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Abstract
It may be desirable to represent optical fields using scalar approximations, due to its simplicity. Since the optical field is an
electromagnetic wave, in order to implement an optical setup, a mapping from such a scalar field to the vector electromagnetic
field is needed. In the conventional scalar-to-vector field mapping, a large error in power spectrum arises in wide-angle fields
due to the neglected large longitudinal component of the electric field. This error could be severe in wide-angle or off-axis
imaging setups. In order to find another scalar-to-vector field mapping that compensates for this large magnitude error, first,
a general constraint on monochromatic electromagnetic fields to appropriately represent them by a scalar wave in free space
is developed. The development of the general constraint begins by formulating the computations of the components of the
magnetic field as the outputs of linear-shift invariant (LSI) systems, where the inputs to the LSI systems are the transverse
components of the electric field. Furthermore, if one of the transverse components of the electric field can be computed from
the other one using a LSI operation, a scalar field, which is related to the transverse components through another LSI system,
can be used to fully describe the electromagnetic field. Under this constraint, the required condition on the filters which relates
the scalar field to the electric field is presented by taking into consideration the longitudinal component, such that the power
spectra of the scalar field and the corresponding electric field are equal. The filters are specified for the electric fields with zero
longitudinal component and simple polarization features, as well. Moreover, for the electric fields with simple polarization
features, some discrete simulations are performed to compare the scalar field intensity pattern and the corresponding electric
field intensity patterns for the conventional and proposed mapping cases. The simulation results show that the excessive
amplification of the large frequency components is compensated by the proposed filters, and hence, the undesired effects of
the filters used in the computation of the longitudinal component disappear. In this respect, if equality of the power spectra
of the scalar field and the corresponding electric field is of concern in an application, the proposed scalar-to-vector wave field
mapping should be used.

Keywords Wave propagation · Power spectrum of optical fields · Inverse filtering · Imaging and display of wide-angle fields

1 Introduction

Scalarwave theorymaybe used to explain somewave-related
features of light, such as interference and diffraction [5,14].
Many optical systems including imaging systems, commu-
nication systems and holography have been analyzed and
developed using the scalar theory [12,14,19,30]. During the
implementation of an optical system that is characterized by
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the scalar theory, the mapping of the scalar results to the vec-
tor electromagnetic case is inevitable since the optical field is
an electromagnetic wave. When the field is paraxial, the lon-
gitudinal component of the electromagnetic field becomes
negligible [17,18], and hence, the scalar field can be mapped
to one of the transverse components of the electric field if
there is a simple polarization relation between the transverse
components of the electric field, i.e., one transverse com-
ponent is a constant multiple of the other one [4,30]. This
conventional scalar-to-vector field mapping is performed
in many display applications by assuming that the electric
field is linearly or circularly polarized [13,20,23,25,31,32].
However, if the field is a wide-angle field, the longitudinal
component cannot be neglected and the actual power spec-
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trumof the fieldmaybe significantly different from the power
spectrum predicted by the conventional scalar theory [18].
As a consequence of such an approach, implemented optical
system may not generate the intended results; the obtained
power spectrum may significantly deviate from the desired
results.

In this paper, we develop and specify another scalar-to-
vector wave field mapping for wide-angle fields such that the
power spectra of the scalar field and the corresponding elec-
tric field are equal. In order to accomplish this, we first derive
ageneral constraint onmonochromatic electromagneticwave
fields in free space such that they can be appropriately rep-
resented by a scalar wave field. This general constraint turns
out to be an operation between the transverse components
of the electric field so that one of the transverse components
can be computed from the other one using a predetermined
linear-shift invariant (LSI) systemwhich satisfies given prop-
erties. Under this constraint, we develop a condition for LSI
filters that are used to map the scalar wave field to the vector
wave field such that the resulting power spectra of the scalar
field and the electric field are equal.

The developed scalar-to-vector field mapping can be used
in different imaging applications. For example, in a non-
paraxial imaging system where the electric field intensity is
recorded, the deteriorations which occur due to the excessive
amplification of the longitudinal component in large angles
are compensated by the presented power spectrum equal-
ization procedure. Moreover, in an off-axis optical imaging
setup where the magnitude of the two-dimensional (2D)
Fourier transform (FT) of the field at a tilted and rotated
plane is recorded, if the electromagnetic field is generated
using the proposed method, then the intended scalar results
can be obtained without error.

In Sect. 2, we present the preliminary information, and
in Sect. 3, we express the computations of the components
of the magnetic field from the transverse components of the
electric field both in the Fourier and in space domains and for
both propagating only and general fields. Then, in Sect. 4, a
general constraint on the full representation of electromag-
netic wave fields as a scalar wave will be shown. Based on
these constraints, in Sect. 5, a power spectrum equalizing
LSI transform is developed. In Sect. 6, we present some dis-
crete simulation results that compare the performances of the
conventional and proposed scalar-to-vector wave field map-
pings. Finally in Sect. 7, we draw the conclusions.

2 Preliminaries

Since we assume that the electromagnetic wave field is
monochromatic, the time dependency of the complex-valued
field, e− jωt , is omitted throughout this article, where j =√−1, t is the time and ω = ck. Here, c represents the speed

of light in free space, k is the wave number and depends on
the wavelength, λ, of the monochromatic field by k = 2π

/
λ.

Let the electric and magnetic field vectors in three-
dimensional (3D) space beE (r) = [Ex (r) Ey (r) Ez (r)

]T

∈ C
3 and H (r) = [

Hx (r) Hy (r) Hz (r)
]T ∈ C

3, respec-
tively, where r = [x y z]T ∈ R

3 represents the spatial
coordinates. We assume that E (r) and H (r) can be written
as a superposition of plane waves as [2]

E (r) = 1

4π2

∞∫∫

−∞
EEE
(
k̂
)
e jkz ze j k̂

T r̂dk̂,

H (r) = 1

4π2

∞∫∫

−∞
HHH
(
k̂
)
e jkz ze j k̂

T r̂dk̂, (1)

where k̂ = [
kx ky

]T ∈ R
2 is the spatial frequency vector

and r̂ = [x y]T . Since kx and ky are always real valued as
a consequence of the choice implied by the range of k̂ in
Eq. 1, the monochromaticity condition that should be satis-
fied becomes [2]

∣∣∣k̂
∣∣∣
2 + k2z = k2. (2)

By assuming that the propagation direction of the prop-
agating plane waves along the z-axis is always positive and
the evanescent components decay as z increases, we choose
kz as

kz =

⎧
⎪⎪⎨

⎪⎪⎩

√

k2 −
∣∣∣k̂
∣∣∣
2

if
∣∣∣k̂
∣∣∣ < k

j

√∣∣∣k̂
∣∣∣
2 − k2 otherwise.

(3)

Please note that the evanescent modes of the field at a given z
plane vanish rapidly in 3D space as z increases. That is, their
contribution to the 3D field becomes negligible for practical
imaging distances [14].

If the field components at z = 0 plane are known, then the
2D FT of these field components give the vector amplitude
of each plane wave. That is,

EEE
(
k̂
)

=
∞∫∫

−∞
E
(
r̂, 0
)
e− j k̂T r̂dr̂,

HHH
(
k̂
)

=
∞∫∫

−∞
H
(
r̂, 0
)
e− j k̂T r̂dr̂, (4)

where EEE
(
k̂
)

=
[
Ex
(
k̂
)
Ey
(
k̂
)
Ez
(
k̂
)]T ∈ C

3 and

HHH
(
k̂
)

=
[
Hx

(
k̂
)
Hy

(
k̂
)
Hz

(
k̂
)]T ∈ C

3.
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Therefore, if the electromagnetic field at z = 0 plane is
known, the field at an arbitrary z plane can be found using
Eqs. 1 and 4. For the sake of the completeness, we also write
these relations as 2D LSI operations in the space domain as
[29]

E
(
r̂, z
) = E

(
r̂, 0
) ∗ ∗ fz

(
r̂
)
,

H
(
r̂, z
) = H

(
r̂, 0
) ∗ ∗ fz

(
r̂
)
, (5)

where ∗∗ denotes the 2D convolution, fz
(
r̂
)
is the impulse

response of the Rayleigh–Sommerfeld free space propaga-
tion and equals to

fz
(
r̂
) = − 1

2π

∂

∂z

[
e jk|r|

|r|
]

= −e jk|r|

2π

(
jk − 1

|r|
)

z

|r|2 ,

(6)

which is the 2D inverse FT (IFT) of Fz

(
k̂
)

= e jkz z .

In free space, the z component of the electric field at a
z plane can be computed from the x and y components as
[18,21]

Ez
(
r̂, z
) = Ex

(
r̂, z
) ∗ ∗gx

(
r̂
)+ Ey

(
r̂, z
) ∗ ∗gy

(
r̂
)
, (7)

where

gx
(
r̂
) = 1

2π

∂

∂x

[
e jk|r̂|
∣
∣r̂
∣
∣

]

= e jk|r̂|
2π

(

jk − 1
∣
∣r̂
∣
∣

)
x
∣∣r̂
∣∣2

,

gy
(
r̂
) = 1

2π

∂

∂ y

[
e jk|r̂|
∣
∣r̂
∣
∣

]

= e jk|r̂|
2π

(

jk − 1
∣
∣r̂
∣
∣

)
y
∣∣r̂
∣∣2

, (8)

which are the 2D IFTs of [18]

Gx

(
k̂
)

= F2D

{
gx
(
r̂
) } =

{
− kx

kz
if kz �= 0

0 if kz = 0,

Gy

(
k̂
)

= F2D

{
gy
(
r̂
) } =

{
− ky

kz
if kz �= 0

0 if kz = 0,
(9)

respectively, where F2D
{ · } operation denotes the 2D FT.

Therefore, Eq. 7 can be seen as a two-input-single-output

LSI system. Please note that, since we setEEE
(
k̂
)
is zero when

kz = 0, G{x,y}
(
k̂
)
can be taken as zero in this case, as well.

Also note that the link between Eqs. 8 and 9 is established by
applying the derivative property of the FT to the filter transfer
function

G0
(
k̂
)

=
{

− 1
kz

if kz �= 0

0 if kz = 0
(10)

and its 2D IFT is [8,18]

g0
(
r̂
) = j

2π

e jk|r̂|
∣∣r̂
∣∣ . (11)

If the electromagnetic field is known to be propagating,

i.e., there is no evanescent component, then, G0
(
k̂
)
, Gx

(
k̂
)

and Gy

(
k̂
)
can be assumed as zero when

∣∣∣k̂
∣∣∣ ≥ k. In this

case, the 2D IFT of these functions become [18]

g0,p
(
r̂
) = − sin

(
k
∣∣r̂
∣∣)

2π
∣∣r̂
∣∣ = Re

{
g0
(
r̂
)}

,

gx,p
(
r̂
) = − j

∂

∂x

[
g0,p

(
r̂
)] = j Im

{
gx
(
r̂
)}

,

gy,p
(
r̂
) = − j

∂

∂ y

[
g0,p

(
r̂
)] = j Im

{
gy
(
r̂
)}

, (12)

where the subscript p indicates the propagating case and the
Im{·} and Re{·} operators give the imaginary and real parts
of their inputs, respectively.

As a result, both the free space propagation of the com-
ponents of the electric field and the computation of the z
component from the x and y components of the electric field
can be formulated as 2DLSI operations. In the following sec-
tion, we show that the computation of the three components
of the magnetic field, H (r), can be interpreted as differ-
ent two-input-single-output LSI systems, as well. Therefore,
specifying only the x and y components of the electric field
at any z plane is enough to characterize all components of
the electric field in 3D space.

3 Systems Formulation of the Computation
of theMagnetic Field

In this section, we formulate the computation of themagnetic
field vector from a system point of view. The inputs to the
system are Ex

(
r̂, z
)
and Ey

(
r̂, z
)
, and the outputs are the

components of the magnetic field vector at the given z plane.
The inputs are fed to different systems for each output, as
shown below.

The 2D FT of the components of the magnetic field vector
can be computed as [2,3,26]

Hx

(
k̂
)

=
Ez
(
k̂
)
ky − Ey

(
k̂
)
kz

kη
,

Hy

(
k̂
)

=
Ex
(
k̂
)
kz − Ez

(
k̂
)
kx

kη
,

Hz

(
k̂
)

=
Ey
(
k̂
)
kx − Ex

(
k̂
)
ky

kη
, (13)
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where η is the wave impedance of the medium and approxi-

mately equal to 120π ohms in free space [2]. By usingGx

(
k̂
)

and Gy

(
k̂
)
, Eq. 13 can be written as

Hx

(
k̂
)

=
[
Ex
(
k̂
)
Gx

(
k̂
)

+ Ey
(
k̂
)
Gy

(
k̂
)]

ky − Ey
(
k̂
)
kz

kη

=
{
Ex
(
k̂
) −kx ky

kηkz
+ Ey

(
k̂
) −k2+k2x

kηkz
if kz �= 0

0 if kz = 0

= Ex
(
k̂
)
Gxx

(
k̂
)

+ Ey
(
k̂
)
Gxy

(
k̂
)

, (14)

Hy

(
k̂
)

=
Ex
(
k̂
)
kz −

[
Ex
(
k̂
)
Gx

(
k̂
)

+ Ey
(
k̂
)
Gy

(
k̂
)]

kx

kη

=
⎧
⎨

⎩
Ex
(
k̂
)

k2−k2y
kηkz

+ Ey
(
k̂
)

kx ky
kηkz

if kz �= 0

0 if kz = 0

= Ex
(
k̂
)
Gyx

(
k̂
)

+ Ey
(
k̂
)
Gyy

(
k̂
)

, (15)

Hz

(
k̂
)

= Ex
(
k̂
) −ky

kη
+ Ey

(
k̂
) kx
kη

= Ex
(
k̂
)
Gzx
(
k̂
)

+ Ey
(
k̂
)
Gzy
(
k̂
)

. (16)

Therefore, Eqs. 14, 15 and 16 represent two-input-single-
output LSI systems with the transfer functions indicated

in the equations as Gxx

(
k̂
)
, Gxy

(
k̂
)
, Gyx

(
k̂
)
, Gyy

(
k̂
)
,

Gzx

(
k̂
)
and Gzy

(
k̂
)
.

In order to compute the components of the magnetic field
vector from Ex

(
r̂, z
)
and Ey

(
r̂, z
)
in the space domain, we

calculate the impulse responses of the transfer functions as

gi j
(
r̂
) = F−1

2D

{
Gi j
(
k̂
) }

for i ∈ {x, y} and j ∈ {x, y} ,

(17)

where F−1
2D

{ · } denotes the 2D IFT. For this purpose, we
utilize Eqs. 8, 11 and the derivative property of the FT. So,

gxx
(
r̂
) = −gyy

(
r̂
) = 1

jkη

∂gy
(
r̂
)

∂x
= 1

jkη

∂gx
(
r̂
)

∂ y
,

gxy
(
r̂
) = − k

η
g0
(
r̂
)+ j

kη

∂gx
(
r̂
)

∂x
,

gyx
(
r̂
) = k

η
g0
(
r̂
)− j

kη

∂gy
(
r̂
)

∂ y
. (18)

Therefore, from the convolution and derivative properties of
the FT, the components of the magnetic field vector in space

domain can be written as

Hx
(
r̂, z
) = Ex

(
r̂, z
) ∗ ∗gxx

(
r̂
)+ Ey

(
r̂, z
) ∗ ∗gxy

(
r̂
)

,

Hy
(
r̂, z
) = Ex

(
r̂, z
) ∗ ∗gyx

(
r̂
)+ Ey

(
r̂, z
) ∗ ∗gyy

(
r̂
)

,

Hz
(
r̂, z
) = j

kη

∂Ex
(
r̂, z
)

∂ y
− j

kη

∂Ey
(
r̂, z
)

∂x
. (19)

Please note that, if the field is known to be propagating,
then, g0

(
r̂
)
, gx

(
r̂
)
and gy

(
r̂
)
can be replaced by g0,p

(
r̂
)
,

gx,p
(
r̂
)
and gy,p

(
r̂
)
in Eq. 18.

To sum up, in free space, if the x and y components of
the electric field are known over an arbitrary z plane, then all
the field components at 3D space can be found through two-
input-single-output 2D LSI systems, which are described in
Eqs. 5, 7 and 19.

4 A General Constraint on the Scalar
Representation of Electromagnetic Fields

In this section, we introduce a new complex-valued 3D scalar
function, S (r), to represent a constrained electromagnetic
field. We assume that S

(
r̂, z
)
can be computed from S

(
r̂, 0
)

as

S
(
r̂, z
) = S

(
r̂, 0
) ∗ ∗ fz

(
r̂
)
. (20)

So, the same free space propagation rule applies to the scalar
field S (r) as for the components of the electric and magnetic
field vectors. Then we assume that the x and y components
of the electric field at z = 0 plane can be found through some
invertible transforms from the scalar field S

(
r̂, 0
)
. That is,

Ex
(
r̂, 0
) = Tx

{
S
(
r̂, 0
) }

, Ey
(
r̂, 0
) = Ty

{
S
(
r̂, 0
) }

,

(21)

where Tx : C → C and Ty : C → C are some one-to-one
predetermined operators together with their inverse trans-
forms T−1

x and T−1
y . So Ex

(
r̂, 0
)
and Ey

(
r̂, 0
)
are assumed

to be related through

Ex
(
r̂, 0
) = Tx

{
T−1
y

{
Ey
(
r̂, 0
) }}

,

Ey
(
r̂, 0
) = Ty

{
T−1
x

{
Ex
(
r̂, 0
) }}

. (22)

These imposed relations create the constraint on the electric
fields that we deal with.

If the transforms T{x,y} are commutative with the free
space propagation, that is,

T{x,y}
{
S
(
r̂, 0
) } ∗ ∗ fz

(
r̂
) = T{x,y}

{
S
(
r̂, 0
) ∗ ∗ fz

(
r̂
) }

,

(23)
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for all z, then E{x,y}
(
r̂, z
)
can be computed from S

(
r̂, z
)
at

all z planes by using the same transforms, T{x,y}. Moreover,
if T{x,y} commute with the free space propagation and the
impulse responses given in Eqs. 8 and 18, then Ez

(
r̂, z
)
and

H
(
r̂, z
)
can be computed using T{x,y} and S

(
r̂, z
)
at any z

plane as

Ez
(
r̂, z
) = Tx

{
S
(
r̂, z
) ∗ ∗gx

(
r̂
) }+ Ty

{
S
(
r̂, z
) ∗ ∗gy

(
r̂
) }

,

Hx
(
r̂, z
) = Tx

{
S
(
r̂, z
) ∗ ∗gxx

(
r̂
) }+ Ty

{
S
(
r̂, z
) ∗ ∗gxy

(
r̂
) }

,

Hy
(
r̂, z
) = Tx

{
S
(
r̂, z
) ∗ ∗gyx

(
r̂
) }+ Ty

{
S
(
r̂, z
) ∗ ∗gyy

(
r̂
) }

,

Hz
(
r̂, z
) = Tx

{ j

kη

∂S
(
r̂, z
)

∂ y

}
− Ty

{ j

kη

∂S
(
r̂, z
)

∂x

}
. (24)

In this respect, T{x,y} can be used at an arbitrary z plane
in the computation of all components of the electromagnetic
field and since S

(
r̂, z
) = S

(
r̂, 0
) ∗ ∗ fz

(
r̂
)
, specifying just

S
(
r̂, 0
)
is enough to find the electromagnetic field in 3D

space. Moreover, if the scalar field, S (r), is given over a
curved surface in free space, the scalar field, and so the elec-
tromagnetic field, in 3Dspace canbe foundusing themethods
found in the literature that are developed for the scalar optical
fields [10,11,27,28].

Now, we choose T{x,y} as 2D LSI transforms so that
Eqs. 23 and 24 are always satisfied . So, Tx and Ty can
be associated by the impulse responses, tx

(
r̂
)
and ty

(
r̂
)
,

respectively, and the transforms can be written as a convolu-
tion operation; that is,

Ex
(
r̂, 0
) = S

(
r̂, 0
) ∗ ∗tx

(
r̂
)
,

Ey
(
r̂, 0
) = S

(
r̂, 0
) ∗ ∗ty

(
r̂
)
. (25)

Therefore, since the convolution operation is commutative,
if T{x,y} are 2D LSI transforms, then it is guaranteed that
these transforms can be used to find all the components of
the electric field in 3D space from a single scalar function
S
(
r̂, 0
)
.

As stated in introduction part, there are some interpre-
tations and works for the mapping of the scalar wave field
to the electromagnetic wave field in free space in the lit-
erature. In [14], it is stated that a single scalar wave field
may represent all the scalar components of electromagnetic
vector wave field as each scalar component obeys the same
wave equation; however, this is too restrictive. In [17], it is
stated that the Kirchhoff diffraction formula for the scalar
field is valid in the paraxial region by assuming that there
is a single transverse component of the electric field; as we
have already discussed, paraxial approximation is valid in
too restrictive special cases, as well. Here in this section, it
is shown that if Ex

(
r̂, 0
)
and Ey

(
r̂, 0
)
are related to each

other through

Ex
(
r̂, 0
) = tx

(
r̂
) ∗ ∗

(
t−1
y

(
r̂
) ∗ ∗Ey

(
r̂, 0
))

(26)

or equivalently

Ey
(
r̂, 0
) = ty

(
r̂
) ∗ ∗

(
t−1
x

(
r̂
) ∗ ∗Ex

(
r̂, 0
))

, (27)

for some invertible t{x,y}
(
r̂
)
where t−1

{x,y}
(
r̂
)
represent the

corresponding inverse system impulse responses, then a sin-
gle scalar field characterizes the entire electromagnetic field.
The constraints as expressed by Eqs. 26 and 27 extend the
scalar wave representation of electromagnetic field propaga-
tion in free space to cover much wider situations beyond that
is implied by [14] and [17].

In [4,30], for a paraxial imaging setup in which the longi-
tudinal components are assumed to be zero and by implicitly
assuming that there is a relation such that Ey (r)

/
Ex (r) =

C ∈ C for all r, the scalar field is mapped to the vector field
as

Ex,con (r) = 1
√
1 + |C |2

S (r)

Ey,con (r) = C
√
1 + |C |2

S (r) , (28)

where we refer the electric field components as a result of the
conventional mapping as Ex,con (r) and Ey,con (r). Then, it
is shown apart from a constant multiplier that

|S (r)|2 =
∣
∣∣Re
{
Econ (r) × H∗

con (r)
}∣∣∣ , (29)

which is the optical intensity [4]. For this case, again apart
from a constant multiplier, it can also be shown that

|S (r)|2 = |Econ (r)|2
∣∣∣S
(
k̂
)∣∣∣

2 =
∣∣∣EEEcon

(
k̂
)∣∣∣

2
(30)

and

|S (r)|2 = |Hcon (r)|2
∣∣
∣S
(
k̂
)∣∣
∣
2 =

∣∣
∣HHHcon

(
k̂
)∣∣
∣
2
, (31)

where S
(
k̂
)

= F2D

{
S
(
r̂, 0
) }

. However, when the field is

not paraxial, Eq. 30 cannot be satisfied due to the large mag-
nitude of omitted Ez (r) [18]. So, in the following section,
we propose another scalar-to-vector wave field mapping by
using some appropriate t{x,y}

(
r̂
)
so that the power spectrum

of the scalar field and the corresponding electric field and the
magnetic field are also equal for wide-angle fields.
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5 Inverse Filtering for Power Spectrum
Equalization

We define the power spectrum of an electric field as

∣∣
∣EEE
(
k̂
)∣∣
∣
2 =

∣∣
∣Ex
(
k̂
)∣∣
∣
2 +
∣∣
∣Ey
(
k̂
)∣∣
∣
2 +
∣∣
∣Ez
(
k̂
)∣∣
∣
2
, (32)

which is also, apart from a constant multiplier, equal to the

power spectrum of the magnetic field,
∣∣∣HHH
(
k̂
)∣∣∣

2
. In terms of

the assumed scalar field S
(
k̂
)
and the transfer functions,

T{x,y}
(
k̂
)

= F2D

{
t{x,y}

(
r̂
) }

, Eq. 32 can be written as

∣∣∣EEE
(
k̂
)∣∣∣

2 =
∣∣∣S
(
k̂
)
Tx
(
k̂
)∣∣∣

2 +
∣∣∣S
(
k̂
)
Ty
(
k̂
)∣∣∣

2

+
∣∣∣S
(
k̂
) (

Tx
(
k̂
)
Gx

(
k̂
)

+ Ty
(
k̂
)
Gy

(
k̂
))∣∣∣

2
.

(33)

Since our aim is to satisfy
∣∣∣EEE
(
k̂
)∣∣∣

2 =
∣∣∣S
(
k̂
)∣∣∣

2
, the required

condition for this purpose becomes

1 =
∣
∣∣Tx
(
k̂
)∣∣∣

2 +
∣
∣∣Ty
(
k̂
)∣∣∣

2

+
∣∣∣Tx
(
k̂
)
Gx

(
k̂
)

+ Ty
(
k̂
)
Gy

(
k̂
)∣∣∣

2
. (34)

Therefore, if T{x,y}
(
k̂
)

are chosen such that Eq. 34 is

satisfied, the power spectra of the scalar field and the corre-
sponding electric and magnetic fields become equal. In this
respect, when the magnitude square of the Fourier transform
of an electric field can be recorded by a wide-angle imaging
system, the proposed scalar-to-vector wave field mapping
gives the exact results: The power spectrum of the scalar
field and the power spectrum of the corresponding electric
field match exactly. Or, it is known that an imaging system
which uses a thin lens can record the intensity of the Fourier
transform of the input scalar field under some paraxial
approximations [14]. If the thin lens is not located along the
axis of the imaging system and located at a tilted and rotated
plane, the intensity imagewill be significantly incorrectwhen
the conventional scalar-to-vector fieldmapping is used.How-

ever, no error will occur if the filters T{x,y}
(
k̂
)
, satisfying

Eq. 34, are used during the scalar-to-vector field mapping.
As an example, in addition to the equalized power spec-

trum, if the longitudinal component of the electric field is

desired to be set to zero at each point in space, then T{x,y}
(
k̂
)

should be chosen as

Tx
(
k̂
)

= kye
jθ
(
k̂
)

∣
∣∣k̂
∣
∣∣

, Ty
(
k̂
)

= −kxe
jθ
(
k̂
)

∣
∣∣k̂
∣
∣∣

, (35)

where θ
(
k̂
)
is an arbitrary phase function.

Please note that the power spectrum equalization method
is used in the literature in image restoration algorithms
[1,6,15,16], where a blindly convolved and noise-added
image is tried to be recovered from the measurements. Since
Ez (r) is computed using the filters g{x,y}

(
r̂
)
from E{x,y} (r)

using Eq. 7, T{x,y}
(
k̂
)
can be seen as the inverse filters which

compensate the excessively large magnitudes of G{x,y}
(
k̂
)

that occur at large frequencies [18]. Since themeasured quan-
tity of the optical field can be the electric field intensity, that
is defined as

|E (r)|2 = |Ex (r)|2 + ∣∣Ey (r)
∣
∣2 + |Ez (r)|2 , (36)

by applying these inverse filters, it can be expected in |E (r)|2
that the excessively amplified large frequency components

due to the G{x,y}
(
k̂
)
are compensated by T{x,y}

(
k̂
)
.

After presenting the general constraints that the filters

T{x,y}
(
k̂
)
should obey for equalized power spectra, now we

specify the filters and proceed the analysis for simple polar-
ization fields. That is Ey (r)

/
Ex (r) = C ∈ C for all r. IfC

equals 1, for example, the field is diagonally linearly polar-
ized, or if C = j , the field is right-hand circularly polarized.
As the special cases, C can be zero or ∞, which correspond
to x-polarized or y-polarized fields, respectively. The reason
of this simple polarization restriction that we choose for the
electric fields is not to create a difference between the power
spectra of the x and y components of the electric fields. So,
the relation between the scalar field and the electric field
components become simple. Also, this polarization assump-
tion is useful for many displays and spatial light modulators
(SLM) that produce such electromagnetic fields with a sim-
ple polarization feature [13,20,23,25,31,32]. Please note that,
although the assumption that we made on the polarization
constraint is the same as the one made in the conventional
scalar fields [4,30], here we assume that the field that we deal
with is a wide-angle field so that the longitudinal component
cannot be neglected.

In the simply polarized fields, Ty
(
k̂
)/

Tx
(
k̂
)
becomes

equal to C , as well. When C �= ∞, using Eq. 34,
∣∣∣Tx
(
k̂
)∣∣∣

2

becomes

∣∣∣Tx
(
k̂
)∣∣∣

2 =
⎧
⎨

⎩

1

|C|2+1+
∣
∣
∣Gx

(
k̂
)
+CGy

(
k̂
)∣∣
∣
2 if kz �= 0

0 if kz = 0

=
⎧
⎨

⎩

|kz |2
|kz |2

(|C|2+1
)+|kx+Cky|2 if kz �= 0

0 if kz = 0.
(37)
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Therefore, Tx
(
k̂
)
takes the form

Tx
(
k̂
)

=

⎧
⎪⎨

⎪⎩

e jθ(k̂)√

|C|2+1+
∣
∣∣Gx

(
k̂
)
+CGy

(
k̂
)∣∣∣

2
if kz �= 0

0 if kz = 0

=

⎧
⎪⎨

⎪⎩

e jθ(k̂)|kz |√
|kz |2

(|C|2+1
)+|kx+Cky|2

if kz �= 0

0 if kz = 0.
(38)

Please note that different choices of the phase factor, θ
(
k̂
)
,

do not violate Eq. 34. If, for example, the phases of the scalar
field and the transverse components of the electric field are
desired to be the same, then it can be chosen as zero. Or, if
the phases of the scalar field and the z component are desired
to be the same, then it can be chosen as

θ
(
k̂
)

= −�
(
Gx

(
k̂
)

+ CGy

(
k̂
))

. (39)

Equating the phases of the scalar field and the z component
can be useful if the field consists only of plane waves whose
propagation angles are large. In this case, as it will be shown

below, since Tx
(
k̂
)
is a low-pass filter, the dominant term in

the electric field becomes the z component. In this respect,
the phase patterns of the scalar field and the dominant term

of the electric field can be made equal by choosing θ
(
k̂
)
as

given by Eq. 39.

When C �= ∞, Ty
(
k̂
)
can be found as CTx

(
k̂
)
using

Eq. 38. If C = ∞, then Tx
(
k̂
)
becomes zero and Ty

(
k̂
)

can be computed as

Ty
(
k̂
)

=

⎧
⎪⎨

⎪⎩

e jθ(k̂)√

1+
∣∣
∣Gy

(
k̂
)∣∣
∣
2

if kz �= 0

0 if kz = 0

=
⎧
⎨

⎩

e jθ(k̂)|kz |√
k2−k2x

if kz �= 0

0 if kz = 0.
(40)

In this case, θ
(
k̂
)
can be chosen as

θ
(
k̂
)

= −� Gy

(
k̂
)

, (41)

if the phases of the scalar field and the z component are
desired to be the same.

In Fig. 1, we show the magnitude responses of different

T{x,y}
(
k̂
)
pairs based on Eqs. 38 and 40 for the propagat-

ing fields as grayscale images. From the figures, it can be
said that all these transfer functions have a low-pass nature.

In the linearly polarized cases, as shown in Fig. 1a–c, the
magnitude responses of the corresponding transfer functions
are the rotated version of each other. So, it can be shown
that if the electric field has a different linear polarization,
i.e., C ∈ R, then the corresponding transfer functions will
be another rotated version where the amount of rotation is
determined by C . Also, in the circularly polarized case, the
filter magnitude responses show a circularly symmetric pat-
tern, so it can be said that the orientation characteristics of
the scalar wave field are preserved in the resulting x and y
components of the electric field.

At the end of the scalar-to-vector wave field mapping,
the resulting electric field components in the Fourier domain
become

Ex
(
k̂
)

=
{
S
(
k̂
)
Tx
(
k̂
)

if C �= ∞
0 if C = ∞,

Ey
(
k̂
)

=
⎧
⎨

⎩

CS
(
k̂
)
Tx
(
k̂
)

if C �= ∞
S
(
k̂
)
Ty
(
k̂
)

if C = ∞,

Ez
(
k̂
)

=
⎧
⎨

⎩

S
(
k̂
)
Tx
(
k̂
) (

Gx

(
k̂
)

+ CGy

(
k̂
))

if C �= ∞
S
(
k̂
)
Ty
(
k̂
)
Gy

(
k̂
)

if C = ∞.

(42)

As a final note to this section, a direct consequence of
equalizing the power spectra of the scalar and vector fields
in the space domain can be written as

S
(
r̂, z
) ∗ ∗S∗ (−r̂, z

) = Ex
(
r̂, z
) ∗ ∗E∗

x

(−r̂, z
)

+ Ey
(
r̂, z
) ∗ ∗E∗

y

(−r̂, z
)

+ Ez
(
r̂, z
) ∗ ∗E∗

z

(−r̂, z
)
. (43)

One of the results that can be obtained from Eq. 43 is

∞∫∫

−∞

∣∣E
(
r̂, z
)∣∣2 dr̂ =

∞∫∫

−∞

∣∣S
(
r̂, z
)∣∣2 dr̂, (44)

for all z. Equation 44 states that the total powers of the scalar
field and the corresponding electric field are always equal at
all z planes. Therefore, it can be said that the spatially average
difference between

∣
∣E
(
r̂, z
)∣∣2 and

∣
∣S
(
r̂, z
)∣∣2 is always zero.

6 Simulation Results

In this section, we present some discrete simulation results in
order to compare the performances of the conventional and
proposed scalar-to-vector wave field mapping on the recon-
struction of the corresponding electric field intensity pattern
at z = 0 plane. That is, we assume that a scalar wave field
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Fig. 1 Magnitudes of the corresponding transfer functions which sat-
isfy Eq. 34 are shown for different polarization propagating cases. The
centers of the images correspond to

(
kx , ky

) = (0, 0). a The magnitude

of Tx
(
k̂
)
is shown as the result of Eq. 38 for the propagating fields

when the field is x-polarized, i.e., C = 0. b The magnitude of Ty

(
k̂
)

is shown as the result of Eq. 40 for the propagating fields when the field

is y-polarized, i.e., C = ∞. c The magnitude of Tx
(
k̂
)

= Ty

(
k̂
)

is shown as the result of Eq. 38 for the propagating fields when the
field is diagonally linearly polarized, i.e., C = 1. d The magnitude of

Tx
(
k̂
)

= ± jTy

(
k̂
)
is shown as the result of Eq. 38 for the propagating

fields when the field is circularly polarized, i.e., C = ± j

in space domain is given and the magnitude square of that
field is desired to be generated as the electric field inten-
sity pattern. In the conventional scalar case, the scalar wave
field is mapped to E{x,y}

(
r̂, 0
)
according to Eq. 28. For the

proposed scalar case, on the other hand, E{x,y}
(
r̂, 0
)
are com-

puted using Eq. 42 from the given scalar field and the transfer

functions, T{x,y}
(
k̂
)
, that are given by Eqs. 38 and 40. In

both the conventional and proposed scalar fields, Ez
(
r̂, 0
)
is

computed using the x and y components of the electric field

and the transfer functions, G{x,y}
(
k̂
)
, as given by Eq. 9.

Here, we first summarize the steps of the conversion from
continuous domain to discrete domain. The details of this
procedure can be found in [18]. Since we assume that there

is no plane wave components when
∣
∣∣k̂
∣
∣∣ ≥ k in the elec-

tromagnetic wave field that we deal with, by choosing the
sampling period along both x and y directions, which are Xs

and Ys , respectively, greater than π
/
k, one can satisfy the

Shannon–Nyquist sampling theorem [24]. However, since
our aim is to present results which mimic continuous fields,
for better illustration, we choose different sampling periods
for different simulations.

We assume that the field components take the form
R (nXs,mYs, 0) ≡ R̃ [n,m], where n and m are integers.
Please note that, since all the computations are done for z = 0
plane, we omit this coordinate axis in our notation for the
discrete fields. Here R

(
r̂, 0
)
may represent S

(
r̂, 0
)
or one

of the components of E
(
r̂, 0
)
. Please note that we assume
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R̃ [n,m] is periodic by N ∈ Z
+ and M ∈ Z

+ along n and m
directions, respectively.

We do the field computations in the frequency domain.
For this purpose, the 2D and size N × M discrete Fourier
transform (DFT) and its inverse (IDFT) for p ∈ [0, N − 1]
and q ∈ [0, M − 1] are defined as,

R̃ [p, q] =
N−1∑

n=0

M−1∑

m=0

R̃ [n,m] e− j2π( pn
N + qm

M ),

R̃ [n,m] = 1

NM

N−1∑

p=0

M−1∑

q=0

R̃ [p, q] e j2π( pn
N + qm

M ), (45)

respectively [24]. We denote the 2D DFT and IDFT oper-

ations as R̃ [p, q] = DN×M

{
R̃ [n,m]

}
and R̃ [n,m] =

D−1
N×M

{
R̃ [p, q]

}
.

The transfer functions of the filters in the discrete domain
are obtained by periodically replicating and sampling the
transfer functions of the filters in the continuous domain.
The final version of the discrete filters takes the form

B̃ [p, q]

∣∣∣∣p= p̂mod N
q=q̂mod M

= B
(

2π

N Xs
p̂,

2π

MYs
q̂

)
, (46)

where p̂ ∈ [− ⌈ N−1
2

⌉
,
⌈ N
2 − 1

⌉]
, q̂ ∈ [− ⌈M−1

2

⌉
,⌈M

2 − 1
⌉]
, 
·� is the ceiling operator which rounds a dec-

imal number to the nearest larger integer. Here B
(
k̂
)
may

represent G{x,y}
(
k̂
)
or T{x,y}

(
k̂
)
.

In the simulations, we begin with a given scalar field
S̃ [n,m] and the magnitude square of that scalar field,

P̃ [n,m] =
∣∣∣S̃ [n,m]

∣∣∣
2
, as the desired electric field inten-

sity pattern. Then, in the conventional scalar mapping, the
electric field components are found in the DFT domain as

Ẽx,con [p, q] = 1
√
1 + |C |2

S̃ [p, q] ,

Ẽy,con [p, q] = C
√
1 + |C |2

S̃ [p, q] , (47)

where S̃ [p, q] = DN×M

{
S̃ [n,m]

}
. For the proposed scalar

mapping, the field components are found as

Ẽx,pro [p, q] =
{
T̃x [p, q] S̃ [p, q] if C �= ∞
0 otherwise,

Ẽy,pro [p, q] =
{
C T̃x [p, q] S̃ [p, q] if C �= ∞
T̃y [p, q] S̃ [p, q] otherwise,

(48)

where T̃{x,y} [p, q] are computed from T{x,y}
(
k̂
)
by using

Eq. 46. Please note that Tx
(
k̂
)
and Ty

(
k̂
)
are given by

Eqs. 38 and 40, respectively. Finally, the corresponding z
components are computed in the DFT domain as

Ẽz,con [p, q] = G̃x [p, q] Ẽx,con [p, q] + G̃y [p, q] Ẽy,con [p, q] ,
Ẽz,pro [p, q] = G̃x [p, q] Ẽx,pro [p, q] + G̃y [p, q] Ẽy,pro [p, q] ,

(49)

where G̃{x,y} [p, q] are again computed from G{x,y}
(
k̂
)
by

using Eq. 46. Finally, the discrete intensities generated as a
result of the conventional and proposed scalar mappings are
computed as

P̃con [n,m] =
∣
∣∣D−1

N×M

{
ẼEEcon [p, q]

}∣∣∣
2
,

P̃pro [n,m] =
∣∣∣D−1

N×M

{
ẼEE pro [p, q]

}∣∣∣
2
, (50)

where ẼEEcon [p, q] =
[
Ẽx,con [p, q] Ẽy,con [p, q] Ẽz,con

[p, q]]T and ẼEE pro [p, q] =
[
Ẽx,pro [p, q] Ẽy,pro [p, q]

Ẽz,pro [p, q]
]T

. The 2D IDFT operation in Eq. 50 is applied

to each component of ẼEEcon [p, q] and ẼEE pro [p, q], separately.
Finally, we compare three intensity patterns. These are

the desired intensity pattern P̃ [n,m], the pattern generated
as the result of conventional scalar-to-vector field mapping,
P̃con [n,m], and the pattern generated as the result of pro-
posed scalar-to-vector field mapping, P̃pro [n,m].

In order to test the effect of the inverse filtering approach,
in the first simulation, we choose Xs = Ys = λ

/
2, which

is the Nyquist rate for the propagating fields, and a 2D chirp
signal as the scalar field for N = M = 1024 as,

S̃ [n,m] =

D−1
N×M

{

DN×M

{

cos

(
π

N

[(
n − N

2

)2
+
(
m − M

2

)2])}

Q [p, q]

}

, (51)

where Q [p, q] matrix,

Q [p, q]

∣∣
∣∣p= p̂modN
q=q̂modM

=
{
1 if p̂2

/
N 2 + q̂2

/
M2 < 1

/
4

0 otherwise.
(52)

is introduced to remove the evanescent components. Please
note that we choose this test pattern, because its instan-
taneous normalized frequency includes the full frequency
range [−π, π) with equal strength. Hence, we are able to
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Fig. 2 The test patterns which are given by Eqs. 51 and 53 are shown.
n and p̂ increase as going from left to right and m and q̂ increase as
going from top to bottom. The top left of the images shown in (a, b)

corresponds to (n,m) = (0, 0), and the center of the image shown in
(c) corresponds to

(
p̂, q̂
) = (0, 0). a S̃ [n,m]. b P̃ [n,m]. c Shifted∣∣S̃ [p, q]

∣∣

test the success of the inverse filter in the reconstruction of
all the possible frequency components. The magnitude of the
2D DFT of this field is [22]

∣
∣∣S̃ [p, q]

∣
∣∣ = N

∣
∣∣sin

( π

N

(
p2 + q2

))∣∣∣ Q [p, q] . (53)

In Fig. 2, these patterns given by Eqs. 51 and 53 as well as

P̃ [n,m] =
∣∣∣S̃ [n,m]

∣∣∣
2
are shown. Please note that the shifted

version of the magnitude of the 2D DFT of the test pattern is
shown in Fig. 2c. As a consequence of the shift, the centers of
the images correspond to zero frequency and the normalized
frequency range extends from −N

/
2 to N

/
2 − 1.

The reconstructed intensity patterns for the first simulation
are shown in Figs. 3 and 4 for C = 1 and C = − j , respec-
tively. Although it is desirable to show P̃ [n,m], P̃con [n,m]
and P̃pro [n,m] using the same grayscale range for com-
parison, P̃ [n,m] and P̃pro [n,m] become invisible due to
the dominant high-frequency regions of P̃con [n,m] when
the same grayscale is used; in other words, the conventional
method gives a result that is grossly incorrect. So, for the
illustration purposes, before jointly scaling the results in gray
levels, we linearly shrank the contrast of the grayscale image
to get P̂con [n,m] from P̃con [n,m]. P̃ [n,m], P̂con [n,m],
P̃pro [n,m] are shown in Fig. 3a–c for C = 1 and in Fig. 4a–
c for C = − j . Since it is more informative, we also provide
the reconstructed patterns for the conventional case in loga-
rithmic scale in Fig. 3e and 4e. From these figures, it can be
said that the intensity pattern that is desired to be recon-
structed is completely lost if the conventional procedure
is used. Also, the value of C affects the resulting conven-
tional mapping intensity patterns. In the diagonally linearly
polarized case, as shown in Fig. 3b, e, the reconstructed
intensity pattern due to the conventional mapping shows an

unequal distribution in high-frequency regions. Such a result
occurs due to the constructive and destructive superposition
of G̃x [p, q] and G̃y [p, q] in the high-frequency regions. In
the left-hand circularly polarized case, as shown in Fig. 4b,
e these constructive and destructive superpositions end up
with a circularly symmetric distribution. On the other hand,
due to the proposedmapping, the reconstructed intensity pat-
terns, as shown in Figs. 3c and 4c for the jointly scaled cases
and in Figs. 3d and 4d for the independently scaled cases,
preserve the original intensity pattern. Therefore, the inverse
filters T̃{x,y} [p, q] again compensate the high-pass effect of
G̃{x,y} [p, q] for this simulation, as well. Also, for the pro-
posed mapping, there is not much difference between the
reconstructed intensity patterns for C = j and C = 1 cases.
Therefore, it can be said that different values of C do not
affect the resulting intensity pattern and the effect of C on
the reconstructed intensity pattern disappears, thanks to the
inverse filters, in these simulations.

In the second simulation, we test the proposed algo-
rithm for a realistic intensity pattern, as shown in Fig. 5a.
We assume that the scalar field that generates this intensity
pattern is zero phase; so, the scalar field can be found by
computing the square root of the given intensity pattern. In
this simulation, there are two main differences from the pre-
vious simulation. The first one is the sampling rate, which
is used to convert the analog signals to the discrete signals.
Although Xs = Ys = λ

/
2 was enough to show the dete-

riorations due to the conventional mapping in the previous
simulation, in this example this sampling rate is not enough
to simulate the actual analog operations and show meaning-

ful results. Moreover, since the rate of change of G{x,y}
(
k̂
)

is large at around
∣∣∣k̂
∣∣∣ = k [18], the simulation results are

highly dependent on the chosen numerical parameters. In
this simulation, we choose Xs = Ys = λ

/
4.75 as the sam-
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Fig. 3 Reconstructed intensity patterns for the first simulation are
shown for C = 1, i.e., diagonally polarized field. The original intensity
pattern is shown in (a). The resulting intensity patterns due to the con-
ventional and proposedmappings are shown in (b), and (c), respectively.
Before jointly mapping the patterns to the grayscale range, the contrast

of P̃con [n,m] is linearly shrank to get P̂con [n,m].dShows the indepen-
dently scaled version of (c). e Shows P̂con [n,m] in the log scale. The
top left corner of the images corresponds to (n,m) = (0, 0). a P̃ [n,m].
b P̂con [n,m]. c P̃pro [n,m]. d Independently scaled P̃pro [n,m]. e

ln
(
P̂con [n,m]

)

pling rate. As will be shown below, at this sampling rate,
the actual continuous field will be simulated according to the
expected behavior of the filters and the deterioration due to
the conventional mapping will be severe. The second differ-
ence in this simulation is that the chosen intensity pattern is
assumed to be generated using a holographic reconstruction
technique. For this purpose, we assume that a SLM which is
capable of producing a full complex light field is located at
z = 0 plane. Then, the given intensity pattern is desired
to be generated by the optical field propagated from this
SLM to the image plane located at z = 20 cm away from
the SLM plane. Both the size of the intensity pattern and
the dimensions of the discrete SLM are taken in this exam-
ple as 1566 × 560. Please note that, with this sampling rate
and the size of the intensity patterns, the actual dimension
of the SLM becomes on the order of 100µm, that is quite
small for a realistic application. However, here our aim is
to simulate the proposed and conventional mappings over
a familiar intensity pattern, which can be encountered fre-
quently in nature, rather than making a computer simulation

of a realistic optical setup. We do the simulation for a single
polarization case such that the SLM does not produce the
y component, i.e., C = 0. Moreover, in order to simulate
the free space propagation, we use Rayleigh–Sommerfeld
diffraction formula in the 2D DFT domain [7,9] with the
wavelength λ = 500 nm. As a result, in the conventional
mapping, the initial complex-valued scalar field is written
onto the SLM without making a modification and in the pro-
posedmapping, that scalar field is written onto the SLM after
applying the inverse filter.

InFig. 5b, c, themagnitudes of thewritten complex-valued
scalar fields onto the SLM are shown for the conventional
and proposed mappings, respectively, where it is difficult to
observe a difference. However, the resulting intensity pat-
terns, reconstructed at the image plane, show a significant
difference as shown in Fig. 6. In Fig. 6a–c, the original
intensity pattern and the resulting intensity patterns due to
the conventional and proposed mappings are shown, respec-
tively. Please note that these three patterns are mapped to the
grayscale images using the same scale. Moreover, in Fig. 6d,
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Fig. 4 Reconstructed intensity patterns for the first simulation are
shown for C = − j , i.e., left-hand circularly polarized field. The
original intensity pattern is shown in (a). The resulting intensity pat-
terns due to the conventional and proposed mappings are shown in
(b) and (c), respectively. Before jointly mapping the patterns to the

grayscale range, the contrast of P̃con [n,m] is linearly shrank to get
P̂con [n,m]. d Shows the independently scaled version of (c). e Shows
P̂con [n,m] in the log scale. The top left corner of the images corre-
sponds to (n,m) = (0, 0). a P̃ [n,m]. b P̂con [n,m]. c P̃pro [n,m]. d

Independently scaled P̃pro [n,m]. e ln
(
P̂con [n,m]

)

the resulting intensity pattern due to the proposed mapping
is shown in full grayscale range. Please note that, since the
computations are performed in the DFT domain, the shown
patterns represent one period of their periodically replicated
versions. In the conventional case, the artifacts due to the
amplified frequencies canbe seen clearly.Due to the branches
of the tree and the edges of the buildings, a variation along the
horizontal direction, and hence, nonzero frequency compo-
nents for |kx | ≈ k occur.As a result of these high frequencies,
some periodic patterns from left to right emerge in the con-
ventional case due to the excessive amplification, as shown in
Figure 6b. However, these artifacts disappear in the intensity
patterns when the proposed scalar mapping method is used.
Although there are still some minor differences between the
original pattern and the intensity pattern obtained by the pro-
posed method, they look quite similar and the artifacts due to
the conventional mapping are clearly eliminated. Therefore,
it can be said that the inverse filters compensate the dete-
riorations which occur when the conventional methods are
used.

7 Conclusions

In this paper, a novel scalar-to-vector wave field mapping for
monochromatic electromagnetic wave fields is developed.
Under the proposed mapping, the scalar wave field obeys
the wave propagation rules. It is presented that the power
spectra of the scalar field and the corresponding electric field
become equal if the transverse components of the electric
field are generated from the scalar field as

Ex
(
k̂
)

= S
(
k̂
)
Tx
(
k̂
)

Ey
(
k̂
)

= S
(
k̂
)
Ty
(
k̂
)

, (54)

where the linear-shift invariant filters T{x,y}
(
k̂
)
satisfy

1 =
∣∣∣Tx
(
k̂
)∣∣∣

2 +
∣∣∣Ty
(
k̂
)∣∣∣

2 +
∣∣∣Tx
(
k̂
)
Gx

(
k̂
)

+Ty
(
k̂
)
Gy

(
k̂
)∣∣∣

2
. (55)
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Fig. 5 The test patterns for the second simulation are shown. The image
plane is assumed to be located 20cm away from the SLM. Wave-
length is 500nm. The top left corner of the images corresponds to
(n,m) = (0, 0). a The intensity pattern that is desired to be holograph-

ically generated by the SLM at the image plane. b The magnitude of the
complex-valued scalar field that is written onto the SLM (conventional
case). c The magnitude of the complex-valued scalar field written onto
the SLM (proposed case)

Fig. 6 Reconstructed intensity patterns are shown for C = 0, i.e., x-
polarized field. The original intensity pattern shown in Fig. 5a, and the
intensity patterns as the result of the conventional and proposed map-
pings are shown in (a, b, and c), respectively. The patterns shown in

these three figures aremapped to gray-level images using the same scale.
d Shows the independently scaled version of (c). The top left corner of
the images corresponds to (n,m) = (0, 0). a P̃ [n,m]. b P̃con [n,m]. c
P̃pro [n,m]. d Independently scaled P̃pro [n,m]

As a result of the power spectrum equalization, total pow-
ers of the scalar field and the corresponding electric field
are always equal at any arbitrary z plane. The filters are
also specified for electric fields with either zero longitudi-
nal component or simple polarization features. The resulting
filters for simple polarization cases compensate the excessive

amplification of G{x,y}
(
k̂
)
when

∣∣∣k̂
∣∣∣ ≈ k.

The performance of the proposed scalar-to-vector wave
field mapping is tested by some computer simulations and
compared to the performance of the conventional scalar-to-
vector wave field mapping. In the simulations, the scalar
field intensity and the corresponding electric field intensi-
ties in space domain are produced. It is observed that the
intensity pattern of the scalar field is nearly the same as
the intensity pattern of the corresponding electric field in

123



Journal of Mathematical Imaging and Vision (2018) 60:1246–1260 1259

different frequency regions. However, if the conventional
scalar-to-vector wave field mapping is used, the differ-
ence between the corresponding intensity patterns can be
quite large. In this respect, the power equalizing scalar-
to-vector wave field mapping should be preferred over the
conventional mapping; this is particularly important in some
applications, such as in wide-angle imaging or optical com-
munications.
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