimum latest completion time objectives further in this paper,

machine scheduling in operations research literature is worth to explore. Inter-

fering broadcasts can also be regarded as incompatible job families that cannot

be simultaneously processed by the same machine.

There are certain papers discussing minimizing total tardiness objective. Ini-

tial group of studies restrict the problem to the case where jobs being sequenced

are processed by a single machine. Lawler [33] develops a pseudopolynomial al-

gorithm to minimize total tardiness of jobs processed in a single machine. Each

job j has a fixed integer processing time pj, due date dj and a positive weight wj.
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Defining completion time of each job as Cj; the weighted tardiness of each job j

in a given sequence is equal to wjmax(0, Cj−dj). Assumption behind his solution

methodology is that jobs are accepted as agreeable meaning that their processing

time relations pi < pj implies their weighting wi ≥ wj for the tardiness objective.

Satisfying these conditions, a dynamic programming algorithm to find a sequence

minimizing total weighted tardiness is developed with worst-case running time of

O(n4P ) or O(n5pmax) where P =
∑

pj and pmax = max{pj}. This algorithm is

pseudopolynomial because a true polynomial bounded algorithm should be poly-

nomial in
∑

log2pj. The proposed algorithm contributes to the literature with

its running time being bounded by a polynomial function.

Even though Lawler has given a pseudo-polynomial-time algorithm to solve

this problem, the question of whether the problem can be solved in polynomial

time or it is NP-hard in the ordinary sense remained open throughout more than

a decade. Du and Leung [34] achieves to prove that minimizing total tardiness on

single machine is an NP-hard problem in the ordinary sense. They first provides

the NP-completeness of this restricted Even-Odd Partition problem. Then, de-

scribing a reduction from the Restricted Even-Odd Partition problem to the Total

Tardiness problem, they manage to demonstrate that the problem equivalently

represents a restricted version of the NP-complete Even-Odd Partition problem.

Job interference in our problem is introduced to the literature as in the notion

of jobs of different families. Motivated by the restriction for different job families

processed together, Mehta and Uzsoy [35] extends the problem into batch pro-

cessing machine with incompatible job families. The batch processing machine

can process up to specific number of jobs simultaneously as a batch, and only

jobs from the same family can be batched together as a rule. They prove that the

problem of minimizing total tardiness on a single batch processing machine with

incompatible job families is NP-hard in the strong sense if the number of families

and the batch machine capacity are arbitrary. In addition, they show that a

greedy earliest due date algorithm can be utilized to form batches for each job

families and they develop a dominance rule to reduce batch sequencing efforts.

Based on these results; assuming that all jobs of the same family have identi-

cal processing times, they present a dynamic programming algorithm to solve
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minimum total tardiness problem when batch machine capacity and number of

job families are fixed. Similar to our work, they focus on models where jobs in

a batch are processed simultaneously. They also outline two heuristic solution

procedures providing near optimal solutions in a reasonable time.

Rather than implementing minimum total tardiness objective to the model,

some studies tackle job compatibility problem with different objectives. Demange

et al. [36] explores the problem as a version of weighted coloring of a graph

targeting to find schedules with minimum amount of time needed to complete

all jobs. Denoting each job operation as a node v ∈ V of the graph G = (V,E)

having non-negative weights w(v) corresponding to processing times of the jobs,

edges of the graph describes the incompatibility constraint between job pairs. The

assignment of the jobs to the time slots can be achieved so that no incompatible

jobs are included in the same time slot. The number k of time slots required

to be used has to be determined as well. As simultaneous processing is allowed

between compatible jobs, this resembles our first model formulation where our

objective was to find latest completion time. In contrast to our matching principle

between noninterfering jobs, they proceed with coloring as a partition of stable

sets that define time slots. A k-coloring of G = (V,E) is denoted as a partition

S = (S1, ..., Sk) of node set V of G into stable sets Si. Therefore, objective for

the time slot scheduling problem is to find a k-coloring S = (S1, ..., Sk) of G such

that w(S1) + ... + w(Sk) being minimized where w(Si) = max {w(v) : v ∈ V }.
Making latest completion time decision is shown to be NP-complete for bipartite

graphs. It is also noted that if the bipartite graph takes vertex-weights values

from the set {1, t} where t > 1, the problem could be solved in polynomial time.

As minimizing total tardiness in single machine scheduling known to be NP-

hard, Alhawari et al. [37] extends the problem to include non-zero ready times

and preemption (interruption of a job by another job) is not allowed. It is as-

sumed that all jobs arrive to the system at different times which are known in

advance. In addition to providing a mathematical model to find the sequence

of N jobs on a single machine such that the total tardiness is minimized, they

propose a Genetic Algorithm approach. This approach enables them to find op-

timal solution for small problems and near optimal solutions for large problems.
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For the chromosome representation, each gene corresponds to the position of a

job in the sequence. There can be either delay or non-delay scheduling strategy

to be assigned to every job independently so that each gene is represented by a

pair of parameters (X, Y ), where X denotes the job being assigned and Y shows

the scheduling strategy adapted. Fitness function is chosen as the summation of

tardiness values from all jobs. To iteratively improve existing solutions, a ran-

dom seeding of the initial population is employed. Then, fitness function based

reproduction probability is assigned to each chromosome to generate parents for

mating. Crossover operator is achieved with a single cut point. For the muta-

tion operator, job-based and scheduling strategy-based mutations are introduced.

Being directly proportionate to goodness of fitness function values, a probability

of being selected is assigned to individuals for the selection strategy. The algo-

rithm terminates with a specified maximum number of generations as a stopping

criterion.

Minimization of the total tardiness is discussed in the order scheduling setting

by Framinan and Gonzalez [38]. In this setting, customer orders are composed of

some product types that can only be produced by different machines. To deal with

the problem, they propose a constructive heuristic and following matheuristic

strategy. First heuristic assesses the potential contribution of candidate orders

to the total tardiness and estimates the contribution of non-scheduled orders to

the objective. Second heuristic provides very high-quality solutions based on

Job-Position Oscillation procedure. Matheuristic framework is also developed by

Mönch and Roob [39] considering batch machine scheduling where incompatible

job families cannot be batched together and total weighted tardiness objective

is followed. Matheuristic they developed exploits the insight that when batches

are assigned and sequenced in machines, remaining batch formation problem can

be formulated as a transportation problem. Thus, a biased random-key genetic

algorithm is used for the assignment and sequence in a single machine; then

parallel batch processing machines case is explained as second application.
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2.3 Maximal Matching

Concurrent broadcasts possibility among non-interfering stations gives us consid-

eration of matching principle in graph theory. Since the aim of our study is to

utilize simultaneous transmission operation as much as possible, we consider our

objective as to find maximum number of matching corresponding to number of

concurrent broadcasts. There is plenty of literature studying maximum cardinal-

ity matching problem. We restrict the scope to maximum matching problem in

bipartite graphs as we will later represent the input network in a bipartite graph

structure.

Costa [40] makes the 3-partitioning of the edge set E in an undirected bi-

partite graph G = (U, V,E) as defining E1 (1-persistent edges); E0 (0-persistent

edges) and Ew (weakly persistent edges). E1 has edges included in all maximum

matchings, E0 has edges belonging to no maximum matchings and Ew has edges

included in at least one maximum matching but not all of them. The aim of this

partitioning is determining the characteristics of the optimal solutions. Based on

this classification, Costa developes procedures for finding imperfect and perfect

maximum matchings and demonstrates that overall complexity of the procedure

is O(|U ||E|). The proposed methodology is especially advantageous for the cases

where the aim is to find several maximum matchings.

Steiner and Yeomans [41] investigate maximum matchings in convex bipartite

graphs. Given an undirected bipartite graph G = (V1, V2, E) with node partition

sets V1 and V2; and edge set E, they provide an O(n) greedy algorithm with

|V1| = n. The algorithm consists of three stages. Initial two stages efficiently make

preprocessing of the graph. Third stage outputs greedy maximum matching. By

reformulating the matching problem as instance of an off-line minimum problem,

the solution is found in time linear in n.

Coullard et. al [42] are motivated from selective assembly applications in

manufacturing for which they consider several matching problems. Creating two

disjoint sets for each component types of an assembly, each matching in a bipartite
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graph G = (U ∪ V,E) corresponds to an “acceptable” assembly. The objective

of their problem is to maximize the total number of assemblies produced (yield),

which is the maximum cardinality matching in graph representation. In addition

to 1−matching problem, they define d−matching problem in which each final

assembly has one node in type X matched with a given number of d nodes in type

Y . Showing that d− matching is NP-hard problem, linear time greedy algorithm

is proposed. Algorithm gives optimal results for bipartite graphs having cascading

property defined in the study. Optimality proof is made via a min-max theorem.

Different application of matching in bipartite graphs is studied by Wang et.

al [43]. As their motivation, they examine the protein molecules that has 3D

structure defining their functions. To find the correspondences between structural

elements in two proteins, they follow bipartite matching framework. As opposed

to max-clique methods formerly used in protein structure alignment, bipartite

matching optimally solves in polynomial time.
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Chapter 3

Problem Description

In this chapter, we provide the general description for the node selection problem

in UFD transmission of medium access control (MAC) protocol design approach.

Main objective of node selection process is to implement full duplex technology

in wireless networks in an efficient way. The problem setting in wireless network

with a sample is first explained and interference illustration in the network is

represented. After the problem definition is provided, required mathematical

definitions and expressions used to define parameters in our formulations are

introduced. Finally, our approach to the problem is summarized.

3.1 Problem Setting

In this section, we demonstrate a simple communication mode used in wireless

local area networks. An example is provided in Figure 3.1 illustrating the repre-

sentation of the wireless communication network. In the scope of our problem, we

specifically deal with 802.11 networks in WLANs, but the following illustration

is also valid for our case.
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Figure 3.1: Wireless communication network with UFD transmission

As shown in Figure 3.1, there is single access point (AP) and finite number

of stations {s1, s2, . . . s12} in the network. Access point has the function of

connecting devices to a local area network. It can be interpreted as acting as

a portal for these devices to achieve the internet connection. One of the most

common objective to use access point is to extend the wireless coverage of the

communication network in attempt to increase the number of users that can be

connected to it. For the example in Figure 3.1, the coverage area of the access

point is represented with dashed circle circumscribing around the stations.

Through the wireless connectivity, access point manages to establish trans-

mission links with end-devices using Wi-Fi. For our problem described within

wireless local area networks, end-devices can be assumed as computers in the

communication network. In the terminology for IEEE 802.11 standards for local

area networks, the computer devices are denoted as stations (STA for the abbre-

viation) having the capability to use the 802.11 protocol. We can also refer to

each station as transmitter or receiver depending on its transmission characteris-

tics defined on the network. For instance, nodes corresponding to station 1 (s1)

and station 6 (s6) are receivers whereas station 3 (s3) and station 12 (s12) are
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transmitters for the example in Figure 3.1.

Since our solution approach is developed for the node selection process of the

access point, we only consider UFD transmission. This is because in bidirectional

transmission (BFD), transmission in two directions occurs between access point

and only one station. In UFD mode, property of simultaneous transmit and

receive (STR) mode for the next generation WLANs is applied when an access

point (AP) supplies from a transmitter and sends demand to another receiver at

the same time. Even though only one direction transmissions are completed in

UFD, more than one station can be assigned to access point. A simple illustration

for UFD transmission can be observed in Figure 3.1 where station 1 (s1) and

station 3 (s3) are simultaneously served by access point. Similarly, station 6 (s6)

and station 12 (s12) achieve UFD transmission through full duplex.

UFD transmission in Figure 3.1 could be carried out only if {s1} does not

interfere with {s3}; similarly non-interference condition is required between nodes

{s6} and {s12}. Since some stations can be within the interference range of each

other, simultaneous transmission and receive mode could not be achieved for

certain nodes in the network.

An example for the interference in UFD transmission is depicted in Figure 3.2.

Station i behaves as transmitter when station j is receiver in that case. During

simultaneous transmission and receive mode; when station i transmits signal to

the access point, station j cannot receive signal from the access point due to the

interference within two stations. In that case, either station i or station j could

be served in a given time slot. Red arrow in Figure 3.2 represents the interference

occurence from station i to station j that hinders UFD transmission. The blue

and red circles in Figure 3.2 circumscribing the station nodes refer to the signal

coverage area of station i and j respectively. Interference problem is caused by

the intersection of these areas. Even though access point has the power to cover

both stations, it is not capable to take advantage of full duplex technology for

this pair of stations.
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Figure 3.2: Interference problem during UFD transmission

3.2 Preliminaries

Let V = {0, 1, . . . , N} denote the set of nodes corresponding to the access point

and stations in the communication network. We assume that node 0 represents

the access point (AP) and the remaining nodes are stations to be served. The

cartesian coordinate of each station i ∈ V is given as (ai, bi) and access point is

located at (0, 0). We also denote d(i, j) as the Euclidean distance between node

i and node j for all i, j ∈ V .

As we illustrate in Figure 3.2, stations have coverage area. In this thesis, we

define the coverage area in terms of their signal power. We indicate signal power

of node j representing the transmission ability as pjsig for all j ∈ V \ {0}. To

denote the coverage of stations, we assume that signal power is proportional to
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the following ratio:

pjsig ∼ 1

d(0, j)δ
=

1(√
(aj − 0)2 + (bj − 0)2

)δ

=
1(√

a2j + b2j

)δ

where δ denotes the path loss exponent which is non-negative and fixed parameter.

Path loss symbolizes the reduction in power density of an electromagnetic wave

in general. In wireless communication; path loss exponent, the distance between

the transmitter and the receiver, and constant value for system losses combined

create total path loss that decreases the signal power. For the simplicity, we

disregard the constant value for the system losses where we only incorporate the

exponent and the distance values. As it can be observed, when d(0, j) which is

the distance between access point and node j increases, the signal power of node

j decreases. In addition, path loss exponent δ is also inversely proportional to

the signal power.

Since the receiver and transmitter nodes simultaneously served by the AP in

the UFD transmission must be out of the interference range, we need to define

the interference power. Let the interference power at node j while AP receives

signal from node i be denoted as pijint for all i ∈ V \ {0} and j ∈ V \ {0} where
i ̸= j. As our assumption, we establish the following relationship to define the

quantity of interference power:

pijint ∼ 1

d(i, j)β
=

1(√
(ai − aj)2 + (bi − bj)2

)β

where β denotes the interference path loss exponent which is non-negative and

fixed parameter. Clearly, interference power decreases as distance between node

i and node j increases. In the communication wireless network, AP should know

which node(s) can be eligible to receive signal while node i transmits its signal

to AP. This decision of AP depends on whether interference range is violated or
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not. The criteria for the eligibility is measured by signal to interference ratio.

Let SIRij denote the signal to interference ratio for the transmitter node i and

receiver node j for all i ∈ V \ {0} and j ∈ V \ {0} where i ̸= j. Then,

SIRij =
pjsig

pijint
=

1
d(0,j)δ

1
d(i,j)β

=
d(i, j)β

d(0, j)δ

=

1(√
a2j+b2j

)δ

1(√
(ai−aj)2+(bi−bj)2

)β

=

(√
(ai − aj)2 + (bi − bj)2

)β

(√
(a2j + b2j)

)δ

There exists a predefined threshold value Ω which denotes the interference

range limit. This value is fixed for all SIR values of each (i, j) ∈ (V \ {0}) ×
(V \ {0}) pair. If the SIR value exceeds the threshold value Ω for receiver i and

transmitter j, it indicates that simultaneous receive and transmit mode can be

applied successfully. Otherwise the stations are within the interference range of

each other and no simultaneous operation is possible.

Table 3.1: Signal to interference ratio requirement for STR Mode

Cases Interference STR Mode Node Eligibility

SIRij < Ω Yes Not Applicable i or j
SIRij ≥ Ω No Applicable i and j

The summary of interference effect to the system is described in Table 3.1.

Based on the criteria above, access point can be interpreted as the decision maker.

Since both nodes are eligible to proceed when there is no interference between

station pairs, access point might choose to process them simultaneously.

25



3.3 Our Approach

In this study, we consider formulating our problem based on the objective we

want to improve. First, we would like to determine the minimum time required

to complete all transmissions of the stations given the interference relations and

total signal production of the wireless network. Then, as our second objective, we

intend to find the minimum total lateness of the stations given that each station

has due dates to complete all transmissions. In that scope, we assume that each

transmission occupies 1 timeslot. Since each station can be either transmitter and

receiver in the network, we need to complete the transmission assignments in both

directions. The assumptions and extensions differ depending on our objectives.

Thus, detailed explanations of the formulations will be explained in Chapter 4

and Chapter 5.

APs1 s2
supply demand

Figure 3.3: Supply and demand definition in the network

Throughout the paper, we express the transmission from the station to an

access point as supply operation; and transmission from the access point to the

station as demand operation to be completed as in Figure 3.3. The main mo-

tivation behind this is to evaluate the general problem from an IE perspective.

As our interpretation, we contemplate the problem so as to satisfy these supply

and demand requirements of the stations. Depending on the objective and ad-

ditional parameters, we follow scheduling or matching based formulations in our

approach.
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Figure 3.4: Sample locations of stations in Euclidean space

Randomly assigning the locations of the stations on the plane as in Figure 3.4,

we calculate SIR values of the stations. Comparing these values, we constitute

“interference matrix” that denote the STR mode applicability for each station

pairs. When we incorporate the simultaneous supply and demand transmissions

into the formulations, we consider single, twice and multiple concurrency exten-

sions in several sections of this paper. Concurrency corresponds to the allowance

for the number of signals to be transmitted simultaneously. According the con-

currency limit we define in the formulations, we update our interference matrix

to extend the concurrency relations among stations.
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Chapter 4

Minimizing Latest Completion

Time

In this chapter, we study our problem based on the objective of finding mini-

mum latest completion time. At the beginning of each section in this chapter,

we introduce concurrency options we have defined for the signal transmissions.

Then the methodologies developed for each concurrency alternative used in the

formulations and algorithms are explained.

4.1 Single Concurrency

APs1

s2

1

1

Figure 4.1: Single Concurrency Representation
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In this section, single concurrency principle is embraced throughout the following

formulations defined. When there is not any interference occurrence provided be-

tween stations, stations can broadcast their signals simultaneously: as processed

from the access point to a station, and from another station to the access point.

Under single concurrency assumption, UFD transmission in full duplex technol-

ogy is achieved as illustrated in Figure 4.1. Since there is no interference, both

transmissions are simultaneously processed without any collision. Since there is

single concurrency, they can broadcast at most 1 signal at a time. Hence, the

single supply and demand values are satisfied for each station. For instance, {s1}
station meets 1 demand value and {s2} station meets 1 supply value in Figure

4.1 due to single concurrency assumption.

4.1.1 Scheduling Based Formulation

We first consider our problem as a timeslot scheduling problem. In this for-

mulation, the problem can be considered as single machine scheduling problem.

Capacity of machine could be assumed to be equal to 2 because of single con-

currency assumption. In terms of machine scheduling perspective, jobs of the

machine (access point) correspond to supply from a station (transmitter) to an

access point and demand from access point to another station (receiver).

We assume that each job operation has the same processing time and we call

this duration as “timeslot”. We aim to minimize the maximum completion time

of all jobs. Hence, the latest timeslot used for a job operation will yield the

optimal objective value of our model. Assignment of a job to a timeslot can be

made by one of the followings:

i. There can be only one supply of a station assigned to the timeslot.

ii. There can be only one demand of a station assigned to the timeslot.

iii. There can be one supply of a station and one demand of another station in

the same timeslot as long as they are out of interference ranges of each other.
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Sets

I = {1,...,S} set of stations
T = {1,...,M} set of timeslots

Parameters

mi : number of timeslots required for supply of station (i), i ∈ I

ni : number of timeslots required for demand of station (i), i ∈ I

aij =

1, if station (i) does not interfere with station (j), i, j ∈ I

0, otherwise

Each station behaves both as a transmitter and a receiver when they can send

supply to the access point and can get demand from the access point. Therefore,

we define parameter values for number of supplies and for number of demands

for each station as above. Since each demand and supply operation has equal

processing time as one timeslot duration, the numerical values are given in terms

of total number of timeslots.

Figure 4.2: Example for the distribution of seven stations in the network
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Interference ranges of each station are determined as parameters. First, sta-

tions are randomly assigned to the location. Then, for a given path loss expo-

nents δ,β and threshold value Ω; SIR values are calculated based on Euclidean

distances to access point and distances among each other as explained in Chapter

3. As an example, let us consider the positions of the following seven stations

in Figure 4.2. Given that δ = 2.5, β = 3 and Ω = 30 for this example, station

interference relations are established.

For the simplicity, we convert these relations to a binary parameter to indicate

that the simultaneous scheduling is possible or not. If aij = 0, it is not possible

to simultaneously schedule supply and demand of different stations. If aij =

1, stations are eligible for simultaneous transmission with 1 signal at a time.

Interference matrix A for the example in Figure 4.2 is provided below.

A = [aij]7×7 =



0 1 1 0 1 0 1

0 0 1 0 1 0 1

0 1 0 1 0 1 0

0 0 1 0 1 0 1

1 1 0 1 0 1 0

0 0 1 0 1 0 1

1 1 0 1 0 1 0


Decision Variables

xit =

1, if station (i) supplies at timeslot (t), i ∈ I, t ∈ T

0, otherwise

yit =

1, if station (i) demands at timeslot (t), i ∈ I, t ∈ T

0, otherwise

z = auxiliary variable denoting the latest timeslot to be used
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Mathematical Model

min z (4.1)

s.t. z ≥ xitt ∀i ∈ I, t ∈ T (4.2)

z ≥ yitt ∀i ∈ I, t ∈ T (4.3)

1 + aij ≥ xit + yjt ∀i ̸= j ∈ I, t ∈ T (4.4)∑
i∈I

xit ≤ 1 ∀t ∈ T (4.5)∑
i∈I

yit ≤ 1 ∀t ∈ T (4.6)

xit + yit ≤ 1 ∀i ∈ I, t ∈ T (4.7)∑
t∈T

xit = mi ∀i ∈ I (4.8)∑
t∈T

yit = ni ∀i ∈ I (4.9)

xit ∈ {0, 1} ∀i ∈ I, t ∈ T (4.10)

yit ∈ {0, 1} ∀i ∈ I, t ∈ T (4.11)

The objective function (4.1) denotes the latest timeslot to be used and it is mini-

mized. Constraints (4.2) ensure that latest timeslot cannot be reached before last

supply operation is finished. Similarly, constraints (4.3) imply that latest timeslot

can be achieved after last demand operation is finished. Constraints (4.4) indi-

cate simultaneous scheduling of supply and demand of different stations cannot

be possible if they interfere with each other. It is required to have constraints

(4.5) to make sure that no more than one station supply can be assigned to the

same timeslot. Constraints (4.6) prevent multiple station demands to appear in

the same timeslot. Constraint (4.7) is needed so that no station can have its

supply and demand to be assigned to the same timeslot. All supply requirements

of stations can be met through constraints (4.8); and all demand requirements of

stations can be met through constraints (4.9). Constraints (4.10) and constraints

(4.11) are domain constraints for the decision variables of the model.
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4.1.2 Greedy Heuristics For Scheduling Model

Even though mathematical model provides optimal solutions and achieves to find

minimum latest timeslot, when the number of stations are increased, the solu-

tion is not generated in a reasonable time. Time complexity of the mathematical

model used in the scheduling based formulation is considerably high mostly be-

cause of the 3 different indices in constraints (4.4). In order to reduce the total

time to solve the problem, we developed a greedy heuristics. The algorithm de-

fined in this section contributes to the final solution by providing initial number

of timeslots to be used in the model as a parameter.

Maximum number of timeslots which is M used in model is simply calculated

by adding all of the supply and demand values. However, we realized that this

does not take into account any simultaneous processing even if it is possible.

In other words, as scheduling based formulation uses M as an upper bound on

number of timeslots; it considers the worst case scenario where each station is in

the interference range of each other. The idea behind this heuristics is that by

paying attention to the interference matrix A, how we can attain an upper bound

T for minimum number of total timeslots such that T ≤M .

The steps of the algorithm can be briefly explained as follows. We are given

supply and demand requirements for each station as the amount of timeslots

needed. Starting from the first station without any sorting, algorithm compares

the first station’s supply value with demand value of other stations in a given

order. Restricting to only searching ones where interference does not occur, if

the supply value of first station bigger than demand value of another station;

algorithm matches these stations and take the bigger value as the total timeslot

to cover their supply and demand. For instance, if first station has 6 supplies

and second station has 4 demands and they are out of their interference ranges;

first 4 slots are used to cover 4 supply and 4 demand values where in each times-

lot 1 supply and 1 demand operation is assigned. Updating the bigger supply

value by abstracting the smaller demand value, searching is continued if there is
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enough timeslot left in bigger supply value of a station to include another sta-

tion’s demand value. In that example if another non-interfering station’s demand

is smaller than or equal to 2, then they are processed simultaneously with re-

maining supply values of first station. During searching, the finished values are

updated as 0 in order not to increase timeslot number unnecessarily. Similarly,

if demand value of a station is bigger than supply value of another one, the al-

gorithm chooses demand values as coverage and checks smaller supply values of

other stations to include in the same timeslots as long as interference does not

occur. The algorithm terminates when all the supply and demand values of each

station’s searching is completed. At the end, unmatched supply and demand

timeslots are summed and added to the matched supply and demand timeslots

found in the algorithm.

We introduce certain new notations representing the corresponding additional

variables used in the algorithm. Descriptions of these variables can be found in

Table 4.1.

Table 4.1: Variables used in scheduling algorithm

Notation Variable Definition Type

T Total number of timeslots at the end of the algorithm Integer

L List of timeslots used only for simultaneous jobs Integer

S Limiting variable to prevent overscheduling Integer

C Boolean variable to indicate simultaneous scheduling Binary

Pseudocode of the algorithm is provided below:
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Algorithm 1 Greedy Heuristics For timeslot Entry
1: Initialize: L← [ ]

2: Set: T ← 0

3: for each i ∈ I do

4: S ← 0 ▷ Each station begins with no timeslot used

5: C ← 0 ▷ Each station initially has no pair schedule assigned

6: if mi ≥ ni then

7: for each j ∈ I do

8: if aij ̸= 0 & i ̸= j & mi ≥ S + nj then

9: S ← S + nj ▷ Add smaller demand value to be scheduled with larger supply

10: nj ← 0 ▷ Remove the scheduled smaller demand value as completed

11: C ← C + 1 ▷ Verify the pair as scheduled together

12: end if

13: end for

14: if C ̸= 0 then

15: L← L ∪mi ▷ Assign timeslot amount of larger supply value for matched pair

16: mi ← 0 ▷ Remove the scheduled larger supply value as completed

17: end if

18: else

19: for j ∈ I do

20: if aij ̸= 0 & i ̸= j & ni ≥ S +mj then

21: S ← S +mj ▷ Add smaller supply to be scheduled with larger demand

22: mj ← 0 ▷ Remove the scheduled smaller supply value as completed

23: C ← C + 1 ▷ Verify the pair as scheduled together

24: end if

25: end for

26: if C ̸= 0 then

27: L← L ∪ ni ▷ Assign timeslot amount of larger demand value for matched pair

28: ni ← 0 ▷ Remove the scheduled larger demand value as completed

29: end if

30: end if

31: end for

32: T ←
∑

i∈I Li +
∑

i∈I(mi + ni) ▷ Calculate total timeslots to complete all operations
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4.1.3 Matching Based Formulation

Considering the objective of our problem as minimizing the latest timeslot, we

provide another formulation in this section. Unlike the assignment of stations to

timeslots approach in the previous formulation, this formulation is not based on

a single machine scheduling problem with machine capacity 2. In this formula-

tion, we use the mathematical discipline of graph theory in attempt to solve the

problem in a more time-efficient way. Our motivation for the new formulation is

to decrease number of constraints in the previous model.

For each station of the network, there is given number of supply and demand

values as explained previously. Since each timeslot is used for operating single

supply or single demand or single supply and single demand together when there

is no interference; supply and demand copies of each station are formed and rep-

resented as nodes in a graph. Before constructing the general network of the

formulation, smaller graph representation between two stations is demonstrated

below:

STi

s1

s2

smi

d1

d2

dnj

STj

Figure 4.3: Representation of supply and demand nodes between two stations

In Figure 4.3, node STi represents station i and nodes s1, s2, . . . , smi
correspond

to the supply nodes of ith station. There is also another station j given as STj.

Demands of station j are indicated with nodes d1, d2, . . . , dnj
. Notice that there
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are certain edges between supply and demand nodes on the Figure 4.3. Those

edges represent the decision of simultaneous scheduling operation of one supply

of a station and one demand of another station when there is no interference

between corresponding stations. In that case, each edge corresponds to 1 timeslot.

Therefore, set of all the edges formed in this graph is a matching because they

represent the edges that share no common vertices in an undirected graph.

According to our problem definition, it is stated that no more than one supply

or no more than one demand can be assigned in the same timeslot. Therefore,

there cannot be any edge in between supplies themselves and in between demands

themselves. This leads us to evaluate the network structure as a bipartite graph

as we can divide the nodes into two disjoint and independent sets S (supply set)

and D (demand set).

In order to know the interference relation between each nodes, we need to

define a new matrix in addition to station interference matrix. For instance, let

us assume that we have 4 stations and the interference matrix A is the following.

A = [aij]4×4 =


0 1 0 1

1 0 0 1

1 1 0 0

0 0 1 0



We are also given that supply values of stations are [3, 1, 2, 1] and demand

values are [4, 1, 2, 2] respectively. To form a node to node interference matrix,

we can represent each supply node as a row and each demand node as a column.
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Preserving the order of the stations, we can expand the matrix A above as follows:

B = [bkl]7x9 =



0 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 1

1 1 1 1 0 0 0 1 1

1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0



Drawing from previous implications regarding the structure of the problem, we

can convert our problem into similar form of maximum bipartite matching prob-

lem. Maximum number of matchings will be the total number of timeslots that

are used with simultaneous supply and demand operations. However, there can

be unmatched nodes in the graph since some stations can be in the interference

range of all other stations thereby not being eligible for simultaneous operation.

By this reason, each unmatched nodes will correspond to 1 timeslot and will be

added to the number of matched edges to find the latest timeslot to complete all

the operations.

Sets

S = {1, ...,
∑

i∈I mi} set of supply nodes

D = {1, ...,
∑

i∈I ni} set of demand nodes

Parameters

bkl =

1, if supply node (k) does not interfere with demand node (l),

0, otherwise ∀k ∈ S, l ∈ D

Decision Variables

xkl =

1, supply node (k) is connected to demand node (l),

0, otherwise ∀k ∈ S, l ∈ D
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Mathematical Model

min
∑
k∈S

∑
l∈D
bkl=1

xkl +
∑
k∈S

(1−
∑
l∈D
bkl=1

xkl) +
∑
l∈D

(1−
∑
k∈S
bkl=1

xkl) (4.12)

s.t.
∑
l∈D
bkl=1

xkl ≤ 1 ∀k ∈ S (4.13)

∑
k∈S
bkl=1

xkl ≤ 1 ∀l ∈ D (4.14)

xkl ≥ 0 ∀k ∈ S, l ∈ D (4.15)

Objective function (4.12) minimizes total number of unmatched nodes and total

number of matched edges; equivalently minimizes latest timeslot used. Con-

straints (4.13) ensure that any supply node in the supply set cannot be matched

to more than one demand node in the demand set even if they do not interfere

with each other. Constraints (4.14) guarantee the same relation for the demand

nodes so that a demand node can be connected to at most one supply node.

Constraints (4.15) denote the domain constraints for the decision variables. Note

that there is no point in using the integrality constraint since the totally unimod-

ular structure of the constraint matrix ensures that linear programming model

provide integral optimal solution.
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4.1.4 Hopcroft-Karp Algorithm

Embracing the matching principle to calculate the total number of timeslots re-

quired, linear programming model we formulated is carried on with polynomial

time algorithm. Hopcroft-Karp algorithm [44] is utilized in this paper in attempt

to calculate the total number of matched supply and demand in terms of number

of timeslots.

Figure 4.4: Bipartite graph Figure 4.5: Bipartite matching

Hopcroft-Karp algorithm takes input of a bipartite graph. An example of a

bipartite graph can be observed in Figure 4.4. Note that red and green nodes are

assigned in two disjoint sets so that there is no edge connecting the members of the

same set in the figure. The steps of the algorithm proceed with the objective of

forming matchings between two sets. A matching in a bipartite graph corresponds

to a set of pairwise non-adjacent edges. In Figure 4.5, red lines represent the

matched edges in the graph and their union is called as matching.
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Figure 4.6: Maximum bipartite matching

As an output, the algorithm produces a set that includes as many edges as

possible by following the rule that no two edges can share an endpoint, i.e., max-

imal matching. Figure 4.6 demonstrates the maximal matching for the bipartite

graph shown in Figure 4.4. It is very similar to our problem because it is also our

motivation to achieve as much as matching between supply and demand possi-

ble so that total timeslot number is minimized. Hopcroft-Karp algorithm yields

maximum cardinality matching and is known to diminish the time complexity

of maximum cardinality matching problem very efficiently. Denoting the set of

edges in the bipartite graph as E and set of vertices as V , the algorithm runs

in O
(
|E|

√
|V |

)
time as a worst-case performance. It is an improvement on Ford

Fulkerson algorithm [45] whose time complexity is O
(
|E||V |

)
which is also used

to solve the maximum cardinality matching problem.

The algorithm has certain phases to be followed but it is better to begin with

explaining some of the terminology used in the steps of the algorithm. Names and

descriptions used in Hopcroft-Karp Algorithm can be found in Table 4.2 below:
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Table 4.2: Terminology of Hopcroft-Karp algorithm

Term Description

Free Vertex A vertex which is not one of the end-

points of some part of a given matching

M

Alternating Path A path of a given matching M

whose edges belong alternatively to

the matching and not matching; single

edges paths are also alternating paths

Augmenting Path Any alternating path of a given match-

ing M that begins with a free vertex

and ends with another free vertex

Given a bipartite graph G, let A and B be the two disjoint sets of this graph

over the network G = (A ∪ B,E). Any matching between two sets can be

represented with M . The algorithm is based on the following two fundamental

principle:

• Matching M is not accepted as maximum matching if and only if there

exists a candidate augmenting path.

• The algorithm looks for a candidate augmenting path and add the paths

found to the current matching.

Outline of the algorithm is described below:
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Algorithm 2 Hopcroft-Karp Algorithm

Input: Bipartite graph G = (A ∪B,E)

1: M ← ∅
2: repeat

3: Using breadth-first search, build alternating graph rooted at unmatched

vertices in A

4: Using depth-first search, augment matching M with maximal set of

vertex disjoint shortest-length paths

5: until There are no augmenting paths

Output: Matching M ⊆ E

In the initial stage, a breadth-first search is followed to partition vertices into

layers. To form the first layer of the partitioning, starting vertices are chosen as

the free vertices in set A. For the first search, only unmatched edges going from

these vertices to set B are formed due to definition of the free vertices. Then

in the second layer, from the vertices in set B, the matched edges to set A are

traversed. To alternate between matched and unmatched edges, next layer is

formed by searching successors from vertices in A so that only unmatched edges

into set B can be traversed. Then from set B to A only matched edges can be

traversed. Searching terminates when one or more free vertices are reached. With

these steps, an alternating graph rooted at unmatched vertices in A is built.

In the second stage, the procedure continues by utilizing the tree formed by

breadth-first search at the previous stage. In this tree, starting from the ending

free vertices in set A appeared in the last layer of the tree, augmenting paths are

created by moving down the tree until reaching an unmatched vertices in set A

appeared at the root of the tree. Depth-first search is used to form augmenting

paths that must alternate between matched and unmatched edges. The crucial

part of this step is that the augmenting paths should be disjoint, i.e., no common

vertex can appear in more than one augmenting path. This stage is finished when

there is no more unmatched vertices unused in the tree.

Every path found in the second stage is used to augment the current matching.
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As adding these paths to the matching M ; the edges of a path that are currently

in the matching are removed from matching M and the currently unmatched

edges of a path are added to the matching M . This procedure is applied to all

the paths found in the second stage and new matching M ′ is built by enlarging

the matching M . Notice that it is ensured that size of M at least increases by

1 at each iteration because any augmenting path added starts and ends with

a free vertex whose adjacent unmatched edges are converted to matched edges

by aforementioned steps. The algorithm is terminated when there is no more

possible augmenting paths found in the breadth first search. In other words, at

final matching, there are no augmenting paths so the maximal matching is found.

4.2 Twice Concurrency

In this section, we consider increasing the capability of STR mode in full duplex

technology. As an extension to the assumption made in Section 4.1, we develop

twice concurrency principle in the formulations defined in this section. Our mo-

tivation for this extension is to obtain better minimum latest completion time

through higher utilization of simultaneous transmissions.

APs1

s2

2

2

Figure 4.7: Twice concurrency representation

Demonstrating {s1} and {s2} nodes as the stations, the flow numbers on the

dashed edges in Figure 4.7 correspond to the maximum number of signals that

can be transmitted in a single timeslot. Thus, we can consider the transmission

capacity of each station as 2. If the stations are twice concurrent between each

other, a timeslot can be used to complete 4 signal transmissions in this case.
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Note that the single concurrency assumption depicted in Figure 4.1 can still be

followed in practice because any twice concurrent station is also single concurrent

by definition.

For the mathematical formulations we develop assuming twice concurrency ex-

tension, we follow matching principle between supply and demand nodes instead

of timeslot - station assignments used in scheduling based formulation. During a

timeslot, if stations can carry out twice concurrency, the completed signal trans-

missions can be interpreted from matching principle as follows:

ST1

s1

s2

d1

d2

ST2

Figure 4.8: Matching supply and demand nodes of twice concurrent stations

Twice concurrent stations are represented in Figure 4.8 above. Even though

stations ST 1 and ST 2 have two copy supply and demand nodes in Figure 4.8,

stations can have higher or less supply and requirements. In that example,

{s1}, {s2}, {d1}, {d2} nodes are processed simultaneously. Matching between {s1}
& {d1}; and another matching between {s2} & {d2} are performed. It implies

that 4 transmissions are finished in the same timeslot.

Station eligibility for twice concurrency is determined by randomly generated

interference matrix as a parameter. In addition to the interference matrix de-

scribed in single concurrency, the entries of the interference matrix are newly

defined as {0, 1, 2}. When the entry of the matrix is 2, both stations can trans-

mit 2 signals at the same timeslot. Including twice concurrency assumption, an

instance for the station interference matrix of 7 stations is given below.
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A = [aij]7×7 =



0 1 0 1 2 0 2

2 0 0 2 2 0 2

2 1 0 2 2 0 1

0 1 0 0 2 0 1

0 2 1 1 0 0 1

2 2 0 1 0 0 0

2 2 1 1 1 2 0


However, since we follow matching principle in the following formulations de-

veloped in this section, we extend matrix A into a larger matrix B on which

we indicate interference relations between each supply and demand nodes of

the stations. For the example matrix A above, supply values of stations are

[2, 3, 2, 1, 3, 2, 3] and demand values of stations are [4, 1, 1, 1, 1, 4, 1] respectively.

Creating rows for each supply nodes and columns for each demand nodes, the

supply-demand interference matrix B is provided below.

B = [bkl]16×13 =



0 0 0 0 1 0 1 2 0 0 0 0 2

0 0 0 0 1 0 1 2 0 0 0 0 2

2 2 2 2 0 0 2 2 0 0 0 0 2

2 2 2 2 0 0 2 2 0 0 0 0 2

2 2 2 2 0 0 2 2 0 0 0 0 2

2 2 2 2 1 0 2 2 0 0 0 0 1

2 2 2 2 1 0 2 2 0 0 0 0 1

0 0 0 0 1 0 0 2 0 0 0 0 1

0 0 0 0 2 1 1 0 0 0 0 0 1

0 0 0 0 2 1 1 0 0 0 0 0 1

0 0 0 0 2 1 1 0 0 0 0 0 1

2 2 2 2 2 0 1 0 0 0 0 0 0

2 2 2 2 2 0 1 0 0 0 0 0 0

2 2 2 2 2 1 1 1 2 2 2 2 0

2 2 2 2 2 1 1 1 2 2 2 2 0

2 2 2 2 2 1 1 1 2 2 2 2 0
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4.2.1 Two-Indexed Formulation

Sets

I = {1, . . . , n} set of stations
S = {1, . . . ,

∑
i∈I mi} set of supply nodes

D = {1, . . . ,
∑

i∈I ni} set of demand nodes

Definitions

s(k) : station identification for supply k ∈ S where s(k) ∈ I

d(l) : station identification for demand l ∈ D where d(l) ∈ I

i(k) : index number of supply k ∈ S within its station where i(k) ∈ {1, . . . ,ms(k)}
j(l) : index number of demand l ∈ D within its station where j(l) ∈ {1, . . . , nd(l)}

Additional Sets

S ′ = {k ∈ S | i(k) < ms(k)} set of supplies excluding last supplies of stations

D′ = {l ∈ D | j(l) < nd(l)} set of demands excluding last demands of stations

Decision Variables

xkl =

1, if (kth) supply node is concurrent with (lth) demand node

0, otherwise k ∈ S, l ∈ D : bkl ̸= 0

ykl =



1, if (kth) and (k + 1)st supplies are concurrent with (lth) and

(l + 1)st demands

0, otherwise k ∈ S, l ∈ D : bkl = b(k+1)(l+1) = 2,

s(k) = s(k + 1), d(l) = d(l + 1)
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Mathematical Model

min
∑
k∈S

∑
l∈D

xkl +
∑
k∈S′

∑
l∈D′

ykl +
∑
k∈S

(
1−

∑
l∈D

xkl

)
+
∑
l∈D

(
1−

∑
k∈S

xkl

)
− 2

∑
k∈S′

∑
l∈D′

ykl − 2
∑
l∈D′

∑
k∈S′

ykl (4.16)

s.t.
∑
l∈D

(xkl + ykl) ≤ 1 k ∈ S (4.17)∑
k∈S

(xkl + ykl) ≤ 1 l ∈ D (4.18)∑
l∈D

(x(k+1)l) +
∑
l∈D′

(ykl + y(k+1)l) ≤ 1 k ∈ S ′ (4.19)∑
k∈S

(xk(l+1)) +
∑
k∈S′

(ykl + yk(l+1)) ≤ 1 l ∈ D′ (4.20)

xkl, ykl ∈ {0, 1} k ∈ S, l ∈ D (4.21)

In the objective function (4.16), total number of timeslots used is minimized.

Constraints (4.17) enable supply nodes to be either single or twice concurrent with

no more than one demand node. Constraints (4.18) allow demand nodes as being

concurrent with at most one supply node and hinder them to be single and twice

concurrent at the same time. Constraints (4.19) guarantee that if supply node k is

twice concurrent, then its consecutive node (k+1) is also twice concurrent in the

same timeslot and supply node (k + 1) cannot be single concurrent. Constraints

(4.20) imply that if demand node l is twice concurrent, then its consecutive node

(l+1) is also twice concurrent in the same timeslot and demand node (l+1) cannot

be single concurrent. (4.21) denote domain constraints for decision variables.
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4.3 Multiple Concurrency

In this section, we study the minimization of latest completion time under mul-

tiple concurrency assumption. Multiple concurrency can be regarded as the gen-

eralized version of twice concurrency assumption previously explained in Section

4.2. In addition to single concurrency and twice concurrency, stations are also

allowed to transmit more than 2 signals in a given timeslot when multiple con-

currency is followed.

Whereas there could be at most 1-1 matching in single concurrency and 2-2

matching in twice concurrency between station pairs as long as there is no interfer-

ence, multiple concurrency assumption enables more utilization of simultaneous

transmissions. This option can provide an opportunity for n − n matching of

station supply and demands where n ∈ N .

Unlike the previous assumptions studied, we also include unequal signal trans-

missions in terms of different quantity of flow amounts between matching pairs.

This can be viewed as a relaxation of the previous assumption. In the case of

multiple concurrency, there can be different possibilities for the utilization of

simultaneous transmission and receive mode. The summary of multiple concur-

rency possibilities are provided below in Table 4.3.

Table 4.3: STR Mode implementation for multiple concurrency Assumption

# of Transmissions

Interference Coefficient
Station 1

(Supply)

Station 2

(Demand)
Max Matching

0
{0}
{1}

{1}
{0}

N/A

1 {0,1} {0,1} 1-1 Matching

2 {0,1,2} {0,1,2} 2-2 Matching

n ∈ N {0,1,. . . ,n} {0,1,. . . ,n} n-n Matching
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As it can be seen in Table 4.3, interference coefficient can take any integer value.

When the interference coefficient is 0, it implies that stations cannot transmit

and receive in the same timeslot due to interference. In that case, no matching

is possible and each signal should be transmitted in different timeslots. “# of

transmissions” column corresponds to the signal amount that can be processed

in a single timeslot. Among the interfering stations, only one of them can achieve

{1} signal transmission when interference coefficient is 0.

As long as the interference coefficient is different than 0, it indicates that

matching between supply and demand is possible. 1-1 Matching and 2-2 Match-

ing cases are the maximum matching possibilities when the coefficient is 1 and 2

respectively. 1-1 Matching and 2-2 Matching follow same principle explained in

previous sections. However, for instance, the transmission can also take values

from the set {0,1,2} when the interference coefficient is 2. That means that {2}
supply transmissions can be simultaneously processed with {0} demand trans-

mission. On the other hand, we restrict STR mode to involve at least {1} supply
and {1} demand transmission within the same timeslot in previous sections.

ST1

s1

s2

s3

s4

ST3 s5

ST2

d1

d2

d3

ST4

d4

d5

d6

Figure 4.9: Multiple concurrency illustration
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Implementing STR mode under multiple concurrency assumption brings more

advantages compared to single and twice concurrency. For instance, if there are

remaining n supply nodes that cannot be matched with demand nodes, when

interference coefficient is nonzero, n supplies can be assigned to single timeslot.

This would decrease the latest completion time due to more utilization of STR

mode.

To exemplify, an instance of the problem under multiple concurrency assump-

tion is provided in Figure 4.9. Supply and demand nodes matched with the same

colored arcs are processed in the same timeslot. Nodes {s1, s2, d2, d3} are simul-

taneously served. This 2-2 matching can also be observed under twice concur-

rency assumption since supply and demand nodes of twice concurrent stations are

matched. On the other hand, nodes {s3, d1, d2} are assigned to another timeslot

with 1-2 matching under multiple concurrency assumption, which is not possible

under twice concurrency assumption. Similarly, supply nodes {s4, s5} are served

in the same slot whereas {d3, d4} are served simultaneously in another slot, which

is an extension defined for multiple concurrency.

4.3.1 Flow-Based Formulation

Sets and Parameters

I = {1, . . . , n} set of stations
sk = number of supplies of station k for k ∈ I

dl = number of demands of station l for l ∈ I

pkl = max number of concurrent broadcasts between station k and l for k, l ∈ I

A = {(k, l) : pkl ≥ 1, k ∈ I, l ∈ I} edge set for possible concurrent broadcasts

G = (I ∪ I, A) bipartite network for stations that can concurrently broadcast

Decision Variables

xi
kl = number of kth station supplies and lth station demands that are i times

concurrent i ∈ {1, . . . , pkl}, (k, l) ∈ A
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Mathematical Model

max
∑

(k,l)∈A

pkl∑
i=1

(2i− 1)xi
kl (4.22)

s.t.
∑

l:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ sk k ∈ I (4.23)

∑
k:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ dl l ∈ I (4.24)

xi
kl ≥ 0 (k, l) ∈ A, i ∈ {1, . . . , pkl} (4.25)

xi
kl ∈ Z (k, l) ∈ A, i ∈ {1, . . . , pkl} (4.26)

The objective function (4.22) maximizes total number of concurrent supply and

demand transmissions of all stations. Constraints (4.23) ensures that total num-

ber of supply transmissions are satisfied. Constraints (4.24) are necessary for

meeting total number of demand transmissions. Constraints (4.25) are non-

negativity constraints for the flow decision variables. Constraints (4.26) make

sure that flow decision variables can only take integer values.

Let P be the feasible region of the formulation above.

P = {
∑

l:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ sk , ∀k ∈ I;

∑
k:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ dl , ∀l ∈ I;

xi
kl ≥ 0 , xi

kl ∈ Z , ∀i ∈ {1, . . . , pkl} , ∀(k, l) ∈ A}

Let S be the feasible region of the LP relaxation of the formulation.

S = {
∑

l:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ sk , ∀k ∈ I;

∑
k:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ dl , ∀l ∈ I;

xi
kl ≥ 0 , ∀i ∈ {1, . . . , pkl} , ∀(k, l) ∈ A}
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4.3.2 Extreme Point Properties

Lemma 4.3.1. In any extreme point solution of S, for any (k, l) ∈ A, it is not

possible to have xi
kl > 0 and xj

kl > 0 for some distinct i, j ∈ {1, . . . , pkl}.

Proof. Assume to the contrary that there exists an extreme point solution x of

S that is not satisfying the property. In other words there exists (k, l) ∈ A,

i, j ∈ {1, . . . , pkl}, i ̸= j such that xi
kl > 0 and xj

kl > 0. Then, the following two

vectors y and z are both feasible in S:

yma =



xm
a for a ̸= (k, l),m ∈ {1, . . . , pa}

xm
a for a = (k, l),m ̸= i, j

xm
a + ϵ/i for a = (k, l),m = i

xm
a − ϵ/j for a = (k, l),m = j

zma =



xm
a for a ̸= (k, l),m ∈ {1, . . . , pa}

xm
a for a = (k, l),m ̸= i, j

xm
a − ϵ/i for a = (k, l),m = i

xm
a + ϵ/j for a = (k, l),m = j

for some 0 < ϵ < min{xi
kl, x

j
kl}. However, this contradicts the extremality of the

given x vector since x = 1
2
y + 1

2
z.

Definition 4.3.1. For an extreme point x in S, let

Bkl =

pkl∑
i=1

(i)xi
kl

for any (k, l) ∈ A over the network G = (I ∪ I, A).

Definition 4.3.2. Let the edge set C ⊂ A be defined as follows:

C = {(k, l) ∈ A : Bkl > 0}
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Consider the network G′ = (I ∪ I, C) ⊂ G where we discard the edges with zero

flow.

Lemma 4.3.2. In any extreme point solution of S, there is no cycle in the network

G′, thus network is union of trees.

Proof. Assume to the contrary that network G′ = (I ∪ I, C) contains a cycle

P in an extreme point solution x ∈ S. Let {e1, e2, . . . , eq} denote the ordering

of the edges along the cycle with corresponding vertices v1
e1−→ v2, . . . , vq

eq−→ v1.

Since G is bipartite, G′ is also bipartite as it is subset of G. Thus, the cycle P =

{e1, e2, . . . , eq} in G′ has even length. By Lemma 4.3.1; for any a = (k, l) ∈ C,

we know ∃! ja ∈ {1, . . . , pa} such that xja
a > 0. Then, following two vectors are

both feasible in S:

yma =



xm
a for a ̸∈ P,m ∈ {1, . . . , pa}

xm
a for a ∈ P,m ̸= ja

xm
a + ϵ/m for a ∈ P, a is odd, m = ja

xm
a − ϵ/m for a ∈ P, a is even, m = ja

zma =



xm
a for a ̸∈ P,m ∈ {1, . . . , pa}

xm
a for a ∈ P,m ̸= ja

xm
a − ϵ/m for a ∈ P, a is odd, m = ja

xm
a + ϵ/m for a ∈ P, a is even, m = ja

for some 0 < ϵ < mina∈P{xja
a }. However this contradicts the extremality of the

given x vector since x = 1
2
y + 1

2
z.

Lemma 4.3.3. In any extreme point solution of S, considering an arbitrary finite

path P with the nodes u1
e1−→ u2, . . . , uq−1

eq−1−−→ uq in the network G′, the followings

hold:

(i) If u1 is supply node and uq is demand node, at most one of the following is

true ∑
l:(u1,l)∈C

Bu1l < su1 ,
∑

k:(k,uq)∈C

Bkuq < duq
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(ii) If u1 is demand node and uq is supply node, at most one of the following is

true ∑
k:(k,u1)∈C

Bku1 < du1 ,
∑

l:(uq ,l)∈C

Buql < suq

(iii) If both u1 and uq are supply nodes, at most one of the following is true

∑
l:(u1,l)∈C

Bu1l < su1 ,
∑

l:(uq ,l)∈C

Buql < suq

(iv) If both u1 and uq are demand nodes, at most one of the following is true

∑
k:(k,u1)∈C

Bku1 < du1 ,
∑

k:(k,uq)∈C

Bkuq < duq

Proof. Let Ba correspond to an extreme point solution of S where a = (k, l) ∈ C

in the network G′. Consider the following two vectors B′
a and B′′

a .

B′
a =


Ba for a ̸∈ P

Ba + ϵ for a ∈ P, a is odd

Ba − ϵ for a ∈ P, a is even

B′′
a =


Ba for a ̸∈ P

Ba − ϵ for a ∈ P, a is odd

Ba + ϵ for a ∈ P, a is even

(i) Assume to the contrary that for an extreme point solution in S, the network

G′ satisfies both
∑

l:(u1,l)∈C Bu1l < su1 and
∑

k:(k,uq)∈C Bkuq < duq . Then for any

a = (k, l) ∈ C in the network G′, two vectors B′
a and B′′

a are both feasible in S

for some

0 < ϵ < min
(k,l)∈P

{Bkl, (su1 −
∑

l:(u1,l)∈C

Bu1l), (duq −
∑

k:(k,uq)∈C

Bkuq)}

However, this contradicts the extremality of Ba because Ba =
1
2
B′

a +
1
2
B′′

a .

(ii) Assume to the contrary that for an extreme point solution in S, the network
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G′ satisfies both
∑

k:(k,u1)∈C Bku1 < du1 and
∑

l:(uq ,l)∈C Buql < suq . Then for any

a = (k, l) ∈ C in the network G′, two vectors B′
a and B′′

a are both feasible in S

for some

0 < ϵ < min
(k,l)∈P

{Bkl, (suq −
∑

l:(uq ,l)∈C

Buql), (du1 −
∑

k:(k,u1)∈C

Bku1)}

However, this contradicts the extremality of Ba because Ba =
1
2
B′

a +
1
2
B′′

a .

(iii) Assume to the contrary that for an extreme point solution in S, the network

G′ satisfies both
∑

l:(u1,l)∈C Bu1l < su1 and
∑

l:(uq ,l)∈C Buql < suq . Then for any

a = (k, l) ∈ C in the network G′, two vectors B′
a and B′′

a are both feasible in S

for some

0 < ϵ < min
(k,l)∈P

{Bkl, (su1 −
∑

l:(u1,l)∈C

Bu1l), (suq −
∑

l:(uq ,l)∈C

Buql)}

However, this contradicts the extremality of Ba because Ba =
1
2
B′

a +
1
2
B′′

a .

(iv) Assume to the contrary that for an extreme point solution in S, the network

G′ satisfies both
∑

k:(k,u1)∈C Bku1 < du1 and
∑

k:(k,uq)∈C Bkuq < duq . Then for any

a = (k, l) ∈ C in the network G′, two vectors B′
a and B′′

a are both feasible in S

for some

0 < ϵ < min
(k,l)∈P

{Bkl, (du1 −
∑

k:(k,u1)∈C

Bku1), (duq −
∑

k:(k,uq)∈C

Bkuq)}

However, this contradicts the extremality of Ba because Ba =
1
2
B′

a +
1
2
B′′

a .

Lemma 4.3.4. In any extreme point solution of S in the network G′, any leaf

node cannot have an adjacent edge (k, l) with fractional Bkl values.

Proof. Assume to the contrary that in an extreme point solution of S there is

a leaf node a with fractional value of Bab where node b is adjacent to node a.

Without loss of generality, assume that node a is supply node. Then node b is

demand node since G′ is bipartite. Since sa is integer and Bab is fractional, we

have
∑

l:(a,l)∈C Bal = Bab < sa. By Lemma 4.3.3, we know that for any other node

on this path, sk and dl values are satisfied with equality. Then
∑

k:(k,b)∈C Bkb = db.
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Since Bab is fractional and included in
∑

k:(k,b)∈C Bkb; there must be another node

c that is adjacent to b such that Bcb is fractional because db is integer. By Lemma

4.3.3, we know that
∑

l:(c,l)∈C Bcl = sc. As Bcb is fractional and involved in the∑
l:(c,l)∈C Bcl, there must be another node adjacent to c whose flow is fractional.

However, since network is a finite tree by Lemma 4.3.2, at the end we will reach

another leaf node d with fractional Bkd value by this reasoning. This would

contradict with Lemma 4.3.3, because total flow for node d would not result in

equality as sd being integer. Otherwise, we will reach a visited node with another

fractional valued edge which would contradict with Lemma 4.3.2.

Theorem 4.3.5. In any extreme point solution of S in the network G′, Bkl values

are integral for each edge (k, l) ∈ C.

Proof. Assume to the contrary that there is an extreme point solution of S that

has an edge (a, b) ∈ C such that Bab is fractional. By Lemma 4.3.4, node a

and node b cannot be leaf nodes. By Lemma 4.3.3, at most one of sa and db is

not satisfied with equality. Without loss of generality, let
∑

k:(k,b)∈C Bkb < db.

We have that
∑

l:(a,l)∈C Bal = sa for node a. Since a is not a leaf node, there

is at least one edge (a, c) ∈ C with fractional Bac value since Bab is fractional

and
∑

l:(a,l)∈C Bal = sa. For node c, we have
∑

k:(k,c)∈C Bkc = dc by Lemma

4.3.3. Since Bac is fractional, there is another node d with fractional Bdc value

since
∑

k:(k,c)∈C Bkc = dc. However, since network G′ is finite tree, at one point

we should reach a leaf node z with fractional Bkz value. This contradicts with

Lemma 4.3.4.

Proof. (Alternative) Let us define a new variable yikl as yikl = (i)xi
kl for all i ∈

{1, . . . , pkl} and (k, l) ∈ C. Then, new feasible region S ′ is defined as

S ′ = {
∑

l:(k,l)∈A

pkl∑
i=1

yikl ≤ sk , ∀k ∈ I;
∑

k:(k,l)∈A

pkl∑
i=1

yikl ≤ dl , ∀l ∈ I;

yikl ≥ 0 , ∀i ∈ {1, . . . , pkl} , ∀(k, l) ∈ A}
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Then, we can update objective function as

max
∑

(k,l)∈A

pkl∑
i=1

(
2− 1

i

)
yikl

Since the coefficient of (2− 1/i) is a constant value; LP model can be rewritten

as

max {cy | y ≥ 0, My ≤ b}

where c = (2−1/i), b = [s d]T and M is the constraint matrix for the coefficients

in the model. Note that b is integral since sk is integer ∀k ∈ I and dl is integer

∀l ∈ I. We also know that M is a totally unimodular matrix because determinant

of each square submatrix of M takes values from the set {−1, 0, 1}. Therefore,

any extreme point solution y is integral. It implies that yikl = (i)xi
kl is integer

∀i ∈ {1, . . . , pkl} and ∀(k, l) ∈ C. As a conclusion Bkl =
∑pkl

i=1(i)x
i
kl is integer

for any (k, l) ∈ C.

Theorem 4.3.6. In any extreme point solution of S in the network G′, for any

xi
kl value, following holds for some j ∈ Z :

xi
kl =

(
1

i

)
j

Proof. Let x be an extreme point solution of S. By Theorem 4.3.5, Bkl =∑pkl
i=1(i)x

i
kl for any (k, l) ∈ C is integer in the network G′. By Lemma 4.3.1,

we know for any (k, l) ∈ C; xr
kl > 0 for some j ∈ {1, . . . , pkl} and xt

kl = 0 for

all t ∈ {{1, . . . , pkl} \ {j}}. Thus, Bkl = (j)xj
kl. Since Bkl is integer by Theorem

4.3.5, there exists an integer a = Bkl such that xj
kl =

(
1
j

)
a.

Theorem 4.3.7. Following expression is valid for any x ∈ P

xi
kl ≤

⌊
max{sk, dl}

i

⌋
∀(k, l) ∈ A, i ∈ {1, . . . , pkl}
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Proof. Let x be an arbitrary feasible vector in P . Then, by definition of P ;

∑
l:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ sk , ∀k ∈ I

∑
k:(k,l)∈A

pkl∑
i=1

(i)xi
kl ≤ dl , ∀l ∈ I

These imply that (i)xi
kl ≤ sk and (i)xi

kl ≤ dl , ∀(k, l) ∈ A , i ∈ {1, . . . , pkl}.

Then, (i)xi
kl ≤ max{sk, dl}; and thereby xi

kl ≤
max{sk,dl}

(i)
∀(k, l) ∈ A , i ∈

{1, . . . , pkl}. Since x ∈ P , we know that x can take only integer values. Thus,

the assertion follows.

Theorem 4.3.8. Following expression can be added to the LP relaxation of the

flow model as an optimality cut:

pkl−1∑
i=1

xi
kl = 0 ∀(k, l) ∈ A (*)

Proof. Let x ∈ S be an optimal solution for the LP relaxation of the flow model.

By Lemma 4.3.1, we know that for any (k, l) ∈ A with
∑pkl

i=1 x
i
kl > 0, we have

that
∑pkl

i=1 x
i
kl = xckl

kl for some ckl value with 1 ≤ ckl ≤ pkl. Then the optimal

objective value of the LP relaxation is
∑

(k,l)∈A(2ckl − 1)xckl
kl .

Consider adding the equality (*) to the formulation of the LP relaxation. Let x

denote the optimal solution of this formulation. Then, optimal objective value is

equal to
∑

(k,l)∈A(2pkl − 1)xpkl
kl . Let us choose xpkl

kl values as follows:

xpkl
kl =

xckl
kl ckl
pkl

where x denotes the optimal solution of the LP relaxation model. Note that x

is feasible for the new formulation. Observe also that x is feasible to the LP

relaxation model as well, so x ∈ S. The objective value of LP relaxation for the

solution x is equal to
∑

(k,l)∈A(2ckl−1)xckl
kl . Since this value gives the same result
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as the optimal solution x has; we conclude that x is also an optimal solution for

the LP relaxation. Thus, the assertion follows.

In the light of Theorem 4.3.8, after adding the optimality cut to the LP relaxation

of the flow model; we can provide the equivalent formulation to the model as

follows.

max
∑

(k,l)∈A

(2pkl − 1)xkl

s.t.
∑

l:(k,l)∈A

(pkl)xkl ≤ sk k ∈ I

∑
k:(k,l)∈A

(pkl)xkl ≤ dl l ∈ I

xkl ≥ 0 (k, l) ∈ A

Note that with this formulation above, the we can use the two indexed deci-

sion variable. In the remaining parts of this thesis, we name this mathematical

formulation as the LP flow model with optimality cut.
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Chapter 5

Minimizing Total Tardiness

In this chapter, we consider integrating deadline extension for each station in the

network. According to the due dates to complete all the transmissions provided

for each station, we aim to minimize total lateness of the broadcasts as our moti-

vation. The tardiness of each job operation is defined to be the difference between

the completion time and the due date. As due dates are given as parameters,

we develop our methodology to calculate completion times of transmissions. For

the simultaneous transmit and receive mode property, we only consider single

concurrency assumption for this objective.

5.1 Model Formulation

Sets

I = {1,...,S} set of stations
T = {1,...,M} set of timeslots

Parameters

mi : number of timeslots required for supply of station (i), i ∈ I

ni : number of timeslots required for demand of station (i), i ∈ I

di : deadline of completion time for station (i), i ∈ I
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aij =

1, if station (i) does not interfere with station (j), i, j ∈ I

0, otherwise

Decision Variables

xit =

1, if station (i) supplies at timeslot (t), i ∈ I, t ∈ T

0, otherwise

yit =

1, if station (i) demands at timeslot (t), i ∈ I, t ∈ T

0, otherwise

ci = completion time for station (i), i ∈ I

si = difference between deadline and completion time of station (i), i ∈ I
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Mathematical Model

min
∑
i∈I

si (5.1)

s.t.
∑
t∈T

xit = mi ∀i ∈ I (5.2)∑
t∈T

yit = ni ∀i ∈ I (5.3)∑
i∈I

xit ≤ 1 ∀t ∈ T (5.4)∑
i∈I

yit ≤ 1 ∀t ∈ T (5.5)

xit + yjt ≤ aij + 1 ∀i ̸= j ∈ I, t ∈ T (5.6)

ci ≥ xitt ∀i ∈ I, t ∈ T (5.7)

ci ≥ yitt ∀i ∈ I, t ∈ T (5.8)

ci ≤ di + si ∀i ∈ I (5.9)

xit ∈ {0, 1} ∀i ∈ I, t ∈ T (5.10)

yit ∈ {0, 1} ∀i ∈ I, t ∈ T (5.11)

ci ≥ 0 ∀i ∈ I (5.12)

si ≥ 0 ∀i ∈ I (5.13)

The objective function (5.1) minimizes the total tardiness of supply and demand

operations of stations in the network. Constraints (5.2) ensure that all supply

operations of each station are assigned to the available timeslots. Constraints

(5.3) yield all demand operations of each station are assigned to the available

timeslots. In (5.4), it is implied that each supply of stations can be assigned to

single timeslot. Constraints (5.5) forbid each demand of stations to be assigned to

multiple timeslots. Simultaneous supply and demand operations are enabled by

(5.6) when there is no interference between stations. Both (5.7) and (5.8) indicate

the completion time of stations. Constraints (5.9) calculate the tardiness amount

of completion times of the stations from the deadlines. Constraints (5.10)-(5.13)

are the domain constraints for the decision variables.
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5.2 Deadline Algorithm

In this section, we demonstrate our algorithm for the problem under deadline

restriction. The algorithm is proposed to find feasible solution with less time

complexity compared to mathematical model. Each station has a predetermined

deadline to complete all supply and demand operations.

Before the algorithm starts, each station is randomly located on the cartesian

coordinate system. Access point is always positioned at origin (0, 0) in the sys-

tem. Calculating distance between stations and access point, a distance matrix

is created. Based on Euclidian distances d(i, j) and given path loss exponent δ

and interference path loss exponent β values, signal to interference ratio is cal-

culated for each station. Station interference matrix is formed based on signal to

interference ratios.

Similar to the procedure applied in 4.1.3, station interference matrix A is used

to create supply-demand copy matrix B. We also define xit and yit variables as in

4.1.1 to assign supply and demand to timeslots. In addition, we introduce certain

parameters used in the algorithm shown in Table 5.1.

Table 5.1: Parameters used in deadline algorithm

Notation Parameter Definition

lsi row index in matrix B for the first supply of station i

usi row index in matrix B for the last supply of station i

ldi column index in matrix B for the first demand of station i

udi column index in matrix B for the last demand of station i

For a given station set I, we define another station set V . In this set, stations

are ordered in non-decreasing values of the following:

{di − (mi + ni)} ∀i ∈ I
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The main idea behind this way of sorting is to give priority to process the sta-

tions that have the smallest gap between summation of supply and demand op-

erations, and the deadline restriction. Following this ordering, algorithm chooses

first station and matches its supply values with demand values of all other sta-

tions if there is no interference. In this part, searching is performed by fixing a

row interval corresponding to copy supply values of the station and moving along

the columns of matrix B to check the interference relation.

After completing all the possible matching of its supplies, algorithm fixes the

column interval of matrix B corresponding to the demand values of the station;

and searches along the rows of matrix B. As long as there is no interference

and there are demand values unmatched, the algorithm matches demand values

of the station with all available supply values of other stations. Each matching

increases latest timeslot by 1.

Once the process described above is repeated for all stations in the network,

remaining unmatched supply and demand values are distributed to individual

timeslots and latest timeslot is updated by adding these timeslots. An example

result of the algorithm and mathematical model from the same instance can be

observed on Gantt charts in Figures 5.1 and 5.2. In that example, mathematical

model finds optimal total tardiness value of 0 whereas our algorithm results in 8

as four of the stations are tardy and could not meet their deadline.

In Figures 5.1 and 5.2, star sign indicates the deadline timeslot that corre-

sponding station on y-axis should complete all of its transmissions. We also

provide dashed lines on the Gantt charts, which correspond to the optimal min-

imum latest completion times found by Hopcroft-Karp algorithm. It is notable

to mention that mathematical model can find a schedule with 0 total tardiness

value, and also achieves to complete all transmissions with the optimal minimum

makespan value.
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Figure 5.1: Deadline algorithm solution schedule of an instance with 7 stations

Figure 5.2: Deadline model solution schedule of an instance with 7 stations
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Pseudocode of the algorithm is provided below.

Algorithm 3 Deadline Algorithm
1: Initialize: t← 0

2: Set: M ←
∑

i∈I(mi + ni)

3: for each i ∈ I do

4: for each j ∈ I do

5: if i ̸= j then

6: for m ∈ [lsi, usi] do

7: for n ∈ [ldi, udi] do

8: if Bmn = 1 and
∑M

t=1 yjt < nj and
∑M

t=1 xit < mi then

9: xit = 1; yjt = 1; t← t+ 1

10: end if

11: end for

12: end for

13: end if

14: end for

15: for each k ∈ I do

16: if i ̸= k then

17: for n ∈ [ldi, udi] do

18: for m ∈ [lsk, usk] do

19: if Bmn = 1 and
∑M

t=1 yit < ni and
∑M

t=1 xkt < mk then

20: xkt = 1; yit = 1; t← t+ 1

21: end if

22: end for

23: end for

24: end if

25: end for

26: end for

27: for i ∈ I do

28: while
∑M

t=1 xit < mi do

29: xit = 1; t← t+ 1

30: end while

31: while
∑M

t=1 yit < ni do

32: yit = 1; t← t+ 1

33: end while

34: end for
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5.3 NP-Completeness

In this section, we prove that minimizing total tardiness in broadcast scheduling

is NP-complete by demonstrating that our problem can be reduced to a known

NP-complete problem. We will use proof by restriction considering a special case

of our problem.

Lemma 5.3.1. For a given β, δ and arbitrarily located stations i, j ∈ V \ {0}
on Euclidean Space, there can always be found a threshold value Ω satisfying the

following:

d(i, j)δ

d(0, j)β
< Ω (5.14)

Proof. Let β, δ and location of stations i, j ∈ V \ {0} on the Euclidean Space be

arbitrary. Let us define the following parameter for all j ∈ V \ {0}:

xj = max
i∈V \{0}

{
d(i, j)δ

}
Note that xj values can easily be found by calculating distance from station j to

the farthest point to station j. Since the value of xj gives the maximum distance

from station j, one can clearly observe that the following holds:

d(i, j)δ

d(0, j)β
≤ xj

d(0, j)β

Since we now found an upper bound for the left hand side, let us calculate the

following and denote the result with an expression M ∈ R :

M = max
j∈V \{0}

{
xj

d(0, j)β

}
Notice that M is a constant number and can be calculated for any instance of

our problem as there is finite number of stations on the Euclidean Space. We can

also observe that M is an upper bound on the following:

d(i, j)δ

d(0, j)β
≤ xj

d(0, j)β
≤M
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Since M is a finite number and it always exists, there always exists another finite

number Ω such that the following holds:

d(i, j)δ

d(0, j)β
≤ xj

d(0, j)β
≤M < Ω

Thus, our claim directly follows and we can conclude that there is always an Ω

that satisfies (5.14).

Evaluating the general problem from machine scheduling perspective, each

station i ∈ V can be considered as task to be processed by a batch processing

machine; the access point in our case. In general, it can be interpreted as in the

following instance.

INSTANCE: Set V of tasks, each having processing time pi = mi + ni, single

machine with batch processing capacity n ∈ N , a positive integer T , for each

task i ∈ V a deadline di ∈ Z+, and for each task pair (i, j) ∈ V × V an indicator

parameter aij ∈ {0, 1} denoting “compatibility relations” to be satisfied for batch

processing.

QUESTION: Is there schedule S for set of tasks V processed by single machine

with batch capacity n that obeys the compatibility relations and tasks having

completion times ci and tardiness si satisfying ci ≤ di + si for all i ∈ V such that∑
i∈V max{0, si} ≤ T?

Theorem 5.3.2. Minimizing total tardiness in broadcast scheduling problem un-

der single concurrency is NP-complete.

Proof. Let V = {0, 1, . . . , n} denote the set of nodes in the telecommunication

network where {0} ∈ V corresponds to the access point and d(i, j) denote the

distance between station i and j. For a given path loss exponent β, the interfer-

ence path loss exponent δ; consider the restricted case where the threshold value

Ω is chosen such that it satisfies (5.14) by Lemma 5.3.1.
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Satisfying the relation (5.14) directly implies that aij = 0 for all i ∈ V \ {0}
and j ∈ V \ {0}. In other words, by choosing a specific threshold Ω, we can

restrict our compatibility matrix A to be zero matrix so that all operations are

incompatible among each other.

Since aij = 0 for all i ∈ V \ {0} and j ∈ V \ {0}, batch size should be equal

to 1 for each timeslot due to incompatibility. Note that with this restriction,

the problem becomes single machine scheduling with minimizing total tardiness.

Du and Leung [34] proved that single machine scheduling with minimizing total

tardiness is NP-complete. Since restricted case of our problem is equal to an

NP-complete problem, we conclude that our general problem is NP-complete.
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Chapter 6

Computational Experiments

In this chapter, we demonstrate the outputs of our computational study. In

this study, we conduct several experiments where we mainly analyze the results

of mathematical formulations and algorithms that we developed in our solution

methodology. All of computational experiments have been performed on macOS

with 1.4 GHz Quad-Core Intel Core i5 processor. Coding of the formulations and

algorithms have been carried out utilizing Python programming language, and

solved with a connection to IBM ILOG CPLEX Optimization Studio 21.1.0 Beta

Version.

In the beginning of this chapter, we explain our data generation process to

construct the general setting we used before conducting the experiments in Sec-

tion 6.1. Afterwards, we present a detailed comparison of the performances of

all the mathematical formulations and algorithms in terms of their solving times

and their final solution values in Section 6.2. Finally, we conduct sensitivity

analysis for the flow model formulations in Section 6.3. In this analysis, we use

different parameter values for the inputs of the problem and aim to gain several

insights regarding the effects of the setting of parameters on the performance of

the formulations. The detailed results for 50 randomly generated instances for

each solution methodology can be found in Appendix A.
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6.1 Data Generation

Before we implement our solution methodology into the optimization software,

we create random instances for the general problem setting. The intervals for the

number of stations and the radius of the network are randomly determined for

each instance.

As described on the example in the Chapter 3; after we assign the location of

the access point to the origin on the Euclidean space as the center of the circle,

we generate the random polar coordinates for the positioning of each station

within the circle circumscribing the origin. For the data generation, we input the

following parameters to the generator shown in Table 6.1.

Table 6.1: Input parameters used to generate random data points for the station

locations in the network

Input parameters Symbol & value used

Number of stations in the network |S|
Minimum distance between stations d

Circle radius value R

Circle center coordinate C = (0, 0)

Number of maximum trials t = 10000

Generation time limit 3600 seconds

Sampling of the locations is randomly generated based on the uniform distri-

bution of the polar coordinates (r, θ) within predetermined circle where r ∈ (0, R]

and θ ∈ [0, 2π]. In that principle; for each random instance it is assured that no

more than one station is assigned on the same coordinate and we also consider

adding restriction of the minimum distance requirement between each station,

denoted as d where 0 < d ≤ R.

Since data generation can take long duration, we limit the time duration and

number of trials in terms of iteration count for the location assignments, as in
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Table 6.1.

In order to use the distances d(x, y) based on Euclidean metrics, polar coordi-

nates of each station are transformed into cartesian coordinates (x, y) ∈ R2 using

the following formula:

x = r × cos θ

y = r × sin θ

Using those cartesian coordinates of the station set and given δ,β and Ω values,

interference matrix of the stations that denote the possible concurrent transmis-

sions is calculated as indicated in Chapter 3. Since we perform computational

experiments both for single concurrency and multiple concurrency; cardinality of

Ω value varies based on the maximum concurrency number. We consider evenly

spaced sequences in intervals we specified for Ω values. As an example of Ω arrays

produced for multiple concurrency; Table 6.2 can be observed below:

Table 6.2: Example for Ω output based on interval input

Maximum

concurrency

Interval bounds

for Ω

Ω array produced

7 {5.0, 10.0} [5.0 5.83 6.66 7.5 8.33 9.16 10.0]

6 {2.5, 7.5} [2.5 3.5 4.5 5.5 6.5 7.5]

5 {4.5, 8.5} [4.5 5.5 6.5 7.5 8.5]

4 {4.0, 9.5} [4.0 5.83 7.66 9.5]

3 {2.0, 10.0} [2.0 6.0 10.0]

2 {3.0, 6.5} [3.0 6.5]

6.2 Performance Comparison

In this section, we provide a detailed comparison of the performances of mathe-

matical formulations and algorithms in terms of their CPU times and objective
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values calculated through the software. Initially, we analyze the performance

of scheduling based formulation and the greedy heuristics we developed for the

single concurrency case that minimize the latest completion time (makespan).

Table 6.3: Scheduling algorithm & model output for different radius values when

(δ, β,Ω) = (2.3, 2.5, 5) and minimum distance = 30

Parameters Minimum Makespan

Values

CPU Times (s)

# of

STAs

Circle

Radius

Greedy

Heur.

Sch.

Model

Decrease Greedy

Heur.

Sch.

Model

Difference

35

500 95 94.0 1.05% 0.0007 7.1681 7.17

600 105 94.0 10.48% 0.0008 7.3890 7.39

700 105 94.0 10.48% 0.0007 6.7607 6.76

800 114 94.0 17.54% 0.0005 8.3629 8.36

900 123 94.0 23.58% 0.0006 1.3083 1.31

40

500 103 95.0 7.77% 0.0009 12.2618 12.26

600 104 95.0 8.65% 0.0010 9.6317 9.63

700 108 95.0 12.04% 0.0008 14.7765 14.78

800 127 95.0 25.20% 0.0008 8.5628 8.56

900 140 95.0 32.14% 0.0006 11.6946 11.69

45

500 136 125.0 8.09% 0.0016 113.9754 113.97

600 135 125.0 7.41% 0.0017 27.3339 27.33

700 145 125.0 13.79% 0.0008 23.1478 23.15

800 169 125.0 26.04% 0.0007 21.9032 21.90

900 172 125.0 27.33% 0.0006 20.4312 20.43

50

500 136 135.0 0.74% 0.0013 24.5389 24.54

600 136 135.0 0.74% 0.0013 31.2396 31.24

700 141 135.0 4.26% 0.0011 29.4367 29.44

800 154 135.0 12.34% 0.0010 25.8809 25.88

900 169 135.0 20.12% 0.0009 25.4289 25.43

Average: 700 130.85 112.3 13.49% 0.0009 21.5616 21.56
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Table 6.4: Scheduling algorithm & model output for different minimum distance

values when (δ, β,Ω) = (2.3, 2.5, 5) and radius = 700

Parameters Minimum Makespan

Values

CPU Times (s)

# of

STAs

Minimum

Distance

Greedy

Heur.

Sch.

Model

Decrease Greedy

Heur.

Sch.

Model

Difference

35

50 91 87.0 4.40 % 0.0009 7.7227 7.72

60 92 87.0 5.43 % 0.0006 8.5091 8.51

70 93 87.0 6.45 % 0.0005 8.0553 8.05

80 108 87.0 19.44 % 0.0005 8.8751 8.87

90 124 87.0 29.84 % 0.0006 1.4094 1.41

40

50 109 106.0 2.75 % 0.0010 12.7986 12.80

60 110 106.0 3.64 % 0.0008 10.9005 10.90

70 121 106.0 12.40 % 0.0007 10.8146 10.81

80 134 106.0 20.90 % 0.0007 9.8873 9.89

90 149 106.0 28.86 % 0.0006 11.8745 11.87

45

50 123 122.0 0.81 % 0.0014 24.7432 24.74

60 128 122.0 4.69 % 0.0011 22.6765 22.68

70 136 122.0 10.29 % 0.0008 24.9359 24.94

80 154 122.0 20.78 % 0.0008 16.0973 16.10

90 174 122.0 29.89 % 0.0006 15.7691 15.77

50

50 147 145.0 1.36 % 0.0014 70.7431 70.74

60 157 145.0 7.64 % 0.0013 51.6203 51.62

70 167 145.0 13.17 % 0.0010 39.8970 39.90

80 179 145.0 18.99 % 0.0009 38.2066 38.21

90 212 145.0 31.60 % 0.0009 33.4913 33.49

Average: 70 135.4 115.0 13.67 % 0.0009 21.4514 21.45

Table 6.3 demonstrate the computational results when minimum Euclidean

distance between stations is chosen to be 30. Supply and demand amounts of

each station take randomly values from the interval [1, 5]. For that analysis, we
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fix the minimum distance value and aim to see the effect of different radius values

to the performance of the formulation and the algorithm. We note the minimum

makespan values, CPU times and also the percentage of the improvement of the

objective value on tableau. Note that the result of the greedy heuristics is used as

the initial number of timeslots used in the model since it provides an upper bound

value to the model. As expected, when number of stations increase from 35 to 50,

CPU time to solve the model increase. The time difference between the algorithm

and the model is at most 113.97 seconds and the average difference is 21.56 sec-

onds among 20 instances. In general, the time difference increases when |S| (# of

stations) gets larger because the CPU time of the model increase more compared

to the algorithm. CPU time of the algorithm is at most 0.0017 seconds. The

average improvement from the algorithm to the model is calculated as 13.49%,

which indicates that our greedy heuristics provides near to optimal results on av-

erage. When the radius increases within the set {500, 600, 700, 800, 900}, model

CPU time does not change much as expected. The reason is the optimal solution

does not change since the supply and demand values are same for same |S| value
and the interference relation is more stable for the single concurrency case.

Another performance comparison between algorithm and scheduling model

is presented in Table 6.4. During this analysis, we choose different minimum

distance values between stations from the set {50, 60, 70, 80, 90} and use fix radius

value of 700 to observe the effect of distance values to the performance of the

solution methodologies. The algorithm solves the problem with 13.67% closeness

to the optimal solution on average. The average CPU time difference is calculated

as 21.45 that is very close to the difference value found in Table 6.3. For the

larger number of stations, CPU time of the scheduling model increases more

than the algorithm does as we expected. However, changing minimum distance

value between stations does not affect the optimal results of the model. This is

probably due to the fact that the interference matrix does not change. It might

result from the discrepancy between |S| and the radius values. Since radius is

very large in each case, even smaller minimum distance values can yield large SIR

values, which take advantage of concurrent transmissions. In addition, supply and

demand values are kept same for the same |S| values as an another factor.
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Table 6.5 and Table 6.6 indicate performance comparison of the matching

based formulation and Hopcroft-Karp algorithm for the single concurrency case.

In this analysis, we are able to work with large number of stations from the set

{200, 250, 300, 350} because of less solution times of LP model.

Table 6.5: Hopcroft-Karp algorithm & matching model output for different radius

values when (δ, β,Ω) = (2.3, 2.5, 5) and minimum distance = 30

Parameters Minimum Makespan

Values

CPU Times (s)

# of

STAs

Circle

Radius

HK

Algorithm

Matching

Model

HK

Algorithm

Matching

Model

Difference

200

500 505 505 0.0271 0.3058 0.28

600 505 505 0.0317 0.4215 0.39

700 505 505 0.0263 0.8377 0.81

800 505 505 0.0269 0.5995 0.57

900 505 505 0.0355 0.5062 0.47

250

500 631 631 0.0373 0.5719 0.53

600 628 628 0.0500 0.7526 0.70

700 628 628 0.0542 0.8385 0.78

800 628 628 0.0408 1.0067 0.97

900 628 628 0.0608 1.0455 0.98

300

500 770 770 0.0732 0.7943 0.72

600 770 770 0.0945 1.3418 1.25

700 770 770 0.0678 1.3198 1.25

800 770 770 0.0842 1.4182 1.33

900 770 770 0.0841 1.5551 1.47

350

500 880 880 0.0948 1.3948 1.30

600 880 880 0.0948 1.6713 1.58

700 880 880 0.1046 2.0268 1.92

800 880 880 0.1039 1.9552 1.85

900 880 880 0.1056 1.9784 1.87

Average: 700 695.9 695.9 0.0649 1.1171 1.05
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Table 6.6: Hopcroft-Karp algorithm & matching model output for different min-

imum distance values when (δ, β,Ω) = (2.3, 2.5, 5) and radius = 1000

Parameters Minimum Makespan

Values

CPU Times (s)

# of

STAs

Minimum

Distance

HK

Algorithm

Matching

Model

HK

Algorithm

Matching

Model

Difference

100

50 260 260 0.0070 0.0788 0.07

60 260 260 0.0066 0.0943 0.09

70 260 260 0.0061 0.1052 0.10

80 260 260 0.0071 0.1317 0.12

90 260 260 0.0065 0.1041 0.10

150

50 379 379 0.0142 0.1650 0.15

60 379 379 0.0143 0.2429 0.23

70 379 379 0.0154 0.2558 0.24

80 379 379 0.0210 0.2598 0.24

90 379 379 0.0211 0.2528 0.23

200

50 507 507 0.0301 0.3387 0.31

60 503 503 0.0335 0.4284 0.39

70 503 503 0.0544 0.4741 0.42

80 503 503 0.0278 0.5410 0.51

90 503 503 0.0379 0.5153 0.48

250

50 632 632 0.0786 0.5044 0.43

60 632 632 0.0506 0.8454 0.79

70 632 632 0.0574 0.8459 0.79

80 632 632 0.0876 1.0598 0.97

Average: 68.94 433.789 433.789 0.0304 0.3812 0.35

Table 6.5 demonstrates the results for the changing radius values whilst keeping

minimum distance values fixed; whereas Table 6.6 provides the results for the

changing minimum distance values for fixed radius values. Since HK algorithm

solves the problem optimally, objective values are always the same. As it can be

78



seen on Table 6.5, increasing radius values do not change the optimal values for

most of the instances. However, we realize that for the instance when |S| = 250,

objective decreases from 631 to 628 when radius goes up from 500 to 600. Since

we have larger number of stations compared to the ones in Table 6.3 and 6.4 while

using radius values from the same set, the discrepancy between radius and |S| is
smaller, which results in the closeness of the station locations. That’s why when

radius increases, minimum latest completion time can decrease since stations

become distant from each other and achieves simultaneous signal transmissions.

Average CPU time difference between model and HK algorithm is 1.05 seconds,

which is much less than the scheduling based solution methodologies as expected

since both methodologies solve the problem optimally. As shown in Table 6.5, we

were only able to increase number of stations up to 350 because we exceed the

limit for the maximum number of trials on the data generation for the station

locations when |S| > 350.

In Table 6.6, we present the results for different minimum distance values from

the set {50, 60, 70, 80, 90} for the fixed radius value 1000. We prefer to use larger

radius value for the consistency since minimum distance value set has larger values

than 30. Compared to the results in Table 6.5, |S| can be increased up to 250.

Expectedly, larger minimum distance values lead to larger maximum number of

trials needed for the data generation process. Average CPU time difference is 0.35

seconds which is close to the result seen in Table 6.5. As expected, in the instance

of |S| = 200, the increase in minimum distance value from 50 to 60 yields slight

decrease in the objective from 507 to 503. For the instances of |S| = 250, we

cannot test the results for the minimum distance value of 90 since the maximum

number of trials 10000 is exceeded, which takes more than 3600 seconds for data

generation.

To evaluate the performance of the solution methodologies developed to min-

imize total tardiness, deadline algorithm and the mathematical model results

are calculated. As it can be seen in Table 6.7 and Table 6.8, we still use fixed

(δ, β,Ω) = (2.3, 2.5, 5) vector, and test effect of various radius values and mini-

mum distance values respectively.
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Table 6.7: Deadline algorithm and deadline model output for different radius

vales when (δ, β,Ω) = (2.3, 2.5, 5), minimum distance = 30

Parameters Minimum Total

Tardiness Values

CPU Times (s)

# of

STAs

Circle

Radius

Deadline

Algorithm

Deadline

Model

Decrease Deadline

Algorithm

Deadline

Model

Difference

3

500 0.0 0.0 0.00 0.0010 0.0060 0.01

600 11.0 1.0 90.91 0.0002 0.0383 0.04

700 12.0 0.0 100.00 0.0003 0.0079 0.01

800 17.0 2.0 88.24 0.0003 0.0405 0.04

900 16.0 1.0 93.75 0.0002 0.0094 0.01

6

500 10.0 7.0 30.00 0.0013 0.5756 0.57

600 11.0 8.0 27.27 0.0011 0.1310 0.13

700 7.0 0.0 100.00 0.0010 0.0098 0.01

800 16.0 5.0 68.75 0.0009 0.1141 0.11

900 37.0 5.0 86.49 0.0006 0.1283 0.13

9

500 31.0 22.0 29.03 0.0017 5.6887 5.69

600 21.0 12.0 47.62 0.0021 1.8274 1.83

700 46.0 11.0 78.26 0.0017 1.7134 1.71

800 52.0 0.0 100.00 0.0015 0.0218 0.02

900 52.0 3.0 94.23 0.0013 0.0539 0.05

12

500 17.0 9.0 47.06 0.0060 2.5299 2.52

600 14.0 4.0 71.43 0.0063 0.4312 0.42

700 76.0 12.0 85.53 0.0042 2.4193 2.42

800 149.0 6.0 95.97 0.0030 0.8424 0.84

900 91.0 0.0 100.00 0.0029 0.0612 0.06

Average: 700 34.3 5.4 71.73 0.0019 0.8325 0.83
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Table 6.8: Deadline algorithm and deadline model output for different minimum

distance vales when (δ, β,Ω) = (2.3, 2.5, 5), radius = 700

Parameters Minimum Total

Tardiness Values

CPU Times (s)

# of

STAs

Minimum

Distance

Deadline

Algorithm

Deadline

Model

Decrease Deadline

Algorithm

Deadline

Model

Difference

3

50 2.0 2.0 0.00 0.0005 0.0315 0.03

60 7.0 1.0 85.71 0.0002 0.0155 0.02

70 7.0 1.0 85.71 0.0005 0.0192 0.02

80 5.0 1.0 80.00 0.0004 0.0219 0.02

90 8.0 1.0 87.50 0.0002 0.0151 0.01

6

50 3.0 1.0 66.67 0.0012 0.0335 0.03

60 11.0 4.0 63.64 0.0013 0.0519 0.05

70 39.0 8.0 79.49 0.0008 0.1658 0.17

80 42.0 3.0 92.86 0.0008 0.0728 0.07

90 37.0 3.0 91.89 0.0007 0.0554 0.05

9

50 27.0 12.0 59.26 0.0017 1.3994 1.40

60 34.0 14.0 61.76 0.0020 2.4977 2.50

70 13.0 3.0 76.92 0.0017 0.0481 0.05

80 47.0 11.0 78.72 0.0011 0.9952 0.99

90 76.0 15.0 80.26 0.0012 4.0879 4.09

12

50 35.0 18.0 48.57 0.0069 7.6754 7.67

60 50.0 31.0 38.00 0.0052 159.9388 159.93

70 56.0 2.0 96.43 0.0040 0.1496 0.15

80 89.0 2.0 97.75 0.0030 0.1501 0.15

90 122.0 4.0 96.72 0.0024 0.2264 0.22

Average: 70 35.5 6.9 73.39 0.0018 8.8826 8.88

For the minimum tardiness objective, the number of stations is chosen at most

12 since CPU time of the model reaches one hour when |S| > 12. According to

the results in Table 6.7, CPU time difference on average is 0.83 when minimum
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distance value is fixed at 30. For most of the instances, increasing radius resulted

in larger improvement percentage in the objective value between algorithm and

model results. When the radius is 700, we observe 100% improvement to the op-

timal solution for both |S| = 3 and |S| = 6. The result of the algorithm is closest

to the optimal value on the instance of |S| = 6 when radius is 700. We notice the

most obvious pattern on the instance of |S| = 8 because when radius increases

from 500 to 700, the minimum tardiness amount decreases gradually. This oc-

curs likely because of the concurrency allowance when stations are positioned on

a wider circle.

In Table 6.8; circle radius value is fixed at 700, and effect of different minimum

distance values to the performance is compared. Average CPU time of the math-

ematical model and the algorithm makes 8.88 in the difference. The discrepancy

could result from the instance of |S| = 12 while minimum distance is 60 since

calculated CPU time is 159.93 seconds that is far above the average duration.

The algorithm results both increase and decrease when there is an increase in

the minimum distance values, which is also the case for the mathematical model.

This might be because of the various deadline values that are defined randomly

before solving process.

After evaluating the effects of certain parameter values on the performances

in computations, we consider comparing the performances model formulations

that aims to minimize latest completion time of transmissions under the single

concurrency assumption. In that part of the analysis, we assess the scheduling

model, matching model and the flow model by using the same values of the

parameters.

Fixing radius value as 500, minimum distance value as 30 and component

vector (δ, β,Ω) = (2.3, 2.5, 5) in Table 6.9, we analyze the number of iterations

and CPU times to solve the models for 20 different |S| values. Number of stations

are increased within the interval [30, 50]. In Table 6.10, we increase the minimum

distance value as 60 and keep other parameters as the same as in Table 6.9.

Optimal minimum makespan values that are the same for each of the three models

are also indicated on tables.
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Table 6.9: Model performances under single concurrency when (δ, β,Ω) =

(2.3, 2.5, 5), radius = 500, minimum distance = 30

Scheduling

Model

Matching Model IP Flow Model

# of

STAs

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

# of

Iterations

CPU

Time

(s)

# of

Iterations

CPU

Time

(s)

30 73.00 1199 1.4912 116 0.0057 181 0.0104

31 78.00 1156 1.2259 98 0.0065 149 0.0105

32 82.00 19421 8.3209 88 0.0059 141 0.0104

33 86.00 11258 3.5240 108 0.0088 136 0.0122

34 88.00 970 1.6678 129 0.0097 155 0.0131

35 90.00 3615 3.1683 117 0.0126 186 0.0132

36 85.00 54782 55.2884 124 0.0216 175 0.0114

37 99.00 2596 4.7026 134 0.0123 188 0.0144

38 106.00 1400 3.4047 131 0.0125 136 0.0156

39 98.00 91145 81.5410 147 0.0123 216 0.0157

40 107.00 4031 6.0774 162 0.0133 287 0.0185

41 117.00 104619 78.9174 152 0.0147 187 0.0138

42 105.00 4818 9.8425 153 0.0141 277 0.0190

43 114.00 2974 4.5262 140 0.0127 290 0.0183

44 110.00 5422 7.2966 156 0.0230 260 0.0214

45 123.00 7434 11.6078 199 0.0248 280 0.0332

46 119.00 3576 7.5115 179 0.0227 314 0.0267

47 120.00 2272 7.3789 201 0.0251 239 0.0299

48 122.00 2841 5.7435 225 0.0190 252 0.0269

49 118.00 4262 8.1415 195 0.0226 313 0.0273

50 133.00 7623 12.5616 238 0.0221 280 0.0271
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Table 6.10: Model performances under single concurrency when (δ, β,Ω) =

(2.3, 2.5, 5), radius = 500, minimum distance = 60

Scheduling Model Matching Model IP Flow Model

# of

STAs

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

# of

Iterations

CPU

Time

(s)

# of

Iterations

CPU

Time

(s)

30 73.00 1348 1.5621 123 0.0067 168 0.0094

31 76.00 3015 2.8416 116 0.0074 164 0.0090

32 81.00 23338 9.8779 109 0.0069 170 0.0103

33 82.00 2638 4.3932 133 0.0095 154 0.0124

34 94.00 25839 12.0519 111 0.0102 184 0.0097

35 93.00 2197 2.1182 98 0.0104 208 0.0176

36 96.00 2359 2.8452 137 0.0117 164 0.0109

37 104.00 3836 5.4232 163 0.0156 173 0.0137

38 92.00 3570 5.1841 141 0.0157 186 0.0195

39 96.00 3790 4.6208 124 0.0134 168 0.0160

40 109.00 1642 3.9848 148 0.0155 213 0.0161

41 117.00 48336 38.5941 144 0.0142 211 0.0177

42 108.00 49953 35.8221 142 0.0128 319 0.0186

43 117.00 6527 6.5922 165 0.0172 274 0.0227

44 106.00 7493 7.1473 195 0.0164 266 0.0249

45 131.00 1755 5.0021 203 0.0216 272 0.0244

46 132.00 76262 75.4352 160 0.0166 269 0.0228

47 117.00 495 2.7675 217 0.0140 271 0.0231

48 124.00 168937 135.3190 228 0.0176 295 0.0259

49 129.00 69267 80.3895 246 0.0229 316 0.0251

50 133.00 87074 107.4698 274 0.0270 320 0.0244

When we analyze the results in Table 6.9 and 6.10, CPU time of the schedul-

ing model is much larger than the matching and flow models. When minimum

distance is 30, the highest CPU time calculated as 55.2884 seconds in scheduling
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model whereas 135.3190 seconds is reached when minimum distance is 60. On the

other hand, maximum duration to solve other formulations in these instances is

approximately 0.02 seconds. The reason why scheduling model is outperformed

by the other formulations can be due to larger number of constraints and three

decision variables used in the formulation.

In addition to CPU time, number of iterations in solving of the formulations

also demonstrate considerable difference. Matching model yields the least CPU

time compared to the other models as expected because this is linear programming

model. However, flow model yields very close results to the matching model.

Even though the flow model structure is not totally unimodular and include three

indexed decision variable, the number of constraints in the flow model is nearly

the same as the matching model. Although for several instances (|S| = 34, |S| =
37, |S| = 50 when minimum distance value is 60; |S| = 36, |S| = 41, |S| = 44

when minimum distance value is 30) CPU time of the flow model is less than

the matching model, matching model solves the minimum latest completion time

problem slightly faster than the IP flow model on average.

After we analyze the performance of the formulations under single concurrency

assumption, we present the computational results for the multiple concurrency

allowance case with minimum latest completion time objective. For the remaining

tables presented in this section, we fix the maximum concurrency allowance as 5

which denotes the cardinality of Ω array. Determining each concurrency bound

from the interval [5, 10], we specify evenly spaced SIR bound values such that

Ω = [5. 6.25 7.5 8.75 10.] array is used in each instance. (δ, β) = (2.3, 2.5) and

radius = 1000 values are also fixed.

In this analysis, we test the performance of the formulations for minimum

distance values of 30 and 60; presented in Table 6.11 and Table 6.12 respectively.

In this analysis, we compare the LP relaxation of the flow model and LP flow

model including the added valid inequality as indicated in Section 4.3.2. Using

the minimum distance value as 30 in Table 6.13, and 60 in Table 6.14, we finally

demonstrate the results of the totally unimodular LP flow model and LP flow

model including the optimality cut as shown in Section 4.3.2.
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Table 6.11: Linear flow model and linear model with valid inequality performances

under multiple concurrency when maximum concurrency is 5; (δ, β) = (2.3, 2.5);

Ω = [5. 6.25 7.5 8.75 10.]; radius = 1000; minimum distance = 30

LP Flow Model LP Flow Model with

Valid Inequality

# of

STAs

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

200 288.00 1050 0.3786 288.00 1203 0.4750

201 289.60 1063 0.1742 289.95 1176 0.5299

202 322.80 1006 0.8253 322.80 1069 0.3755

203 315.60 1066 0.1773 315.60 1083 0.3377

204 305.52 1067 0.1897 305.57 1120 0.3534

205 326.60 1164 0.1914 326.70 1274 0.3589

206 313.00 976 0.1889 313.00 1126 0.3447

207 330.37 1144 0.1871 330.37 1254 0.6371

208 342.20 1047 0.3755 342.20 1146 0.4116

209 327.55 1086 0.1926 327.65 1255 0.3968

210 299.02 1052 0.2058 299.07 1242 0.4271

211 300.95 1106 0.4166 300.95 1204 0.4587

212 327.00 1030 0.2437 327.00 1138 0.4628

213 313.60 1215 0.2491 313.60 1295 0.6245

214 351.90 1146 0.2729 351.90 1030 0.4059

215 344.80 1080 0.1990 344.80 1163 0.3717

216 330.30 1156 0.2581 330.30 1341 0.4234

217 350.50 1109 0.2459 350.50 1273 0.4013

218 321.35 1144 0.2063 321.35 1215 0.3897

219 347.40 1215 0.2065 347.40 1362 0.4538

220 343.40 1115 0.2185 343.40 1255 0.3862
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Table 6.12: Linear flow model and linear model with valid inequality un-

der multiple concurrency when maximum concurrency is 5; (δ, β) = (2.3, 2.5);

Ω = [5. 6.25 7.5 8.75 10.]; radius = 1000; minimum distance = 60

LP Flow Model LP Flow Model with

Valid Inequality

# of

STAs

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

200 337.60 903 0.1503 337.60 1023 0.3783

201 306.05 1078 0.1696 306.25 1231 0.3556

202 291.00 970 0.1647 291.05 1073 0.3971

203 314.23 1091 0.3298 314.38 1175 0.3481

204 306.20 1100 0.2095 306.30 1204 0.3461

205 339.20 966 0.1949 339.20 1043 0.3433

206 320.00 1157 0.2477 320.15 1184 0.4383

207 329.40 998 0.2403 329.40 1102 0.4068

208 326.60 1062 0.2575 326.60 1153 0.5000

209 312.40 1027 0.2439 312.40 1125 0.4664

210 348.20 1171 0.2234 348.40 1258 0.4760

211 294.20 1036 0.1862 294.25 1131 0.4013

212 356.90 1119 0.2044 357.00 1293 0.4329

213 327.05 1165 0.3154 327.05 1235 0.4395

214 307.65 1106 0.2085 307.70 1258 0.4635

215 306.47 1099 0.1994 306.77 1252 0.3863

216 304.40 1040 0.2297 304.60 1230 0.5186

217 324.40 1073 0.4763 324.40 1133 0.4314

218 325.00 1067 0.2165 325.00 1202 0.4210

219 338.85 1169 0.3091 338.85 1337 0.3984

220 324.80 1126 0.2115 324.80 1185 0.5086
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Table 6.13: Linear totally unimodular flow model and linear flow model with

optimality cut performances when maximum concurrency is 5; (δ, β) = (2.3, 2.5);

Ω = [5. 6.25 7.5 8.75 10.]; radius = 1000; minimum distance = 30

Totally Unimodular LP

Flow Model

LP Flow Model with

Optimality Cut

# of

STAs

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

200 279.60 990 0.1721 279.60 1011 0.0996

201 291.15 983 0.1522 291.15 1024 0.0822

202 317.40 1088 0.1636 317.40 1047 0.0787

203 290.32 1082 0.1646 290.32 1115 0.0856

204 293.80 1035 0.1770 293.80 1059 0.1009

205 329.38 1088 0.4668 329.38 1063 0.0960

206 355.00 1141 0.1721 355.00 1139 0.1030

207 319.07 1115 0.1692 319.07 1099 0.0947

208 316.00 1065 0.1776 316.00 1162 0.1015

209 349.20 978 0.1708 349.20 927 0.0932

210 324.60 1040 0.1715 324.60 991 0.0902

211 322.20 1106 0.1901 322.20 1142 0.1051

212 307.80 1008 0.1847 307.80 1023 0.1045

213 388.65 1112 0.1960 388.65 1278 0.1115

214 350.43 1221 0.1979 350.43 1151 0.1047

215 355.00 1160 0.1899 355.00 1217 0.1123

216 314.60 1127 0.2003 314.60 1106 0.0998

217 315.18 1121 0.1905 315.18 1148 0.1027

218 312.25 1060 0.1799 312.25 1151 0.1041

219 318.85 1111 0.1998 318.85 1107 0.1057

220 349.60 1121 0.2017 349.60 1060 0.1013
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Table 6.14: Linear totally unimodular flow model and linear flow model with

optimality cut performances when maximum concurrency is 5; (δ, β) = (2.3, 2.5);

Ω = [5. 6.25 7.5 8.75 10.]; radius = 1000; minimum distance = 60

Totally Unimodular LP

Flow Model

LP Flow Model with

Optimality Cut

# of

STAs

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

Minimum

Makespan

# of

Iterations

CPU

Time

(s)

200 287.87 1100 0.1725 287.87 1058 0.3187

201 296.60 1057 0.1725 296.60 1020 0.1053

202 294.00 973 0.1655 294.00 973 0.0780

203 342.60 1116 0.3534 342.60 1134 0.1051

204 294.80 1052 0.1771 294.80 1034 0.0919

205 293.15 1106 0.2358 293.15 1106 0.1569

206 317.00 1042 0.1834 317.00 988 0.0928

207 307.00 1049 0.1912 307.00 1022 0.1445

208 315.60 1047 0.1718 315.60 1034 0.0930

209 334.67 1121 0.1801 334.67 1090 0.1024

210 312.77 1110 0.1922 312.77 1075 0.0971

211 328.40 971 0.1711 328.40 985 0.0980

212 343.60 1043 0.1781 343.60 1008 0.0915

213 324.53 1089 0.3246 324.53 1126 0.1015

214 312.00 1098 0.1794 312.00 1121 0.1033

215 349.60 1019 0.1787 349.60 1057 0.1058

216 319.05 1075 0.1802 319.05 1078 0.1028

217 345.18 1050 0.1963 345.18 1113 0.1127

218 324.20 1116 0.1962 324.20 1066 0.0988

219 313.58 1069 0.1983 313.58 1114 0.1152

220 336.80 1091 0.2331 336.80 1119 0.1031
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As it can be seen in Tables 6.11 - 6.14, number of stations can be above 200

when we solve LP formulations of the flow model. The maximum CPU time

observed among four of the formulations is 0.8253 seconds. As we expected, min-

imum latest completion time values increase when number of stations increase

since the total supply and demand values of stations also gets larger proportion-

ately. When we analyze the results in terms of number of iterations applied in

the solving process, we realize that even the maximum number among the four

tables is notably smaller than the average results of the instances we obtain from

the scheduling model with |S| ∈ [30, 50] seen in Tables 6.9 - 6.10.

Most of the results from the instances noted in Table 6.11 demonstrate that

LP flow model solves the problem slightly quicker than LP flow model with valid

inequality, when the minimum distance between stations is 30. We observe the

reverse only on the instance with |S| = 202 as the valid inequality model solves

0.3755 seconds whereas the other does 0.8253 seconds. Expectedly, number of

iterations in the valid inequality model is mostly larger since it includes larger

number of constraints in total. Additionally, we can infer from Tables 6.9 - 6.10

that the feasible region of the LP flow model does not narrow substantially when

we add the valid inequality because the CPU time and number of iterations differ-

ences between two models do not turn out to be large as the objective functions

are the same. For the minimum distance of 60 in Table 6.10, CPU times and

number of iterations do not differ much compared to results from the minimum

distance of 30; but there is a slight improvement in terms of the objective value.

This might be due to the fact that the increased distance between stations enables

more opportunity for concurrent transmissions with less interference issue which

reduces the minimum makespan value.

According to the results in Tables 6.13 - 6.14, added optimality cut to the

LP flow model decreases CPU time, which was expected since the model chooses

either xpkl
kl value to be positive or sets all xi

kl values to 0 for all 1 ≤ i ≤ pkl. It is

not surprising to see the optimal results of the totally unimodular and optimality

cut model to be the same since it was proved in Theorem 4.3.8. We also realize

the slight improvement in objective function value through the increased simulta-

neous transmissions with less interference issue when minimum distance between
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stations increases. However, since there is not much difference between optimal

results in Table 6.13 and 6.14, we can predict this behavior being dependent on

the radius value. Since radius is increased to 1000 in this analysis, stations can

be distributed uniformly with less density so that considerable interference is not

inspected even though their minimum distance among each other can be less in

Table 6.13.

6.3 Sensitivity Analysis

In order to measure the detailed effects of the parameter values and provide

managerial insights into the minimization of latest completion time problem, we

conduct sensitivity analysis in this section. We analyze the effects of R (circle

radius), d (minimum distance value between stations), δ (path loss exponent),

β (interference path loss exponent) on the optimal objective value, number of

iterations to solve the formulations, and solution time in terms of CPU seconds.

For this analysis, we consider multiple concurrency assumption when maxi-

mum concurrency allowance is 5 (|Ω| = 5), and fix Ω = [2. 4. 6. 8. 10.]. Since

we provide flow based formulations as our solution methodology for the multiple

concurrency assumption; we present the results of IP flow model, LP relaxation of

IP flow model and LP flow model including valid inequality. Those results can be

observed in Tables 6.15 - 6.19 where we update number of stations (|S|) from the

set {100, 200, 300, 400, 500} respectively. The remaining columns starting from

5th column in Tables 6.15 - 6.19 stand for the followings:

• z∗I → optimal objective value of IP flow model

• sI → number of iterations to solve IP flow model

• tI → CPU time in seconds to solve IP flow model

• z∗L → optimal objective value of LP flow model

• sL → number of iterations to solve LP flow model

• tL → CPU time in seconds to solve LP flow model
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• z∗V → optimal objective value of LP flow model with valid inequality

• sV → number of iterations to solve LP flow model with valid inequality

• tV → CPU time in seconds to solve LP flow model with valid inequality

In these tables, it can be observed that CPU time of IP flow model is usually

longer than LP flow formulations. IP flow model has the maximum duration

of 14.4392 seconds in CPU time for the instance of |S| = 500 when R = 1200,

d = 60 and the component vector (δ, β) = (3.0, 1.5) are chosen. LP flow has less

CPU time than the valid inequality model that is reasonable since valid inequality

model has more number of constraints. Expectedly, longer CPU times appear in

Table 6.19 where number of stations is maximum as 500. In addition, optimal

objective values are higher in large instances since total supply and demand values

increase in these instances. The difference between optimal objective values of

the formulations is more evident when |S| gets larger and LP flow model always

gives the maximum value. Valid inequality model is able to cut certain fractional

solutions when we observe the decrease in the optimal objective values from LP

flow model.

When we analyze the effects of the path loss and interference path loss compo-

nents, we realize that for the same δ values, larger β values lead better objective

values. When we check the SIR value calculation defined in Section 3.2, these

results verify that larger β values result in increase in number of concurrent

transmissions. For some instances, when β increases for the same δ value, the

objective might not improve such as for |S| = 100, R = 1200, d = 305; the objec-

tive remains 134.00 after β = 2.25, shown in Table 6.15. As our interpretation,

we can claim that the ratio of SIR values might exceed the last element of Ω

arrray in that case, and simultaneous transmissions are fully utilized to achieve

minimal makespan from that point. We also verify that larger δ value worsens

the objective. That is; when we increase δ from 7.5 to 18.75, even if the β values

increase, the increase in the objective is observed less compared to amount of

increase in objective that changing δ from 3.0 to 7.5 results in. Since ratio of δ

value increment is higher than ratio of β increment, objective improves less as we

expected. CPU times demonstrate very similar results, but mostly solving time
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takes slightly longer when vector component values increase.

Minimum distance between stations gives better optimal results when d = 60

compared to d = 30. In Tables 6.15 - 6.19, for the same component vector (δ, β),

increasing the minimum distance leads to increase in the objective values of all

the formulations. That is why we can verify that interference issue is less observed

when stations are more distant from each other, so that they can take advantage

of the simultaneous transmissions. Despite the closeness in CPU times, there has

been slight increase in the duration when minimum distance is increased from 30

to 60.

Circle radius R is increased from 1100 to 1300 with increments of 100, for each

|S| values indicated in Tables 6.15 - 6.19. As expected, larger radius values lead

to improvement in the objective value since stations can be distributed uniformly

with more space that sets them apart from each other. The impact of increase in

R on the objective is relatively lower when the minimum distance between sta-

tions is 60 than 30, because stations are able to utilize the advantage of increase

in network area when the minimum required distance between them is smaller.

For all of the flow formulations, CPU times increase as the radius gets larger.

It may depend on the increased possibilities for the stations to use simultane-

ous transmission chance when the total area they are uniformly distributed gets

larger.

Number of iterations to solve the models is larger when R, d and (δ, β) values

increase for most of the instances. However, when |S| ∈ {200, 300, 400}, the

number of iterations is maximum for the minimum radius value of 1100. These

instances can be observed in Tables 6.15 - 6.17. We cannot conclude a direct

relation between |S| value and number of iterations since when |S| increases; for
the fixed values for the other parameters, number of iterations can both increase

and decrease depending on the instance. This can be due to fluctuating changes

in total supply and demand values. As we expected, IP flow model has more

number of iterations than other formulations, and LP flow model has less number

of iterations than valid inequality model. Since same difference is inspected among

CPU times of the models, iteration results are also indicator of performances.
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Table 6.15: Sensitivity analysis on flow models with |S| = 100,Ω = [2. 4. 6. 8. 10.]

R d δ β z∗I sI tI z∗L sL tL z∗V sV tV

1100

30

3.000
1.500 0.00 0 0.0006 0.00 0 0.0006 0.00 0 0.0006

2.250 78.00 579 0.0962 79.93 6 0.0015 79.93 198 0.0027

7.500
3.375 78.00 579 0.0496 79.93 6 0.0017 79.93 198 0.0025

5.062 78.00 579 0.0501 79.93 6 0.0014 79.93 198 0.0026

18.750
7.594 78.00 579 0.0667 79.93 6 0.0021 79.93 198 0.0027

11.391 78.00 579 0.0472 79.93 6 0.0015 79.93 198 0.0025

60

3.000
1.500 78.00 579 0.0504 79.93 6 0.0015 79.93 198 0.0025

2.250 105.00 726 0.0571 107.43 13 0.0014 107.43 256 0.0027

7.500
3.375 105.00 726 0.0553 107.43 13 0.0014 107.43 256 0.0029

5.062 106.00 647 0.0487 107.97 10 0.0014 107.97 248 0.0028

18.750
7.594 106.00 647 0.0632 107.97 10 0.0014 107.97 248 0.0030

11.391 116.00 906 0.0701 118.77 12 0.0018 118.77 277 0.0034

1200

30

3.000
1.500 116.00 906 0.0709 118.77 12 0.0018 118.77 277 0.0034

2.250 134.00 1029 0.0895 137.57 17 0.0017 137.57 332 0.0041

7.500
3.375 134.00 1029 0.0895 137.57 17 0.0019 137.57 332 0.0043

5.062 134.00 1029 0.0983 137.57 17 0.0017 137.57 332 0.0042

18.750
7.594 134.00 1029 0.1119 137.57 17 0.0022 137.57 332 0.0054

11.391 134.00 1029 0.1534 137.57 17 0.0019 137.57 332 0.0051

60

3.000
1.500 134.00 1029 0.0995 137.57 17 0.0019 137.57 332 0.0050

2.250 208.00 1195 0.1053 212.07 70 0.0023 212.07 390 0.0049

7.500
3.375 208.00 1195 0.0942 212.07 70 0.0024 212.07 390 0.0050

5.062 208.00 1195 0.0961 212.07 70 0.0022 212.07 390 0.0051

18.750
7.594 208.00 1195 0.0925 212.07 70 0.0022 212.07 390 0.0051

11.391 208.00 1195 0.0944 212.07 70 0.0024 212.07 390 0.0052

1300

30

3.000
1.500 208.00 1195 0.0970 212.07 70 0.0022 212.07 390 0.0051

2.250 220.00 1639 0.1303 224.67 29 0.0027 224.67 607 0.0070

7.500
3.375 220.00 1639 0.1561 224.67 29 0.0022 224.67 607 0.0068

5.062 242.00 1529 0.1477 247.17 32 0.0023 247.17 573 0.0071

18.750
7.594 242.00 1529 0.1575 247.17 32 0.0024 247.17 573 0.0076

11.391 242.00 1529 0.1387 247.17 32 0.0028 247.17 573 0.0069

60

3.000
1.500 242.00 1529 0.1311 247.17 32 0.0021 247.17 573 0.0068

2.250 261.00 1477 0.1371 266.17 35 0.0021 266.17 571 0.0074

7.500
3.375 261.00 1477 0.1317 266.17 35 0.0021 266.17 571 0.0066

5.062 264.00 1764 0.1353 269.62 36 0.0027 269.62 564 0.0068

18.750
7.594 264.00 1764 0.1615 269.62 36 0.0026 269.62 564 0.0069

11.391 264.00 1764 0.1495 269.62 36 0.0023 269.62 564 0.0072
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Table 6.16: Sensitivity analysis on flow models with |S| = 200,Ω = [2. 4. 6. 8. 10.]

R d δ β z∗I sI tI z∗L sL tL z∗V sV tV

1100

30

3.000
1.500 0.00 0 0.0006 0.00 0 0.0005 0.00 0 0.0006

2.250 101.00 510 0.0195 101.67 10 0.0016 101.67 450 0.0038

7.500
3.375 101.00 510 0.0334 101.67 10 0.0016 101.67 450 0.0045

5.062 192.00 1765 0.0844 194.37 16 0.0029 194.37 784 0.0136

18.750
7.594 192.00 1765 0.0866 194.37 16 0.0030 194.37 784 0.0149

11.391 224.00 2071 0.1002 226.77 18 0.0054 226.77 1315 0.0200

60

3.000
1.500 224.00 2071 0.1215 226.77 18 0.0060 226.77 1315 0.0211

2.250 318.00 2804 0.1747 322.02 27 0.0073 321.93 1630 0.0255

7.500
3.375 318.00 2804 0.1735 322.02 27 0.0064 321.93 1630 0.0291

5.062 329.00 3150 0.1727 333.68 28 0.0068 333.60 1771 0.0284

18.750
7.594 329.00 3150 0.1721 333.68 28 0.0080 333.60 1771 0.0376

11.391 329.00 3150 0.2023 333.68 28 0.0070 333.60 1771 0.0269

1200

30

3.000
1.500 329.00 3150 0.1693 333.68 28 0.0144 333.60 1771 0.0275

2.250 380.00 3073 0.1879 385.35 37 0.0075 385.27 1901 0.0299

7.500
3.375 380.00 3073 0.2109 385.35 37 0.0080 385.27 1901 0.0294

5.062 427.00 77 0.2955 433.21 44 0.0109 433.12 2287 0.0412

18.750
7.594 427.00 77 0.2840 433.21 44 0.0106 433.12 2287 0.0409

11.391 427.00 77 0.2946 433.21 44 0.0132 433.12 2287 0.0426

60

3.000
1.500 427.00 77 0.3167 433.21 44 0.0111 433.12 2287 0.0447

2.250 490.00 94 0.3412 498.26 57 0.0113 498.17 2803 0.0534

7.500
3.375 490.00 94 0.3355 498.26 57 0.0112 498.17 2803 0.0535

5.062 540.00 119 0.5213 549.41 67 0.0130 549.33 3190 0.0636

18.750
7.594 540.00 119 0.5219 549.41 67 0.0135 549.33 3190 0.0661

11.391 572.00 80 0.4290 581.81 50 0.0137 581.73 47 0.0248

1300

30

3.000
1.500 572.00 80 0.4422 581.81 50 0.0151 581.73 47 0.0244

2.250 606.00 88 0.4096 616.51 50 0.0133 616.42 48 0.0271

7.500
3.375 606.00 88 0.4274 616.51 50 0.0143 616.42 48 0.0258

5.062 630.00 95 0.5303 641.41 52 0.0144 641.33 51 0.0286

18.750
7.594 662.00 101 0.6185 673.81 53 0.0185 673.72 53 0.0270

11.391 675.00 101 0.6023 686.61 55 0.0189 686.52 54 0.0312

60

3.000
1.500 675.00 101 0.6157 686.61 55 0.0161 686.52 54 0.0315

2.250 712.00 105 0.5374 723.17 60 0.0163 723.09 59 0.0299

7.500
3.375 712.00 105 0.5005 723.17 60 0.0168 723.09 59 0.0316

5.062 756.00 112 0.5804 768.17 65 0.0189 768.09 64 0.0338

18.750
7.594 756.00 112 0.5686 768.17 65 0.0187 768.09 64 0.0335

11.391 783.00 114 0.8502 795.17 76 0.0194 795.09 65 0.0373
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Table 6.17: Sensitivity analysis on flow models with |S| = 300,Ω = [2. 4. 6. 8. 10.]

R d δ β z∗I sI tI z∗L sL tL z∗V sV tV

1100

30

3.000
1.500 0.00 0 0.0007 0.00 0 0.0006 0.00 0 0.0008

2.250 110.00 1166 0.0777 112.07 8 0.0042 112.07 1066 0.0117

7.500
3.375 110.00 1166 0.0703 112.07 8 0.0032 112.07 1066 0.0106

5.062 201.00 2726 0.1882 205.33 607 0.0192 205.33 1638 0.0275

18.750
7.594 201.00 2726 0.1879 205.33 607 0.0202 205.33 1638 0.0293

11.391 222.00 2781 0.2047 226.93 511 0.0171 226.93 1659 0.0329

60

3.000
1.500 243.00 2743 0.2398 248.53 27 0.0102 248.53 1886 0.0363

2.250 353.00 45 0.6755 359.82 32 0.0143 359.82 27 0.0239

7.500
3.375 353.00 45 0.6845 359.82 32 0.0341 359.82 27 0.0261

5.062 415.00 50 0.6667 422.22 34 0.0149 422.22 34 0.0275

18.750
7.594 415.00 50 0.6888 422.22 34 0.0148 422.22 34 0.0264

11.391 420.00 51 0.7785 427.22 35 0.0179 427.22 35 0.0277

1200

30

3.000
1.500 420.00 51 0.7206 427.22 35 0.0247 427.22 35 0.0266

2.250 458.00 55 0.7169 465.22 39 0.0160 465.22 38 0.0277

7.500
3.375 458.00 55 0.6885 465.22 39 0.0166 465.22 38 0.0287

5.062 458.00 55 0.7758 465.22 39 0.0161 465.22 38 0.0279

18.750
7.594 458.00 55 0.7984 465.22 39 0.0156 465.22 38 0.0282

11.391 458.00 55 0.6997 465.22 39 0.0151 465.22 38 0.0317

60

3.000
1.500 458.00 55 0.6832 465.22 39 0.0155 465.22 38 0.0288

2.250 529.00 62 0.5205 536.73 48 0.0198 536.73 48 0.0436

7.500
3.375 529.00 62 0.5150 536.73 48 0.0208 536.73 48 0.0370

5.062 582.00 69 0.5620 590.23 52 0.0209 590.23 52 0.0414

18.750
7.594 582.00 69 0.5551 590.23 52 0.0204 590.23 52 0.0369

11.391 607.00 71 0.7384 616.34 55 0.0234 616.34 53 0.0423

1300

30

3.000
1.500 607.00 71 0.7162 616.34 55 0.0228 616.34 53 0.0432

2.250 683.00 76 0.8600 692.14 63 0.0300 692.14 58 0.0530

7.500
3.375 683.00 76 0.8254 692.14 63 0.0311 692.14 58 0.0490

5.062 753.00 83 0.8034 763.41 71 0.0265 763.41 70 0.0547

18.750
7.594 753.00 83 0.8782 763.41 71 0.0316 763.41 70 0.0533

11.391 788.00 97 0.9943 799.71 73 0.0293 799.71 73 0.0547

60

3.000
1.500 788.00 97 0.9601 799.71 73 0.0297 799.71 73 0.0677

2.250 871.00 110 1.3737 883.51 83 0.0344 883.51 80 0.0593

7.500
3.375 871.00 110 1.1667 883.51 83 0.0356 883.51 80 0.0607

5.062 913.00 132 1.2219 926.72 86 0.0336 926.72 83 0.0694

18.750
7.594 913.00 132 1.2507 926.72 86 0.0356 926.72 83 0.0676

11.391 914.00 129 1.2497 927.42 86 0.0335 927.42 83 0.0664
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Table 6.18: Sensitivity analysis on flow models with |S| = 400,Ω = [2. 4. 6. 8. 10.]

R d δ β z∗I sI tI z∗L sL tL z∗V sV tV

1100

30

3.000
1.500 0.00 0 0.0008 0.00 0 0.0006 0.00 0 0.0008

2.250 164.00 2244 0.3013 165.40 25 0.0065 165.40 1179 0.0202

7.500
3.375 164.00 2244 0.2394 165.40 25 0.0069 165.40 1179 0.0212

5.062 278.00 2737 0.9802 279.80 40 0.0201 279.80 1169 0.0410

18.750
7.594 278.00 2737 1.0588 279.80 40 0.0143 279.80 1169 0.0575

11.391 292.00 32 1.6213 294.20 29 0.0198 294.20 30 0.0270

60

3.000
1.500 292.00 32 1.2151 294.20 29 0.0359 294.20 30 0.0272

2.250 461.00 49 3.2797 464.81 44 0.0275 464.81 42 0.0443

7.500
3.375 461.00 49 2.8402 464.81 44 0.0216 464.81 42 0.0385

5.062 512.00 55 2.4272 517.11 49 0.0248 517.11 48 0.0453

18.750
7.594 537.00 57 2.4230 542.31 50 0.0260 542.31 50 0.0480

11.391 581.00 62 3.1276 587.38 54 0.0303 587.38 53 0.0537

1200

30

3.000
1.500 588.00 64 2.5981 594.88 55 0.0300 594.88 53 0.0528

2.250 695.00 77 2.6797 703.08 66 0.0331 703.08 65 0.0658

7.500
3.375 729.00 80 3.0053 737.28 69 0.0436 737.28 67 0.0885

5.062 787.00 87 3.5579 795.78 75 0.0554 795.78 73 0.0990

18.750
7.594 787.00 87 3.2344 795.78 75 0.0455 795.78 73 0.0954

11.391 817.00 89 3.1530 825.78 78 0.0480 825.78 76 0.0890

60

3.000
1.500 817.00 89 3.0008 825.78 78 0.0440 825.78 76 0.0875

2.250 927.00 99 3.2457 937.62 86 0.0554 937.58 85 0.0982

7.500
3.375 927.00 99 3.2440 937.62 86 0.0508 937.58 85 0.1020

5.062 982.00 104 3.5226 993.42 93 0.0530 993.38 92 0.1045

18.750
7.594 982.00 104 3.4244 993.42 93 0.0541 993.38 92 0.1072

11.391 995.00 105 3.3330 1006.62 98 0.0597 1006.58 95 0.1097

1300

30

3.000
1.500 995.00 105 3.3011 1006.62 98 0.0577 1006.58 95 0.1045

2.250 1043.00 106 3.1946 1054.62 103 0.0539 1054.58 98 0.1053

7.500
3.375 1043.00 106 3.1840 1054.62 103 0.0617 1054.58 98 0.1033

5.062 1152.00 140 4.3744 1166.22 120 0.0673 1166.18 113 0.1258

18.750
7.594 1152.00 140 4.3432 1166.22 120 0.0700 1166.18 113 0.1479

11.391 1175.00 136 4.7937 1189.62 121 0.1143 1189.58 114 0.1304

60

3.000
1.500 1175.00 136 4.5027 1189.62 121 0.0657 1189.58 114 0.1322

2.250 1300.00 164 3.2703 1317.12 139 0.0657 1317.08 133 0.1262

7.500
3.375 1300.00 164 3.1292 1317.12 139 0.0637 1317.08 133 0.1215

5.062 1368.00 183 3.5644 1387.32 146 0.0831 1387.28 140 0.1512

18.750
7.594 1391.00 191 3.4829 1410.72 149 0.0767 1410.68 145 0.1386

11.391 1418.00 200 3.6451 1437.72 151 0.0735 1437.68 146 0.1438
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Table 6.19: Sensitivity analysis on flow models with |S| = 500,Ω = [2. 4. 6. 8. 10.]

R d δ β z∗I sI tI z∗L sL tL z∗V sV tV

1100

30

3.000
1.500 0.00 0 0.0008 0.00 0 0.0007 0.00 0 0.0007

2.250 176.00 38 0.9552 178.93 25 0.0124 178.93 1724 0.0429

7.500
3.375 176.00 38 0.9501 178.93 25 0.0121 178.93 1724 0.0421

5.062 279.00 28 1.0663 283.53 24 0.0188 283.53 22 0.0327

18.750
7.594 292.00 30 0.9734 296.87 25 0.0202 296.87 23 0.0341

11.391 357.00 36 1.1306 362.87 30 0.0213 362.87 29 0.0380

60

3.000
1.500 382.00 37 1.1702 387.87 31 0.0214 387.87 31 0.0398

2.250 552.00 52 1.3983 558.87 41 0.0291 558.87 42 0.0531

7.500
3.375 552.00 52 1.3898 558.87 41 0.0291 558.87 42 0.0512

5.062 644.00 59 1.4905 651.52 47 0.0313 651.52 47 0.0617

18.750
7.594 644.00 59 1.4914 651.52 47 0.0320 651.52 47 0.0604

11.391 730.00 68 1.7817 737.92 57 0.0369 737.92 53 0.0716

1200

30

3.000
1.500 730.00 68 1.7391 737.92 57 0.0371 737.92 53 0.0695

2.250 911.00 88 1.9749 919.78 70 0.0445 919.78 66 0.0932

7.500
3.375 911.00 88 2.0066 919.78 70 0.0456 919.78 66 0.0898

5.062 912.00 93 12.6370 921.18 72 0.0533 921.18 66 0.0917

18.750
7.594 914.00 93 13.7083 923.18 73 0.0502 923.18 66 0.0963

11.391 914.00 93 13.9706 923.18 73 0.0682 923.18 66 0.1091

60

3.000
1.500 914.00 93 14.4392 923.18 73 0.0678 923.18 66 0.1079

2.250 1007.00 106 8.4772 1017.38 79 0.0566 1017.38 74 0.1145

7.500
3.375 1007.00 106 8.4629 1017.38 79 0.0558 1017.38 74 0.1117

5.062 1120.00 129 8.4709 1132.28 89 0.0635 1132.28 80 0.1233

18.750
7.594 1120.00 129 8.5921 1132.28 89 0.0625 1132.28 80 0.1214

11.391 1150.00 131 8.6979 1162.88 91 0.0667 1162.88 81 0.1450

1300

30

3.000
1.500 1167.00 132 9.4377 1179.88 92 0.0738 1179.88 82 0.1393

2.250 1276.00 149 9.8221 1289.68 102 0.0841 1289.68 93 0.1453

7.500
3.375 1276.00 149 9.4149 1289.68 102 0.0730 1289.68 93 0.1419

5.062 1371.00 164 10.2483 1385.28 119 0.0974 1385.28 106 0.1592

18.750
7.594 1371.00 164 9.7240 1385.28 119 0.0816 1385.28 106 0.1582

11.391 1401.00 168 9.7963 1415.88 125 0.0895 1415.88 112 0.1575

60

3.000
1.500 1401.00 168 9.9129 1415.88 125 0.0910 1415.88 112 0.1748

2.250 1549.00 206 10.8379 1565.02 143 0.0959 1565.02 126 0.1661

7.500
3.375 1567.00 208 10.4934 1583.02 148 0.1041 1583.02 131 0.1716

5.062 1660.00 229 10.7196 1677.22 160 0.1030 1677.22 140 0.1814

18.750
7.594 1660.00 229 10.6213 1677.22 160 0.0995 1677.22 140 0.2010

11.391 1672.00 233 10.9266 1689.82 161 0.1040 1689.82 141 0.1796
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Chapter 7

Conclusion and Future Work

In this study, we examine simultaneous receive and transmit operations in wireless

networks to provide an optimization methodology for the node selection process

of the access point in unidirectional full duplex transmissions. Assessing the prob-

lem under both single and multiple concurrency assumption in terms of number

of signal transmissions in single timeslot, we consider minimization of latest com-

pletion time of all transmissions and minimization of total tardiness objectives

throughout this thesis.

Two opposite directions of signal transmissions are interpreted as supply and

demand flow requirements of stations. In our solution methodology, we embrace

scheduling and matching based formulations to find minimum latest completion

time. From the scheduling perspective, assignment of supply and demands to

the timeslots principle is followed where we only consider single concurrency as-

sumption. Scheduling based MILP model is formulated and greedy heuristics

that outputs initial latest completion time is developed. Result of the heuris-

tics is then used as an upper bound parameter for the number of timeslots in

the model. Under single concurrency assumption, matching based framework is

considered where each matched edge between disjoint supply and demand sets

represents simultaneous transmission between two non-interfering stations. Based
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on bipartite matching, LP model is formulated and it gives integer optimal so-

lution due to totally unimodular structure of constraint matrix. Hopcroft-Karp

algorithm for bipartite matching in the literature is applied to our problem to

achieve minimum makespan and it leads optimal results.

In order to get the multiple concurrency involved in our problem, we developed

flow based formulations. IP flow model for multiple concurrency is provided

with the objective of the maximization of concurrent transmissions which brings

out the minimum makespan. Analyzing the properties of LP relaxation of the

flow model, we proved certain patterns for extreme points in the feasible region.

As a result, we proved a valid inequality for the flow model and also found an

optimality cut. Afterwards, we provided equivalent LP relaxation flow model

which has totally unimodular structure finding integer optimal results. Flow

based formulation is observed to be applicable to any maximum concurrency size

in n ∈ Z+.

For the minimum total tardiness objective with single concurrency assumption,

we introduce the deadline restriction to complete transmissions for each station

in the network. We use scheduling based formulation and prove that minimum

tardiness problem with single concurrency assumption is NP-complete. In addi-

tion, we propose an algorithm for this objective which is based on priority criteria

that sorts the stations from first to last to be served by the access point.

In our computational study, we provide detailed comparison between all the

algorithms and formulations in terms of their CPU times required for solution

and also the objective values they yielded. Experiments indicate that flow based

formulation outperforms other formulations in terms of its multiple concurrency

extension and smaller CPU times. In addition, we conduct sensitivity analysis

on flow based formulations when maximum concurrency allowance is 5. These

analyses enable us to understand the effect of each parameter on the resulting

objective values and CPU times of solution methodologies.

Future research of this study could be the analysis for the performance of

the formulations when the data points for the station locations are not uniformly
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distributed different than our assumption in this study. In addition, more efficient

algorithms for minimum tardiness objective that can yield better results within

shorter computation times could be developed for this problem.
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Table A.1: MIP Scheduling Model Results of 50 Instances

Parameter Values Scheduling Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω
Value

Max # of
Timeslots

CPU
Time
(s)

MIP
Gap
(%)

Iteration
Count

Best
Bound

Obj.
Value

Improved
(%)

13 643 169.37 3.97 6.25 23.52 59 0.08 0.00 1350 35.0 35.0 40.68
15 694 102.08 3.18 3.90 23.49 75 0.18 0.00 3043 39.0 39.0 48.00
11 689 80.62 2.71 3.76 17.28 57 0.05 0.00 915 30.0 30.0 47.37
19 855 50.04 4.72 5.25 9.71 79 0.23 0.00 158 41.0 41.0 48.10
14 778 187.29 2.80 3.15 28.61 74 0.53 0.00 4710 42.0 42.0 43.24
20 525 156.77 4.09 9.09 20.38 96 0.24 0.00 31 50.0 50.0 47.92
20 722 137.35 3.78 4.21 8.13 102 0.28 0.00 31 51.0 51.0 50.00
19 742 114.56 3.19 6.56 15.31 98 0.23 0.00 30 50.0 50.0 48.98
20 716 140.03 2.22 4.17 5.12 101 0.38 0.00 760 51.0 51.0 49.50
18 795 50.60 3.71 8.81 13.12 86 0.17 0.00 29 47.0 47.0 45.35
13 967 164.32 3.45 6.18 9.87 68 0.08 0.00 1240 37.0 37.0 45.59
15 716 65.17 4.51 4.96 16.16 60 0.10 0.00 1392 31.0 31.0 48.33
11 781 56.74 1.24 6.45 8.34 52 0.07 0.00 877 31.0 31.0 40.38
11 702 61.09 4.54 3.60 6.83 57 0.12 0.00 1805 57.0 57.0 0.00
17 780 79.54 4.96 2.53 14.64 82 0.33 0.00 51 82.0 82.0 0.00
16 812 59.65 2.60 2.88 8.65 78 1.10 0.00 5867 40.0 40.0 48.72
17 978 119.21 1.44 8.51 12.60 94 0.16 0.00 27 50.0 50.0 46.81
19 564 116.57 4.52 1.58 29.44 100 0.52 0.00 1505 100.0 100.0 0.00
11 512 61.56 1.22 6.47 12.98 57 0.06 0.00 661 29.0 29.0 49.12
18 787 65.39 3.25 1.04 22.97 99 0.57 0.00 2948 99.0 99.0 0.00
16 600 165.74 1.37 1.05 8.87 88 0.29 0.00 53 88.0 88.0 0.00
11 729 135.85 3.23 5.07 8.75 53 0.05 0.00 835 28.0 28.0 47.17
10 637 92.86 2.98 3.33 8.31 46 0.10 0.00 1720 24.0 24.0 47.83
17 909 50.80 4.91 7.31 14.26 82 0.22 0.00 2571 41.0 41.0 50.00
17 998 55.95 2.53 7.38 14.63 90 0.15 0.00 30 50.0 50.0 44.44
16 545 171.37 4.91 6.86 20.41 76 0.12 0.00 1497 40.0 40.0 47.37
19 881 191.54 3.92 9.69 12.34 96 0.34 0.00 809 48.0 48.0 50.00
17 868 67.48 1.45 9.89 10.63 74 0.14 0.00 1868 39.0 39.0 47.30
17 617 123.71 4.37 7.16 24.16 83 0.14 0.00 28 44.0 44.0 46.99
14 976 199.30 1.85 4.33 23.84 66 0.08 0.00 1252 35.0 35.0 46.97
11 529 184.43 2.92 4.07 8.13 56 0.06 0.00 907 31.0 31.0 44.64
11 665 90.00 3.91 6.27 12.11 58 0.05 0.00 872 32.0 32.0 44.83
17 519 154.45 2.87 9.20 5.83 74 0.11 0.00 1704 40.0 40.0 45.95
18 604 94.52 3.43 7.40 27.98 100 0.16 0.00 30 51.0 51.0 49.00
20 935 128.00 3.53 3.51 6.55 99 10.27 0.00 37923 58.0 58.0 41.41
10 900 66.87 3.79 3.23 29.78 49 0.08 0.00 1290 49.0 49.0 0.00
15 619 107.69 1.95 8.54 17.15 82 0.17 0.00 1744 43.0 43.0 47.56
12 703 115.08 2.16 1.18 13.34 62 0.13 0.00 1726 62.0 62.0 0.00
11 976 198.70 3.61 9.45 14.87 45 0.05 0.00 622 23.0 23.0 48.89
13 599 103.14 4.57 8.44 13.65 57 0.07 0.00 1025 30.0 30.0 47.37
15 923 82.59 2.37 3.80 5.37 74 0.13 0.00 2005 38.0 38.0 48.65
20 730 112.85 4.09 6.11 20.34 99 0.19 0.00 33 50.0 50.0 49.49
13 686 128.23 3.94 7.44 13.69 55 0.06 0.00 1114 30.0 30.0 45.45
19 667 81.75 2.97 1.53 17.14 95 0.61 0.00 2965 95.0 95.0 0.00
15 898 178.92 1.86 6.37 16.88 66 0.09 0.00 1318 35.0 35.0 46.97
19 859 132.88 4.03 6.04 19.11 91 0.19 0.00 36 46.0 46.0 49.45
15 618 56.91 3.33 8.53 23.07 78 0.12 0.00 2047 42.0 42.0 46.15
20 689 184.22 3.34 9.17 11.57 95 0.18 0.00 2080 48.0 48.0 49.47
13 604 111.63 1.81 5.24 9.38 72 0.08 0.00 1476 39.0 39.0 45.83
10 991 52.26 3.75 8.07 14.11 47 0.04 0.00 667 25.0 25.0 46.81
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Table A.2: Scheduling Model and Algorithm Comparison of 50 Instances

Parameter Values Algorithm Results Scheduling Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω
Value

Max
Timeslot
Number

Soln.
Value

Improved
From
Max
(%)

Soln.
Time
(s)

CPU
Time
(s)

Iter.
Count

Obj.
Value

Improved
From
Max
(%)

8 1597 47.01 4.17 9.11 19.89 32 20 37.50 0.0001 0.02 354 20.0 37.50
8 949 39.52 3.11 2.68 26.35 37 37 0.00 0.0000 0.05 774 37.0 0.00
13 1197 61.87 4.31 5.33 13.91 69 39 43.48 0.0003 0.12 1241 37.0 46.38
14 998 57.60 4.35 1.36 27.97 78 78 0.00 0.0004 0.19 47 78.0 0.00
5 1690 43.33 4.37 8.36 28.52 26 18 30.77 0.0001 0.02 298 14.0 46.15
28 1350 41.57 2.45 9.46 25.19 143 78 45.45 0.0006 0.57 1481 78.0 45.45
22 1917 60.84 1.96 8.51 26.61 91 50 45.05 0.0004 0.24 304 47.0 48.35
18 1754 62.93 2.94 3.92 16.13 90 48 46.67 0.0002 0.16 28 47.0 47.78
12 710 33.94 1.17 1.93 29.51 61 32 47.54 0.0002 0.05 788 31.0 49.18
27 1879 33.02 3.23 4.51 18.77 135 74 45.19 0.0005 0.55 2216 72.0 46.67
10 1621 34.55 3.92 6.56 25.20 37 22 40.54 0.0002 0.04 634 20.0 45.95
21 943 58.64 3.10 8.52 14.71 101 55 45.54 0.0005 0.22 34 52.0 48.51
8 1501 64.50 2.99 2.38 20.98 43 39 9.30 0.0001 0.05 948 39.0 9.30
6 1805 50.07 2.45 1.84 5.06 36 36 0.00 0.0001 0.04 642 36.0 0.00
29 608 38.11 2.81 3.85 24.92 156 83 46.79 0.0006 0.89 3727 82.0 47.44
20 731 58.59 4.57 1.16 17.56 103 103 0.00 0.0001 0.68 2070 103.0 0.00
21 1008 37.44 4.96 5.29 11.35 92 56 39.13 0.0003 0.29 31 48.0 47.83
15 1879 49.10 2.45 9.08 14.94 75 42 44.00 0.0002 0.09 1303 42.0 44.00
26 621 68.99 1.90 9.34 15.42 129 69 46.51 0.0005 0.34 39 66.0 48.84
12 1831 38.27 1.32 3.17 6.34 61 37 39.34 0.0001 0.06 1062 35.0 42.62
24 957 51.36 2.03 6.72 9.77 111 60 45.95 0.0005 0.28 36 57.0 48.65
12 1511 67.43 1.13 2.87 28.79 65 38 41.54 0.0001 0.06 1032 35.0 46.15
6 1492 50.85 4.66 2.75 9.44 36 36 0.00 0.0001 0.03 623 36.0 0.00
27 1988 47.62 2.66 8.89 7.65 153 86 43.79 0.0005 0.66 1808 81.0 47.06
28 806 59.27 2.42 2.23 15.61 130 128 1.54 0.0003 1.81 2304 128.0 1.54
27 1715 45.55 2.78 9.38 24.25 143 77 46.15 0.0005 0.41 41 74.0 48.25
6 1376 42.80 1.98 1.54 28.13 29 29 0.00 0.0001 0.03 581 29.0 0.00
5 1401 43.22 1.80 1.63 23.83 30 30 0.00 0.0001 0.02 429 30.0 0.00
20 1683 66.54 3.85 3.46 21.71 101 95 5.94 0.0002 0.83 3240 95.0 5.94
5 1203 49.34 2.62 6.18 6.71 27 18 33.33 0.0001 0.02 273 14.0 48.15
18 1497 53.09 4.87 2.52 27.41 84 84 0.00 0.0002 0.36 47 84.0 0.00
24 1307 46.82 1.90 1.82 15.83 117 117 0.00 0.0003 1.36 2170 117.0 0.00
6 745 66.85 2.22 6.01 20.46 23 13 43.48 0.0001 0.01 147 13.0 43.48
14 1002 43.95 3.88 3.93 16.55 69 51 26.09 0.0002 0.72 4267 48.0 30.43
11 686 64.96 3.99 9.46 10.80 48 27 43.75 0.0005 0.06 706 27.0 43.75
26 1909 47.65 1.91 4.29 22.65 131 71 45.80 0.0009 0.47 38 69.0 47.33
27 1088 50.00 3.09 7.42 19.65 129 67 48.06 0.0007 0.48 41 67.0 48.06
16 1465 60.43 3.34 7.99 21.71 72 40 44.44 0.0003 0.14 1677 40.0 44.44
12 897 49.59 2.80 5.37 29.67 50 29 42.00 0.0004 0.06 898 29.0 42.00
9 1848 50.86 3.68 8.95 9.04 50 34 32.00 0.0001 0.08 845 26.0 48.00
15 1091 39.66 3.78 1.79 6.40 73 73 0.00 0.0002 0.24 46 73.0 0.00
19 1973 60.01 3.80 9.99 9.74 94 49 47.87 0.0003 0.18 2010 47.0 50.00
10 1631 69.08 4.23 5.24 9.62 47 26 44.68 0.0002 0.05 696 26.0 44.68
29 1924 59.79 3.44 2.88 21.77 154 154 0.00 0.0003 1.78 1069 154.0 0.00
9 1712 64.05 4.57 9.43 12.68 49 27 44.90 0.0001 0.04 733 27.0 44.90
9 511 57.16 2.07 9.54 23.51 61 38 37.70 0.0001 0.06 725 31.0 49.18
29 970 66.63 2.07 5.33 14.47 150 78 48.00 0.0008 0.84 2113 77.0 48.67
12 1548 65.65 3.31 3.22 9.26 58 49 15.52 0.0002 0.31 2365 45.0 22.41
21 1074 45.68 2.90 9.68 28.64 108 56 48.15 0.0005 0.45 1202 54.0 50.00
9 906 34.00 3.41 5.58 25.36 48 31 35.42 0.0002 0.07 653 26.0 45.83
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Table A.3: LP Matching Model Results of 50 Instances

Parameter Values Matching Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω
Value

Sup.
Nodes

Dem.
Nodes

Feasible
Arcs

Arc
Ratio
(%)

CPU
Time
(s)

Matched
Pairs

Not
Matched

Obj.
Value

78 837 49.67 3.34 6.65 20.27 190 189 35456 98.74 0.0681 189.0 1.0 190.0
39 772 61.90 4.73 7.01 22.92 107 105 10880 96.84 0.0195 105.0 2.0 107.0
80 721 34.92 1.61 1.24 27.40 188 193 0 0.00 0.0006 0 381 381.0
81 643 33.66 3.99 9.38 17.11 230 198 44957 98.72 0.0828 198.0 32.0 230.0
22 1802 38.39 2.66 6.39 17.79 50 51 2429 95.25 0.0061 50.0 1.0 51.0
38 1327 47.41 1.97 7.75 19.79 87 94 7963 97.37 0.0163 87.0 7.0 94.0
37 1648 33.54 1.65 3.46 22.24 94 80 7312 97.23 0.0171 80.0 14.0 94.0
40 1910 48.44 2.54 4.74 22.86 110 102 10926 97.38 0.0230 102.0 8.0 110.0
89 1753 60.78 2.88 2.21 14.01 233 227 310 0.59 0.0013 2.0 456.0 458.0
96 930 48.56 3.79 5.82 28.60 238 241 56062 97.74 0.1030 238.0 3.0 241.0
63 1646 51.35 3.81 9.47 10.14 156 159 24415 98.43 0.0409 156.0 3.0 159.0
91 1236 53.87 4.37 6.05 5.96 242 225 52854 97.07 0.1012 225.0 17.0 242.0
70 877 54.17 3.08 5.83 6.15 189 186 34667 98.61 0.0573 186.0 3.0 189.0
15 940 45.80 3.34 3.98 6.96 36 34 1040 84.97 0.0019 34.0 2.0 36.0
47 674 39.10 3.79 5.31 6.99 115 132 14514 95.61 0.0288 115.0 17.0 132.0
97 1028 30.57 1.61 9.86 12.59 251 242 60107 98.95 0.1083 242.0 9.0 251.0
98 512 53.03 1.19 5.02 7.07 251 249 61857 98.97 0.1093 249.0 2.0 251.0
11 1945 59.63 4.90 1.69 29.30 36 27 0 0.00 0.0009 0 63 63.0
37 1378 46.76 1.39 2.58 21.38 90 92 7986 96.45 0.0150 90.0 2.0 92.0
87 775 37.35 4.53 6.79 12.60 229 197 44196 97.97 0.0749 197.0 32.0 229.0
17 1794 38.83 1.36 7.48 9.85 44 46 1905 94.12 0.0046 44.0 2.0 46.0
23 1937 61.58 3.88 7.40 25.59 58 58 3228 95.96 0.0085 58.0 0.0 58.0
26 947 55.62 1.89 4.81 6.25 63 60 3635 96.16 0.0080 60.0 3.0 63.0
26 1214 55.42 3.61 5.27 16.02 63 64 3833 95.06 0.0078 63.0 1.0 64.0
70 1439 48.93 4.86 4.89 27.84 185 170 8021 25.50 0.0151 158.0 39.0 197.0
31 722 68.11 2.60 9.22 10.44 87 79 6666 96.99 0.0138 79.0 8.0 87.0
16 1995 68.66 2.32 3.66 21.21 35 44 1397 90.71 0.0039 35.0 9.0 44.0
76 1282 44.62 2.86 5.74 6.41 185 170 31019 98.63 0.0527 170.0 15.0 185.0
44 1486 65.38 3.94 5.79 18.63 100 120 11615 96.79 0.0217 100.0 20.0 120.0
70 1882 47.63 1.31 5.55 19.91 175 182 31399 98.58 0.0576 175.0 7.0 182.0
14 1602 62.17 2.85 6.90 26.56 35 36 1170 92.86 0.0019 35.0 1.0 36.0
78 1272 53.38 2.54 5.07 18.17 191 197 37142 98.71 0.0850 191.0 6.0 197.0
40 1797 31.14 4.43 8.74 9.03 98 101 9632 97.31 0.0180 98.0 3.0 101.0
32 1837 39.55 1.33 3.20 29.76 85 92 7577 96.89 0.0146 85.0 7.0 92.0
63 1873 65.85 3.80 9.63 6.51 167 152 24974 98.38 0.0397 152.0 15.0 167.0
71 620 52.64 4.81 8.94 14.14 185 180 32814 98.54 0.0661 180.0 5.0 185.0
91 1327 51.78 1.91 8.59 13.69 225 225 50042 98.85 0.0839 225.0 0.0 225.0
36 1272 41.36 1.26 7.28 19.83 88 82 7018 97.26 0.0154 82.0 6.0 88.0
41 1490 66.49 2.76 7.68 27.14 109 103 10946 97.50 0.0199 103.0 6.0 109.0
72 1758 58.65 3.15 6.74 25.96 182 171 30685 98.60 0.0534 171.0 11.0 182.0
66 738 40.52 1.68 8.00 5.05 159 167 26163 98.53 0.0463 159.0 8.0 167.0
93 578 61.99 1.74 9.87 21.81 250 237 58596 98.90 0.1035 237.0 13.0 250.0
62 893 44.42 4.54 8.02 12.78 149 146 21395 98.35 0.0367 146.0 3.0 149.0
49 741 60.84 3.69 6.95 24.09 123 113 13621 98.00 0.0226 113.0 10.0 123.0
35 942 51.64 1.15 1.13 12.65 84 86 20 0.28 0.0008 4.0 162.0 166.0
75 1765 66.46 2.01 9.10 15.63 185 187 34138 98.68 0.0632 185.0 2.0 187.0
13 1910 62.90 3.18 7.82 14.43 35 36 1162 92.22 0.0022 35.0 1.0 36.0
12 1158 34.42 1.82 1.49 29.31 31 25 0 0.00 0.0009 0 56 56.0
56 1356 32.96 3.16 1.31 29.20 151 124 0 0.00 0.0006 0 275 275.0
40 1215 64.60 2.74 5.80 23.72 107 100 10435 97.52 0.0208 100.0 7.0 107.0

110



Table A.4: Matching Model and Hopcroft-Karp Algorithm Comparison of 50
Instances

Parameter Values Model & Hopcroft-Karp Algorithm Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Val.

β
Val.

Ω
Val.

Sup.
Nodes

Dem.
Nodes

Feas.
Arcs

Arc
Ratio
(%)

Matched
Pairs

Not
Matched

Imp.
(%)

HK
Time
(s)

CPU
Time
(s)

Obj.
Val.

38 711 42.08 3.67 8.43 15.56 94 102 9336 97.37 94.0 8.0 47.96 0.0021 0.0196 102.0
93 1051 69.07 1.07 3.51 25.29 226 224 50100 98.96 224.0 2.0 49.78 0.0066 0.0923 226.0
84 1538 30.32 4.04 8.48 21.31 184 218 39642 98.83 184.0 34.0 45.77 0.0081 0.0641 218.0
65 1581 34.21 1.58 8.19 29.39 156 181 27804 98.47 156.0 25.0 46.29 0.0032 0.0434 181.0
20 1066 47.17 4.10 3.51 24.22 48 47 152 6.74 4.0 87.0 4.21 0.0007 0.0011 91.0
45 1679 56.27 4.06 6.57 25.58 123 117 14034 97.52 117.0 6.0 48.75 0.0027 0.0304 123.0
72 567 62.95 4.34 1.48 8.22 180 179 0 0.00 0 359 0.00 0.0032 0.0006 359.0
26 1865 35.56 2.54 9.34 24.78 79 68 5164 96.13 68.0 11.0 46.26 0.0017 0.0123 79.0
35 1275 33.88 1.58 7.28 20.83 84 84 6858 97.19 84.0 0.0 50.00 0.0019 0.0130 84.0
32 1704 39.70 1.87 3.87 22.49 86 76 6326 96.79 76.0 10.0 46.91 0.0018 0.0129 86.0
48 1224 61.12 3.80 8.39 7.99 114 132 14740 97.95 114.0 18.0 46.34 0.0027 0.0350 132.0
10 788 52.09 1.37 3.43 14.05 17 28 429 90.13 17.0 11.0 37.78 0.0008 0.0016 28.0
47 881 42.89 1.77 6.51 19.14 122 130 15529 97.91 122.0 8.0 48.41 0.0029 0.0280 130.0
41 847 42.49 4.35 3.42 18.53 110 106 362 3.10 7.0 202.0 3.24 0.0016 0.0013 209.0
74 1541 33.51 3.29 2.09 17.52 200 188 0 0.00 0 388 0.00 0.0052 0.0008 388.0
74 887 32.82 2.75 1.74 23.89 180 178 0 0.00 0 358 0.00 0.0035 0.0006 358.0
71 1445 43.98 1.95 9.83 9.94 182 168 30149 98.60 168.0 14.0 48.00 0.0045 0.0542 182.0
89 1852 30.81 2.22 9.31 15.58 224 226 50059 98.88 224.0 2.0 49.78 0.0061 0.1131 226.0
30 1163 35.26 1.76 2.64 18.34 74 67 4509 90.94 67.0 7.0 47.52 0.0014 0.0089 74.0
88 1620 47.43 1.72 2.18 20.21 201 220 32642 73.82 201.0 19.0 47.74 0.0068 0.0642 220.0
95 525 61.69 2.41 5.12 5.12 247 245 59868 98.93 245.0 2.0 49.80 0.0071 0.1061 247.0
72 897 54.20 2.64 4.48 20.54 177 164 28479 98.11 164.0 13.0 48.09 0.0121 0.0528 177.0
76 1377 34.88 3.43 6.58 5.82 197 190 36915 98.62 190.0 7.0 49.10 0.0053 0.0709 197.0
10 874 30.23 4.11 3.04 18.11 23 23 0 0.00 0 46 0.00 0.0004 0.0005 46.0
51 1488 60.65 1.50 1.20 20.83 117 125 0 0.00 0 242 0.00 0.0019 0.0005 242.0
93 625 52.68 4.35 9.47 6.57 237 220 51568 98.90 220.0 17.0 48.14 0.0072 0.0904 237.0
65 1211 42.05 4.61 3.69 13.78 159 163 606 2.34 6.0 310.0 1.86 0.0024 0.0026 316.0
11 744 32.09 2.72 7.05 22.62 24 26 576 92.31 24.0 2.0 48.00 0.0007 0.0014 26.0
20 1895 55.10 3.64 2.36 22.72 39 58 0 0.00 0 97 0.00 0.0011 0.0007 97.0
90 1577 31.32 3.74 5.09 14.38 244 231 54206 96.17 231.0 13.0 48.63 0.0074 0.0989 244.0
67 1646 53.48 1.04 1.02 25.00 159 174 0 0.00 0 333 0.00 0.0023 0.0007 333.0
94 628 57.67 1.55 9.66 12.18 245 245 59377 98.92 245.0 0.0 50.00 0.0081 0.1108 245.0
87 899 42.20 2.52 1.90 29.39 224 230 10 0.02 2.0 450.0 0.44 0.0040 0.0008 452.0
98 1042 54.05 2.27 3.91 10.87 235 239 55308 98.47 235.0 4.0 49.58 0.0071 0.0891 239.0
16 1744 57.12 1.81 5.24 15.89 38 38 1354 93.77 38.0 0.0 50.00 0.0007 0.0024 38.0
76 1255 56.56 2.29 9.45 7.46 194 201 38476 98.67 194.0 7.0 49.11 0.0053 0.0965 201.0
94 717 41.48 4.82 5.71 25.94 225 219 41360 83.94 219.0 6.0 49.32 0.0054 0.1428 225.0
22 1648 59.25 2.65 9.51 5.70 57 55 2992 95.44 55.0 2.0 49.11 0.0013 0.0045 57.0
98 1972 38.41 1.27 2.60 17.07 260 255 65496 98.79 255.0 5.0 49.51 0.0100 0.1367 260.0
62 1884 39.47 3.18 3.14 22.39 155 170 1690 6.41 52.0 221.0 16.00 0.0060 0.0027 273.0
25 884 44.89 4.81 8.09 29.89 66 58 3664 95.72 58.0 8.0 46.77 0.0012 0.0158 66.0
80 1974 48.16 4.36 3.36 10.65 211 228 0 0.00 0 439 0.00 0.0047 0.0008 439.0
53 1072 41.51 4.14 4.39 14.60 120 134 9130 56.78 120.0 14.0 47.24 0.0027 0.0163 134.0
19 1031 39.18 4.13 5.35 19.57 53 47 2053 82.42 47.0 6.0 47.00 0.0017 0.0031 53.0
56 1868 55.55 1.17 9.46 8.32 132 140 18154 98.24 132.0 8.0 48.53 0.0030 0.0413 140.0
98 1433 45.64 1.27 1.49 9.70 233 261 24234 39.85 223.0 48.0 45.14 0.0061 0.0522 271.0
14 1203 56.51 1.53 8.70 17.67 44 30 1222 92.58 30.0 14.0 40.54 0.0009 0.0024 44.0
50 841 51.04 1.08 3.66 11.34 130 123 15675 98.03 123.0 7.0 48.62 0.0026 0.0428 130.0
57 994 64.93 2.47 5.00 23.32 151 139 20628 98.28 139.0 12.0 47.93 0.0060 0.0464 151.0
60 1093 65.42 1.50 2.33 9.18 153 164 24304 96.86 153.0 11.0 48.26 0.0040 0.0605 164.0
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Table A.5: MIP Deadline Model Results of 50 Instances

Parameter Values Deadline Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω
Value

Minimum
Makespan

CPU
Time
(s)

MIP
Gap
(%)

Iter.
Count

# of
Tardy
STAs

Minimum
Tardiness

3 1767 36.52 3.12 1.86 28.39 16 0.08 0.00 188 2 3.0
4 684 54.33 4.08 3.84 13.21 17 0.09 0.00 349 2 8.0
8 606 38.36 1.57 7.13 8.38 20 0.13 0.00 997 4 7.0
7 608 59.04 4.74 3.00 11.05 29 0.02 0.00 255 0 0.0
7 1744 50.83 1.45 6.54 20.27 19 0.01 0.00 221 1 1.0
3 1438 69.02 1.98 7.17 22.35 8 0.01 0.00 52 2 2.0
3 1804 56.71 3.76 8.00 8.25 10 0.01 0.00 48 1 1.0
6 628 45.24 2.21 7.58 9.77 16 0.02 0.00 202 2 2.0
4 1773 64.21 4.88 9.04 14.16 16 0.01 0.00 95 1 3.0
4 1290 67.61 1.86 4.16 21.86 11 0.01 0.00 0 0 0.0
8 1094 33.69 4.04 4.72 23.62 22 0.03 0.00 271 0 0.0
7 1625 37.04 4.21 9.45 5.31 19 0.03 0.00 224 2 3.0
6 675 52.51 2.28 8.83 23.50 16 0.03 0.00 303 3 4.0
6 618 54.61 1.15 5.58 14.03 19 0.01 0.00 167 0 0.0
4 951 50.10 4.59 4.44 7.04 15 0.03 0.00 372 1 4.0
7 993 38.07 1.03 8.88 20.74 20 0.03 0.00 295 1 1.0
6 1604 42.50 1.17 2.95 6.32 20 0.04 0.00 301 2 2.0
5 1399 64.46 2.55 2.01 28.06 26 0.16 0.00 1554 2 12.0
4 1259 42.65 1.19 5.57 16.92 9 0.02 0.00 268 2 4.0
9 1967 53.23 4.18 8.85 21.53 24 0.21 0.00 909 3 3.0
3 1520 57.56 1.91 2.38 6.55 9 0.01 0.00 35 1 1.0
6 1805 44.46 3.81 4.62 20.96 18 0.03 0.00 295 2 3.0
5 1925 30.97 2.26 5.57 10.10 14 0.01 0.00 51 0 0.0
4 1379 46.04 4.84 1.95 6.74 21 0.07 0.00 448 2 7.0
5 1094 41.27 1.45 1.24 11.94 28 0.39 0.00 21792 3 16.0
4 979 59.08 3.71 6.40 23.83 12 0.01 0.00 0 0 0.0
2 695 66.84 2.89 6.50 17.92 5 0.00 0.00 0 0 0.0
4 912 31.57 3.66 8.00 13.11 9 0.00 0.00 0 0 0.0
8 1244 65.89 2.00 2.09 17.63 45 0.33 0.00 1578 3 9.0
2 1346 63.96 2.96 4.94 7.51 5 0.00 0.00 0 0 0.0
4 840 51.35 1.20 7.92 19.13 12 0.01 0.00 64 0 0.0
9 614 40.84 4.04 5.70 29.51 22 0.21 0.00 1267 3 6.0
7 621 35.07 1.29 9.26 9.97 22 0.05 0.00 551 2 3.0
1 1150 60.38 2.33 4.13 10.13 5 0.00 0.00 0 0 0.0
8 557 54.88 1.16 5.18 6.43 23 0.04 0.00 487 2 3.0
8 520 58.84 1.01 9.17 9.31 26 0.66 0.00 6110 2 9.0
9 1801 51.10 1.15 7.32 20.71 21 0.06 0.00 531 1 3.0
6 832 46.47 3.06 6.99 17.08 16 0.01 0.00 129 1 1.0
3 846 55.95 1.95 7.81 5.43 9 0.00 0.00 0 0 0.0
4 1171 65.26 1.58 4.77 14.61 13 0.02 0.00 186 2 2.0
1 1763 35.55 2.24 3.27 23.06 3 0.00 0.00 0 0 0.0
6 729 62.89 1.31 9.67 21.67 14 0.01 0.00 220 1 1.0
5 1763 52.66 2.01 6.18 19.67 14 0.09 0.00 1195 2 6.0
8 1924 45.16 2.44 1.40 13.47 44 0.16 0.00 1004 2 8.0
3 611 54.29 1.46 1.92 8.49 9 0.01 0.00 39 1 2.0
3 1934 55.51 1.09 4.18 19.76 10 0.01 0.00 73 1 2.0
1 1959 33.43 2.90 5.43 10.41 3 0.00 0.00 0 0 0.0
1 860 43.93 1.72 3.68 9.36 5 0.00 0.00 0 0 0.0
1 1602 38.75 3.81 4.11 14.46 4 0.00 0.00 0 0 0.0
4 1397 51.09 3.69 1.07 29.56 22 0.02 0.00 111 1 2.0
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Table A.6: MIP Deadline Model and Algorithm Comparison of 50 Instances

Parameter Values Algorithm Results Deadline Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω
Value

Soln.
Value

Soln.
Time
(s)

CPU
Time
(s)

MIP
Gap
(%)

Iter.
Count

Obj.
Value

Improved
(%)

6 1173 68.89 1.98 4.12 17.60 14.0 0.0027 0.17 0.00 1655 11.0 21.00
8 1377 47.66 4.59 8.38 6.08 6.0 0.0031 0.11 0.00 1194 4.0 33.00
5 1101 37.25 1.57 7.17 24.11 7.0 0.0008 0.03 0.00 390 4.0 43.00
8 1682 50.00 4.19 6.15 23.28 2.0 0.0020 0.03 0.00 434 1.0 50.00
3 1482 66.12 2.88 4.71 23.96 3.0 0.0007 0.02 0.00 178 3.0 0.00
4 1116 38.82 1.76 3.42 25.88 4.0 0.0010 0.01 0.00 169 3.0 25.00
6 1476 54.26 2.05 2.47 13.60 8.0 0.0017 0.09 0.00 1133 5.0 38.00
4 1904 47.07 1.23 5.25 22.78 1.0 0.0007 0.01 0.00 71 0.0 100.00
4 1222 52.21 2.81 3.06 21.36 3.0 0.0006 0.01 0.00 89 0.0 100.00
7 531 56.29 4.85 4.00 22.63 3.0 0.0007 0.04 0.00 394 3.0 0.00
7 562 30.43 1.67 9.91 18.36 9.0 0.0023 0.12 0.00 1548 6.0 33.00
8 1902 60.20 4.16 7.22 22.29 13.0 0.0039 0.17 0.00 1298 10.0 23.00
8 958 46.43 4.17 9.77 10.08 12.0 0.0037 0.09 0.00 894 6.0 50.00
8 646 61.06 2.99 7.80 20.33 16.0 0.0034 0.34 0.00 7412 11.0 31.00
8 1713 35.49 4.40 4.78 5.42 6.0 0.0033 0.01 0.00 307 0.0 100.00
7 1246 59.34 3.85 3.38 5.66 33.0 0.0007 1.23 0.00 73086 21.0 39.00
7 1624 31.93 3.97 4.59 8.37 5.0 0.0018 0.06 0.00 796 3.0 40.00
5 1348 42.24 4.10 3.26 15.80 5.0 0.0005 0.05 0.00 386 4.0 20.00
7 1118 33.04 4.35 5.49 6.72 0.0 0.0023 0.01 0.00 193 0.0 0.00
5 754 57.24 4.13 8.44 18.00 3.0 0.0009 0.01 0.00 145 3.0 0.00
3 1548 66.10 1.76 9.23 6.20 6.0 0.0005 0.02 0.00 136 3.0 50.00
3 1148 36.71 3.95 8.99 24.62 3.0 0.0004 0.01 0.00 40 1.0 67.00
5 1980 56.77 3.62 8.68 26.87 1.0 0.0014 0.01 0.00 134 1.0 0.00
3 1879 52.46 1.39 5.87 12.36 2.0 0.0006 0.01 0.00 40 1.0 50.00
6 1689 46.59 1.51 6.93 20.77 5.0 0.0019 0.03 0.00 274 3.0 40.00
4 1456 30.80 4.35 8.61 19.25 10.0 0.0010 0.05 0.00 760 10.0 0.00
5 696 57.41 4.03 3.45 10.82 3.0 0.0004 0.01 0.00 169 1.0 67.00
5 992 47.02 4.14 1.49 14.32 1.0 0.0004 0.01 0.00 122 1.0 0.00
6 1984 67.46 2.52 6.01 30.00 3.0 0.0011 0.01 0.00 114 1.0 67.00
5 1211 35.17 2.41 8.20 24.84 10.0 0.0010 0.02 0.00 270 4.0 60.00
6 1255 68.57 1.39 3.57 20.94 4.0 0.0014 0.02 0.00 262 3.0 25.00
4 634 39.74 2.78 5.34 28.25 3.0 0.0009 0.01 0.00 113 0.0 100.00
3 1765 53.68 1.81 9.37 26.69 0.0 0.0006 0.00 0.00 0 0.0 0.00
8 1411 59.02 2.62 5.60 15.46 2.0 0.0044 0.04 0.00 521 1.0 50.00
3 1953 55.79 2.54 8.85 19.94 3.0 0.0004 0.01 0.00 95 2.0 33.00
7 640 40.83 2.66 5.59 25.04 5.0 0.0023 0.02 0.00 267 2.0 60.00
6 849 59.35 3.67 3.25 8.77 1.0 0.0005 0.01 0.00 229 1.0 0.00
3 844 36.87 4.41 8.11 22.82 1.0 0.0003 0.00 0.00 32 0.0 100.00
8 1091 55.11 3.85 6.89 29.57 3.0 0.0037 0.02 0.00 318 1.0 67.00
6 1360 31.62 1.21 1.75 17.76 4.0 0.0014 0.02 0.00 212 3.0 25.00
6 1337 49.24 1.56 8.19 14.06 0.0 0.0013 0.01 0.00 88 0.0 0.00
8 1004 69.56 3.35 8.16 14.46 11.0 0.0022 0.11 0.00 1133 7.0 36.00
5 1410 59.98 4.92 3.20 6.39 1.0 0.0004 0.01 0.00 148 1.0 0.00
6 869 33.84 2.85 1.49 27.96 4.0 0.0006 0.04 0.00 436 3.0 25.00
7 1889 68.97 4.17 9.33 7.25 3.0 0.0023 0.03 0.00 401 3.0 0.00
5 841 37.54 1.19 2.27 9.45 6.0 0.0012 0.02 0.00 310 4.0 33.00
5 1451 54.03 3.09 9.96 19.57 2.0 0.0007 0.01 0.00 84 1.0 50.00
3 1380 49.07 2.39 2.23 17.66 6.0 0.0002 0.02 0.00 264 6.0 0.00
4 1277 43.43 2.06 9.25 5.11 0.0 0.0008 0.01 0.00 66 0.0 0.00
4 1695 52.90 4.85 1.78 14.03 22.0 0.0003 0.22 0.00 25987 17.0 23.00
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Table A.7: IP Flow Model Results of 50 Instances

Parameter Values Flow Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω Array Max
Conc.

CPU
Time
(s)

Iter.
Count

Obj.
Value

Makespan

82 1733 45.29 4.61 5.27 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.9902 455 322.0 90.0
93 1469 42.38 1.74 4.96 [ 5. 6. 7. 8. 9. 10.] 6 1.7437 524 345.0 121.0
47 659 69.71 3.52 6.21 [ 5. 10.] 2 0.2836 588 149.0 71.0
11 1146 42.71 1.31 4.20 [ 5. 6.67 8.33 10. ] 4 0.0272 65 38.0 13.0
73 777 60.85 4.00 2.26 [ 5. 10.] 2 0.0086 0 0.0 349.0
75 899 39.94 2.81 8.34 [ 5. 6.25 7.5 8.75 10. ] 5 0.9281 423 289.0 97.0
92 1550 36.50 1.07 9.52 [5.] 1 0.1929 430 228.0 259.0
92 1741 57.20 4.05 5.34 [ 5. 10.] 2 1.0528 1050 328.0 152.0
83 1617 68.15 4.08 6.71 [5.] 1 0.1503 425 206.0 214.0
23 831 34.47 4.26 2.65 [ 5. 6.67 8.33 10. ] 4 0.0005 0 0.0 120.0
53 520 40.73 1.65 4.21 [ 5. 6.25 7.5 8.75 10. ] 5 0.2839 288 187.0 75.0
18 605 68.91 2.64 8.14 [ 5. 6.25 7.5 8.75 10. ] 5 0.0336 104 60.0 22.0
51 1691 69.44 4.96 1.12 [ 5. 6.67 8.33 10. ] 4 0.0006 0 0.0 270.0
41 1200 69.10 4.67 8.57 [ 5. 7.5 10. ] 3 0.2242 612 155.0 52.0
17 1313 61.57 3.09 9.95 [5.] 1 0.0080 90 35.0 39.0
37 613 59.32 3.66 6.48 [ 5. 7.5 10. ] 3 0.1811 334 122.0 56.0
70 1616 39.26 4.02 8.61 [ 5. 6.67 8.33 10. ] 4 1.3080 988 292.0 72.0
76 613 52.85 1.14 8.20 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 1.1384 936 269.0 90.0
86 1041 46.51 2.69 3.76 [5.] 1 0.1443 416 217.0 237.0
52 1590 52.24 4.45 4.14 [ 5. 6.67 8.33 10. ] 4 0.0309 141 72.0 183.0
11 1188 48.73 2.72 3.87 [ 5. 7.5 10. ] 3 0.0200 84 47.0 20.0
67 834 37.57 4.07 8.68 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 1.2598 909 280.0 70.0
36 1543 69.75 1.03 6.61 [ 5. 7.5 10. ] 3 0.2163 460 129.0 46.0
33 1951 69.85 1.45 2.08 [ 5. 10.] 2 0.1372 399 120.0 63.0
67 1691 42.19 1.90 1.27 [ 5. 7.5 10. ] 3 0.0010 0 0.0 326.0
69 1931 34.27 3.84 2.54 [ 5. 6.67 8.33 10. ] 4 0.0006 0 0.0 338.0
28 1336 66.77 1.71 7.81 [ 5. 7.5 10. ] 3 0.1230 311 105.0 55.0
54 1495 61.89 4.95 5.61 [ 5. 6.67 8.33 10. ] 4 0.2784 348 223.0 59.0
79 1112 44.50 3.74 1.20 [ 5. 10.] 2 0.0005 0 0.0 372.0
38 1177 68.55 3.28 2.16 [ 5. 6.67 8.33 10. ] 4 0.0009 0 0.0 206.0
43 505 36.11 1.97 2.99 [ 5. 6. 7. 8. 9. 10.] 6 2.1691 41463 168.0 47.0
43 1405 63.06 4.49 1.70 [ 5. 6.25 7.5 8.75 10. ] 5 0.0009 0 0.0 214.0
29 531 52.33 4.44 2.52 [ 5. 7.5 10. ] 3 0.0011 0 0.0 135.0
42 568 62.85 4.57 5.36 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.2717 384 146.0 47.0
84 798 62.11 1.67 6.49 [ 5. 6.25 7.5 8.75 10. ] 5 1.1845 431 324.0 104.0
23 864 46.31 3.57 2.20 [ 5. 6.67 8.33 10. ] 4 0.0009 0 0.0 114.0
15 1265 53.56 2.79 9.65 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0236 43 55.0 24.0
59 1287 56.36 2.47 1.24 [ 5. 6.67 8.33 10. ] 4 0.0005 0 0.0 287.0
26 588 52.87 2.46 4.69 [ 5. 10.] 2 0.0833 166 77.0 47.0
69 1629 31.90 1.54 5.08 [ 5. 7.5 10. ] 3 0.7653 997 252.0 90.0
70 1028 36.07 3.30 5.21 [ 5. 6. 7. 8. 9. 10.] 6 0.5625 397 252.0 90.0
51 987 42.17 2.22 5.91 [5.] 1 0.0434 297 130.0 137.0
50 769 55.98 1.06 1.28 [ 5. 10.] 2 0.0861 438 150.0 98.0
85 503 32.72 4.91 2.05 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0006 0 0.0 415.0
89 863 51.15 1.34 3.10 [ 5. 10.] 2 1.0276 981 295.0 150.0
56 1969 41.99 1.10 7.79 [ 5. 6.67 8.33 10. ] 4 0.3324 390 203.0 59.0
10 1507 39.81 3.95 5.97 [ 5. 7.5 10. ] 3 0.0557 51 31.0 12.0
42 1521 38.13 3.97 8.68 [ 5. 7.5 10. ] 3 0.2525 452 152.0 66.0
91 600 36.14 2.75 2.27 [ 5. 7.5 10. ] 3 0.0147 73 18.0 462.0
41 687 35.71 1.07 2.08 [ 5. 6.25 7.5 8.75 10. ] 5 0.1404 259 151.0 47.0
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Table A.8: LP Flow Model Results of 50 Instances

Parameter Values Flow Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω Array Max
Conc.

CPU
Time
(s)

Iter.
Count

Obj.
Value

Makespan

92 522 63.38 3.96 7.67 [ 5. 6.25 7.5 8.75 10. ] 5 0.0350 49 404.0 63.00
87 1993 64.91 2.71 7.10 [ 5. 6. 7. 8. 9. 10.] 6 0.0322 37 381.0 67.00
91 1237 60.90 3.16 2.29 [ 5. 6. 7. 8. 9. 10.] 6 0.0007 0 0.0 460.00
86 698 34.78 3.39 4.96 [5.] 1 0.0202 301 209.0 217.00
66 1958 52.02 1.13 9.91 [ 5. 7.5 10. ] 3 0.0173 49 266.7 56.33
63 955 44.98 1.12 1.09 [ 5. 6. 7. 8. 9. 10.] 6 0.0013 3 9.8 316.25
79 1932 59.54 3.27 1.43 [ 5. 6.25 7.5 8.75 10. ] 5 0.0006 0 0.0 399.00
27 848 52.58 2.29 2.20 [ 5. 6.25 7.5 8.75 10. ] 5 0.0014 9 19.8 117.25
82 1135 34.26 1.34 7.58 [ 5. 6. 7. 8. 9. 10.] 6 0.0287 49 341.3 61.67
43 1488 54.97 4.13 9.33 [ 5. 6. 7. 8. 9. 10.] 6 0.0091 42 195.7 32.33
27 511 66.19 4.85 7.68 [ 5. 7.5 10. ] 3 0.0024 44 91.7 35.33
77 1916 58.76 3.89 1.47 [ 5. 6. 7. 8. 9. 10.] 6 0.0006 0 0.0 388.00
39 832 34.61 3.11 1.46 [ 5. 10.] 2 0.0005 0 0.0 203.00
61 1591 67.49 4.92 4.70 [ 5. 10.] 2 0.0026 179 149.0 173.00
74 1517 60.21 2.07 7.17 [ 5. 10.] 2 0.0162 47 262.5 111.50
42 1435 34.57 1.72 7.39 [ 5. 10.] 2 0.0053 37 168.0 63.00
84 1880 50.83 4.82 8.52 [5.] 1 0.0155 90 198.0 199.00
30 1918 42.69 3.49 1.92 [ 5. 6.25 7.5 8.75 10. ] 5 0.0007 0 0.0 159.00
20 521 43.89 4.65 8.05 [ 5. 7.5 10. ] 3 0.0017 53 78.3 19.67
18 1912 46.15 4.63 6.63 [5.] 1 0.0011 36 46.0 51.00
18 912 44.09 4.49 7.86 [5.] 1 0.0012 48 35.0 53.00
51 876 43.38 3.94 4.24 [ 5. 10.] 2 0.0088 265 201.0 67.00
52 1589 58.92 2.00 4.31 [ 5. 10.] 2 0.0098 58 184.5 75.50
97 890 31.63 4.45 3.11 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0008 0 5.2 453.75
43 1721 53.83 1.02 2.71 [ 5. 6.25 7.5 8.75 10. ] 5 0.0080 36 174.3 45.67
77 1796 61.81 4.89 9.09 [ 5. 7.5 10. ] 3 0.0246 54 315.0 63.00
49 1024 38.45 3.45 5.77 [ 5. 6. 7. 8. 9. 10.] 6 0.0111 79 188.0 35.00
45 1131 31.96 1.78 9.67 [ 5. 6. 7. 8. 9. 10.] 6 0.0132 44 171.3 38.67
67 1116 46.36 2.68 8.34 [ 5. 6. 7. 8. 9. 10.] 6 0.0200 56 291.0 49.00
44 813 52.61 3.37 6.79 [ 5. 6. 7. 8. 9. 10.] 6 0.0101 50 186.0 31.00
99 1405 56.44 3.75 5.42 [ 5. 10.] 2 0.0318 370 364.5 121.50
23 1204 35.36 2.17 8.70 [ 5. 10.] 2 0.0016 36 84.0 35.00
38 549 53.53 2.39 9.33 [ 5. 6.25 7.5 8.75 10. ] 5 0.0069 52 156.3 28.67
82 1553 41.62 1.10 8.80 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0262 58 349.3 56.67
67 1029 48.17 2.90 4.67 [ 5. 6.25 7.5 8.75 10. ] 5 0.0183 132 268.0 57.00
66 1387 39.34 4.84 1.18 [5.] 1 0.0010 0 0.0 304.00
96 1549 53.19 3.85 5.81 [5.] 1 0.0263 231 245.0 256.00
67 791 40.62 2.98 6.89 [ 5. 6. 7. 8. 9. 10.] 6 0.0304 47 284.7 58.33
75 1053 42.07 2.28 2.61 [ 5. 6. 7. 8. 9. 10.] 6 0.0282 361 322.0 59.00
76 1639 62.86 4.57 2.57 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0197 0 0.0 376.00
71 843 62.73 1.08 1.61 [ 5. 6.25 7.5 8.75 10. ] 5 0.0390 382 316.0 51.00
77 1709 66.56 3.94 3.84 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0115 339 283.8 84.17
79 1277 36.31 1.44 3.74 [ 5. 7.5 10. ] 3 0.0361 45 328.3 71.67
47 1611 36.94 3.37 7.17 [ 5. 6.67 8.33 10. ] 4 0.0111 44 188.3 38.67
56 1897 50.09 2.65 5.02 [ 5. 7.5 10. ] 3 0.0183 61 223.3 44.67
85 1274 56.73 4.15 3.29 [ 5. 6.25 7.5 8.75 10. ] 5 0.0014 0 0.0 411.00
98 1668 40.36 4.95 5.49 [ 5. 10.] 2 0.0366 367 343.5 133.50
23 1923 39.06 4.86 1.99 [ 5. 10.] 2 0.0006 0 0.0 111.00
97 649 63.64 4.46 6.98 [ 5. 6. 7. 8. 9. 10.] 6 0.0483 155 413.0 76.00
76 823 44.15 4.55 7.97 [5.] 1 0.0160 46 187.0 204.00
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Table A.9: LP Flow Model with Valid Inequality Results of 50 Instances

Parameter Values Flow Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω Array Max
Conc.

CPU
Time
(s)

Iter.
Count

Obj.
Value

Makespan

71 1461 43.25 4.67 4.15 [ 5. 6. 7. 8. 9. 10.] 6 0.0022 49 53.17 288.83
62 1461 69.15 3.34 9.31 [ 5. 6.25 7.5 8.75 10. ] 5 0.0271 48 253.00 47.00
92 1809 68.87 1.38 6.08 [ 5. 6.25 7.5 8.75 10. ] 5 0.0602 54 385.33 67.67
17 1315 53.13 1.28 7.17 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0027 56 67.67 14.33
75 705 54.85 1.38 5.79 [ 5. 6.67 8.33 10. ] 4 0.0405 61 322.67 52.33
36 854 31.41 3.15 7.86 [ 5. 7.5 10. ] 3 0.0114 77 150.00 43.00
24 1763 41.62 1.03 1.99 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0035 65 106.00 16.00
61 884 62.10 4.30 8.22 [ 5. 6.25 7.5 8.75 10. ] 5 0.0302 42 268.00 47.00
89 766 49.52 2.04 8.47 [5.] 1 0.0207 71 216.00 232.00
70 1147 39.31 3.52 1.15 [ 5. 6.25 7.5 8.75 10. ] 5 0.0008 0 0.00 324.00
90 1794 32.15 3.54 5.95 [ 5. 6. 7. 8. 9. 10.] 6 0.0612 112 371.33 84.67
68 994 46.75 4.72 7.80 [ 5. 7.5 10. ] 3 0.0317 72 273.33 67.67
98 1088 38.07 3.90 5.39 [ 5. 6. 7. 8. 9. 10.] 6 0.0803 478 399.33 91.67
20 718 58.57 4.91 5.66 [ 5. 7.5 10. ] 3 0.0031 250 85.00 25.00
96 746 44.06 4.10 2.40 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0005 0 0.00 496.00
44 645 63.75 1.53 6.48 [ 5. 7.5 10. ] 3 0.0138 113 196.67 39.33
68 949 41.78 4.17 8.55 [ 5. 7.5 10. ] 3 0.0441 45 271.67 91.33
77 1375 59.49 3.03 1.75 [ 5. 10.] 2 0.0006 0 0.00 409.00
22 1542 42.56 4.96 3.33 [ 5. 7.5 10. ] 3 0.0009 0 0.00 106.00
49 1217 40.56 4.38 8.08 [ 5. 6.25 7.5 8.75 10. ] 5 0.0194 64 190.67 40.33
61 1372 66.62 3.03 8.47 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0279 52 271.33 49.67
88 1450 65.58 3.05 4.88 [5.] 1 0.0242 153 219.00 227.00
48 1177 31.93 3.37 3.69 [5.] 1 0.0054 282 115.00 116.00
62 1113 68.09 3.48 2.04 [ 5. 6. 7. 8. 9. 10.] 6 0.0010 0 0.00 301.00
92 1894 30.17 3.59 2.59 [5.] 1 0.0006 0 0.00 470.00
27 739 30.89 1.62 9.83 [ 5. 6.67 8.33 10. ] 4 0.0038 37 99.00 25.00
73 701 52.37 3.57 1.49 [ 5. 6.67 8.33 10. ] 4 0.0007 0 0.00 360.00
80 1533 36.17 4.59 6.24 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0505 350 357.33 68.67
50 1925 35.04 4.68 1.00 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0005 0 0.00 267.00
79 725 66.51 2.59 7.99 [5.] 1 0.0171 46 199.00 208.00
15 1294 52.14 3.80 4.76 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0017 94 60.33 11.67
34 1782 35.51 3.84 5.14 [ 5. 6.67 8.33 10. ] 4 0.0118 363 126.33 32.67
74 1853 42.67 1.11 8.59 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0433 52 322.33 62.67
23 1192 32.76 3.10 7.23 [ 5. 6.25 7.5 8.75 10. ] 5 0.0041 47 93.33 26.67
25 1801 66.65 2.79 7.82 [ 5. 10.] 2 0.0027 107 94.50 35.50
12 667 39.58 2.09 1.04 [ 5. 6.67 8.33 10. ] 4 0.0006 0 0.00 66.00
57 1859 51.18 3.71 6.16 [ 5. 6.67 8.33 10. ] 4 0.0253 58 246.67 56.33
51 1386 45.55 3.92 6.19 [ 5. 6. 7. 8. 9. 10.] 6 0.0273 344 212.67 50.33
11 784 63.03 1.44 7.33 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0013 25 45.67 9.33
58 610 65.43 1.34 3.45 [ 5. 6.25 7.5 8.75 10. ] 5 0.0288 51 244.67 48.33
16 905 66.03 2.65 9.19 [ 5. 6.25 7.5 8.75 10. ] 5 0.0019 42 71.00 17.00
33 1891 56.18 1.24 9.18 [ 5. 7.5 10. ] 3 0.0051 118 121.67 31.33
22 1262 53.31 4.76 3.08 [ 5. 6.67 8.33 10. ] 4 0.0007 0 0.00 116.00
42 1421 37.58 1.93 2.41 [ 5. 10.] 2 0.0205 757 156.00 55.00
68 1086 59.14 2.45 2.21 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0026 147 27.25 315.75
100 1748 35.69 4.42 9.36 [ 5. 6.25 7.5 8.75 10. ] 5 0.0660 65 419.33 68.67
93 655 58.08 3.50 7.78 [ 5. 10.] 2 0.0418 50 345.00 125.00
88 757 60.26 2.00 9.82 [ 5. 7.5 10. ] 3 0.0593 57 390.00 84.00
61 1483 61.53 4.59 8.02 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0277 40 252.00 42.00
60 676 56.80 2.24 5.54 [5.] 1 0.0101 82 139.00 142.00
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Table A.10: Totally Unimodular LP Flow Model Results of 50 Instances

Parameter Values Flow Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω Array Max
Conc.

CPU
Time
(s)

Iter.
Count

Obj.
Value

Makespan

85 1148 66.63 2.78 4.57 [5.] 1 0.1849 456 206.00 219.00
20 1149 63.83 3.41 6.91 [ 5. 6.25 7.5 8.75 10. ] 5 0.0099 77 74.33 14.67
100 848 50.75 3.89 4.58 [5.] 1 0.2106 538 233.00 246.00
76 1319 50.15 2.70 7.29 [ 5. 6.67 8.33 10. ] 4 0.1726 348 292.33 72.67
62 841 51.22 3.59 7.23 [ 5. 7.5 10. ] 3 0.0846 332 240.00 61.00
95 1305 49.81 3.20 8.02 [ 5. 6.25 7.5 8.75 10. ] 5 0.3416 460 409.33 61.67
94 1773 45.91 4.30 7.28 [5.] 1 0.2666 478 223.00 231.00
62 1481 53.07 3.42 4.88 [ 5. 6.67 8.33 10. ] 4 0.0703 436 261.00 43.00
66 1830 59.73 2.51 1.89 [ 5. 6.67 8.33 10. ] 4 0.0006 0 0.00 350.00
51 1648 47.73 2.92 2.33 [5.] 1 0.0032 0 3.00 257.00
49 1227 31.85 4.02 4.62 [ 5. 7.5 10. ] 3 0.0382 277 191.67 41.33
94 744 46.30 1.08 3.67 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.3197 519 398.33 75.67
98 951 65.35 1.62 1.22 [ 5. 7.5 10. ] 3 0.0014 0 3.00 460.00
20 1395 56.81 4.14 8.33 [ 5. 7.5 10. ] 3 0.0103 86 85.00 18.00
28 1671 62.15 4.21 7.84 [5.] 1 0.0228 143 64.00 71.00
62 1358 46.81 4.35 4.64 [5.] 1 0.0613 311 155.00 166.00
20 1453 43.26 4.19 7.89 [5.] 1 0.0084 118 46.00 54.00
86 1435 68.97 1.24 7.29 [ 5. 6.67 8.33 10. ] 4 0.1910 460 374.33 56.67
45 1512 57.77 4.85 8.79 [ 5. 6.25 7.5 8.75 10. ] 5 0.0368 267 192.33 28.67
24 1954 42.45 4.16 7.39 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0128 138 99.00 16.00
40 773 61.51 4.23 1.67 [ 5. 6.25 7.5 8.75 10. ] 5 0.0008 0 0.00 191.00
94 735 61.06 2.82 4.50 [ 5. 10.] 2 0.2066 403 372.00 138.00
19 591 45.08 3.88 3.10 [ 5. 6.67 8.33 10. ] 4 0.0012 0 1.75 101.25
32 817 51.05 1.97 6.92 [ 5. 10.] 2 0.0247 123 102.00 57.00
96 1080 59.95 3.27 8.71 [ 5. 6.25 7.5 8.75 10. ] 5 0.2767 490 397.67 79.33
50 1204 34.09 3.39 6.55 [ 5. 10.] 2 0.0496 301 187.50 76.50
35 1255 51.70 2.81 9.35 [5.] 1 0.0229 204 73.00 94.00
86 622 30.08 1.66 4.93 [ 5. 10.] 2 0.1586 352 297.00 112.00
13 1889 62.17 1.09 8.43 [5.] 1 0.0072 56 31.00 32.00
33 1826 68.96 2.40 3.85 [ 5. 6.25 7.5 8.75 10. ] 5 0.0212 240 144.33 23.67
22 619 41.32 2.36 8.34 [ 5. 10.] 2 0.0115 112 70.50 41.50
91 1765 51.67 1.95 2.33 [ 5. 7.5 10. ] 3 0.1531 381 355.00 82.00
89 1838 65.56 4.78 7.63 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.1814 394 390.67 62.33
83 1680 63.10 3.39 7.32 [ 5. 6.25 7.5 8.75 10. ] 5 0.1662 500 371.67 59.33
94 1630 52.27 4.17 3.31 [ 5. 6. 7. 8. 9. 10.] 6 0.0040 1 10.25 441.75
58 1619 39.84 4.33 3.71 [ 5. 6. 7. 8. 9. 10.] 6 0.0054 4 19.25 291.75
12 577 51.42 3.74 1.43 [ 5. 6. 7. 8. 9. 10.] 6 0.0006 0 0.00 60.00
100 551 32.96 3.45 9.58 [ 5. 6.25 7.5 8.75 10. ] 5 0.2935 541 439.00 75.00
90 653 52.56 3.86 7.10 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.1888 409 376.00 73.00
29 821 62.65 2.37 4.33 [ 5. 6.67 8.33 10. ] 4 0.0149 121 131.25 26.75
56 1679 50.00 2.38 1.76 [ 5. 6.25 7.5 8.75 10. ] 5 0.0014 0 7.00 287.00
25 1944 65.39 1.24 8.03 [5.] 1 0.0116 125 61.00 71.00
43 1028 52.14 1.48 1.94 [ 5. 10.] 2 0.0315 250 151.50 66.50
57 947 44.49 2.29 7.85 [ 5. 7.5 10. ] 3 0.0789 290 240.00 61.00
23 1964 38.80 3.32 3.89 [ 5. 6.25 7.5 8.75 10. ] 5 0.0110 127 103.25 15.75
21 1843 55.51 4.39 5.17 [ 5. 10.] 2 0.0093 97 78.00 34.00
89 1402 47.14 2.22 9.48 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.2010 483 351.33 76.67
21 1698 69.36 4.70 1.35 [ 5. 7.5 10. ] 3 0.0006 0 0.00 101.00
48 1293 35.60 1.53 2.36 [5.] 1 0.0349 291 117.00 117.00
90 1765 34.76 4.68 4.31 [5.] 1 0.0116 40 50.00 384.00
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Table A.11: LP Flow Model with Optimality Cut Results of 50 Instances

Parameter Values Flow Model Results

# of
STAs

Circle
Radius

Min
Dist.

δ
Value

β
Value

Ω Array Max
Conc.

CPU
Time
(s)

Iter.
Count

Obj.
Value

Makespan

87 943 46.76 4.56 9.51 [ 5. 6.25 7.5 8.75 10. ] 5 0.0162 50 61.42 401.58
23 779 60.31 2.07 5.34 [ 5. 6.25 7.5 8.75 10. ] 5 0.0015 34 16.25 96.75
69 793 46.60 2.56 8.10 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0108 50 45.92 313.08
14 799 35.56 4.97 6.44 [ 5. 6.25 7.5 8.75 10. ] 5 0.0014 43 10.50 61.50
20 1470 37.80 2.41 1.89 [ 5. 6. 7. 8. 9. 10.] 6 0.0008 0 98.00 0.00
98 935 56.92 1.91 1.86 [ 5. 6. 7. 8. 9. 10.] 6 0.0018 130 270.75 222.25
58 1012 69.04 3.73 6.97 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0087 44 37.50 234.50
37 526 43.25 2.86 4.65 [ 5. 6.67 8.33 10. ] 4 0.0025 59 24.25 162.75
56 781 31.49 2.97 3.77 [ 5. 10.] 2 0.0098 319 74.00 219.00
70 1064 67.48 1.68 1.62 [5.] 1 0.0010 37 329.00 14.00
57 1012 30.56 2.78 6.96 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0067 51 39.33 242.67
36 1171 31.68 3.50 1.29 [5.] 1 0.0010 0 165.00 0.00
52 1894 46.18 1.59 2.84 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0074 84 33.67 208.33
88 1359 45.79 1.45 3.56 [ 5. 6.25 7.5 8.75 10. ] 5 0.0182 48 58.83 399.17
87 1762 66.51 4.56 8.37 [ 5. 6.67 8.33 10. ] 4 0.0165 49 56.83 367.17
68 1733 39.03 3.30 1.34 [ 5. 6.25 7.5 8.75 10. ] 5 0.0007 0 343.00 0.00
41 1381 30.42 3.84 5.86 [ 5. 6.67 8.33 10. ] 4 0.0026 56 27.00 163.00
85 1301 41.39 3.11 3.50 [ 5. 6.67 8.33 10. ] 4 0.0208 647 55.75 373.25
57 518 38.12 2.98 6.20 [ 5. 7.5 10. ] 3 0.0163 39 48.33 227.67
87 644 42.63 3.80 4.87 [ 5. 7.5 10. ] 3 0.0183 487 71.00 349.00
98 518 57.32 2.92 6.11 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0203 54 65.83 416.17
27 1102 48.46 3.99 7.89 [ 5. 7.5 10. ] 3 0.0015 40 26.67 113.33
21 1780 48.21 4.97 1.31 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0005 0 96.00 0.00
67 1046 58.02 1.31 3.30 [ 5. 7.5 10. ] 3 0.0098 37 59.67 289.33
14 570 31.96 4.46 9.11 [ 5. 6.67 8.33 10. ] 4 0.0011 28 9.00 61.00
78 1530 43.12 1.43 6.83 [5.] 1 0.0127 63 190.00 186.00
99 1862 38.91 2.93 6.22 [ 5. 6.25 7.5 8.75 10. ] 5 0.0231 49 67.08 401.92
68 637 46.44 1.36 3.19 [ 5. 6.67 8.33 10. ] 4 0.0089 51 48.33 293.67
62 980 58.50 2.74 8.89 [ 5. 6.67 8.33 10. ] 4 0.0080 42 39.75 267.25
52 616 31.44 3.93 2.55 [ 5. 10.] 2 0.0007 0 254.00 0.00
97 799 39.53 2.71 7.71 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0183 47 63.58 417.42
49 1615 41.73 4.01 6.37 [ 5. 6. 7. 8. 9. 10.] 6 0.0038 68 33.00 215.00
78 1441 68.86 4.93 1.93 [ 5. 6. 7. 8. 9. 10.] 6 0.0008 0 385.00 0.00
31 1601 43.24 3.15 5.30 [ 5. 7.5 10. ] 3 0.0020 39 27.67 130.33
73 1568 42.19 1.55 6.60 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0116 40 52.67 323.33
51 1165 46.16 1.91 4.21 [ 5. 6. 7. 8. 9. 10.] 6 0.0037 44 34.00 234.00
54 659 39.73 3.96 4.28 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0076 496 38.75 246.25
34 1762 39.07 2.27 3.65 [5.] 1 0.0022 76 90.00 77.00
81 1795 45.60 4.07 7.04 [ 5. 6. 7. 8. 9. 10.] 6 0.0122 43 57.50 364.50
65 653 59.40 4.84 3.94 [ 5. 6.67 8.33 10. ] 4 0.0014 16 186.00 122.00
71 1464 68.36 4.57 5.17 [ 5. 7.5 10. ] 3 0.0140 465 62.33 304.67
63 1872 63.10 1.08 7.17 [ 5. 6.67 8.33 10. ] 4 0.0101 51 39.83 256.17
97 570 56.78 3.63 2.13 [ 5. 6. 7. 8. 9. 10.] 6 0.0007 0 372.67 125.33
53 1478 56.27 2.82 7.39 [ 5. 10.] 2 0.0046 44 64.00 180.00
72 1219 67.60 3.82 1.14 [ 5. 6.25 7.5 8.75 10. ] 5 0.0007 0 354.00 0.00
79 1731 68.36 2.67 8.80 [5.] 1 0.0158 58 197.00 180.00
57 1783 62.82 3.07 8.10 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0095 41 41.08 265.92
57 1779 39.08 4.20 2.95 [ 5. 7.5 10. ] 3 0.0008 0 278.00 0.00
94 676 30.22 1.94 7.48 [ 5. 5.83 6.67 7.5 8.33 9.17 10. ] 7 0.0168 44 65.58 405.42
36 807 38.92 1.09 2.80 [ 5. 6.25 7.5 8.75 10. ] 5 0.0023 51 24.42 154.58
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