
WHOLE GENOME ALIGNMENT VIA
ALTERNATING LYNDON FACTORIZATION

TREE TRAVERSAL

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Mahmud Sami Aydın

July 2023

Whole Genome Alignment via Alternating Lyndon Factorization Tree

Traversal

By Mahmud Sami Aydın

July 2023

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Can Alkan(Advisor)

Cevdet Aykanat

Aybar C. Acar

Approved for the Graduate School of Engineering and Science:

Orhan Arıkan
Director of the Graduate School

ii

ABSTRACT

WHOLE GENOME ALIGNMENT VIA ALTERNATING
LYNDON FACTORIZATION TREE TRAVERSAL

Mahmud Sami Aydın

M.S. in Computer Engineering

Advisor: Can Alkan

July 2023

The Whole Genome Alignment Problem (WGA) is an important challenge in

the field of genomics, especially in the context of pangenome construction. Here

we propose a novel indexing structure called the Alternating Lyndon Factor-

ization Tree (ALFTree), which incorporates both spatial and lexicographical

information within its nodes. The ALFTree is a powerful tool for WGA, as it can

efficiently store and retrieve information about large DNA sequences.

We present an algorithm, namely Idoneous, specifically designed to construct

the ALFTree from a given DNA sequence. The algorithm works by generating

intervals of specific sizes, identifying matches within these intervals, and perform-

ing a sanity check through alignment procedures. The algorithm is efficient and

scalable, making it a valuable tool for WGA.

Some of the key features of the ALFTree are 1) compact and efficient data

structure for storing large DNA sequences; 2) efficient retrieval of information

about specific regions of a DNA sequence; 3) ability to handle both spatial and

lexicographical information; and 4) scalability to large DNA sequences.

Our experimental results on different genomes highlight the effects of param-

eter selections on coverage and identity. Idoneous demonstrates competitive per-

formance in terms of coverage and provides flexibility in adjusting sensitivity and

specificity for different alignment scenarios.

The ALFTree has the potential to significantly improve the performance of

WGA algorithms. We believe that the ALFTree is a valuable contribution to the

field of genomics, and we hope that it will be used by researchers to accelerate

the pace of discovery.

iii

iv

Keywords: Whole Genome Alignment, Indexing, Lyndon Factorization.

ÖZET

ALMAŞIK LYNDON FAKTORİZASYON AĞACINDA
GEZİNEREK TÜM GENOM HİZALAMA

Mahmud Sami Aydın

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Can Alkan

Temmuz 2023

Tüm Genom Hizalama Problemi (WGA), özellikle pangenom oluşturma

bağlamında genomik alanında önemli bir zorluktur. Burada, düğümlerinde

hem mekansal hem de alfabetik bilgileri bir araya getiren yeni bir indeksleme

yapısı olan Almaşık Lyndon Faktörizasyon Ağacı (ALFAğacı) öneriyoruz.

ALFAğacı, büyük DNA dizileri hakkında bilgi depolamak ve geri almak için etkili

bir araçtır.

Belirli bir DNA dizisinden ALFAğacını oluşturmak için Idoneous adını

verdiğimiz bir algoritma sunuyoruz. Algoritma, belirli boyutlardaki aralıkları

oluşturarak, bu aralıklar içinde eşleşmeleri belirleyerek ve hizalama işlemleri

aracılığıyla bir doğrulama kontrolü gerçekleştirerek çalışır. Algoritma verimli ve

ölçeklenebilir olduğundan, WGA için değerli bir araçtır.

ALFAğacının önemli özellikleri şunlardır: 1) büyük DNA dizilerini depolamak

için kompakt ve verimli bir veri yapısı; 2) belirli bir DNA dizisinin belli bölgeleri

hakkında bilgiyi etkili bir şekilde geri alabilme; 3) hem mekansal hem de alfabetik

bilgilere uyum sağlama yeteneği; ve 4) büyük DNA dizilerine ölçeklenebilme.

Farklı genomlardaki deneysel sonuçlarımız, parametre seçimlerinin kapsama

ve benzerlik üzerindeki etkilerini vurgulamaktadır. Idoneous, kapsama açısından

rekabetçi bir performans sergilemekte ve farklı hizalama senaryoları için has-

sasiyet ve özgüllük ayarlamasında esneklik sağlamaktadır.

ALFAğacı, WGA algoritmalarının performansını önemli ölçüde artırma potan-

siyeline sahiptir. ALFAğacının genomik alanına değerli bir katkı olduğuna

inanıyor ve araştırmacıların keşif hızını hızlandırmak için kullanmasını umuyoruz.

v

vi

Anahtar sözcükler : Tüm Genom Hizalama, İndeksleme, Lyndon Faktörizasyon .

Acknowledgement

I would like to express my deepest gratitude and appreciation to all who have

contributed to the completion of this master’s thesis.

First and foremost, I am immensely thankful to my supervisor, Can Alkan, for

their guidance, expertise, and unwavering support throughout the entire research

process. Can Alkan’s valuable insights, constructive feedback, and constant en-

couragement have been instrumental in shaping this thesis and my academic

growth. I am truly grateful for their patience, dedication, and commitment to

my success.

I would also like to acknowledge the valuable contributions of my thesis com-

mittee members, Cevdet Aykanat and Aybar Can Acar. Their expertise, feed-

back, and scholarly guidance have significantly enhanced the quality of this thesis.

Furthermore, I want to express my sincere gratitude to Abdullah for their sig-

nificant contribution in suggesting parameter names for this thesis. Abdullah’s

creative thinking and thoughtful suggestions played a vital role in selecting de-

scriptive and appropriate names that accurately represent the parameters in the

research.

Additionally, I am grateful for the elaborate support provided by Tarık dur-

ing the poster presentation of this research. Tarık’s ability to explain complex

concepts in a clear and concise manner has been invaluable in effectively commu-

nicating our findings to the audience. Their assistance in creating an informative

and visually appealing poster greatly enhanced the impact of our presentation.

I would also like to extend my heartfelt appreciation to my colleagues Ömer,

Onur, Ecem, Klea, Rafi, Gözde, Ezgi, Ricardo, and Zülal. Their support, collab-

oration, and camaraderie have been invaluable throughout this research journey.

Their constructive discussions, insightful perspectives, and unwavering support

have played a crucial role in shaping my ideas and enhancing the overall quality

of this thesis.

vii

viii

I am grateful for the financial support provided by the Scientific and Technolog-

ical Research Council of Turkey (TÜBİTAK) under the 2210-A program. Their

support has enabled me to conduct this research and contributed significantly to

this thesis’s successful completion.

Additionally, I would like to express my gratitude to my friends Faruk et

al.(354,355,601), Mehmet Emin Albayrak, and all the members of the Bilkent

Board Game Enthusiasts and the Storytelling and Mythology Club. Their sup-

port, friendship, and shared interests have provided a supportive and inspiring

community outside of academia. Their diverse perspectives, engaging discus-

sions, and enjoyable company have enriched my life and provided a much-needed

balance during this research journey.

Lastly, I am deeply grateful for the love, support, and understanding of my

family. I would like to thank my parents, Nuran and Bahattin, for their be-

lief in my abilities and continuous encouragement. Throughout this journey, my

siblings, Semanur, Abdulkadir, and Fatmanur, have been a constant source of

inspiration and support. Their presence has been a pillar of strength and mo-

tivation. Additionally, I am grateful for the joy and laughter brought into my

life by my nieces and nephews. I want to express my heartfelt appreciation to

my loved one, Şeyma. Their steady support, understanding, and love have been

instrumental in my journey. They have provided me with continuous support

and encouragement, and their presence in my life has been an endless source of

inspiration and motivation.

Thank you all for your invaluable contributions.

Contents

1 Introduction 1

1.1 Genomics . 1

1.2 Sequence Alignment Problem . 4

1.2.1 Pairwise Sequence Alignment Problem 4

1.2.2 Multiple Sequence Alignment Problem 6

1.3 Burst of Assembly data . 7

1.4 Whole Genome Alignment Problem 7

1.5 Motivation . 9

1.6 Thesis Statement and Contribution 9

2 Background 11

2.1 Related Works . 11

2.2 Data Structures . 12

2.2.1 Min-max Heap . 12

ix

CONTENTS x

2.2.2 Spatial Indexing . 14

2.2.3 Syncmers . 15

2.3 String Parsing Methods . 16

2.3.1 Locally Consistent Parsing 17

2.3.2 Lyndon Factorization . 18

2.3.3 Comparison between Methods 19

2.4 Run-Length Encoding . 20

3 Methods 22

3.1 The Idoneous Algorithm . 23

3.1.1 Idoneous Parameters . 23

3.1.2 Alphabet Transformation 24

3.1.3 Tree Construction via Alternating Lyndon Factorization . 26

3.1.4 Generating Traversal Intervals 29

3.1.5 Matching Framework . 29

3.1.6 Alignment using the Needleman–Wunsch Algorithm 33

4 Experimental Methodology 34

4.1 Data . 34

4.2 Criteria . 34

CONTENTS xi

4.3 Coverage & Distance Results . 35

4.3.1 Effects of Parameter Selection 35

4.3.2 Different data sets . 45

4.4 Run Time Results . 57

4.4.1 Result for parameters . 57

4.4.2 Run time Results for Different Data Sets 63

5 Discussion & Future work 65

A Code 75

List of Figures

3.1 Overview of Idoneous: Construction of tree for the string

“C3A7G4A3T5A1C4G1A2”, Generation of the traversal intervals for

a tree, Identification of matches in a square for each interval pair

of red and maroon rectangles, shown in detail which includes syn-

chronization traversal, chaining and filtering to get matches 24

3.2 Example of Alternating Lyndon Factorization Tree for the string

“C3A7G4A3T5A1C4G1A2” with canonical and reversed canonical

lexicographical order where b = 3. The white block is the root.

Pink and Red blocks are Lyndon word blocks for different lexico-

graphical orders. 27

3.3 An Alternating Lyndon Factorization Tree. The dash-line node

represents the root node, and only the inner nodes are depicted,

each governed by their respective reference position. The starting

node of each interval is distinguished by a distinct color marking. 29

3.4 An illustration exemplifying the matching framework. The rect-

angles in the figure represent the generated intervals, while the

colored circles denote the tree nodes, with different colors indicat-

ing different k-mers. The dashed lines indicate the identified seeds.

The bold black lines represent the intervals, and the bold red lines

indicate the difference between these intervals. The chosen param-

eters for this example are c = 2 and e = 5. 31

xii

LIST OF FIGURES xiii

4.1 Relationship between the Division Window and coverage rate with

parameters b = 2000, c=2, d=8000, e= 200, and k=2 36

4.2 Relationship between the Division Window and distance with pa-

rameters b = 2000, c=2, d=8000, e= 200, and k=2 37

4.3 Relationship between the block size and coverage rate with param-

eters a = 4, c=2, d=8000, e= 200, and k=2 38

4.4 Relationship between the block size and distance with parameters

a = 4, c=2, d=8000, e= 200, and k=2 38

4.5 Relationship between the chaining number and coverage rate with

parameters a = 4, b=2000, d=8000, e= 200, and k=2 39

4.6 Relationship between the chaining number and distance with pa-

rameters a = 4, b=2000, d=8000, e= 200, and k=2 40

4.7 Relationship between the division size and coverage rate with pa-

rameters a = 4, b=2000, c=2, e= 200, and k=2 41

4.8 Relationship between the division size and distance with parame-

ters a = 4, b=2000, c=2, e= 200, and k=2 41

4.9 Relationship between the error rate and coverage rate with param-

eters a = 4, b=2000, c=2, d= 8000, and k=2 42

4.10 Relationship between the error rate and distance with parameters

a = 4, b=2000, c=2, d= 8000, and k=2 43

4.11 Relationship between the k-mer size and coverage rate with pa-

rameters a = 4, b=2000, c=2, d= 8000, and e=200 44

4.12 Relationship between the k-mer size and distance with parameters

a = 4, b=2000, c=2, d= 8000, and e=200 44

LIST OF FIGURES xiv

4.13 Regions of homology found between GRCh38 and T2T-CHM13

using Idoneous . 46

4.14 Regions of homology found between GRCh38 and T2T-CHM13

using MUMmer . 47

4.15 Regions of homology found between GRCh38 and T2T-CHM13

using NUCmer . 48

4.16 Alignment between GRCh38 and HG002-maternal genome in Ido-

neous . 49

4.17 Regions of homology found between GRCh38 and HG002-maternal

genomes using MUMmer . 50

4.18 Regions of homology found between GRCh38 and HG002-maternal

genomes using NUCmer . 51

4.19 Regions of homology found between GRCh38 and HG002-paternal

genomes using Idoneous . 52

4.20 Regions of homology found between GRCh38 and HG002-paternal

genomes using MUMmer . 53

4.21 Regions of homology found between GRCh38 and HG002-paternal

genomes using NUCmer . 54

4.22 Regions of homology found between GRCh38 and panTro6

genomes using Idoneous . 55

4.23 Regions of homology found between GRCh38 and panTro6

genomes using MUMmer . 56

4.24 Regions of homology found between GRCh38 and panTro6

genomes using NUCmer . 57

LIST OF FIGURES xv

4.25 Relationship between the block size and time with parameters a =

4, c=2, d=8000, e= 200, and k=2 58

4.26 Relationship between the block size and time with parameters a =

4, c=2, d=8000, e= 200, and k=2 59

4.27 Relationship between the chaining number and time with param-

eters a = 4, b=2000, d=8000, e= 200, and k=2 60

4.28 Relationship between the division size and time with parameters

a = 4, b=2000, c=2, e= 200, and k=2 61

4.29 Relationship between the error rate and time with parameters a =

4, b=2000, c=2, d= 8000, and k=2 62

4.30 Relationship between the k-mer size and time with parameters a

= 4, b=2000, c=2, d= 8000, and e=200 63

List of Tables

4.1 Genome assemblies used to test Idoneous. 35

4.2 Number of covered nucleotides in GRCh38 assembly against given

data set . 45

4.3 Time required by each tool to align GRCh38 against different as-

semblies . 63

xvi

Chapter 1

Introduction

1.1 Genomics

All living organisms have a common genetic material that contains genetic in-

structions that regulate growth, development, metabolism, and reproduction.

For most complex genomes this material is DNA; however, simpler organisms

such as viruses instead have RNA molecules. This genetic material is crucial to

understanding biological function, intra- and interspecies variation, genetic ab-

normalities that may give rise to diseases, and evolutionary relationships between

species. To better understand and identify the similarities and differences among

genomes, we need to compare genomic sequences of both individuals of the same

species and also between different species.

Various different methods have been proposed to calculate genetic variation

since the first efforts of DNA & RNA sequencing studies. The first metric used for

variation is qualifying heterozygosity, that is, the differences between maternally

and paternally inherited DNA in diploid cells (e.g., in humans), which can be

generalized allelic variation in polyploid genomes (e.g., in some plants). In this

metric, variation is quantified as the average rate of heterozygosity observed in

1

each individual of a given population or species. The next metric used to indi-

cate genetic variation is statistical variance, which is proportional to the squared

distance between an individual and a consensus genome of a population. Later,

several other metrics including Bayesian statistics, entropy, and F statistics are

used to indicate genetic variation.

Individuals of the same species show very high identity in their genetic ma-

terial. For example, the 1000 Genomes Project showed that genomes of human

individuals even from distant populations are >99% identical [1]. Similarly, a

study on dog genomes demonstrated that domestic dog genomes are > 99.8%

identical [2] even though dogs show a high rate of phenotypic variation.

The variable sections of the genome, which correspond to the observed dif-

ferences, cause the diversity within the species. These differences can be single

nucleotide variation (SNV) or larger-scale structural variation (SV). SNVs are

substitutions of a single nucleotide in a specific location of an allele. Those vari-

ations in a single nucleotide can be classified according to its annotation, such

as coding vs. non-coding. If an SNV is identified in a non-coding region, it

likely does not cause phenotypic modification. On the other hand, if an SNV

is within the coding region of a gene, it may have three different possible out-

comes, where one of them is called synonymous and the two others are called

non-synonymous. Synonymous substitution occurs if the altered nucleotide does

not change the codon that determines the amino acid in the protein product. The

two non-synonymous variations, however, result in changes in the coded amino

acid. The first subtype of a non-synonymous mutation is missense, which results

in a changed but full-size protein that may cause a disease or a malfunction in cell

metabolism. The second subtype, called nonsense, results in an immature stop in

the coded protein, which therefore truncates it, which again, in turn, may disrupt

cell metabolism and cause diseases. Searching for these variations is the standard

practice to identify genotype-disease relations and to help diagnose patients with

genetic diseases.

Structural variants are large-scale rearrangements that affect DNA segments of

2

length from 50 bp to several megabases. These include insertions, deletions, du-

plications, inversions, transpositions (i.e., mobile element insertions) and translo-

cations. Insertions add some new content to the DNA compared to the reference

sequence. Deletions are the mirror cases of insertions as they remove DNA com-

pared to the reference. Duplications are copy events where DNA segments are

repeated elsewhere in the genome. Insertions, deletions, and duplications are also

collectively called copy number variation. Inversions correspond to genomic seg-

ments that are inverted in orientation at the same loci. Transpositions, also called

mobile element insertions, are copy events of previously characterized common

repeat elements such as Alu and L1Hs sequences. Translocations are the migra-

tions of the segments of a sequence from one chromosome to another. A study

shows that the rate of structural variations is 8% in one generation per haplo-

type [3], whereas another study claims that structural variants can affect up to

20% of a human genome [4].

The divergence between genomes of different species is informative of the evo-

lutionary relationship between those species. For example, there is a 1.23% single

nucleotide variation along the human and chimpanzee genomes, where this dif-

ference within the species is not greater than 1.06%. Approximately 29% of the

orthologous genes, which are derived from a common ancestor and have high sim-

ilarity in sequence and functionality, between human and chimpanzee genomes

are exactly the same. Most of the remaining orthologous genes do not have more

than two different amino acids. [5]

To be able to perform the comparisons and analyses explained above, one

needs to “read” the genome of a given individual. The earliest attempts to

identify nucleotides that make up the genetic material, or the first-generation

sequencing technology, Sanger sequencing, was both time-consuming and pro-

hibitively expensive. Still, it was the main driving force to generate the human

reference genome, as well as the reference genomes for several other species in-

cluding chimpanzee, marmoset, baboon, mouse, and rat. Starting in 2006, several

new-generation DNA sequencing platforms started to replace Sanger sequencing,

which offered massive parallelization to offer high-throughput DNA sequencing

3

(HTS). However, they also generated shorter and more error-prone readouts, in-

creased redundancy, and sequencing became cheap, widely available, and afford-

able, which in turn spearheaded large-scale genome variation characterization

studies such as the 1000 Genomes Project.

There are two main strategies for genome analysis given a sequenced read set.

First, similar to constructing a superstring, we can “stitch” short DNA reads

together and use the data redundancy to eliminate as many errors as possible.

This strategy is called de novo sequencing, and it is the only method to apply

if there does not exist a prebuilt reference genome of the organism under eval-

uation. In the case where a reference genome exists, the second strategy called

resequencing is the method of choice. Here, we simply compare each short DNA

sequence read with the reference, through mapping and alignment, and identify

differences while reducing errors through statistical analysis of redundant align-

ment information. Both de novo sequencing and resequencing include finding

matching patterns between strings. This problem is called Sequence Alignment

Problem, which is explained in Section 1.2.

1.2 Sequence Alignment Problem

Here we define two versions of the Sequence Alignment Problem: Pairwise Se-

quence Alignment Problem and Multiple Sequence Alignment Problem.

1.2.1 Pairwise Sequence Alignment Problem

The Pairwise Sequence Alignment Problem can be defined as follows:

Given two sequences, find the alignment with the highest alignment score. The

score is calculated according to awarding the number of matching nucleotides and

penalizing gaps which can be seen as deletion on one sequence and insertion on

the other, as well as mismatch between nucleotides.

4

Also, this version of the problem has several types: global, global-extension,

semi-global, overlap, extension, and local. For different scenarios, different types

of the problem are solved. The two most common pairwise alignment types are

global and local alignment. Both have a solution with dynamic programming.

Global alignment finds a full alignment between the two sequences so that each

sequence is aligned from the first position to the last position. The solution to

the problem is proposed by Needleman-Wunsch [6]. The algorithm is based on

dynamic programming with table size N ·M where N and M are the sequence

lengths. The recurrence function of the dynamic programming table is as follows.

si,j = max



si−1,j−1 + 1 if vi = wj

si−1,j−1 − µ if vi ̸= wj

si−1,j − σ

si,j−1 − σ

where vi and wj are ith and jth positions on sequence v and w respectively. It

traces back the alignment from the right bottom corner to the left top corner.

This algorithm takes O(N · M) time since calculating each entry in the table

takes constant time and the run time of the traceback procedure is bounded by

O(N +M).

Local alignment finds an alignment between the two sequences without con-

sidering the tails of each sequence. Therefore, there is no penalty when parts

of the sequences are aligned if it is not between two aligned regions. The solu-

tion to the problem proposed by Smith-Waterman [7]. The algorithm also does

dynamic programming with the same table size, and it is a simple extension

of the Needleman-Wunsch algorithm. The recurrence function of the dynamic

programming table is as follows:

5

si,j = max



si−1,j−1 + 1 if vi = wj

si−1,j−1 − µ if vi ̸= wj

si−1,j − σ

si,j−1 − σ

0

where vi and wj are the ith and jth positions of sequences v and w respectively.

The traceback interval starts from the maximum value on the table to 0. This

algorithm takes O(N ·M) time since calculating each entry on the table takes

constant time.

1.2.2 Multiple Sequence Alignment Problem

The Multiple Sequence Alignment (MSA) Problem can be defined as follows:

Align k sequences such that the total cost of pairwise alignments inferred from

the MSA is minimum. The cost function is similar to the cost function of the

pairwise sequence alignment.

The MSA problem is shown to be MAX SNP-hard [8] therefore optimal MSA

construction is not feasible. The naive attempt to solve MSA uses a k dimensional

dynamic programming table with the length of each dimension being the length

of one sequence. In this table, each entry is calculated by comparing 2k previous

entries. Assuming that the length of each sequence is N, the run time becomes

O(2k · Nk). Therefore heuristics are applied to achieve a polynomial run time

while sacrificing optimality. Profile-based progressive alignment can construct

MSA in O(k ·N2) time.

6

1.3 Burst of Assembly data

With the advent of HTS and advancements in de novo assembly algorithms, nu-

merous assembled genomes of various organisms, including humans, have become

available. Several consortia and projects are dedicated to enhancing the confi-

dence of these genomes while expanding the diversity of species represented within

genomic libraries. For instance, initiatives such as the Human Genome Project,

the 1000 Genomes Project, and The Genome Reference Consortium not only aim

to establish more reliable human genome references but also strive to incorpo-

rate a broader range of human populations into these references. Furthermore,

endeavors such as the Great Ape Genome Project [9], The Chimpanzee Sequenc-

ing and Analysis Consortium [5], and the Orangutan Genome Project [10] focus

on exploring the genomes of species closely related to humans. The Vertebrate

Genomes Project [11], The 10000 Plant Genomes Initiative [12], and the Earth

Biogenome Project [13] are involved in the exploration of genomes across various

species. Consequently, the analysis and comparison of these numerous genomes

have led to the emergence of the Whole Genome Alignment Problem as a pressing

concern.

1.4 Whole Genome Alignment Problem

The Whole Genome Alignment Problem pertains to the alignment of strings at

the scale of entire chromosomes or whole genomes. Standard alignment problem

solutions encounter several challenges that render them inadequate for addressing

this problem, particularly in terms of scalability and the resolution of structural

variants.

Scalability becomes a significant concern when dealing with large strings, as

existing alignment algorithms lack linear or sub-linear time complexity. For in-

stance, storing an uncompressed haploid human genome with each nucleotide

allocated 2 bits would require approximately 750 MB of memory. If we were

7

to construct a dynamic table employing 32-bit integers for the entire genome,

a minimum of 36 exabytes of memory would need to be allocated. Even when

assuming knowledge of each chromosome, the smallest of which is chromosome

22, a memory allocation of 10 petabytes would be required. Consequently, stan-

dard approaches are not scalable for whole genome alignment. Although there

may be potential techniques to reduce the size of the dynamic table, the resulting

memory access demands would be time-consuming, leading to poor algorithm

scalability. While the banded version of pairwise alignment necessitates a lin-

ear space dynamic table, it only functions when the sequences possess precisely

the same starting point and exhibit minimal variation from the main diagonal of

the dynamic table. Unfortunately, this is not the case for sequences within the

domain of whole genome alignment.

Another crucial issue in whole genome alignment involves the presence of struc-

tural variants within the sequences. Global alignment fails to reveal more than

one structural variant, despite thousands of such variants existing within the hu-

man genome. Local alignments can identify structural variants, but the quadratic

time complexity required to check each entry for such variants renders this ap-

proach unsuitable. Consequently, more sophisticated methods are employed to

address this problem, such as the seed-extend-chain framework. This frame-

work utilizes exact matching regions (seeds) to establish alignments between

sequences. However, the uniform-like distribution of seeds within the method

results in quadratic time complexity for alignment. Thus, seeding techniques

must ensure a non-uniform distribution of seeds to mitigate this issue.

For multiple sequence alignment in the context of whole genomes, graph data

structures and guiding trees with specialized indexes are utilized. However, the

primary challenge in the first method lies in effectively handling large graphs

and generating alignments from loosely connected graphs, even when a consensus

is achieved. The extraction of pairwise alignments from such consensus pan-

genome graphs proves difficult. The second method, known as Cactus [14] and its

more recent iteration, Minigraph-Cactus [15], relies on the assumption of having

guiding trees. While it is feasible to construct such trees for inter-species cases

due to the availability of analyses and guiding trees for species, creating a guiding

8

tree between individuals within a species is as challenging as pairwise alignment,

particularly when dealing with reference-free genomes.

1.5 Motivation

Existing solutions for the pairwise whole genome alignment problem lack flex-

ibility in terms of alignment size. On one hand, there are exceedingly small

matches, such as seeds or maximum unique matches, which exclusively consist

of exact matches. While these matches can be rapidly identified, they do not

accommodate any mutations. Additionally, due to their short lengths, they are

insufficiently sensitive for capturing long approximate matches. On the other

hand, there exist very large alignments that require significant time due to the

processes of gap-filling and alignment. The objective of this research is to

strike a balance between these two extremes, aiming to harness the

sensitivity of approximate matches while maintaining computational

efficiency.

1.6 Thesis Statement and Contribution

The thesis statement of this study asserts that a scalable and localized reference-

free whole genome alignment can be achieved with an approximate string matching

and subsampling index structure while ensuring a desired level of sensitivity and

specificity. To accomplish this, we have developed a comprehensive framework

comprising data preprocessing, indexing, and matching stages. Notably, we pro-

pose a novel indexing structure called the Alternating Lyndon Factorization

Tree (ALFTree), which incorporates both spatial and lexicographical informa-

tion within its nodes. Furthermore, we present an algorithm specifically designed

to construct the ALFTree from a given DNA sequence in FASTA format. Addi-

tionally, we introduce the Idoneous algorithm that generates intervals of specific

sizes on two ALFTrees, identifies matches within these intervals, and performs a

9

sanity check through alignment procedures.

10

Chapter 2

Background

In this chapter, we discuss related works and data structures that contribute to

designing ALFTree, Monoid Factorization Methods, and run-length encoding.

2.1 Related Works

This section contains solutions for the pairwise whole genome alignment problem.

As mentioned before, two different approaches exist to solve the problem. Two

solutions are the fast solution with exact matches and the slow solution with

approximate matches.

The state of the art for the former one is MUMmer. It finds the maximum

unique exact matches via suffix array data structure. Even though it is less

sensitive because of exactness, it finds matches very fast. Namely, it has high

false negatives but has the advantage of time efficiency in order of magnitudes.

The state of the art for the latter one is NUCmer. It starts with maximum

unique exact seeds and makes possible chaining and gap-fillings in order to extend

and combine seeds to get longer alignments and high coverage. This solution is

more sensitive since it contains approximate matches as well. However, because

11

of the chaining and gap-filling part, it consumes lots of time even if it is the best

method for that coverage rate.

2.2 Data Structures

This section covers min-max heap, spatial indexing, and syncmers in short.

2.2.1 Min-max Heap

The min-max heap is a binary tree that combines the properties of both a min-

heap and a max-heap. This tree is characterized by its min-max ordering, where

values at nodes located on even levels are smaller than or equal to the values

stored at their descendants (if any), while values at nodes on odd levels are

greater than or equal to their descendants. It is important to note that the root

node is considered to be at level zero [16].

A notable characteristic of this data structure is the decreasing marginality of

nodes as we traverse deeper into the tree. In this context, marginality refers to

the probability of a node being distant from the center of the value space, which

is defined by the interval between the minimum and maximum values present in

the tree. This property can be demonstrated for a set of node values that are

uniformly distributed.

Consider a scenario where we have n nodes, each with values uniformly dis-

tributed between 0 and 1. In the absence of location knowledge, we can infer that

the marginality is proportional to the variance of the distribution. For a uniform

distribution between 0 and 1, the variance is known to be 1/12.

As we traverse deeper into the tree, specifically reaching the 2nth level node,

it can be observed that k of its descendants possess values smaller than the node,

while k of them have values greater than the node. This implies that the node

12

itself functions as the median value among 2n+1 samples drawn from a uniform

distribution spanning the interval between 0 and 1. Consequently, the density

function of the node can be expressed as:

f(x) =
xn(1− x)n

B(n+ 1, n+ 1)

This density function corresponds to the beta distribution, where the numer-

ator represents the combination of choosing n elements from the interval (0, x)

and n elements from the interval (x, 1). The denominator incorporates a factor

of the beta function, denoted as B(n + 1, n + 1), to ensure that the sum of the

density functions equals 1. In beta distribution, the parameters are α = n + 1

and β = n + 1. It is worth noting that the variance of the beta distribution is

defined as follows:

V ar[X] =
αβ

(α + β)2(α + β + 1)

in the given parameters we have,

V ar[X] =
(n+ 1)2

(2(n+ 1))2(2n+ 3)

V ar[X] =
1

8n+ 12

Hence, it can be demonstrated that as the depth increases, the variance progres-

sively diminishes.

This property proves advantageous when profiling a subset of a numerical list.

Instead of solely considering the smallest and largest numbers, opting for mid-

range numbers arranged spatially provides more informative insights into the

list. The specificity of mid-range numbers exceeds that of marginal numbers,

as demonstrated by the entropy calculations for the corresponding beta distribu-

tions. For marginal numbers, the entropy is calculated with parameters α = 1 and

β = 2n+1, while for mid-range numbers, the entropy is calculated with α = n+1

and β = n+ 1. Since the entropy of the latter is greater than that of the former,

sampling from the mid-range numbers yields more substantial information.

13

In this study, we did not employ a binary min-max heap; however, our devised

tree structure exhibits the aforementioned property. The algorithm does not

explicitly focus on leaf nodes, but rather retrieves elements that are typically

either leaves or deeper inner nodes. This is attributed to the high children-to-

parent ratio within the constructed tree.

2.2.2 Spatial Indexing

A spatial index is a data structure designed to facilitate efficient spatial queries

and operations. Many indexing systems lack support for multiple ordering, which

is essential for spatial queries. Spatial indexes, on the other hand, are specifically

designed to accommodate multiple ordering queries, as spatial information gen-

erally involves at least two dimensions. This characteristic enables the compact

representation of spatially proximate data, ensuring that each entry has easily

reachable neighborhoods.

Two main approaches are commonly employed in the construction of spatial

indexes: the space-driven approach and the data-driven approach. In the space-

driven approach, the spatial index is organized based on the space or coordinate

system. The space is divided into blocks using regular grids or sets of cells, with

data points allocated to their corresponding blocks. Although this approach is not

data-driven, the efficient design of grid or cell divisions depends on the amount

of data occupying each cell. Examples of this indexing structure include grid

index and quadtree. On the other hand, the data-driven approach organizes the

spatial index based on the data points themselves. The division of data blocks is

determined by the characteristics of data distribution. In essence, the selection

of tree nodes and their child-parent relationships in the index are influenced

by the data’s distribution. This approach is exemplified by R-tree and kd-tree.

Both approaches offer advantages and disadvantages. The space-driven approach

provides a consistent range at runtime, but its performance suffers when the data

is non-uniform due to a lack of knowledge about the data. Conversely, the data-

driven approach offers flexibility in accommodating different data distributions

14

with good performance, but it incurs the cost of changing interval ranges and

dynamic allocations, making it slower.

Spatial indexing finds its most common application in the field of computa-

tional geometry. It enables functionalities such as locating objects within specific

areas, searching for the k nearest neighbors, and identifying intersections between

objects. Although these problems are traditionally associated with computational

geometry, other fields also adapt their problems to incorporate spatial or geomet-

ric aspects. For instance, a sequence mapping tool called Sigmap [17] transforms

k-mers into k-dimensional points to identify spatially close k-mers, where close-

ness is determined by a small Hamming distance between the two k-mers.

In this study, we draw inspiration from spatial indexes to create a geometric

space based on different lexicographical orders as its dimensions, using the data-

driven approach.

2.2.3 Syncmers

Comparing entire long strings is both costly and impractical. To address this is-

sue, the subsampling method is employed, wherein specific substrings are selected

in a manner that promotes greater intersection among similar strings. Metrics

such as Jaccard similarity prove useful in profiling strings by comparing sets. Sub-

sampling methods can be classified into two categories: those using predefined

substring sets, also known as universal hitting sets, and those that choose sub-

strings by scanning the local portion of the string. These categories are referred

to as context-free subsampling and context-dependent subsampling, respectively.

Typically, subsamples are selected from k-mer samples, where k-mers represent

substrings of length k within a string. For instance, the 3-mers of the string

“CATTTGA” are “CAT”, “ATT”, “TTT”, “TTG”, and “TGA”.

Among the widely used subsampling methods is the minimizer approach. In

this method, each k-mer is hashed to an integer value. For the context-free

approach, k-mers with hash values smaller than a specified threshold are selected.

15

In the context-dependent approach, a window size is determined, and for each

window in the string, the k-mer with the smallest hash value is chosen. The

first approach ensures that if a subsample does not exist in a string, it truly

does not occur in the string. This property helps avoid false negativity in string

similarity analysis. However, this approach lacks a constraint on the distance

between subsamples, which may result in overlooking specific substrings that

do not contain any k-mer with a hash value below the threshold. The second

approach ensures that the distance between two subsamples cannot exceed the

size of the window. Nevertheless, it does not guarantee that the presence of a k-

mer in a subsample of a string implies its presence in any other string containing

that subsample. Another subsampling method, known as “syncmer”, attempts

to mitigate these issues.

Syncmer selects a k-mer based on the position of the s-mer (a subsequence of

length s) within it, which possesses the minimum hash value. Syncmers have dif-

ferent versions, each satisfying specific conditions based on positional rules, but all

versions depend on the parameters k and s. One version, called closed syncmer,

has the smallest s-mer in either the starting or ending position. Syncmers can be

calculated within a narrow range, making them context-free. Moreover, for suffi-

ciently long strings, there will always be syncmers, thus overcoming the drawback

of the context-free approach in the minimizer scheme. The term “long enough”

is upper bounded by k, s, and the size of the alphabet. Given the small alphabet

size in DNA sequences, this upper bound is small.

In this study, syncmer is not directly utilized; however, the employed frame-

works imply that the selected blocks are analogous to syncmers, albeit without

the specific constraint on the chosen k-mer size.

2.3 String Parsing Methods

A string parsing method is employed to partition a given string into mutually

exclusive substrings that collectively cover the entire string.

16

In this section, we explore two distinct approaches to string parsing. The first

approach, known as locally consistent parsing, focuses on generating substrings of

balanced lengths while adhering to the constraint of avoiding periodic substrings

within a specified length. On the other hand, the second approach, called Lyndon

Factorization, leverages the relative positions of the substrings by adopting an

idea derived from the algebraic concept.

2.3.1 Locally Consistent Parsing

There exist various constructions of Locally Consistent Parsing (LCP), and in our

study, we utilize the version defined by the (τ, δ)-partitioning, as it offers better

suitability for facilitating block investigations. The definition of (τ, δ)-partitioning

is as follows:

Definition 2.3.1 A set of positions P ⊆ [n] is referred to as a (τ, δ)-partitioning

set of string S, with 1 ≤ τ ≤ δ ≤ n, if and only if it satisfies the following

properties:

1. Local Consistency - For any two indices i, j ∈ [1 + δ . . . n− δ] such that

S[i− δ . . . i+ δ] = S[j − δ . . . j + δ], we have i ∈ P ⇐⇒ j ∈ P .

2. Compactness - Let pi < pi+1 be two consecutive positions in P ∪{1, n+1}.
Then, one of the following conditions holds:

(a) (Regular block) pi+1 − pi ≤ τ .

(b) (Periodic block) pi+1 − pi > τ , and the substring u = S[pi . . . pi+1 − 1]

is an aperiodic string with a period length ρu ≤ τ .

[18, 19]

This factorization provides a consistent seed, implying that if a block appears

somewhere in the string, it will be present in every occurrence of the string.

17

Additionally, the blocks are uniformly distributed throughout the factorization,

ensuring that the lengths of each block do not differ significantly in terms of

magnitude.

2.3.2 Lyndon Factorization

The Lyndon Factorization is built upon the algebraic structure known as a

monoid. A monoid is defined as follows:

Definition 2.3.2 A monoid is a set M equipped with a binary operation that is

associative and possesses a neutral element denoted by 1M . [20]

The set of all strings over an alphabet forms a monoid, where the binary

operation is concatenation and the neutral element is the empty string. Hence,

strings can be regarded as free monoids in relation to their algebraic counterparts.

Definition 2.3.3 A factorization of the free monoid A∗ is a family (Xi)i∈I of

subsets of A+ indexed by a totally ordered set I, such that every word w ∈ A+

can be uniquely expressed as

w = x1x2 · · · xn

with xi ∈ Xji, and

j1 ≥ j2 ≥ · · · ≥ jn

[20]

This implies the existence of totally ordered sets of non-empty strings that

can be uniquely combined in a monotonic order to generate any string. The total

ordered sets are determined by Lyndon Words and the lexicographical order,

defined as follows:

18

Definition 2.3.4 (Lyndon Word) Lyndon Word intuitively can be defined as

a word with minimum lexicographical order of all its rotations.

More formally, a Lyndon word l ∈ Σ+ is a word such that l = uv with u, v ∈ Σ+

implies that l < vu.

Theorem 2.3.1 Every word w ∈ Σ+ admits a unique factorization as a sequence

of decreasing Lyndon words:

w = ln1
1 ln2

2 · · · l
nk
k (2.1)

where ni ≥ 1 and li is a Lyndon word for all i such that 1 ≤ i ≤ k. [21]

Due to the decreasing order in the factorization, the likelihood of starting a new

block decreases, resulting in larger blocks ordered by magnitude from left to right.

Additionally, the blocks exhibit contextuality, where a block may not appear in

every occurrence of the string but rather when it is consecutively repeated.

2.3.3 Comparison between Methods

Both LCP and Lyndon Factorization lack built-in recursive factorization for cre-

ating a min-max heap data structure. Although LCP has some versions created

in a bottom-up fashion, both methods can be manipulated using hashing or order

functions to achieve the desired outcome, which can be easily implemented.

The main distinction between LCP and Lyndon Factorization lies in their con-

textuality. LCP represents a context-free factorization, whereas Lyndon Factor-

ization is context-sensitive. Context-sensitive systems establish matches between

blocks that exhibit longer regions of similarity compared to context-free systems.

However, context-free systems only need to be calculated once, whereas context-

sensitive systems must be recalculated for each instance. It should be noted that

both factorization techniques operate in linear time since scanning the sequence

19

is necessary. Thus, the order in which the sequence is given does not affect the

efficiency of the process. Consequently, LCP is more suitable when dealing with

streaming data, whereas Lyndon Factorization excels in cases where the seeds

are more sensitive and require a broader region representation. Given that whole

genome alignment does not require streaming capabilities and prioritizes sensitiv-

ity, this work adopts Lyndon Factorization as the chosen string parsing method.

2.4 Run-Length Encoding

The definition of Run-Length Encoding(RLE) as follows:

Definition 2.4.1 (Run-Length Encoding) Run-Length Encoding is a lossless

data compression method that stores runs as a data value and counts, where a

run refers to a sequence with only one data value.

The run time of the Run-Length Encoding (RLE) algorithm is linear, as it

processes each character in the encoding individually, and the time complexity

is proportional to the length of the input. RLE’s effectiveness in compression

depends heavily on the data’s characteristics. Consequently, the resulting com-

pression ratio can vary significantly and can take on any positive value. This

means that RLE can produce highly compressed data, but it can also result in

data that is larger than the original.

It is worth noting that an alternative data structure called the FM-index can

be utilized for data sets with low entropy, such as a book written in a natural

language [22]. The FM-index is intelligently designed to efficiently handle long

runs of repeated characters, leading to higher data compressibility. This data

structure takes advantage of the inherent redundancy in natural language texts,

allowing for more effective compression techniques to be applied.

20

RLE is particularly advantageous when working with data containing repet-

itive letters or when sequencing data contains repetitive regions known as ho-

mopolymers. In the context of Lyndon factorization, excessive repetitiveness

results in a high number of blocks, leading to inefficiency. By eliminating rep-

etitions, RLE proves to be a valuable tool for improving the efficiency of our

algorithm.

21

Chapter 3

Methods

In this thesis, we present Idoneous, an algorithm designed for whole genome

alignment with target mapping length and error rate considerations. The algo-

rithm encompasses various stages, including preprocessing of the sequence data,

construction of characteristic data structures, which take the form of specialized

trees, and a mapping procedure that involves traversing these trees.

To facilitate efficient synchronization between seeds and chaining, we intro-

duce a novel data structure called the “Alternating Lyndon Factorization Tree”

(ALFTree). This data structure incorporates spatial lexicographical information,

enabling seamless coordination between seeds. Furthermore, the ALFTree of-

fers the capability of approximate string matching with specific substring length

ranges and varying edit distance approximation rates. This feature proves advan-

tageous in scenarios where adjustments to sensitivity and specificity are required.

A comprehensive definition and explanation of the ALFTree can be found in

subsection 3.1.3.

22

3.1 The Idoneous Algorithm

The Idoneous algorithm includes the following steps:

1. Alphabet transformation through Run-Length Encoding (RLE).

2. Recursive Lyndon factorization with distinct lexicographical orders to fa-

cilitate tree construction.

3. Generation of traversal intervals for both trees.

4. Identification of matches for each interval pair using the seed-chain-filter

framework.

5. Sanity check for matches through alignment between the identified matches.

Figure 3.1 illustrates an overview of the entire process.

3.1.1 Idoneous Parameters

The Idoneous algorithm depends on the following parameters:

• block size (b): minimum size of an inner node in the ALFTree.

• chaining threshold (c): minimum number of seeds required to build a valid

chain.

• division length (d): approximate distance between the starting positions of

two intervals in a sequence.

• division window (a): number of division traversed in one matching step.

• max indel rate (e): maximum indel rate (used as 1/e) between two link

lengths, where a link length corresponds to the distance between two con-

secutive seeds.

23

• k-mer size (k): length of k-mers at the starting positions of the blocks for

comparisons.

We explain these parameters further while presenting the details of Idoneous.

Figure 3.1: Overview of Idoneous: Construction of tree for the string
“C3A7G4A3T5A1C4G1A2”, Generation of the traversal intervals for a tree, Identi-
fication of matches in a square for each interval pair of red and maroon rectangles,
shown in detail which includes synchronization traversal, chaining and filtering
to get matches

3.1.2 Alphabet Transformation

The primary objective of the alphabet transformation is to alleviate the pres-

ence of repetitive Lyndon words, such as homopolymers like “AAAA”, which

24

would otherwise result in factorizations like “A”, “A”, “A”, “A” and lead to a

crowded and inefficient tree structure. Additionally, this transformation offers

several advantages, including lossless compression, maintaining a nearly consis-

tent comparator with the original alphabet, and facilitating faster comparisons

compared to the original alphabet.

In the case of aligning strings with the four-letter alphabet A, C, G, and T,

we perform an alphabet transformation using Run-Length Encoding (RLE) to

convert it into a 253-letter alphabet. The maximum allowed run length in this

transformation is 63. Each letter in this transformed alphabet is represented by

the original letter concatenated with its corresponding run length. For example,

“AAAA” becomes “A4”. However, it is important to note that we cannot use a

run length of 64 due to the requirement of an end character.

The lexicographical order of the transformed alphabet depends on the lexico-

graphical ordering of the original four-letter alphabet and the run length. The

ordering of the original alphabet is preserved, and longer run lengths are assigned

smaller lexicographical orders. Thus, the canonical ordering is as follows:

A63 < A62 < · · · < A1 < C63 < · · · < C1 < G63 < · · · < T2 < T1

While this canonical ordering is suitable, we require at least two different

lexicographical orders to alternate the factorization. Remarkably, achieving this

requirement is possible by permuting the original alphabet, resulting in a total of

24 possible permutations. This “reverse canonical order” is formulated as follows:

T63 < T62 < · · · < T1 < G63 < · · · < G1 < C63 < · · · < A2 < A1

The formal definition of the lexicographical order transformation is as follows,

from the general alphabet Σ to Σrle with a maximum run length of max:

25

For any total order in Σ, there exists another total order in Σrle that satisfies

the following conditions:

• ∀X ∈ Σ and ∀i, j such that 0 < i < j ≤ max, we have Xi >rle Xj

• ∀X, Y ∈ Σ and ∀i, j such that X < Y , we have Xi <rle Yj

3.1.3 Tree Construction via Alternating Lyndon Factor-

ization

The Lyndon factorization offers the advantage of uniquely partitioning a string

into blocks that are confined to specific lexicographical Euclidean subspaces. This

partitioning provides valuable information regarding the potential presence of a

given k-mer within these blocks. However, due to the uniqueness of the Lyndon

factorization, it becomes impossible to parse a Lyndon word into other Lyndon

words without altering the lexicographical order. Moreover, it is essential to

ensure that the parsed blocks are as small as possible, imposing an efficiency con-

straint. To address these requirements, we propose the design of a tree structure

known as the Alternating Lyndon Factorization Tree.

Definition 3.1.1 (Alternating Lyndon Factorization Tree) The Alternat-

ing Lyndon Factorization Tree represents a string using two distinct lexicograph-

ical orders and adheres to the following conditions:

• The root node represents the entire string.

• All nodes, except the root node, correspond to Lyndon words according to

their depth in the tree.

• A leaf node is reached when the length of the represented string falls below

a specified threshold, denoted as b (the block size).

• The children nodes of a given node represent the Lyndon factorization of

the string using the alternative lexicographical order.

26

This tree structure enables the organization of Lyndon words within a hierar-

chical framework, allowing for efficient processing and exploration of the factor-

ized blocks in a controlled manner. In Figure 3.2, construction of the ALFTree

for a given string is demonstrated.

Figure 3.2: Example of Alternating Lyndon Factorization Tree for the string

“C3A7G4A3T5A1C4G1A2” with canonical and reversed canonical lexicographical

order where b = 3. The white block is the root. Pink and Red blocks are Lyndon

word blocks for different lexicographical orders.

The construction of the Alternating Lyndon Factorization Tree can be achieved

with time complexity of O(Nh) by employing the recursive implementation of

Duval’s algorithm [23], where N represents the length of the string and h denotes

the depth of the tree. Furthermore, the space complexity of the tree is determined

to be O(N · log(b)/b), taking into account that within the range of each block of

size b, there can only exist a maximum of two inner nodes. On average, an inner

node is associated with log(b) leaf nodes.

The pseudocodes for the tree construction algorithm and Duval’s algorithm

are given in Algorithm 1 and Algorithm 2 respectively.

27

Data: String S, Block Size b, lexicographical order ord
Result: Alternating Lyndon Factorization Tree of S
Create Node N represents S; if Size(S) > b then

Factors ← Duval’s Algorithm(S, ord); foreach factor ∈ Factors do
add TreeConstruct(factor, b, alternate(ord)) as Child to N;

end

end
return N;

Algorithm 1: Tree construction algorithm (TreeConstruct)

Data: String S, lexicographical order ord

Result: Lyndon Factorization of S

Set comparators according to ord;

n← size(S);

for l← 0 to n do
r ← l;

p← l + 1;

while r < n do

if s[r] > s[p] then
break;

else if s[r] = s[p] then
increment r and p;

continue;

else
r ← l;

increment p;

continue;

end

while l ≤ r do
report s[l · · · l + p− r];

l← l + p− r;

end

end
Algorithm 2: Duval’s Algorithm

28

3.1.4 Generating Traversal Intervals

As the synchronization and matching procedures operate in a linear manner on

the tree, it becomes challenging to identify all reversed matches between two

strings. For instance, when considering the strings AB and ba, with corresponding

similar substring pairs A-a and B-b, only one of the pairs, either A-a or B-b,

can be detected as a match. This limitation arises due to the inability of the

traversal process to move backward on the tree. In order to overcome this issue,

we introduce the concept of generating smaller intervals. To achieve this, we select

a parameter, referred to as the division length, denoted as d, which enables the

generation of intervals for each string. These intervals are obtained by dividing

the original intervals of approximately size d, with the selection of the first inner

node encountered after a distance of d. An ALFTree and representation of the

intervals is illustrated in Figure 3.3.

Figure 3.3: An Alternating Lyndon Factorization Tree. The dash-line node rep-

resents the root node, and only the inner nodes are depicted, each governed by

their respective reference position. The starting node of each interval is distin-

guished by a distinct color marking.

3.1.5 Matching Framework

The matching framework operates on the generated interval pairs, taking them

as input and producing corresponding approximate matches as output. This

29

framework encompasses three key procedures: seeding, chaining, and filtering. In

the seeding procedure, seeds are identified by synchronizing the intervals through

tree traversal, employing k-mer and length comparisons node-by-node. Once the

seeds are identified, chains are constructed by determining the distances between

these seeds. The chaining procedure incorporates two parameters: c, representing

the minimum number of seeds required for a valid chain, and e, which serves as

a threshold to restrict the number of indels between two seeds. If the difference

between the interval pair exceeds the average length by a value greater than e−1,

the interval pair is considered erroneous. Subsequently, the filtering procedure

is employed to eliminate shorter chains and erroneous matches. The remaining

chains represent regions that serve as matches within the entire process. This

entire process is shown in Figure 3.4.

30

Figure 3.4: An illustration exemplifying the matching framework. The rectangles

in the figure represent the generated intervals, while the colored circles denote

the tree nodes, with different colors indicating different k-mers. The dashed lines

indicate the identified seeds. The bold black lines represent the intervals, and

the bold red lines indicate the difference between these intervals. The chosen

parameters for this example are c = 2 and e = 5.

3.1.5.1 Synchronization Traversal

The synchronization traversal algorithm is given in Algorithm 3 with the advance

function is responsible for identifying the next inner node with the closest position

within the tree.

The synchronization traversal process is characterized by its lack of symme-

try. However, owing to the consistent and negative correlation between node size

31

Data: Node n , Node m
Result: synchronized nodes
while n.kmer ̸= m.kmer do

if n.kmer > m.kmer XOR n.size > m.size then
Advance(n) ;

else
Advance(m) ;

end
return n and m ;

Algorithm 3: Synchronization Traversal

and lexicographical order, nodes with similar sizes that exhibit the same k-mer

ordering will achieve synchronization. While not readily apparent, this can be

observed by considering a simplified scenario involving the comparison of a single

metric. It becomes evident that the k-mers are ordered through Lyndon factor-

ization, assuming a lack of depth, resulting in two lists of decreasing numbers. By

continuously advancing the larger element, the position where two lists share the

same element can be determined. This method functions analogously to merge

sort.

In the case of two-dimensional traversal, the process becomes more intricate.

If Node n is positioned higher in the tree, it will initially become deeper. If Node

m is at a deeper point, synchronization will either occur, or one of the condi-

tions will become false. In the former case, synchronization is achieved. In the

latter case, Node m goes deeper again, resulting in a zigzag pattern to facilitate

synchronization. If Node m is located at a higher point, Node n continues to

traverse deeper until it reaches a node that is higher than Node m. At this point,

the previous condition is fulfilled, resolving the situation. Since a total order

is lacking, there is no guarantee that synchronization will encompass all nodes.

However, when a locally similar list of nodes is present, synchronization proves

effective.

The nature of synchronization traversal gives rise to gaps preceding matches

in the initial regions of the intervals. To mitigate these gaps, instead of halting

at the first interval, we traverse a certain number of intervals. This parameter is

32

denoted as a.

3.1.6 Alignment using the Needleman–Wunsch Algo-

rithm

To perform a sanity check on the matches, we used the Edlib[24] library to cal-

culate global alignment. If the alignment distance of a matched region exceeds

a predefined threshold, we filter out the match without attempting to align the

entire region.

33

Chapter 4

Experimental Methodology

This part includes data, criteria, coverage & distance results, and run time results.

4.1 Data

We first tested the accuracy of Idoneous and compared it with MUMmer and

NUCmer using the two highest quality human genomes: the human reference

genome (GRCh38) [25, 26] and the complete human genome assembly released by

the Telomere-to-Telomere Consortium (T2T-CHM13) [27]. We then tested Ido-

neous by comparing several diploid draft human genome assemblies to GRCh38

(Table 4.1). Finally, we used Idoneous to generate WGA of human and chim-

panzee genomes. We only tested Chromosome 22 of each genome, it is easy to

extend this to the whole genome since each chromosome can be identified.

4.2 Criteria

We evaluated Idoneous, MUMmer, and NUCmer under three criteria: coverage,

distance, and run time. Coverage represents the extent to which the genome

34

Table 4.1: Genome assemblies used to test Idoneous.

Name Species No. of Scaffolds∗
Assembly
Length∗

Ungapped
Length

Diploid Citation

GRCh38 Human 36 50,818,468 39,159,782 No [25, 26]
T2T-CHM13 Human 1 51,454,416 51,454,416 No [27]
HG002-maternal Human 1 542,94,140 48,944,140 No [28]
HG002-paternal Human 1 50,257,608 48,707,608 No [28]
panTro6 Chimpanzee 4 33,698,415 33,420,349 No [5]

∗ All tests are conducted on chromosome 22 only.

is mapped to the other genome. Distance measures the average ratio of edit

distance between two matched seeds per nucleotide, providing an assessment of

the alignment of the entire genome. Run time denotes the amount of CPU time

consumed by the algorithm using a single thread. In the first criterion, a higher

value is indicative of better performance, while for the latter two metrics, a lower

value indicates superior results.

4.3 Coverage & Distance Results

This section presents the coverage results obtained by manipulating various pa-

rameters and offers comparisons across different data sets.

4.3.1 Effects of Parameter Selection

This section focuses on the analysis of coverage and distance results pertaining to

the parameters: division window, block size, chaining threshold, division length,

max indel rate, and k-mer size.

4.3.1.1 Division Window (a)

The division window parameter demonstrates a positive correlation with cover-

age, wherein an increase in its value leads to an extended potential matching

35

range. As a result, the ratio of the synchronization gap decreases, as the syn-

chronization gap itself remains unaffected by the incremental adjustments to the

division window. Empirical experiments provide evidence of a sublinear connec-

tion between the augmentation of this parameter and the corresponding rise in

coverage, as visually represented in Figure 4.1. Moreover, Figure 4.2 depicts a

downward trend in distance.

Figure 4.1: Relationship between the Division Window and coverage rate with

parameters b = 2000, c=2, d=8000, e= 200, and k=2

36

Figure 4.2: Relationship between the Division Window and distance with param-

eters b = 2000, c=2, d=8000, e= 200, and k=2

4.3.1.2 Block Size (b)

The block size can serve as an indicator of the Idoneous algorithm’s level of gran-

ularity, where a reduction in block size prompts the algorithm to search for finer

regions in order to identify matches. Consequently, smaller matches can be de-

tected within smaller block sizes, while larger, coarser regions may fail to yield

any matches. Therefore, a smaller value of the block size parameter (b) enables a

broader coverage of regions. Furthermore, due to the exclusion of unnecessary un-

matched neighborhoods within smaller regions, their corresponding distances are

also minimized. This observation is supported by the findings presented in Fig-

ure 4.3, which illustrate a decline in the coverage rate as the block size increases,

aligning with the underlying theory. Additionally, Figure 4.4 demonstrates a

positive correlation between the block size and the distance, indicating a positive

relationship.

37

Figure 4.3: Relationship between the block size and coverage rate with parameters

a = 4, c=2, d=8000, e= 200, and k=2

Figure 4.4: Relationship between the block size and distance with parameters a

= 4, c=2, d=8000, e= 200, and k=2

38

4.3.1.3 Chaining Threshold (c)

The chaining threshold can be viewed as a geometric trail that offers a reduced

false positive rate. As it necessitates more precise matches in the form of se-

quential seeds, the coverage rate diminishes with longer chaining. This inverse

relationship between coverage and the chaining number is illustrated in Figure

4.5. Conversely, the reduction in false positive occurrences leads to a decrease in

the distance between seeds. This phenomenon is demonstrated in Figure 4.6.

Figure 4.5: Relationship between the chaining number and coverage rate with

parameters a = 4, b=2000, d=8000, e= 200, and k=2

39

Figure 4.6: Relationship between the chaining number and distance with param-

eters a = 4, b=2000, d=8000, e= 200, and k=2

4.3.1.4 Division Length (d)

Similar to the block size, the division length also plays a crucial role in deter-

mining the Idoneous algorithm’s granularity. A larger division size leads to a

coarser analysis, resulting in a decrease in the coverage rate. This decline can be

attributed to the same underlying reason as the block size, where the algorithm

may fail to identify smaller matches within larger divisions. Consequently, there

is an increasing trend in the distance between matches as the division size ex-

pands. These findings are consistent with the experimental results presented in

Figure 4.7 and Figure 4.8.

40

Figure 4.7: Relationship between the division size and coverage rate with param-

eters a = 4, b=2000, c=2, e= 200, and k=2

Figure 4.8: Relationship between the division size and distance with parameters

a = 4, b=2000, c=2, e= 200, and k=2

41

4.3.1.5 Max Indel Rate (e)

The max indel rate serves as an additional filtering parameter to reduce false

positives. When the max indel rate, denoted as e, is increased, the coverage de-

creases due to the requirement for accepted matches to exhibit greater similarity.

Similarly, the distance between matches decreases for the same reason. As an-

ticipated, the experimental results shown in Figure 4.9 and Figure 4.10 clearly

demonstrate an inverse relationship between the coverage rate and the distance,

with respect to the parameter e.

Figure 4.9: Relationship between the error rate and coverage rate with parameters

a = 4, b=2000, c=2, d= 8000, and k=2

42

Figure 4.10: Relationship between the error rate and distance with parameters a

= 4, b=2000, c=2, d= 8000, and k=2

4.3.1.6 K-mer Size (k)

Theoretically, an increase in the k-mer size enhances the specificity of the algo-

rithm, leading to a lower coverage rate and shorter distance between matches.

However, due to the incorporation of chaining and spatial distance checks, these

metrics remain constant for reasonable k-mer sizes. In an alternative experimen-

tal setup, the behavior of the k-mer size would resemble that of parameters c and

e. This constancy is visually depicted in Figure 4.11 and Figure 4.12, illustrating

the consistent coverage rate and distance.

43

Figure 4.11: Relationship between the k-mer size and coverage rate with param-

eters a = 4, b=2000, c=2, d= 8000, and e=200

Figure 4.12: Relationship between the k-mer size and distance with parameters

a = 4, b=2000, c=2, d= 8000, and e=200

44

4.3.2 Different data sets

In this section, GRCh38 assembly aligned with T2T-CHM13 assembly, two hap-

loids of a human genome namely HG002-maternal and HG002-paternal genomes,

and panTro6 genome assembly. Consistency between results and coverage of each

algorithm examined. Coverage of each tool for each data set is shown in 4.2.

Table 4.2: Number of covered nucleotides in GRCh38 assembly against given data

set
data set Idoneous MUMmer NUCmer

T2T-CHM13 30,367,599 24,350,168 38,280,735

HG002-maternal 31,339,114 24,350,168 38,157,637

HG002-paternal 29,922,355 18,125,340 38,254,675

panTro6 757,787 1,085,841 32,097,210

For the human vs human alignment, our algorithm lies between MUMmer and

NUCmer in terms of coverage. For the human vs chimpanzee alignment, our

algorithm has not a good performance and it is a negative outlier.

4.3.2.1 GRCh38 vs T2T-CHM13

To generate the alignment between GRCh38 and T2T-CHM13 assembly, we used

the following parameters for the Idoneous algorithm: a = 4, b = 2000, c = 2, d =

8000, e = 200 and k = 2. In this experiment we observed 78% percent coverage.

Figure 4.13 shows that near position chr22:20,000,000 there is a translocation

event.

45

Figure 4.13: Regions of homology found between GRCh38 and T2T-CHM13 using

Idoneous

We found almost no matches before the position chr22:15,000,000. We ob-

served that close to this region, there exist tandem repeats that cannot be de-

tected by Idoneous algorithm since repetitive regions do not have sufficient num-

ber of blocks. Additionally, before this region, most of the nucleotides (10.5

Mbp of 15 Mbp) are unknown (i.e., N) in the GRCh38 assembly since human

chromosome 22 is acrocentric.

46

Figure 4.14: Regions of homology found between GRCh38 and T2T-CHM13 using

MUMmer

To ensure fairness in comparisons, we applied a filter to eliminate matches from

MUMmer that were smaller than 2000, as parameter b in the Idoneous algorithm

prevents the detection of such matches.

In the alignment depicted in Figure 4.14, comparable outcomes are observed in

comparison to the previous alignment. The algorithm’s coverage stands at 62%,

indicating the presence of dense gaps between seeds. Notably, Figure 4.14 does

not exhibit any significant deviation in terms of gap size when contrasted with

the previous alignment.

47

Figure 4.15: Regions of homology found between GRCh38 and T2T-CHM13 using

NUCmer

Within the framework of the NUCmer tool, an extra filtering step is imple-

mented to accommodate the presence of a gap-filling procedure, which is inherent

to the NUCmer algorithm. This particular procedure mandates the presence of

at least two matching regions in order to fill a gap. Specifically, in the Idoneous

algorithm, the regions are required to possess a minimum length of b ∗ (c + 1),

which corresponds to 6000 in the context of this experiment. Additionally, it

is worth noting that the average compression factor of the run-length encoding

(RLE) in the data set amounts to approximately 1.4. Consequently, the selection

of a length of 15 Kbp can be considered adequately justified.

Figure 4.15 demonstrates an increased number of matching regions. Notably,

a distinct match is observed in this algorithm, characterized by a solid rectangle

centered around position chr22:14,000,000, which signifies the presence of tandem

48

repeats. Furthermore, additional regions exhibit clustering along either the hori-

zontal or vertical directions, suggesting the existence of structural variants, such

as duplications. Remarkably, the algorithm achieves nearly complete alignment,

resulting in a coverage of 98%.

4.3.2.2 GRCh38 vs HG002-maternal

To generate the alignment between GRCh38 and the HG002-maternal genome, we

used the same parameters as above for the Idoneous algorithm and we observed

similar results as the GRCh38 - T2T-CHM13 comparison.

Figure 4.16: Alignment between GRCh38 and HG002-maternal genome in Ido-

neous

Figure 4.16 reveals the presence of similar variations, such as translocations.

49

Nevertheless, several notable distinctions arise in this alignment, including a

larger coordinate bias and a reduced number of matches compared to the previous

alignment. The decrease in matches can be attributed to the presence of unknown

regions within this genome, as it has not been fully characterized like the T2T-

CHM13 assembly. However, it is worth noting that despite these differences, the

experimental results indicate a coverage of 80%. This observation suggests that,

in the well-assembled regions, this assembly exhibits a higher degree of similarity

compared to the T2T-CHM13 assembly. Note that neither HG002-maternal nor

the HG002-paternal genome assemblies can be considered complete, and as of the

writing of this thesis they remain as high quality draft assemblies.

Figure 4.17: Regions of homology found between GRCh38 and HG002-maternal

genomes using MUMmer

Similar filtering measures are also applied in this case. When compared to the

Idoneous algorithm, this particular alignment exhibits a higher number of matches

50

in entangled regions. However, one notable observation within the alignment is

the presence of a long match solely within the gap region, which consists of the

character “N”. It is important to note that such a match should not be considered

valid. Excluding this particular match, the algorithm achieves a coverage of 62%,

which is nearly identical to that of the previous data set.

Figure 4.18: Regions of homology found between GRCh38 and HG002-maternal

genomes using NUCmer

The alignment generated using NUCmer follows the same filtering protocol.

As depicted in Figure 4.18, there are no significant deviations observed when

compared to the T2T-CHM13 assembly. The resulting coverage is determined to

be 97%.

51

4.3.2.3 GRCh38 vs HG002-paternal

In the alignment between GRCh38 and HG002-paternal genome, we used same

parameters as before for the Idoneous algorithm.

Figure 4.19: Regions of homology found between GRCh38 and HG002-paternal

genomes using Idoneous

The alignment conducted using the Idoneous algorithm in this case achieves a

coverage of 76%. Figure 4.20 visually demonstrates the similarity of this align-

ment to the alignments shown above.

52

Figure 4.20: Regions of homology found between GRCh38 and HG002-paternal

genomes using MUMmer

When considering the filtered matches from MUMmer, we obtained a cover-

age of 46%. However, Figure 4.20 reveals that despite this lower coverage, the

matches are densely distributed throughout the sequence, indicating that minimal

information loss occurs.

53

Figure 4.21: Regions of homology found between GRCh38 and HG002-paternal

genomes using NUCmer

In contrast, NUCmer exhibits the ability to recover an almost complete align-

ment, despite the initially lower coverage observed in MUMmer. Figure 4.21

shows closely comparable results to the previous alignments, with a coverage of

98

4.3.2.4 GRCh38 vs panTro6

Despite being the closest relative to humans, the chimpanzee genome exhibits a

considerable degree of dissimilarity when compared to the human genome. This

substantial divergence poses a challenge for the Idoneous algorithm, leading to

relatively suboptimal results.

54

Figure 4.22: Regions of homology found between GRCh38 and panTro6 genomes

using Idoneous

Next, we have modified the parameter set to enhance Idoneous algorithm’s

performance, setting the values as follows: a = 4, b = 500, c = 2, d = 2000, e = 50,

and k = 2. We made these adjustments in response to the increased presence

of variations within the sequence. As a result, the algorithm achieves a coverage

of 2.2% in this alignment. Figure 4.22 displays the abundance of matches across

most regions, while also highlighting a significant inversion at the starting point

of the chimpanzee chromosome, indicative of a structural variant when compared

to the human genome.

55

Figure 4.23: Regions of homology found between GRCh38 and panTro6 genomes

using MUMmer

Furthermore, we have adjusted the minimum match size threshold in the

MUMmer tool for the same reason. MUMmer achieves a coverage of 3.2%, slightly

higher than that of the Idoneous algorithm. This discrepancy can be attributed

to the smaller seed size employed in MUMmer, which leads to a more evenly dis-

tributed pattern of matches. It is worth noting that the majority of matches in

MUMmer are smaller than the minimum size requirement of 1500 bp imposed by

the Idoneous algorithm. Figure 4.23 demonstrates the consistency in identifying

structural variants between the two algorithms.

Lastly, NUCmer yields a coverage of 96%, suggesting a near-complete cover-

age between the human and chimpanzee genomes. As depicted in Figure 4.24,

duplications around the position chr22:20,000,000 and several inversions can be

observed.

56

Figure 4.24: Regions of homology found between GRCh38 and panTro6 genomes

using NUCmer

4.4 Run Time Results

This section discusses the run time analysis of the Idoneous algorithm using

various parameter settings. Additionally, a comparison of the algorithm’s run

time with that of other tools is conducted across different data sets.

4.4.1 Result for parameters

This section focuses on the analysis of coverage and distance results concerning

specific parameters, namely the division window, block size, chaining threshold,

57

division length, max indel rate, and k-mer size.

4.4.1.1 Division Window (a)

The run time of the algorithm exhibits a direct proportionality to the length of

the matching region. As the division window parameter (a) increases, the length

of the matching region grows linearly. Consequently, the algorithm demonstrates

a linear run time complexity relative to the parameter a. It is worth noting that

although a procedure is implemented to eliminate duplicates, it introduces a larger

asymptotic complexity. However, the overall impact on the run time remains

minimal due to the procedure’s small multiplicative factor and its negligible effect.

Figure 4.25 provides empirical evidence supporting the linear trend of the run time

with respect to the division window parameter (a).

Figure 4.25: Relationship between the block size and time with parameters a =

4, c=2, d=8000, e= 200, and k=2

58

4.4.1.2 Block Size (b)

When the block size is increased, the length of the matching region decreases, as

does the number of matches, assuming the number of blocks in a division remains

constant. Consequently, changing the block size has a significant impact on the

run time of the algorithm, but in the opposite direction. Figure 4.26 indicates

that the time function lies between O(1
log(b)

) and O(1√
b
), suggesting a relationship

of this form.

Figure 4.26: Relationship between the block size and time with parameters a =

4, c=2, d=8000, e= 200, and k=2

4.4.1.3 Chaining Threshold (c)

The decrease in run time when the chaining number is increased is primarily

attributed to the reduction in the number of matching regions processed by the

alignment algorithm. A higher chaining number corresponds to fewer matching

regions, resulting in a smaller input size for the alignment algorithm. Conse-

quently, the run time is reduced due to the reduced computational load. This

59

relationship is further supported by the observations depicted in Figure 4.27,

where the run time exhibits a similar trend as the coverage rate.

Figure 4.27: Relationship between the chaining number and time with parameters

a = 4, b=2000, d=8000, e= 200, and k=2

4.4.1.4 Division Length (d)

A larger division size leads to a decrease in coverage, which is observed previously.

However, the trade-off comes in the form of increased computation during tree

traversal, resulting in longer processing times for larger divisions. When both

factors are considered, it is found that a bigger division size actually takes less

time overall, primarily due to the alignment process being more computationally

intensive than the tree traversal. This inverse relationship between division size

and time is evident in the experimental results presented in Figure 4.28.

60

Figure 4.28: Relationship between the division size and time with parameters a

= 4, b=2000, c=2, e= 200, and k=2

4.4.1.5 Max Indel Rate (e)

When the parameter e has a lower value, it is anticipated that the alignment

algorithm will receive some erroneous matches, which will subsequently be pruned

and excluded from the coverage. Consequently, in scenarios with a lower e value,

the run time increases due to the additional processing required for pruning.

However, beyond a certain threshold of the error rate, the alignment algorithm

does not prune matches significantly, leading to a similarity between the run

time and coverage trends. Figure 4.29 aligns with these theoretical expectations,

displaying a similar trend as predicted.

61

Figure 4.29: Relationship between the error rate and time with parameters a =

4, b=2000, c=2, d= 8000, and k=2

4.4.1.6 K-mer Size (k)

Since the parameter k does not affect the coverage, distance, or any other relevant

metrics, it follows that the run time of the algorithm remains unaffected by

changes in k. As shown in Figure 4.30, the time remains constant regardless

of the value of k, further confirming that the run time does not vary with this

parameter.

62

Figure 4.30: Relationship between the k-mer size and time with parameters a =

4, b=2000, c=2, d= 8000, and e=200

4.4.2 Run time Results for Different Data Sets

We show the run times for the above data sets with previous parameters in Table

4.3.

Table 4.3: Time required by each tool to align GRCh38 against different assem-

blies
Assembly Idoneous MUMmer NUCmer

T2T-CHM13 383.284 s 49.875s 2,425.505 s

HG002-maternal 403.069s 50.261 s 2,031.389 s

HG002-paternal 393.103 s 48.095 s 2,468.722 s

panTro6 2,527.534s 50.252 s 215.374s

When comparing alignments between humans, the Idoneous algorithm falls

63

somewhere in between MUMmer and NUCmer in terms of coverage results. How-

ever, when dealing with divergent sequences, the algorithm’s performance varies

depending on the chosen block size. It can either exhibit a slow run time or a high

false negative rate. Despite this variability, the algorithm successfully achieves its

objective of generating matching regions with specific lengths, thereby striking a

balance between the two extremes presented by alternative alignment methods.

64

Chapter 5

Discussion & Future work

The goal of this work is to design a method for whole genome alignment with

computational efficiency without losing the sensitivity of approximate matches.

The approach we used in this thesis provides string approximation with adaptable

matching length. We also defined several parameters to determine specificity and

sensitivity. Thanks to various parameters, the proposed method is flexible in

sensitivity and matching length.

Furthermore, our proposed data structure, which incorporates information

from both the lexicographical and spatial domains, as well as the order relation-

ship, can serve as the foundation for a universal reference coordinate system for

genomes. This becomes particularly relevant when constructing de novo assem-

blies becomes computationally feasible, resulting in the emergence of numerous

reference genomes.

Another potential application of our work is to increase time efficiency in sce-

narios where an oracle provides information on how two genomes diverge and the

extent of their structural variants. Since the algorithm matches seeds with coarse

granularity, which can be adjusted using multiple parameters, time efficiency can

be enhanced by leveraging such knowledge.

On the other hand, the current version of the algorithm is highly dependent

65

on the positions of homopolymers due to the favored bias of run-length encoding

towards them. To mitigate this dependency, a hashing scheme that does not

exhibit favoritism towards specific characteristics can be employed. In this ap-

proach, k-mers can be hashed, and the order of the hashing values can be utilized

to establish a lexicographical order. An Alternating Tree can be constructed us-

ing multiple hash functions. While the use of k-mers may reduce the flexibility

of matches, this issue can be addressed in future versions by incorporating fuzzy

seeds.

There is still room for improvement in compressing the ALFTree. Currently,

the tree is accessed sparsely at an approximate ratio of k
b
except during the align-

ment phase. Hence, the algorithm can be modified to employ a lossy compressed

version of the ALFTree until the alignment phase, utilizing the original string

exclusively for the alignment process. Although the current ALFTree does not

contain the actual string but rather pointers, making it space-efficient, accessing

memory becomes cumbersome due to the pointers traversing distant points. By

using k-mers instead of pointers, the memory access time can be reduced. While

this may limit the flexibility of k, it is not a concern as k does not significantly

impact sensitivity beyond a certain point.

Lastly, the run time of the algorithm can be further improved through par-

allelization. Since a significant portion of the algorithm is localized, it can be

readily parallelized. Parallelization can be implemented for each interval pair,

and duplicates may occur within the a · b neighborhood. Therefore, the main

consideration involves sorting the seeds and eliminating duplicates. The map-

reduce framework proves to be a suitable method for addressing this issue.

66

Bibliography

[1] The 1000 Genomes Project Consortium, “A global reference for human ge-

netic variation,” Nature, vol. 526, pp. 68–74, Sep 2015.

[2] K. Lindblad-Toh, C. M. Wade, T. S. Mikkelsen, E. K. Karlsson, D. B.

Jaffe, M. Kamal, M. Clamp, J. L. Chang, E. J. Kulbokas, 3rd, M. C. Zody,

E. Mauceli, X. Xie, M. Breen, R. K. Wayne, E. A. Ostrander, C. P. Ponting,

F. Galibert, D. R. Smith, P. J. DeJong, E. Kirkness, P. Alvarez, T. Bi-

agi, W. Brockman, J. Butler, C.-W. Chin, A. Cook, J. Cuff, M. J. Daly,

D. DeCaprio, S. Gnerre, M. Grabherr, M. Kellis, M. Kleber, C. Bardeleben,

L. Goodstadt, A. Heger, C. Hitte, L. Kim, K.-P. Koepfli, H. G. Parker,

J. P. Pollinger, S. M. J. Searle, N. B. Sutter, R. Thomas, C. Webber,

J. Baldwin, A. Abebe, A. Abouelleil, L. Aftuck, M. Ait-Zahra, T. Aldredge,

N. Allen, P. An, S. Anderson, C. Antoine, H. Arachchi, A. Aslam, L. Ayotte,

P. Bachantsang, A. Barry, T. Bayul, M. Benamara, A. Berlin, D. Bessette,

B. Blitshteyn, T. Bloom, J. Blye, L. Boguslavskiy, C. Bonnet, B. Boukhgal-

ter, A. Brown, P. Cahill, N. Calixte, J. Camarata, Y. Cheshatsang, J. Chu,

M. Citroen, A. Collymore, P. Cooke, T. Dawoe, R. Daza, K. Decktor,

S. DeGray, N. Dhargay, K. Dooley, K. Dooley, P. Dorje, K. Dorjee, L. Dor-

ris, N. Duffey, A. Dupes, O. Egbiremolen, R. Elong, J. Falk, A. Farina,

S. Faro, D. Ferguson, P. Ferreira, S. Fisher, M. FitzGerald, K. Foley, C. Fo-

ley, A. Franke, D. Friedrich, D. Gage, M. Garber, G. Gearin, G. Giannoukos,

T. Goode, A. Goyette, J. Graham, E. Grandbois, K. Gyaltsen, N. Hafez,

D. Hagopian, B. Hagos, J. Hall, C. Healy, R. Hegarty, T. Honan, A. Horn,

N. Houde, L. Hughes, L. Hunnicutt, M. Husby, B. Jester, C. Jones, A. Ka-

mat, B. Kanga, C. Kells, D. Khazanovich, A. C. Kieu, P. Kisner, M. Kumar,

67

K. Lance, T. Landers, M. Lara, W. Lee, J.-P. Leger, N. Lennon, L. Leuper,

S. LeVine, J. Liu, X. Liu, Y. Lokyitsang, T. Lokyitsang, A. Lui, J. Mac-

donald, J. Major, R. Marabella, K. Maru, C. Matthews, S. McDonough,

T. Mehta, J. Meldrim, A. Melnikov, L. Meneus, A. Mihalev, T. Mihova,

K. Miller, R. Mittelman, V. Mlenga, L. Mulrain, G. Munson, A. Navidi,

J. Naylor, T. Nguyen, N. Nguyen, C. Nguyen, T. Nguyen, R. Nicol, N. Norbu,

C. Norbu, N. Novod, T. Nyima, P. Olandt, B. O’Neill, K. O’Neill, S. Os-

man, L. Oyono, C. Patti, D. Perrin, P. Phunkhang, F. Pierre, M. Priest,

A. Rachupka, S. Raghuraman, R. Rameau, V. Ray, C. Raymond, F. Rege,

C. Rise, J. Rogers, P. Rogov, J. Sahalie, S. Settipalli, T. Sharpe, T. Shea,

M. Sheehan, N. Sherpa, J. Shi, D. Shih, J. Sloan, C. Smith, T. Spar-

row, J. Stalker, N. Stange-Thomann, S. Stavropoulos, C. Stone, S. Stone,

S. Sykes, P. Tchuinga, P. Tenzing, S. Tesfaye, D. Thoulutsang, Y. Thoulut-

sang, K. Topham, I. Topping, T. Tsamla, H. Vassiliev, V. Venkataraman,

A. Vo, T. Wangchuk, T. Wangdi, M. Weiand, J. Wilkinson, A. Wilson, S. Ya-

dav, S. Yang, X. Yang, G. Young, Q. Yu, J. Zainoun, L. Zembek, A. Zimmer,

and E. S. Lander, “Genome sequence, comparative analysis and haplotype

structure of the domestic dog,” Nature, vol. 438, pp. 803–819, Dec. 2005.

[3] W. P. Kloosterman, L. C. Francioli, F. Hormozdiari, T. Marschall, J. Y.

Hehir-Kwa, A. Abdellaoui, E.-W. Lameijer, M. H. Moed, V. Koval,

I. Renkens, M. J. van Roosmalen, P. Arp, L. C. Karssen, B. P. Coe, R. E.

Handsaker, E. D. Suchiman, E. Cuppen, D. T. Thung, M. McVey, M. C.

Wendl, Genome of Netherlands Consortium, A. Uitterlinden, C. M. van

Duijn, M. A. Swertz, C. Wijmenga, G. B. van Ommen, P. E. Slagboom,

D. I. Boomsma, A. Schönhuth, E. E. Eichler, P. I. W. de Bakker, K. Ye,

and V. Guryev, “Characteristics of de novo structural changes in the human

genome,” Genome Res, vol. 25, pp. 792–801, Apr. 2015.

[4] W. Brandler, D. Antaki, M. Gujral, A. Noor, G. Rosanio, T. Chapman,

D. Barrera, G. Lin, D. Malhotra, A. Watts, L. Wong, J. Estabillo, T. Gadom-

ski, O. Hong, K. Fajardo, A. Bhandari, R. Owen, M. Baughn, J. Yuan,

T. Solomon, A. Moyzis, M. Maile, S. Sanders, G. Reiner, K. Vaux, C. Strom,

K. Zhang, A. Muotri, N. Akshoomoff, S. Leal, K. Pierce, E. Courchesne,

68

L. Iakoucheva, C. Corsello, and J. Sebat, “Frequency and complexity of de

novo structural mutation in autism,” The American Journal of Human Ge-

netics, vol. 98, pp. 667–679, Apr 2016.

[5] R. H. Waterson, E. S. Lander, R. K. Wilson, T. C. Sequencing, and A. Con-

sortium, “Initial sequence of the chimpanzee genome and comparison with

the human genome,” Nature, vol. 437, pp. 69–87, Sep 2005.

[6] S. B. Needleman and C. D. Wunsch, “A general method applicable to the

search for similarities in the amino acid sequence of two proteins,” J Mol

Biol, vol. 48, pp. 443–453, Mar 1970.

[7] T. F. Smith and M. S. Waterman, “Identification of common molecular sub-

sequences,” J Mol Biol, vol. 147, pp. 195–197, Mar 1981.

[8] L. Wang and T. Jiang, “On the complexity of multiple sequence alignment,”

Journal of Computational Biology, vol. 1, no. 4, pp. 337–348, 1994.

[9] J. Prado-Martinez, P. H. Sudmant, J. M. Kidd, H. Li, J. L. Kelley,

B. Lorente-Galdos, K. R. Veeramah, A. E. Woerner, T. D. O’Connor,

G. Santpere, A. Cagan, C. Theunert, F. Casals, H. Laayouni, K. Munch,

A. Hobolth, A. E. Halager, M. Malig, J. Hernandez-Rodriguez, I. Hernando-

Herraez, K. Prüfer, M. Pybus, L. Johnstone, M. Lachmann, C. Alkan,

D. Twigg, N. Petit, C. Baker, F. Hormozdiari, M. Fernandez-Callejo,

M. Dabad, M. L. Wilson, L. Stevison, C. Camprub́ı, T. Carvalho, A. Ruiz-

Herrera, L. Vives, M. Mele, T. Abello, I. Kondova, R. E. Bontrop, A. Pusey,

F. Lankester, J. A. Kiyang, R. A. Bergl, E. Lonsdorf, S. Myers, M. Ven-

tura, P. Gagneux, D. Comas, H. Siegismund, J. Blanc, L. Agueda-Calpena,

M. Gut, L. Fulton, S. A. Tishkoff, J. C. Mullikin, R. K. Wilson, I. G.

Gut, M. K. Gonder, O. A. Ryder, B. H. Hahn, A. Navarro, J. M. Akey,

J. Bertranpetit, D. Reich, T. Mailund, M. H. Schierup, C. Hvilsom, A. M.

Andrés, J. D. Wall, C. D. Bustamante, M. F. Hammer, E. E. Eichler, and

T. Marques-Bonet, “Great ape genetic diversity and population history,”

Nature, vol. 499, pp. 471–475, Jul 2013.

[10] D. P. Locke, L. W. Hillier, W. C. Warren, K. C. Worley, L. V. Nazareth,

D. M. Muzny, S.-P. Yang, Z. Wang, A. T. Chinwalla, P. Minx, M. Mitreva,

69

L. Cook, K. D. Delehaunty, C. Fronick, H. Schmidt, L. A. Fulton, R. S. Ful-

ton, J. O. Nelson, V. Magrini, C. Pohl, T. A. Graves, C. Markovic, A. Cree,

H. H. Dinh, J. Hume, C. L. Kovar, G. R. Fowler, G. Lunter, S. Meader,

A. Heger, C. P. Ponting, T. Marques-Bonet, C. Alkan, L. Chen, Z. Cheng,

J. M. Kidd, E. E. Eichler, S. White, S. Searle, A. J. Vilella, Y. Chen,

P. Flicek, J. Ma, B. Raney, B. Suh, R. Burhans, J. Herrero, D. Haussler,

R. Faria, O. Fernando, F. DarrÃ©, D. FarrÃ©, E. Gazave, M. Oliva,

A. Navarro, R. Roberto, O. Capozzi, N. Archidiacono, G. D. Valle, S. Pur-

gato, M. Rocchi, M. K. Konkel, J. A. Walker, B. Ullmer, M. A. Batzer,

A. F. A. Smit, R. Hubley, C. Casola, D. R. Schrider, M. W. Hahn, V. Que-

sada, X. S. Puente, G. R. OrdoÃ±ez, C. LÃ³pez-OtÃn, T. Vinar, B. Bre-

jova, A. Ratan, R. S. Harris, W. Miller, C. Kosiol, H. A. Lawson, V. Taliwal,

A. L. Martins, A. Siepel, A. Roychoudhury, X. Ma, J. Degenhardt, C. D.

Bustamante, R. N. Gutenkunst, T. Mailund, J. Y. Dutheil, A. Hobolth,

M. H. Schierup, O. A. Ryder, Y. Yoshinaga, P. J. de Jong, G. M. Weinstock,

J. Rogers, E. R. Mardis, R. A. Gibbs, and R. K. Wilson, “Comparative and

demographic analysis of orang-utan genomes,” Nature, vol. 469, pp. 529–533,

Jan 2011.

[11] A. Rhie, S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti, S. Koren,

M. Uliano-Silva, W. Chow, A. Fungtammasan, J. Kim, C. Lee, B. J. Ko,

M. Chaisson, G. L. Gedman, L. J. Cantin, F. Thibaud-Nissen, L. Hag-

gerty, I. Bista, M. Smith, B. Haase, J. Mountcastle, S. Winkler, S. Paez,

J. Howard, S. C. Vernes, T. M. Lama, F. Grutzner, W. C. Warren, C. N.

Balakrishnan, D. Burt, J. M. George, M. T. Biegler, D. Iorns, A. Digby,

D. Eason, B. Robertson, T. Edwards, M. Wilkinson, G. Turner, A. Meyer,

A. F. Kautt, P. Franchini, H. W. Detrich, H. Svardal, M. Wagner, G. J. P.

Naylor, M. Pippel, M. Malinsky, M. Mooney, M. Simbirsky, B. T. Hannigan,

T. Pesout, M. Houck, A. Misuraca, S. B. Kingan, R. Hall, Z. Kronenberg,

I. Sović, C. Dunn, Z. Ning, A. Hastie, J. Lee, S. Selvaraj, R. E. Green, N. H.

Putnam, I. Gut, J. Ghurye, E. Garrison, Y. Sims, J. Collins, S. Pelan, J. Tor-

rance, A. Tracey, J. Wood, R. E. Dagnew, D. Guan, S. E. London, D. F.

Clayton, C. V. Mello, S. R. Friedrich, P. V. Lovell, E. Osipova, F. O. Al-Ajli,

S. Secomandi, H. Kim, C. Theofanopoulou, M. Hiller, Y. Zhou, R. S. Harris,

70

K. D. Makova, P. Medvedev, J. Hoffman, P. Masterson, K. Clark, F. Mar-

tin, K. Howe, P. Flicek, B. P. Walenz, W. Kwak, H. Clawson, M. Diekhans,

L. Nassar, B. Paten, R. H. S. Kraus, A. J. Crawford, M. T. P. Gilbert,

G. Zhang, B. Venkatesh, R. W. Murphy, K.-P. Koepfli, B. Shapiro, W. E.

Johnson, F. Di Palma, T. Marques-Bonet, E. C. Teeling, T. Warnow, J. M.

Graves, O. A. Ryder, D. Haussler, S. J. O’Brien, J. Korlach, H. A. Lewin,

K. Howe, E. W. Myers, R. Durbin, A. M. Phillippy, and E. D. Jarvis, “To-

wards complete and error-free genome assemblies of all vertebrate species.,”

Nature, vol. 592, pp. 737–746, Apr. 2021.

[12] S. Cheng, M. Melkonian, S. A. Smith, S. Brockington, J. M. Archibald,

P.-M. Delaux, F.-W. Li, B. Melkonian, E. V. Mavrodiev, W. Sun, Y. Fu,

H. Yang, D. E. Soltis, S. W. Graham, P. S. Soltis, X. Liu, X. Xu, and G. K.-

S. Wong, “10KP: A phylodiverse genome sequencing plan,” GigaScience,

vol. 7, p. giy013, 02 2018.

[13] H. A. Lewin, G. E. Robinson, W. J. Kress, W. J. Baker, J. Coddington,

K. A. Crandall, R. Durbin, S. V. Edwards, F. Forest, M. T. P. Gilbert, M. M.

Goldstein, I. V. Grigoriev, K. J. Hackett, D. Haussler, E. D. Jarvis, W. E.

Johnson, A. Patrinos, S. Richards, J. C. Castilla-Rubio, M.-A. van Sluys,

P. S. Soltis, X. Xu, H. Yang, and G. Zhang, “Earth BioGenome Project:

Sequencing life for the future of life.,” Proceedings of the National Academy

of Sciences of the United States of America, vol. 115, pp. 4325–4333, Apr.

2018.

[14] N. Nguyen, G. Hickey, D. R. Zerbino, B. Raney, D. Earl, J. Armstrong,

W. J. Kent, D. Haussler, and B. Paten, “Building a pan-genome reference

for a population,” J Comput Biol, vol. 22, pp. 387–401, May 2015.

[15] G. Hickey, J. Monlong, J. Ebler, A. M. Novak, J. M. Eizenga, Y. Gao, H. P. R.

Consortium, T. Marschall, H. Li, and B. Paten, “Pangenome graph construc-

tion from genome alignments with minigraph-cactus.,” Nature biotechnology,

May 2023.

71

[16] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte, “Min-max heaps

and generalized priority queues,” Commun. ACM, vol. 29, p. 996–1000, oct

1986.

[17] H. Zhang, H. Li, C. Jain, H. Cheng, K. F. Au, H. Li, and S. Aluru, “Real-time

mapping of nanopore raw signals.,” Bioinformatics, vol. 37, pp. i477–i483,

July 2021.

[18] S. C. Sahinalp and U. Vishkin, “Symmetry breaking for suffix tree con-

struction,” in Proceedings of the Twenty-Sixth Annual ACM Symposium on

Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada (F. T.

Leighton and M. T. Goodrich, eds.), pp. 300–309, ACM, 1994.

[19] S. C. Sahinalp and U. Vishkin, “Efficient approximate and dynamic match-

ing of patterns using a labeling paradigm,” in 37th Annual Symposium on

Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA,

14-16 October, 1996, pp. 320–328, IEEE Computer Society, 1996.

[20] M. Lothaire, ed., Combinatorics on Words. Cambridge Mathematical Li-

brary, Cambridge University Press, 2 ed., 1997.

[21] R. C. Lyndon, “On burnside’s problem,” Transactions of the American

Mathematical Society, vol. 77, no. 2, pp. 202–215, 1954.

[22] P. Ferragina and G. Manzini, “Opportunistic data structures with applica-

tions,” in Foundations of Computer Science, 2000. Proceedings. 41st Annual

Symposium on, pp. 390–398, 2000.

[23] J. Duval, “Factorizing words over an ordered alphabet,” J. Algorithms, vol. 4,

no. 4, pp. 363–381, 1983.

[24] M. Šošic and M. Šikic, “Edlib: a C/C++ library for fast, exact sequence

alignment using edit distance.,” Bioinformatics, vol. 33, pp. 1394–1395, May

2017.

[25] International Human Genome Sequencing Consortium, “Finishing the eu-

chromatic sequence of the human genome.,” Nature, vol. 431, pp. 931–945,

Oct. 2004.

72

[26] V. A. Schneider, T. Graves-Lindsay, K. Howe, N. Bouk, H.-C. Chen, P. A.

Kitts, T. D. Murphy, K. D. Pruitt, F. Thibaud-Nissen, D. Albracht, R. S.

Fulton, M. Kremitzki, V. Magrini, C. Markovic, S. McGrath, K. M. Stein-

berg, K. Auger, W. Chow, J. Collins, G. Harden, T. Hubbard, S. Pelan,

J. T. Simpson, G. Threadgold, J. Torrance, J. M. Wood, L. Clarke, S. Ko-

ren, M. Boitano, P. Peluso, H. Li, C.-S. Chin, A. M. Phillippy, R. Durbin,

R. K. Wilson, P. Flicek, E. E. Eichler, and D. M. Church, “Evaluation of

grch38 and de novo haploid genome assemblies demonstrates the enduring

quality of the reference assembly,” Genome Research, vol. 27, pp. 849–864,

2017.

[27] S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko,

M. R. Vollger, N. Altemose, L. Uralsky, A. Gershman, S. Aganezov,

S. J. Hoyt, M. Diekhans, G. A. Logsdon, M. Alonge, S. E. Antonarakis,

M. Borchers, G. G. Bouffard, S. Y. Brooks, G. V. Caldas, N.-C. Chen,

H. Cheng, C.-S. Chin, W. Chow, L. G. de Lima, P. C. Dishuck, R. Durbin,

T. Dvorkina, I. T. Fiddes, G. Formenti, R. S. Fulton, A. Fungtammasan,

E. Garrison, P. G. S. Grady, T. A. Graves-Lindsay, I. M. Hall, N. F.

Hansen, G. A. Hartley, M. Haukness, K. Howe, M. W. Hunkapiller, C. Jain,

M. Jain, E. D. Jarvis, P. Kerpedjiev, M. Kirsche, M. Kolmogorov, J. Korlach,

M. Kremitzki, H. Li, V. V. Maduro, T. Marschall, A. M. McCartney, J. Mc-

Daniel, D. E. Miller, J. C. Mullikin, E. W. Myers, N. D. Olson, B. Paten,

P. Peluso, P. A. Pevzner, D. Porubsky, T. Potapova, E. I. Rogaev, J. A.

Rosenfeld, S. L. Salzberg, V. A. Schneider, F. J. Sedlazeck, K. Shafin, C. J.

Shew, A. Shumate, Y. Sims, A. F. A. Smit, D. C. Soto, I. Sović, J. M. Storer,

A. Streets, B. A. Sullivan, F. Thibaud-Nissen, J. Torrance, J. Wagner, B. P.

Walenz, A. Wenger, J. M. D. Wood, C. Xiao, S. M. Yan, A. C. Young,

S. Zarate, U. Surti, R. C. McCoy, M. Y. Dennis, I. A. Alexandrov, J. L. Ger-

ton, R. J. O’Neill, W. Timp, J. M. Zook, M. C. Schatz, E. E. Eichler, K. H.

Miga, and A. M. Phillippy, “The complete sequence of a human genome.,”

Science, vol. 376, pp. 44–53, Apr. 2022.

[28] M. Rautiainen, S. Nurk, B. P. Walenz, G. A. Logsdon, D. Porubsky, A. Rhie,

E. E. Eichler, A. M. Phillippy, and S. Koren, “Telomere-to-telomere assembly

73

of diploid chromosomes with verkko,” Nature Biotechnology, pp. 1–9, 2023.

74

Appendix A

Code

Idoneous source code is available at https://github.com/BilkentCompGen/Idoneous

75

https://github.com/BilkentCompGen/Idoneous

	Introduction
	Genomics
	 Sequence Alignment Problem
	Pairwise Sequence Alignment Problem
	Multiple Sequence Alignment Problem

	 Burst of Assembly data
	 Whole Genome Alignment Problem
	Motivation
	Thesis Statement and Contribution

	Background
	 Related Works
	 Data Structures
	Min-max Heap
	Spatial Indexing
	Syncmers

	 String Parsing Methods
	Locally Consistent Parsing
	Lyndon Factorization
	Comparison between Methods

	Run-Length Encoding

	Methods
	 The Idoneous Algorithm
	Idoneous Parameters
	 Alphabet Transformation
	Tree Construction via Alternating Lyndon Factorization
	Generating Traversal Intervals
	 Matching Framework
	Synchronization Traversal

	Alignment using the Needleman–Wunsch Algorithm

	Experimental Methodology
	Data
	Criteria
	Coverage & Distance Results
	Effects of Parameter Selection
	Division Window (a)
	Block Size (b)
	Chaining Threshold (c)
	Division Length (d)
	Max Indel Rate (e)
	K-mer Size (k)

	Different data sets
	GRCh38 vs T2T-CHM13
	GRCh38 vs HG002-maternal
	GRCh38 vs HG002-paternal
	GRCh38 vs panTro6

	Run Time Results
	Result for parameters
	Division Window (a)
	Block Size (b)
	Chaining Threshold (c)
	Division Length (d)
	Max Indel Rate (e)
	K-mer Size (k)

	Run time Results for Different Data Sets

	Discussion & Future work
	Code

