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ABSTRACT

ADAPTIVE ENERGY MANAGEMENT FOR SOLAR
ENERGY HARVESTING WIRELESS SENSOR NODES

Abdul Kerim Aydin

M.S. in Electrical and Electronics Engineering

Advisor: Nail Akar

September 2018

Wireless Sensor Networks (WSN) will have a key role in the upcoming era of the

Internet of Things (IoT) as they will be forming the basis of communication in-

frastructure. Energy harvesting has been a widely used instrument for prolonging

the battery life and enhancing the quality of service (QoS) of sensor nodes (SN).

In this study, we investigate adaptive transmission policies for a solar-powered

wireless sensor node which is tasked with sending status updates to a gateway as

frequently as possible with energy-neutral operation constraints. On the basis of

empirical data, we model the daily variations of the solar energy harvesting pro-

cess with a Discrete Time Markov Chain (DTMC). When the number of states

of the DTMC is increased, the harvesting process is modeled more accurately.

Using the DTMC model, we formulate the energy management problem of the

WSN node as a Markov Decision Process (MDP); and based on this model, we

use the policy iteration algorithm to obtain optimal energy management policies

so as to minimize the average Age of Information (AoI) of the corresponding sta-

tus update system. We validate the effectiveness of the proposed approach using

datasets belonging to two different locations with 20 years of solar radiance data.

Keywords: wireless sensor nodes, solar energy harvesting, Markov Decision Pro-

cess, battery management, Discrete-Time Markov Chain, age of information, duty

cycling.
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ÖZET

GÜNEŞ ENERJİSİ HARMANLAYAN KABLOSUZ
ALGILAMA DÜĞÜMLERİ İÇİN UYARLAMALI

ENERJİ YÖNETİMİ

Abdul Kerim Aydin

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Nail Akar

Eylül 2018

Kablosuz Algılayıcı Ağları (WSN) yaklaşan Nesnelerin İnterneti (IoT) çağında

iletişim altyapısının temelini oluşturacağı için önemli bir rol oynayacaktır. En-

erji hasadı pil ömrünü uzatmak ve algılayıcı düğümlerinin (SN) hizmet kalitesini

(QoS) arttırmak için yaygın olarak kullanılan bir araç olmuştur. Bu çalışmada,

enerji-nötr çalışma kısıtlamaları ile bir ağ geçidine mümkün olduğunca sık

bir şekilde durum güncellemeleri göndermekle görevlendirilmiş, güneş ener-

jisiyle çalışan bir kablosuz algılayıcı düğümü için uyarlamalı iletim politikalarını

araştırdık. Güneş enerjisi harmanlama işleminin günlük varyasyonlarını deney-

sel verilere dayanarak Ayrık-Zamanlı Markov Zinciri (DTMC) ile modelledik.

DTMC’nin durumlarının sayısı arttığında hasat sürecinin daha doğru model-

lendiğini gözlemledik. DTMC modelini kullanarak, WSN düğümünün enerji

yönetimi problemini Markov Karar Süreci (MDP) olarak tanımladık; ve bu mod-

elden yola çıkarak, durum güncelleme sisteminin ortalama bilgi yaşını (AoI) en

aza indirmek için en uygun enerji yönetim politikalarını elde etme amacıyla poli-

tika yineleme algoritmasını kullandık. İki farklı lokasyona ait 20 yıllık güneş

ışınımı verilerini kullanarak önerilen yaklaşımın etkinliğini doğruladık.

Anahtar sözcükler : kablosuz algılayıcı düğümler, güneş enerjisi harmanlama,

Markov Karar Süreci, batarya yönetimi, Ayrık-Zaman Markov Zinciri, bilgi yaşı,

görev çevrimi.
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Chapter 1

Introduction

1.1 Overview

New communication needs have emerged along with advancements in technology,

and the Internet of Things (IoT) is one of those concepts that has arisen in recent

years to meet those needs. IoT is a new paradigm in which various objects that

are equipped with sensing, processing and networking capabilities, are commu-

nicating with each other or with other devices without human intervention over

a public communications infrastructure to achieve a particular goal [1]. There

are many different applications of the IoT concept, such as smart homes, smart

cities, precision agriculture etc., all of which depend on a Wireless Sensor Net-

work (WSN) infrastructure [2]. Figure 1.1 illustrates the general structure of a

single-hop WSN. WSNs are composed of sensor nodes which can be described as

low-cost, low-power devices with sensing, computation and wireless communica-

tion capabilities [3]. As wireless sensor nodes are generally relatively small-sized

devices, they are equipped with a very limited power source [4]. Figure 1.2

presents the general form of an energy harvesting wireless sensor node. These

nodes can be deployed in a human-controlled local area scenario or more typi-

cally in a wide area setting where human control is not likely. Therefore, in the

latter situation, the nodes must be self-sufficient, i.e., not requiring any human

1
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SN2

...

SNn

Gateway The Internet

Figure 1.1: General structure of a single-hop Wireless Sensor Network.

intervention, for a relatively long time [5]. Using environmental energy sources is

a promising solution that is used to build more sustainable WSNs by extending

the lifetime of sensor nodes. In this solution, sensor nodes are equipped with

energy harvesters that can produce energy using environmental energy sources

like wind, solar radiance, vibration, etc. and store the harvested energy in the

rechargeable batteries of sensor nodes [6–9].

Incorporation of energy harvesting on sensor nodes not only extends the life-

time of the node but also it provides the opportunity to make use of the harvested

excessive energy in the peak hours [10]. This brings up the problem of optimal

energy management in energy harvesting wireless sensor nodes (EH-WSN). For

the WSN to run without any interruptions, sensor nodes must be running in the

energy-neutral state, i.e., the amount of consumed energy should not exceed the

amount of energy gathered [11]. Sensor nodes also need to meet certain Quality

of Service (QoS) requirements. For different WSN infrastructures, various QoS

requirements have been proposed, such as maintaining a reasonable age of infor-

mation, lengthening the timespan until the first battery depletion, increasing the

network lifetime duration, reducing network delays etc. [12]. While preserving

energy-neutral operation constraints, the node also needs to take into account

such QoS requirements and maximize the utilization. However, this is not an

easy task due to the dynamism and randomness in the nature of renewable en-

ergy sources [13]. Various energy management algorithms have been developed in

2
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Figure 1.2: General form of an energy harvesting sensor node.

the literature for different types of energy sources and QoS requirements. In par-

ticular, adaptive duty cycling methods that adaptively adjust the inter-sensing

times have been developed to maximize system performance while avoiding power

failures [14–20].

Energy harvesting sources usually have a stochastic nature which can be rep-

resented with a stochastic model [20]. A subset of these models is built upon

Markov Chains (MC). The tool Markov Decision Processes (MDP) is a commonly

used approach for modeling the energy management problem of EH-WSNs when

the underlying model uses MCs [21]. Particularly, MDPs are used for modeling

WSNs to optimize sensor nodes for different objectives, e.g., sensor coverage and

object detection, security, topology formulation or power optimization. In [21],

benefits of using MDPs for modeling WSNs are listed as below:

• Adaptively managing power consumption to increase energy utilization,

• Balanced optimization against different objectives,

• Predicting the effects of mobility,

• Applicability of derived policies to resource-limited nodes,

• The flexibility of different variants of MDPs that can fit into different WSN

applications.
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Figure 1.3: Change of age of information with time (circles shows the time of
status updates).

Age of Information (AoI) is a commonly used metric for status update systems

and it shows the freshness of the status update [22–25]. It is a powerful metric

that includes the packet formation delay and transmission time. It is used to

model the effects of all system delays in a simplistic and effective manner which

makes it a popular status update metric. In this thesis, we focus on only one of

the sensor nodes in Fig. 1.1 which is trying to send status updates as frequently

as possible to a gateway. Definitely, a status update requires sensing, processing,

and communication. We define the Age of Information (AoI) as the age of the

most recent status update at the gateway for that particular sensor node. We

envision a time-slotted system with slot length T . Since T would typically be

much longer compared to the transmission and network delay, we will assume

throughout the thesis that the data packets carrying status update messages are

delivered immediately upon the sensing event. In Figure 1.3, the AoI function

is illustrated as a function of the integer index k that keeps track of the number

of slots in an example scenario. In this figure, li represents the status update

instances, and di represents the time interval between status updates. Every

time a status update decision is made, the AoI is brought down to zero since the

update would fresh at the gateway at that instant. However, the AoI increases

uniformly until the next status update.

Average Age of Information (AAoI) is the time average of the AoI function,

4



which can be written as

AAoI = lim
K→∞

∑K
k=0AoI(k)

K
.

The AAoI metric is indicative of the average status update rate. Battery de-

pletion is an undesired phenomenon in sensor nodes as it not only affects the

area covered by the node but also diminishes the performance of the WSN due

to shortened network lifetime. A system that aims to minimize the AAoI also

needs to prevent battery depletions as an empty battery will prevent the node

from sending status updates when it is supposed to and the AoI would conse-

quently rise to extreme levels. Therefore, the objective of minimizing AAoI also

helps reducing the number of battery depletions that may occur until a time hori-

zon. In this thesis, we use the AAoI metric for optimization purposes due to its

effectiveness and simplicity.

In this thesis, we propose a solution to the battery management problem of

an EH-WSN in a status update system. For this purpose, we have modeled the

energy management process of a single sensor node using an MDP model. The

packet transmission event is assumed to be immediate, and it includes sensing,

processing and communication phases. This assumption is sensible as the node

will sense and process data only when it decides to transmit, and also the order of

the waiting time between two transmissions is much higher than the duration of

the transmission event. As the sensing depends on the transmission decision, the

system does not use a data buffer. We assume a single-hop WSN, i.e. the node

does not carry transit traffic. We also omit the effect of energy leakage caused by

the battery imperfections.

In our system model, the node wakes up with a predetermined system period

denoted by T which is the slot length 1. If the node decides to make a trans-

mission, it senses the environment, processes the data, transmits the packet and

goes back to sleep. Otherwise, the node goes back to sleep immediately without

sensing. In the former case, the transmission process is assumed to be immediate.

This assumption is valid as packet transmissions are not very frequent, i.e., T is

much larger than the transmission times. For the sake of simplicity, we assume

1In the numerical examples of the thesis, we fix the slot length T to 10 minutes
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that the communication channel is error free and each data packet is transmitted

only once with a predetermined energy level appropriately set for the deployment

area. The main goal of the thesis is to find an optimal policy for transmission

decision (when to transmit or not) at each slot so as to minimize the performance

metric AAoI.

In this thesis, sensor nodes that use particularly solar light as their harvesting

source are studied. However, we believe that this research is extendible to differ-

ent harvesting sources as well. We use a varying size Discrete Time MC (DTMC)

to model the harvesting process and construct the model based on the time of day

(ToD) information with a data-driven approach. In this manner, we aim to reflect

the effect of daily variations of solar irradiance data on the transmission decisions

of the wireless node. Dynamic programming (DP) techniques are subsequently

adopted to solve the system model with the objective of obtaining a transmission

policy that minimizes the AAoI metric. In fact, DP has been the most popu-

lar approach for solving reasonably-sized MDPs [26]. There are many different

approaches that have been developed for solving MDPs such as Reinforcement

Learning (RL) with reduced computational complexity in order to tackle MDPs

with far larger state spaces [27]. In this thesis, only the DP approach is used

stemming from tractable state space of the underlying MDPs.

With this motivation, our main concern in this thesis is to model the energy

management process of an EH-WSN as an MDP and solve for optimal transmis-

sion policies to minimize AAoI. To the best of our knowledge, this is the first

study that uses MDPs for minimizing AAoI in a solar energy harvesting sensor

node scenario with a data-driven harvesting model. We show that daily vari-

ations of solar data can be used to learn smart policies for a wireless node to

minimize AAoI in the long run. Besides, the effect of increasing the number of

DTMC model of the harvesting process on the AAoI results is presented. Lastly,

we compare the performance of generated transmission policies with commonly

used threshold-based transmission policies for benchmarking.
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1.2 Literature Review

Energy management problem of energy harvesting wireless sensor nodes has been

a topic of research interest in recent years. They are many works focused on how

to properly use the battery of the sensor node to maximize the utilization of har-

vested energy. [28], [29] and [30] present surveys on the recent works conducted

on this area. From a general perspective, these energy management algorithms

may be categorized into two groups: algorithms which are trying to solve (i)

offline problem and (ii) online problem. The offline problem assumes the avail-

ability of knowledge on energy arrivals prior to the system execution; then, the

energy management task turns into a planning problem. [31] focuses on a system

where energy and data packet sizes are known and the aim is to minimize the

transmission completion time. The authors in [32] present optimal solutions for

throughput maximization for the offline case with considering storage losses due

to the battery imperfections. A group size based approach to adaptively manage

the duty cycle of sensor nodes is proposed to prolong network lifetime in [33].

In the online scenario, data and energy arrivals are not known a prior to the

planning problem, but they arrive according to a statistical model. In [34], a

threshold-based policy is proposed to maximize an average reward function in

the long-term in a setting where the harvesting policy is modeled as a two-state

Markov Chain. The study in [35] also considers the number of packets waiting

in the queue as another dimension to the Markov Chain. Some prediction based

energy managers [10] use predictions of the future amount of harvested energy

on a finite time horizon for deciding on the energy consumptions of the node.

There are also some studies which focus on optimizing the energy consumption

of sensor node with the objective of energy-neutral operation with modeling the

harvesting process as a Markov Decision Process [36, 37]. While the main focus

in these energy-oriented schemes is to prolong the network lifetime by controlling

node duty cycles, QoS requirements are neglected [38].

For the online energy management schemes, adaptive duty cycling is a com-

monly used strategy for optimizing the energy consumption of a sensor node

7



according to the state of the energy and data sources, by making the node sleep

or wake at proper times to use the energy of the node efficiently. The authors

in [22] focus on age of information minimization in a status update scheme with

finite and infinite battery cases and they offer a threshold based approach for min-

imizing AoI; however, they prove the finite battery case asymptotically optimal as

battery size goes to infinity. In [37], optimal energy management algorithms are

proposed to maximize the data rate of the node in the long run for several energy

storages and harvesting models. [14] proposes a mixed approach that assumes a

periodic discrete model for harvested energy to decide on the duty cycles based

on this model and adjusts the duty cycles online with deviations of real harvested

energy from the estimate.

There are also many approaches for modeling particularly the harvesting pro-

cess. In [39], a day is divided into many time slots. It is assumed that the har-

vesting power and consumption in each slot are known and constant. A power

consumption planning scheme is constructed in [40] with the assumption of a de-

terministic energy arrival process. [41] extends this approach with the objective of

maximizing the amount of data transmitted until a specified finite time horizon.

In [42], node battery is represented with a Multi-Regime Markov Fluid Queue,

and the Continuous Time Markov Chain (CTMC) is used to model the harvest-

ing process. The authors in [14] model the harvesting and consumption as two

independent bounded random processes. [43] assumes a two-state (active and pas-

sive) continuous-time Markovian model with independent exponential variables

to represent the duration of stay in each state.

1.3 Thesis Outline

The thesis is organized as follows: In Chapter 2, we present a brief survey about

Markov Decision Processes and various Dynamic Programming techniques for

solving MDPs, namely Policy Iteration and Value Iteration. Modeling of the

harvesting process and the energy management process are explained in Chapter

8



3 along with system parameters and theoretical background. In Chapter 4, nu-

merical examples and simulation results are presented for the validation of the

effectiveness of proposed approach. We explain the derivation of the harvesting

model parameters using solar data. We also demonstrate the use of our model

for obtaining solutions for some engineering problems. In Chapter 5, we conclude

with final remarks and provide future research directions.
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Chapter 2

Background Information

In this chapter, we provide information required to understand the system model

and techniques to propose solutions for the designed system model. We use a

discrete-time MDP to model the energy management problem of the EH-WSN

and Dynamic Programming is used to derive optimal transmission algorithms for

minimizing AAoI. Therefore, in Section 2.1, we explain the theoretical background

of Markov Decision Processes. In Section 2.2, we provide information about

Dynamic Programming, a conventional approach that is used for solving MDPs.

Theoretical information presented in this chapter and their notations are gathered

from [27] and [44].

2.1 Markov Decision Processes

Markov Decision Processes can be defined as sequential decision-making prob-

lems, in which the agent has to select an action in each visited state. MDPs are

systems that are run based on Markov Chains, in which the system changes its

state randomly at each time instance. State transition probabilities of the system

are based on the current state only. The path that the system followed until the

current state does not affect the probability of transition to a next state. This

10
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Figure 2.1: Agent-environment interaction in MDP.

characteristic of Markov Chains are defined as Markov property [45]. In an MDP,

the system has to make decisions and choose an action from a set of possible ac-

tions in each state. Actions to be taken in each state are specified by a Policy.

The system gets a reward in response to passing from one state to another by

taking an action. Performance of policies are evaluated based on a performance

metric, which is usually a function of rewards collected until a finite or an infinite

time horizon [46]. The main objective of MDP is to find an optimal policy for the

predefined set of states, actions, rewards and transition probabilities to maximize

the performance metric [44]. It must be taken into consideration that the chosen

actions not only affect the immediate reward, but also it will have an effect on

the future set of states that will be transitioned, and so the future rewards that

will be collected. Therefore, the policy must plan the trade-off between immedi-

ate rewards and future rewards, and sometimes it must choose the action with

a lesser immediate reward for being able to collect higher rewards in subsequent

states.

The main philosophy behind Markov Decision Processes is that there is a

learner or agent that interacts with its environment and learns from these inter-

actions to achieve a goal [27]. This interaction occurs in a sequence of discrete

time steps, t = 0, 1, 2, 3, · · · . At each time-step t, the agent observes the state of

the environment St, and it selects an action At based on the state of the environ-

ment. Consequently, it receives a reward Rt+1 in the next time step and transits

to a state St+1. In a similar manner, it continues to take actions, getting rewards

11



and changing states, eventually forming a trajectory like:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ...

In a finite MDP, number of states, actions and rewards are finite. In such

cases, for each pair of St and At, discrete probability distribution of St and Rt

in the next state are specified. These distributions constitute the state transition

probabilities, which define the environment dynamics completely:

p(s′, r|s, a) = Pr {St = s′, Rt = r|St−1 = s, At−1 = a} (2.1)

The learning task may be split into independent learning sequences, called as

episodes. In such cases, the agent starts an episode at an arbitrary state in the

state space and continues to travel until it reaches to the goal or terminal state.

Subsequently, it starts another episode on a state picked from a set of starting

states. This kind of tasks is called as episodic tasks. In some cases, the interaction

between the agent and the environment cannot be divided into separate episodes,

rather it goes on continually. Such tasks are called continuing tasks.

Formulation of a performance metric for a policy is easier for episodic tasks as

the learning sequence will include a finite number of steps. However, for contin-

uing tasks, the sequence of obtained rewards through learning process may have

infinite members. In such cases, there are two different metrics that have been

used mostly: average reward and discounted reward. According to the discounted

reward approach, the aim of the agent is to maximize the sum of discounted

rewards it will receive over the future steps. In other words, the agent chooses

At in order to maximize the expected discounted reward. The expected total

discounted reward the agent will get if it follows policy π starting from state s is:

Jπ(s) = lim
k→∞

E

[
k∑
t=0

γt−1R(St, π(St), St+1)

∣∣∣∣∣S0 = s

]
(2.2)

where γ denotes a parameter called discount rate with 0 ≤ γ ≤ 1. The discount

rate is the parameter that evaluates the current value of a future reward. In

other words, the value of a reward would worth γk−1 times its immediate value if

it would be received k time steps in the future. If γ is chosen as 0, the agent only

12



considers immediate rewards it will receive when it is deciding on actions. As

γ gets larger values closer to 1, the agent becomes more far-sighted considering

the effect of future rewards more and more when it is picking an action. Another

approach that is used as a performance metric of a policy is the average reward

method. The average reward agent will receive if it follows policy π starting from

state s is:

ρπ(s) = lim
k→∞

E
[∑k

t=0R(St, π(St), St+1)
∣∣∣S0 = s

]
k

(2.3)

where k is the number of time-steps. In the average reward approach, the agent

aims at maximizing the average reward that will be obtained until an infinite

horizon.

Value functions are defined to denote how good it is for the agent to be in

a state, or to take an action in a state. This value is a representation of the

future rewards that can be received, and it is calculated with the assumption of

following a specific policy. State-value function (vπ(s)) of a state s when policy

π is followed is defined as:

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, ∀s ∈ S (2.4)

Note that this value is calculated using the discounted reward metric. For the

average reward case, the state-value function becomes:

vπ(s) =
Eπ
[∑∞

k=0Rt+k+1

∣∣∣St = s
]

k
, ∀s ∈ S (2.5)

State value is a representation of the worth of being in a state. Another type of

value functions is action-value function which shows the value of taking an action

in a specific state. It can be described as the value of following policy π after

starting from state s and taking action a and can be formulated for discounted

reward as follows:

qπ(s, a) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
, ∀s ∈ S,∀a ∈ A(s) (2.6)

For the average reward case, the action-value expression can be written as:

qπ(s, a) =
Eπ
[∑∞

k=0Rt+k+1

∣∣∣St = s, At = a
]

k
, ∀s ∈ S,∀a ∈ A(s) (2.7)

13



Then, solving an MDP basically boils down to the problem of finding the policy

that will maximize the value functions for all states, or for all state-action pairs.

That is:

v∗(s) = max
π

vπ(s), ∀s ∈ S (2.8)

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S,∀a ∈ A(s) (2.9)

where v∗ and q∗ show the optimal state-value and optimal action-value functions.

Ultimately, an MDP is a model of a system in which an agent travels be-

tween states based on the actions it takes and transition probabilities between

the current and future states. In consequence of its actions and traveled states,

it also collects rewards through its trajectory. Solving an MDP basically means

to find the optimal policy that will maximize the performance utilization of the

system using a metric calculated with a function of rewards. In the next section,

we present Dynamic Programming, a method to reach the optimal policy for a

predefined system.

2.2 Dynamic Programming

Dynamic Programming (DP) is a set of algorithms that are to find optimal policies

for finite MDPs. There are different techniques for solving MDPs, and DP can

be considered as the core understanding behind all of these methods. In DP, a

perfect model of the system, i.e. complete definitions of states, actions, rewards,

and transition policies, is required. Having the complete system model, the main

aim of DP is to derive optimal policies by finding optimal value functions using

the Bellman optimality equations:

v∗(s) = max
a

E
[
Rt+1 + γv∗(St+1)

∣∣St = s
]

= max
a

∑
s′,r

p(s′, r|s, a)
[
r + γv∗(s

′)
] (2.10)

q∗(s, a) = max
a

E
[
Rt+1 + γq∗(St+1, a

′)
∣∣St = s, At = a

]
= max

a

∑
s′,r

p(s′, r|s, a)
[
r + max

a′
γq∗(s

′, a′)
] (2.11)
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for all s ∈ S and a ∈ A(s).

2.2.1 Policy Evaluation

Policy Evaluation is the task of calculating the value function vπ for a policy π.

This is an iterative process based on the Bellman equation and each set of value

function approximations are calculated based on the previous one, by using the

following update rule:

vk+1(s) = Eπ
[
Rt+1 + γvk(St+1)

∣∣St = s
]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvk(s

′)
]
, ∀s ∈ S (2.12)

for the discounted reward scheme, where vk shows the kth set of approximations.

For average reward, the update rule becomes:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
r + kvk(s

′)

k + 1
, ∀s ∈ S (2.13)

Algorithm 1 Policy Evaluation

Input: π
Output: vπ(s)

1: Parameter: Small threshold value of ε > 0 for checking convergence
2: Initialize v(s) arbitrarily for all s ∈ S
3: loop
4: ∆← 0
5: k ← 0
6: for all s in S do
7: vold ← v(s)
8: v(s)←∑

a π(a|s)∑s′,r p(s
′, r|s, a)[r + kv(s′)]/(k + 1)

9: ∆← max(∆, |vold − v(s)|)
10: k ← k + 1
11: end for
12: if ∆ < ε then
13: break
14: end if
15: end loop
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The sequences in eqs. (2.12) and (2.13) start with arbitrary value assignments

and converge to vπ as k → ∞. Value of each state is updated using the values

of its next states. This procedure is called the iterative policy evaluation and an

example implementation of this algorithm is given Algorithm 1 [27] for average

reward. In the discounted reward case, only line with number 8 of Algorithm 1

changes as:

v(s)←
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γv(s′)

]

2.2.2 Policy Improvement

Once we evaluate a policy by finding the value functions, the next step is to

improve the policy using those value functions. The policy update is performed

by acting greedily based on the state or action values:

π′(s) = argmax
a∈A

qπ(s, a) (2.14)

The approach here is to make the policy choose whichever action provides the

highest expected reward in the future. Updating the policy, the state-values are

improved:

qπ(s, π′(s)) = max
a∈A

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s) (2.15)

If the state-values are not improved, that is, the new policy is only as good as

the previous policy, then,

vπ′(s) = vπ(s) = max
a∈A

qπ(s, a), ∀s ∈ S (2.16)

which shows that the Bellman optimality equation is satisfied. Therefore,

vπ(s) = v∗(s), ∀s ∈ S (2.17)

and vπ is an optimal policy.

2.2.3 Policy Iteration

Policy Iteration is the process of iteratively repeating policy evaluation and policy

improvement steps until the optimal policy is obtained. For a finite MDP, this
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process must converge to an optimal policy. A pseudo-code of the resulting

algorithm is given in Algorithm 2 for the average reward scheme:

Algorithm 2 Policy Iteration

1: Parameter: Small threshold value of ε > 0 for checking convergence
2: Initialize v(s) and π(s) ∈ A(s) arbitrarily for all s ∈ S

. POLICY EVALUATION
3: loop
4: ∆← 0
5: k ← 0
6: for all s in S do
7: vold ← v(s)
8: v(s)←∑

a π(a|s)∑s′,r p(s
′, r|s, a)[r + kv(s′)]/(k + 1)

9: ∆← max(∆, |vold − v(s)|)
10: k ← k + 1
11: end for
12: if ∆ < ε then
13: break
14: end if
15: end loop

. POLICY IMPROVEMENT
16: policy − converged← true
17: for all s ∈ S do
18: old− action← π(s)
19: π(s)← argmaxa

∑
s′,r p(s

′, r|s, a)[r + kv(s′)]/(k + 1)
20: if old− action 6= π(s) then
21: policy − stable← false
22: end if
23: end for
24: if policy − stable 6= true then
25: Go to Step 3
26: end if
27: return π(s), ∀s ∈ S

In the discounted reward case, Algorithm 2 is updated as:

v(s)←
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γv(s′)

]
at line number 8, and

π(s)← argmax
a

∑
s′,r

p(s′, r|s, a)[r + γv′(s)]

at line number 19.
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2.2.4 Value Iteration

Value iteration can be considered as a technique that combines the policy evalu-

ation and policy improvement phases into a single step to reduce computational

complexity. Policy evaluation is done for finding the value functions for a specific

policy, and policy improvement aims to update policy so as the policy chooses ac-

tions greedily based on the value functions. At each step of value iteration, value

functions are updated considering the best action that maximizes state value

using the update formula in Equation 2.18 for the discounted reward scheme:

vk+1(s) = max
a

E
[
Rt+1 + γvk(St+1)

∣∣St = s, At = a)
]

= max
a

∑
s′,r

p(s′, r|s, a)
[
r + γvk(s)

] (2.18)

For the average reward case, the update formula becomes:

vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)
r + kvk(s

′)

k + 1
(2.19)

Algorithm 3 Value Iteration

1: Parameter: Small threshold value of ε > 0 for checking convergence
2: Initialize v(s) arbitrarily for all s ∈ S
3: loop
4: ∆← 0
5: k ← 0
6: for all s in S do
7: vold ← v(s)
8: v(s)← maxa

∑
s′,r p(s

′, r|s, a)[r + kv(s′)]/(k + 1)
9: ∆← max(∆, |vold − v(s)|)

10: k ← k + 1
11: end for
12: if ∆ < ε then
13: break
14: end if
15: end loop
16: π(s)← argmaxa

∑
s′,r p(s

′, r|s, a)[r + kv(s′)]/(k + 1)
17: return π(s),∀s ∈ S

Using a similar approach with policy iteration, one can prove that vk converges

to v∗ in an infinite number of steps. However, in practice, value iteration is
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stopped when the change of value function in a single step is below a threshold

value. A pseudo-code of an application in this form is shown in Algorithm 3. For

the discounted reward scheme, Algorithm 3 only differs in lines with numbers 8

and 16 as:

v(s)←
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γv(s′)

]
and

π(s)← argmax
a

∑
s′,r

p(s′, r|s, a)[r + γv′(s)]

In this chapter, we have presented the basic concepts of MDPs, and DP tech-

niques to solve MDPs. In our work, policy iteration algorithm is used with average

reward scheme and continuing tasks.
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Chapter 3

Energy Management in

EH-WSNs with MDP

In this chapter, we describe our system model developed for an EH-WSN using

MDPs. In Section 3.1, we demonstrate the DTMC representation of the harvest-

ing process which is one of the components of the WSN model. In Section 3.2,

we construct the overall MDP model of the sensor node.

3.1 Solar Energy Harvester Model with Dis-

crete Time Markov Chain

In this study, we focus on wireless nodes that harvest solar energy. An explicit

characteristic of solar energy source, i.e., daylight, is that it exhibits fluctuations

at different time scales. The statistical behavior of these fluctuations typically

vary from one time period to another, i.e., monthly or seasonal variations. It can

also exhibit random variations within a day due to clouding. In this research, we

aim to reflect the effects of daily variations of daylight on the harvester model. We

leave the incorporation of fluctuations at longer time scales for future research.
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In the literature, there are many studies that use DTMCs to model the energy

harvester [47–52]. In our work, varying sized DTMCs (with size H) are used for

comparative assessment. In the proposed model, states of the DTMC represent

the time of day, and in each state, we have a different distribution of the amount

of harvested energy. Figure 3.1 shows the general form of the model of harvesting

process.

1 2 · · · H

β β β

β

α α α

Figure 3.1: DTMC model of the harvesting process.

We fix the slot length T to 10 minutes in our example. A single day is then

partitioned into 144 slots. For the DTMC model of size H, each state of the

DTMC represents a certain collection of consecutive slots with overall (144
H

) slots

per collection. For ensuring divisibility, we use values of 1, 2, 4, 6, 8 and 24

for the size parameter H. For example, when H = 2, the state of the MC will

represent whether there is daylight or not. For the general H case, the transition

probabilities α and β can be written as:

β =
H

144
, α = 1− β =

144−H
144

. (3.1)

In each state h, the energy harvesting distribution ph(k) is defined as the

probability of harvesting k units of energy throughout a single slot. 1 These

probabilities are extracted from the solar radiance data of 20 years. For this

purpose, we need a mapping between time-slots indexed by τ ∈ {1, 2, . . . , 144}
and the states h ∈ {1, 2, . . . , H}. Here, τ = 1 corresponds to the time slot

00:00 - 00:10, τ = 2 corresponds to the time slot 00:10 - 00:20, and so on, and

finally τ = 144 corresponds to the time slot 23:50 - 00:00. Figure 3.2 illustrates an

example case of this mapping. In the figure, qh denotes the index of time-slot that

state h starts and L = 144
H

shows the slot counts in each state. Values of qh are

1In the numerical examples, the unit of energy is fixed to 1 mWh.
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τ
t00:00 00:10 00:20 23:40 23:50 00:00

. . . . . . . . .1 2 qh qh +

L − 1

143 144

State h

Figure 3.2: Mapping between time-slots and states.

determined based on the general pattern of the solar data for different locations.

How these values are determined is numerically explained in the next chapter.

Having done this mapping, the solar data is averaged for each time-slot(τ):

Z(τ) = [

∑D−1
d=0 Xd(τ)

D
], ∀τ ∈ {1, 2, ..., 144} (3.2)

where D is the total number of days in solar dataset, Xd(τ) is the solar radiance

value in time-slot τ of day d, and Z(τ) is the average solar radiance value for

each τ rounded to the multiples of 1 mWh. Harvesting distributions of all states

are obtained from Z(τ) as following:

ph(k) =
∑
τ←→h

H

144
δ(k − Z(τ)), ∀h ∈ {1, 2, ..., H} (3.3)

where δ is the Dirac delta function.

Let’s consider the case with a 2 state DTMC. In this problem, a day is divided

into two parts: hours that the node can harvest energy and hours that the node

can harvest almost nothing. The two-state case basically describes the day and

night modes for the harvester state. In both modes, the harvesting source is

modeled with a stochastic process following a discrete random variable. We have

produced the DTMC representation of the harvesting source for 1, 2, 4, 6, 8 and

24 cases. The process of obtaining the probability distributions in each case from

the solar data will be explained in detail with numerical examples in Section 4.2.
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3.2 Energy Management Problem with Markov

Decision Process

We assume a battery with a finite capacity C. At each time step, the node

harvests some energy based on the state of the harvesting process and stores

the harvested energy in its battery. The node also decides to whether or not

to make a transmission and based on this decision a predetermined amount of

energy is spent. We assume that the sensing, processing, and transmission tasks

are performed immediately. This assumption is reasonable as the duration of

these tasks will be negligibly small compared to the time-step duration of the

node, which is the duration of sleep time between transmission decisions. As we

have defined in Chapter 1, AoI is defined as the elapsed time-steps the since last

status update of the node and our QoS requirement is to minimize AAoI.

To model this system, we have built a three dimensional MDP composed

of these parts: the discretized value of remaining energy in the battery in

units of mWh, B = {0, 1, ..., NB}, the value of the age of information in

terms of time-steps, M = {0, 1, ..., NM}, and the state of the harvester model,

H = {0, 1, ..., NH}, where NB, NM , NH represents the maximum values of respec-

tive states [53]. This set of variables forms our state space as S = B×M×H.

The action space for each state can be written as A = {0, 1}, where 1 and 0

represents whether or not to make a status update in the corresponding state.

While the transition probability of the battery state dependents on the harvester

state, state transition of age of information state is deterministic, depending only

on the action taken by the agent in that state. Then the transition probability

from state (SB, SM , SH) = (b,m, h) to state (SB, SM , SH) = (b′,m′, h′) in the kth

time instance can be written as:

Pr
{(
SB(k + 1), SM(k + 1), SH(k + 1)

)
= (b′,m′, h′)

∣∣∣(
SB(k), SM(k), SH(k)

)
= (b,m, h)

}
=P
(
SB(k + 1) = b′

∣∣∣(SB(k), SH(k)
)

= (b, h)
)

P
(
SM(k + 1) = m′

∣∣SM(k) = m
)
P
(
SH(k + 1) = h′

∣∣SH(k) = h
)

(3.4)
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Transition probability from SM(k) = m to SM(k + 1) = m′ is dependent on the

action value A(k). When A(k) = 1, this relation can be written as:

P
(
SM(k + 1) = m′

∣∣SM(k) = m
)

=

{
1, if m′ = 0

0, otherwise
(3.5)

When A(k) = 0 and m < NM , transition probability for becomes:

P
(
SM(k + 1) = m′

∣∣SM(k) = m
)

=

{
1, if m′ = m+ 1

0, otherwise
(3.6)

If m = Nm when A(k) = 0, then SM(k + 1) = SM(k) = m with probability 1.

State of the harvester changes according to a Bernoulli distribution, and the

duration of stay in each harvester state forms a geometric distribution. This

transition probability can be shown as:

P
(
SH(k + 1) = h′

∣∣SH(k) = h
)

=

{
β, h′ 6= h

α, h′ = h
(3.7)

Transition probabilities of the battery level depend on the probability dis-

tribution of the harvester. This relation can be represented with the following

equation:

P
(
SB(k + 1) = b′

∣∣∣(SB(k), SH(k)
)

= (b, h)
)

= ph(k), for b′ = b+ k − θk (3.8)

∀k ∈ {0, 1, ...}, where θ shows the amount of energy spent for the transmission

of a status update and,

θk =

{
θ, A(k) = 1

0, otherwise
(3.9)

Rewards of the model are assigned for the objective of minimizing AAoI in

the long run. For this purpose, the agent gets a negative reward −m, or a cost,

when it resides in a state with SM(k) = m. Reward assignments of each state

can be described as R = −SM . This completes the definition of the MDP model

with descriptions of state space, action space, transition probabilities and reward

assignments.

24



Chapter 4

Numerical Results

In this chapter, we present the outputs of our work. Section 4.1 explains the

parameters that we use in our model. In Section 4.2, details of the extracting

DTMC model from solar data is presented. Lastly, in Section 4.3, we demonstrate

the results that we obtained using the model depicted in the previous chapter.

4.1 Model Parameters

In this study, we use a 3.7V Lithium-Polymer rechargeable battery. Unless other-

wise specified, we assume a capacity of 500 mWh for most of the test cases. But

we also show the effects of changing battery capacity in the engineering problems

section. We assume 5% leakage rate per month; however, this does not show any

effects on the results. As the system time-step is 10 minutes, battery’s self dis-

charge amount would be around 6uWh in a time-step, assuming a constant rate

discharge model. Our battery model is discrete with 1mWh resolution and de-

creasing this value would cause the number of system states increase drastically.

Therefore, we prefer to omit the effect of leakage reasonably. There should be an

upper bound on the value of age of information to limit the number of system

states. We assume this upper bound as 50, since 500 minutes can be considered
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as a catastrophic value of AoI that the system will never reach.

Solar cell efficiency can be defined as the ratio of electrical energy generated

by solar cell to the total solar energy that arrives to the cell. Solar cell technology

has been developing rapidly over the recent years. However, solar harvesters still

has a long way to go before reaching the theoretical limits of energy efficiency.

Most solar cells on the market has an efficiency rate between 10 to 30%. In our

work, we assume a mid-level solar harvester with 20% efficiency. For the cell size,

we assume a 30 cm2 photo-voltaic cell. We also consider various solar cell sizes

in the engineering problems framework.

We assume that the packet transmission process occurs immediately without

any retransmissions. The transmission event is considered as a bundle of suc-

cessive events including data sensing, data processing, and transmission of the

generated packet. These tasks will not be performed independently as the node

will only sense data when it decides to transmit a status update. Therefore,

we assume that the node spends energy only for transmission events. Consider-

ing Expected Retransmission Count (ETX) for different channel conditions and

distance to the gateway, in our simulations, we assume several values of packet

transmission energy varying from 1 mWh to 20 mWh per packet.

4.2 Building the Model of Solar Harvesting Pro-

cess

To build the model of harvesting process and test the generated policies, we make

use of solar data obtained from National Solar Radiation Database [54]. We used

the solar radiance data of 20 years (1991-2010) with 1 hour resolution for two

places. These locations are chosen so that the 24 hour daily cycles and seasonal

effects can be more clearly observed. Therefore, we preferred locations in mid-

dle latitudes, as our model is more suitable for those areas. These locations are

Atlanta Hartsfield-Jackson International Airport (33◦38′N) and Seattle-Tacoma
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International Airport (47◦27′N) and they are mentioned as Location 1 and Lo-

cation 2 in the remainder of the paper. You can see the hourly averages of

solar radiance data for two locations in Figure 4.1. We can see that Location 1

gets more solar radiation compared to Location 2 due to the latitudinal effect as

expected.
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Figure 4.1: Hourly average of solar radiation in the used datasets.

To construct our Markov Chain model, we make use of the hourly average

values presented in Figure 4.1. Using the hourly averages, we deduce the proper

times to divide a day into the number of states of our Markov Chain model. For

the case with a single state, the harvester model is only composed of a random

variable stating the probabilities of amount of energy in terms of milliwatt-hours

that can be harvested in a single time-step. Since the solar data is at 1 hour res-

olution, we assume that the value of solar radiation is constant through an hour.

With this assumption, the histogram of the harvested energy in terms of mWhs

is calculated as shown in Figure 4.2. Note that these probability distributions

are what determines the state transition probabilities of the MDP.
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Figure 4.2: Distribution of harvested energy for h = 1.

To construct the 2-state DTMC model of the harvesting process, we first divide

the day into two sets of hours using the graph in Figure 4.1. We split the day

in such a way that the hours that the most solar energy arrives are grouped

together. We ensure this by preserving the symmetry of the graph, i.e., the 12

hours that surrounds the most sunny hour is taken into a group, and the rest

composes the other group. With this approach, the first set of hours is from 7am

to 7pm and the rest makes the second group, creating a Markov Chain as in 3.1.

The transition probabilities between the states of the Markov Chain is calculated

according to the system time-step, 10 minutes. For this case, expected duration of

each state is 72 time-steps. Therefore, states change with probability 1
72

and stay

otherwise. Then, for the 2-state case, calculated energy harvesting probability

distributions are given for Day states of both locations in Figure 4.3. Amount of

energy harvested in Night states are 0 with hundred percent probability.

Following the same approach, energy harvesting probability distributions are

obtained for 4, 6, 8 and 24 state cases. For instance, in the 4-state DTMC model,

states are divided as: 10am-4pm, 4pm-10pm, 10pm-4am, and 4am-10am. Note

that the division is done based on the same strategy to keep 1pm as the center

hour of one of the states. For various values of DTMC state count same procedure

is applied and energy harvesting probability distributions are obtained for each

state. Using the constructed harvester models, optimal transmission policies are
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Figure 4.3: Probability distributions of Day states for both locations.

calculated for several system parameters. In the next section, we present the

results obtained for different cases.

4.3 Model Verification

In this section, we demonstrate the performance results of the policies that are

extracted from our system model.

4.3.1 Results for Different Harvesting Models

In the previous section, we described how we obtain different solar energy harvest-

ing models by using DTMCs with different number of state counts. In this section,

we present the effect of number of states of the harvester model to the average

age of information values. Note that we fix battery capacity as C = 500mWh,

solar panel area as 30cm2 for these tests. The results in Figures 4.4 to 4.8 demon-

strates AAoI values obtained for cases for different packet transmission energies.

These results can be interpreted as the performance obtained for different chan-

nel conditions. The case that the packet transmission is 20 mWh represents the

performance of a sensor node in the harshest channel conditions.
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Figure 4.4: AAoI for packet transmission energy of 1 mWh.
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Figure 4.5: AAoI for packet transmission energy of 2 mWh.

There are two separate results shown in each figure. One of those is the per-

formance of the policy when it is tested against the real solar data obtained from

NSRDB. The other result is the performance of the policy when it is tested with

the solar model that is used to derive the policy. As expected, the performance

of the policy is optimized for the system model, and the AAoI when it is tested

against the real data is higher. However, we can see that the performance differ-

ence between two results is decreased as we increase the number of DTMC states.

This shows that the we get a more realistic model with the increasing number of

harvester states in the model. The gap between the blue and red lines is quite

normal as we omit some critical parameters in our approximations, e.g. seasonal
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and yearly variations of solar radiance. If we had a perfect model of the system,

we could observe the convergence of these lines.
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Figure 4.6: AAoI for packet transmission energy of 5 mWh.
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Figure 4.7: AAoI for packet transmission energy of 10 mWh.

Comparing the results for two locations, we can also observe the response of

generated policies in environments with different insolation durations. Recall that

the Location 1 is a place getting more solar radiation compared to Location 2.

Consequently, the sensor node in Location 1 can be more robust against usage of

higher transmission powers. Note that there are some cases in presented results

in which we see a slight decrease in the performance of the policy despite of the

increase in the number of DTMC states. Conceivably, these errors are caused by

some simulation inaccuracies.
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Figure 4.8: AAoI for packet transmission energy of 20 mWh.

From the results in Figures 4.4 to 4.8, we can also deduce that 2-state DTMC

is providing a good performance, and increasing the state count beyond 2 doesn’t

affect the performance of the policy considerably. However, in several cases, there

are still more than 10% difference between the AAoIs obtained with 2 and 4-state

models. Therefore, we will continue with using the 4-state DTMC model for the

rest of the test scenarios.
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Figure 4.9: AoI and battery level variations through a test case with 500mWh
battery capacity, 2mWh packet transmission energy, 30cm2 solar panel area and
8-state harvesting model.

Figures 4.9 to 4.12 show the records of four example test cases. In figures,

we can see the change of battery level and age of information through tests with

solar dataset. From variations of the battery level, we can observe the seasonal
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Figure 4.10: AoI and battery level variations through a test case with 500mWh
battery capacity, 5mWh packet transmission energy, 20cm2 solar panel area and
4-state harvesting model.
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Figure 4.11: AoI and battery level variations through a test case with 500mWh
battery capacity, 5mWh packet transmission energy, 30cm2 solar panel area and
4-state harvesting model.
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Figure 4.12: AoI and battery level variations through a test case with 800mWh
battery capacity, 5mWh packet transmission energy, 30cm2 solar panel area and
4-state harvesting model.

variations of the solar radiance. The node battery is almost full in summers,

while it is very close to depletion in winter times. And the transmission policy

fulfills its task by finding a balance in between. In one of the cases, the node

battery depletes just a few times through a 20 years of solar data test, while

the performance of other cases are relatively worse. In Figures 4.9 and 4.11, we

can see that the age of information never hits to the catastrophic level, and it is

mostly held below a threshold level. However, AoI value goes to the peak levels

in the times of scarcity of solar radiance. The transmission policy allows the AoI

to rise for some time, in order to prevent the battery depletion. By taking this

precaution, the policy reduces the AAoI in the long term.

4.3.2 Results Against Benchmark Policies

In this section, performance of the generated transmission policies are compared

with basic threshold-based policies. Threshold based policies are widely preferred

for satisfying QoS requirements with a very simplistic transmission policy [22,34].

A threshold-based policy can be defined as a transmission algorithm in which the

node decides to make transmission whenever a system variable is above or below a

predefined threshold. First, we consider an AoI based transmission policy, which

makes transmission whenever age of information rises above a threshold value.
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We name this algorithm BP , as the first benchmark policy. Using our solar

dataset, we test possible values of threshold value to find the ideal threshold that

minimizes the AAoI in the long term, fixing the battery capacity and packet

transmission energy. Figure 4.13 displays performance of BP for different values

of battery capacity.
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Figure 4.13: AoI-threshold based policy results for different values of battery
capacity.

We define BP ∗ as the optimal threshold-based policy that uses the optimal

threshold values for different values of battery capacity. In Figure 4.14, we demon-

strate the comparison of mean AoI results of BP ∗ and the transmission policy

obtained with our MDP model. It can be seen that our algorithm performs better

than the threshold-based policies that uses the current AoI information.
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4.3.3 Solutions for Some Engineering Problems

Up to this point, we have shown that our approach can be used to minimize

the AAoI by finding an optimal policy for a given set of system parameters. In

this part, we demonstrate that we can also use this technique to obtain solutions

for some engineering problems while building a WSN system. We show that the

ideal system parameters can be derived in the sense of a cost-optimal sensor node.

EH-WSNs are sensor devices with a limited battery and energy harvester unit.

These nodes are designed to be small, self-sufficient and cheap, as a large number

of these nodes are used to build a WSN. Therefore, containing excessive amount

of resources on these nodes is not a good practice for price competition of the

SN with other products on the market. In cost-optimality perspective, a sensor

node must include resources that is just adequate to fulfill its QoS requirements.

Putting resources below that level will lead the node not to carry out its duties.

For these reasons, finding the optimal values for the system parameters are vital
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for the usability of the sensor node.
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Figure 4.15: AAoI for different battery capacities.

In this section, we focus on two system parameters that can be optimized

with our approach, battery capacity and solar panel size. These are the two

main entries that determines the price of the sensor node, as they are usually

the most expensive components of the node. To find the optimal values for these

variables, we have found the AAoI results of the system with different values of

these resources. In Figure 4.15, change of AAoI is demonstrated for various values

of battery capacity, with packet transmission energy fixed at 5 mWh and solar

panel size fixed at 30 cm2. We can see that mean AoI decreases up to a value

of B, but it doesn’t change considerably beyond some level. This is expected as

the battery can store energy only as much as the solar cell can harvest. After

some point, solar panel size becomes the bottleneck for system performance,

and increasing the battery capacity beyond that point will have no effect on the

average AoI, as the excessive part of the battery will not be filled. Note that the

optimum battery capacity is also dependent on the energy spent for transmission

of a single packet. In Figure 4.16, we show the change of mean AoI with different

values of battery capacity in terms of transmission energy of single data packet.

For a fixed sized of solar panel, required battery capacity can be found for a

requirement of average AoI level using the plots in Figure 4.16. For instance,

a battery that can store energy for 50 packet transmissions will be enough to
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Figure 4.16: AAoI for different values of ratio of battery capacity to packet
transmission energy.

obtain a system that will have 20 minutes average AoI, in Location 1. However,

Location 2 cannot reach to this mean AoI level, as the 30 cm2 solar cell area is

not sufficient in this location.
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Figure 4.17: AAoI vs. solar panel area.

As the second step, we fix the battery capacity at 500 mWh and packet trans-

mission energy at 5 mWh to show the effect of solar panel size on the AAoI.

Figure 4.17 shows the change of mean AoI for several values of solar panel size

from 10 cm2 to 1000 cm2. In this case, battery capacity becomes the bottleneck

for the system performance while the area of solar cell is increased.
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Above results have shown how battery capacity and solar panel size are in-

terconnected. To obtain a better system performance, both must be enhanced.

Therefore, their effect on QoS should be observed together. Combining the re-

sults above, Figure 4.18 shows the change of AAoI while changing the size of solar

cell and battery capacity for Location 1.
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Figure 4.18: Change of AAoI with panel size and battery capacity.
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Chapter 5

Conclusions

In this thesis, we propose an MDP model for the battery management problem

of a solar energy harvesting wireless sensor node and we present optimal trans-

mission policies with the objective of minimization of the AAoI metric. For this

purpose, we model the daily variations in the solar energy harvesting process with

a varying size DTMC and subsequently we show that increasing the number of

states of the DTMC up to a certain value enhances the AAoI performance of the

transmission policy. We use the average cost Policy Iteration technique of the

Dynamic Programming framework to construct optimal policies. In this work, we

focus on modeling solar energy harvesting. Moreover, only the hourly variations

of the solar radiance data is reflected on the harvesting model without consider-

ing monthly changes or seasonal effects. Even though the main theme was built

upon a solar energy harvesting device, it is quite possible to extend this work to

other energy harvesting sources. We also show that the proposed approach out-

performs a benchmark threshold-based policy in terms of AAoI. The MDP model

can also be used to derive system parameters to build cost-optimal devices by

finding the minimum amount of resources that can provide a desired level of QoS

requirements. Use of the single average AoI metric for optimization has made it

possible to obtain transmission policies that maximize the transmission rate of

the sensor node while also preventing battery depletions to the extent possible.

40



There are a number of possible future research directions. Firstly, a more ad-

vanced system model can be built to obtain better average AoI. We have shown

that there is a performance difference of our policies that we see by comparing

the results obtained from our solar model and the real solar data, due to the

imperfections of our model. An initial step for a better harvester model could

be including the effects of the seasonal changes of solar data in the model of

the solar harvesting process. Effects of battery leakage and spent energy during

stand-by can also be reflected on the battery model. As a secondary potential

research direction, DP algorithms require a perfect system model and large state

spaces in such models makes it infeasible to use Policy Iteration techniques, also

known as the ”curse of dimensionality” problem for large MDPs. Advanced har-

vester models would probably require larger state spaces and DP methods would

probably collapse in these cases. The use of modern RL techniques in such sce-

narios to solve advanced system models appears to be a legitimate future research

direction.
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