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ABSTRACT

DEEP LEARNING FOR ACCELERATED 3D MRI

Muzaffer Özbey

M.S. in Electrical and Electronics Engineering

Advisor: Tolga Çukur

August 2021

Magnetic resonance imaging (MRI) offers the flexibility to image a given anatomic

volume under a multitude of tissue contrasts. Yet, scan time considerations put

stringent limits on the quality and diversity of MRI data. The gold-standard

approach to alleviate this limitation is to recover high-quality images from data

undersampled across various dimensions, most commonly the Fourier domain or

contrast sets. A primary distinction among recovery methods is whether the

anatomy is processed per volume or per cross-section. Volumetric models offer

enhanced capture of global contextual information, but they can suffer from sub-

optimal learning due to elevated model complexity. Cross-sectional models with

lower complexity offer improved learning behavior, yet they ignore contextual

information across the longitudinal dimension of the volume. Here, we introduce

a novel progressive volumetrization strategy for generative models (ProvoGAN)

that serially decomposes complex volumetric image recovery tasks into succes-

sive cross-sectional mappings task-optimally ordered across individual rectilinear

dimensions. ProvoGAN effectively captures global context and recovers fine-

structural details across all dimensions, while maintaining low model complexity

and improved learning behaviour. Comprehensive demonstrations on mainstream

MRI reconstruction and synthesis tasks show that ProvoGAN yields superior per-

formance to state-of-the-art volumetric and cross-sectional models.

Keywords: MRI, Generative Adversarial Networks, Synthesis, Reconstruction,

Model complexity.

iii



ÖZET

HIZLANDIRILMIŞ 3D MRG İÇİN DERİN ÖĞRENME

Muzaffer Özbey

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Çukur

Ağustos 2021

Manyetik rezonans görüntüleme (MRG), çok sayıda doku kontrastı altında

belirli bir anatomik hacmi görüntüleme esnekliği sunar. Fakat tarama za-

manıyla alakalı endişeler MRG verisinin kalite ve çeşitliliği üzerinde keskin

kısıtlamalara sebep olmaktadır. Bu kısıtlamaları kaldırmak için uygulanan

güncel standart yaklaşım değişik boyutlardan, genellikle de Fourier alanı veya

kontrast kümelerinden, alınan ve çarpazlama alt-örneklenen verilerden yüksek

kalite görüntüler devşirmektir. Bu devşirme yöntemleri arasındaki başlıca fark

anatominin hacimsel mi yoksa kesitsel mi işlendiğidir. Hacimsel modeller

gelişmiş bütünlüklü bağlamsal malumat sağlarken fazlaca karmaşık modeller

yüzünden yetersiz bir öğrenmeye sebep olur. Kesit bazlı modellerse daha az

karmaşık olmaları sayesinde öğrenimde artış sağlarken hacmin boylamsal boyut-

larındaki bağlamsal malumatı göz ardı ederler. Burada biz karmaşık hacim-

sel görüntülerin devşirilme görevini münferit doğrusal boyutlarda görev uy-

gunluğunca sıralanmış, ardıl kesitli haritalamalara bolüştüren üretim modelleri

(ProvoGAN) için yeni ve ileri bir hacimleştirme stratejisi sunmaktayız. Provo-

GAN düşük model karmaşıklığını koruyup gelişmis öğrenimi temin ederken etk-

ili biçimde bütünlüklü bağlam elde edebilmekte ve tüm boyutlar boyunca ince

yapısal detayları devşirebilmektedir. Anaakım MRG geriçatım ve sentez görevleri

üzerinde yapılan kapsamlı izahlar ProvoGAN’ın son teknoloji hacimsel ve kesitsel

modellere göre üstün performans sağladığını göstermektedir.

Anahtar sözcükler : MRG, Üretici Çekişmeli Ağlar, Sentez, Geriçatım, Model

karmaşıklığı.
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I would like to thank TUBİTAK BİDEB-2210, 1001 Research Grant(118E256)

for the funding and support they provided throughout this work.

v



Contents

1 Introduction 1

2 Fundamentals of MRI 6

3 Methods and Materials 9

3.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . 10

3.2 MR Image Recovery via Volumetric GANs . . . . . . . . . . . . . 11

3.3 MR Image Recovery via Cross-Sectional GANs . . . . . . . . . . . 12

3.4 Progressively Volumetrized GAN . . . . . . . . . . . . . . . . . . 13

3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Competing Methods . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results 33

4.1 Task-Specific Progression Order . . . . . . . . . . . . . . . . . . . 33

vi



CONTENTS vii

4.2 Accelerated MRI Reconstruction . . . . . . . . . . . . . . . . . . 36

4.3 Multi-Contrast MRI Synthesis . . . . . . . . . . . . . . . . . . . . 40

4.4 Demonstrations Against Hybrid Models . . . . . . . . . . . . . . . 43

4.5 Radiological Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Complexity of Cross-Sectional Mappings . . . . . . . . . . . . . . 50

4.7 Generalizability of Progressive Volumetrization . . . . . . . . . . . 56

5 Conclusion 58



List of Figures

2.1 Sample T1− and T2− weighted images of the human brain . . . . 8

3.1 ProvoGAN decomposes complex volumetric image recovery tasks

into a cascade of progressive cross-sectional subtasks defined across

the rectilinear orientations (axial, coronal, and sagittal). Given a

specific order of progression sequence (axial → sagittal → coronal

is given here for demonstration), ProvoGAN first learns a cross-

sectional mapping in the first orientation, and processes cross-

sections within the entire source volume to estimate the target vol-

ume. This volumetric estimate is then divided into cross-sections

in the second orientation, and a separate cross-sectional model is

learned in the second orientation. The volumetric estimate from

the second progression is then fed onto the final progression in

which a third cross-sectional model is learned for final recovery.

The sequential implementation of the progressive cross-sectional

models enables ProvoGAN to gradually improve capture of fine-

structural details in each orientation and to ensure global contex-

tual consistency within the volume while at the same time mani-

festing reduced model complexity and improved learning behaviour

of cross-sectional mapping. . . . . . . . . . . . . . . . . . . . . . . 18

viii



LIST OF FIGURES ix

3.2 The architectural details of the generator and discriminator sub-

modules in ProvoGAN are displayed (here a progression order of

A → S → C is used for illustration). The generator architectures

are the same for the progressions and consist of an encoder with

3 convolutional layers: conv2D(k = 7, f = 24, s = 1, a = ReLU),

conv2D(k = 3, f = 48, s = 2, a = ReLU), conv2D(k = 3, f =

96, s = 2, a = ReLU), a residual network of 9 ResNet blocks:

9 × ResNet2D(k = 3, f = 96, s = 1, a = ReLU), and a decoder

of 3 convolutional layers: deconv2D(k = 3, f = 48, s = 2, a =

ReLU), deconv2D(k = 3, f = 24, s = 2, a = ReLU), conv2D(k =

7, f = 1, s = 1, a = Tanh), where k denotes kernel size, f de-

notes number of filters, s denotes stride, and a denotes activa-

tion function. Similarly, the discriminator architectures are iden-

tical for the progresions and consist of a convolutional network

of 5 convolutional layers in series: conv2D(k = 4, f = 24, s =

2, a = leakyReLU), conv2D(k = 4, f = 48, s = 2, a = leakyReLU),

conv2D(k = 4, f = 96, s = 2, a = leakyReLU), conv2D(k = 4, f =

192, s = 1, a = leakyReLU), conv2D(k = 4, f = 1, s = 1, a = none). 27



LIST OF FIGURES x

3.3 a) The architectural details of the generator and discriminator

in sGAN are displayed (here an sGAN model trained in the ax-

ial orientation referred to as sGAN-A is used for illustration).

The generator consists of an encoder with 3 convolutional layers:

conv2D(k = 7, f = 24, s = 1, a = ReLU), conv2D(k = 3, f =

48, s = 2, a = ReLU), conv2D(k = 3, f = 96, s = 2, a = ReLU),

a residual network of 9 ResNet blocks: 9 × ResNet2D(k = 3, f =

96, s = 1, a = ReLU), and a decoder of 3 convolutional layers:

deconv2D(k = 3, f = 48, s = 2, a = ReLU), deconv2D(k = 3, f =

24, s = 2, a = ReLU), conv2D(k = 7, f = 1, s = 1, a = Tanh),

where k denotes kernel size, f denotes number of filters, s denotes

stride, and a denotes activation function. The discriminator con-

sists of a convolutional network of 5 convolutional layers in series:

conv2D(k = 4, f = 24, s = 2, a = leakyReLU), conv2D(k = 4, f =

48, s = 2, a = leakyReLU), conv2D(k = 4, f = 96, s = 2, a =

leakyReLU), conv2D(k = 4, f = 192, s = 1, a = leakyReLU),

conv2D(k = 4, f = 1, s = 1, a = none). b) The architectural

details of the generator and discriminator in vGAN are displayed.

The generator consists of an encoder with 3 convolutional layers:

conv3D(k = 7, f = 24, s = 1, a = ReLU), conv3D(k = 3, f =

48, s = 2, a = ReLU), conv3D(k = 3, f = 96, s = 2, a = ReLU),

a residual network of 9 ResNet blocks: 9 × ResNet3D(k = 3, f =

96, s = 1, a = ReLU), and a decoder of 3 convolutional layers:

deconv3D(k = 3, f = 48, s = 2, a = ReLU), deconv3D(k = 3, f =

24, s = 2, a = ReLU), conv3D(k = 7, f = 1, s = 1, a = Tanh). The

discriminator consists of a convolutional network of 5 convolutional

layers in series: conv3D(k = 4, f = 24, s = 2, a = leakyReLU),

conv3D(k = 4, f = 48, s = 2, a = leakyReLU), conv3D(k = 4, f =

96, s = 2, a = leakyReLU), conv3D(k = 4, f = 192, s = 1, a =

leakyReLU), conv3D(k = 4, f = 1, s = 1, a = none). . . . . . . . . 28



LIST OF FIGURES xi

4.1 The proposed ProvoGAN method is demonstrated on the IXI

dataset for single-coil reconstruction of T1-weighted acquisitions

undersampled at R = 8. Representative results are displayed for all

competing methods together with the zero-filled (ZF) undersam-

pled source images (first column) and the reference target images

(second column). The top two rows display results for the axial, the

middle two rows for the coronal, and the last two rows for the sagit-

tal orientation. Error was taken as the absolute difference between

the reconstructed and reference images (see colorbar). Overall,

the proposed ProvoGAN method offers delineation of tissues with

higher acuity compared to the volumetric (vGAN) model, and alle-

viates undesirable discontinuities compared to cross-sectional mod-

els (sGAN, RefineGAN, SparseMRI) by improving reconstruction

performance in all orientations. . . . . . . . . . . . . . . . . . . . 37

4.2 The proposed method is demonstrated on the in vivo multi-coil

knee dataset for reconstruction at an acceleration ratio of R = 8.

Representative results are displayed for all competing methods to-

gether with the zero-filled (ZF) undersampled source images (first

column) and the reference target images (second column). The

top two rows display results for the axial, the middle two rows for

the coronal, and the last two rows for the sagittal orientation. Er-

ror was taken as the absolute difference between the reconstructed

and reference images (see colorbar). Overall, ProvoGAN achieves

sharper tissue depiction compared to vGAN, and alleviates unde-

sirable discontinuities compared to cross-sectional models (sGAN,

RefineGAN, SPIRiT) by improving reconstruction performance in

all orientations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



LIST OF FIGURES xii

4.3 The proposed method is demonstrated on the IXI dataset for

T2-weighted image synthesis from T1- and PD-weighted images.

Representative results are displayed for all competing methods to-

gether with the reference target images (first column). The first

row displays results for the axial orientation, the second row for

the coronal orientation, and the third row for the sagittal orienta-

tion. Overall, the proposed method delineates tissues with higher

spatial resolution compared to volumetric vGAN, SC-GAN, and

REPLICA models, and alleviates discontinuity artifacts by improv-

ing synthesis performance in all orientations compared to cross-

sectional sGAN-A, sGAN-C, and sGAN-S models. . . . . . . . . . 41

4.4 The proposed method is demonstrated on the in vivo brain

dataset for T1-weighted image synthesis from T2-, T1c-weighted

and FLAIR images. Representative results are displayed for all

competing methods together with the reference target images (first

column). The first row displays results for the axial, the second row

for the coronal, and the third row for the sagittal orientation. Over-

all, the proposed method delineates tissues with higher spatial res-

olution compared to volumetric vGAN, SC-GAN, and REPLICA

models, and alleviates discontinuity artifacts by improving syn-

thesis performance in all orientations compared to cross-sectional

sGAN-A, sGAN-C, and sGAN-S models. Meanwhile, the proposed

method achieves more accurate depictions for tumor regions, which

are suboptimally recovered by the competing methods. . . . . . . 42



LIST OF FIGURES xiii

4.5 The proposed ProvoGAN method is demonstrated on the IXI

dataset against hybrid models (M3NET and TransferGAN) for

T1-weighted image synthesis from T2- and PD-weighted images.

Representative results are displayed for all methods under compar-

ison together with the ground truth target images (first column).

The first row displays results for the axial orientation, the second

row for the coronal orientation, and the third row for the sagittal

orientation. Error was taken as the absolute difference between

the reconstructed and reference images (see colorbar). Overall,

the proposed method offers sharper and more accurate delineation

of tissues than the competing methods. Furthermore, ProvoGAN

better alleviates residual discontinuity artifacts compared to M3NET. 45

4.6 The proposed ProvoGAN method is demonstrated against hybrid

models (M3NET and TransferGAN) on the IXI dataset for recon-

struction of T1-weighted acquisitions undersampled atR = 8. Rep-

resentative results are displayed for the methods under comparison

together with the undersampled zero-filled source images (first col-

umn) and the reference target images (second column). The top

two rows display results for the axial, the middle two rows for the

coronal, and the last two rows for the sagittal orientation. Error

was taken as the absolute difference between the reconstructed and

reference images (see colorbar). Overall, the proposed method en-

ables sharper tissue delineation against competing methods, and it

improves mitigation of discontinuity artifacts compared to M3NET. 46



LIST OF FIGURES xiv

4.7 Methods were compared in terms of radiological opinion scores

for three reconstruction tasks: a) single-coil reconstruction of T1-

weighted images undersampled by R = 8 in the IXI dataset, b)

single-coil reconstruction of T2-weighted images undersampled by

R = 8 in the IXI dataset, c) multi-coil reconstruction of PD-

weighted images undersampled by R = 8 in the in vivo knee

dataset, and for two synthesis tasks: d) many-to-one synthesis

task of T2, PD → T1 in the IXI dataset, e) many-to-one synthesis

task of T1, T2, T1c → FLAIR in the in vivo brain dataset. The

quality of the recovered axial, coronal, and sagittal cross-sections

were rated by an expert radiologist by assessing their similarity to

the reference cross-sections via a five-point scale (0: unacceptable,

1: very poor, 2: limited, 3: moderate, 4: good, 5: perfect match).

Figure legends denote the colors used for marking the methods

under comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Volumetrization approaches were compared in terms of radiological

opinion scores for three representative tasks: a) reconstruction of

T1-weighted images undersampled by R = 8 in the IXI dataset, b)

reconstruction of T2-weighted images undersampled by R = 8 in

the IXI dataset, c) T2, PD→ T1 synthesis in the IXI dataset. The

quality of the recovered axial, coronal, and sagittal cross-sections

were rated by an expert radiologist by assessing their similarity

to the reference cross-sections via a five-point scale (0: unaccept-

able, 1: very poor, 2: limited, 3: moderate, 4: good, 5: perfect

match). Figure legend denotes the colors used for the methods

under comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 50



LIST OF FIGURES xv

4.9 Progressive volumetrization was performed on recently proposed

SC-GAN architecture. Representative results for T1-weighted

image synthesis from T2- and PD-weighted images in the IXI

dataset are displayed. Results are shown for progressively vol-

umetrized (ProvoSC-GAN), cross-sectional (sSC-GAN), and vol-

umetric (vSC-GAN) models, along with the ground truth target

images (first column). The first row displays results for the ax-

ial orientation, the second row for the coronal orientation, and

the third row for the sagittal orientation. Overall, ProvoSC-GAN

improves delineation of structural details compared to vSC-GAN,

and enhances contextual consistency in the longitudinal dimen-

sions compared to sSC-GAN models. . . . . . . . . . . . . . . . . 57



List of Tables

4.1 Task-Optimal Progression Order for Reconstruction in the IXI

Dataset: Volumetric PSNR (dB) measurements between the recon-

structed and ground truth images in the validation set in the IXI

dataset are given as mean ± std. The measurements are provided

for all possible progression orders: 1) A→ C→ S, 2) A→ S→ C,

3) S→ A→ C, 4) S→ C→ A, 5) C→ S→ A, 6) C→ A→ S and

acceleration factors: R = 4, 8, 12, 16. Boldface indicates the high-

est performing progression sequence. . . . . . . . . . . . . . . . . 34

4.2 Task-Optimal Progression Order for Reconstruction in the In vivo

Knee Dataset: Volumetric PSNR (dB) measurements between the

reconstructed and ground truth images in the validation set in the

in vivo knee dataset are given as mean ± std. The measurements

are provided for all possible progression orders: 1) A → C → S,

2) A → S → C, 3) S → A → C, 4) S → C → A, 5) C → S → A,

6) C → A → S and acceleration factors: R = 4, 8, 12, 16. Boldface

indicates the highest performing progression sequence. . . . . . . . 35

xvi



LIST OF TABLES xvii

4.3 Task-Optimal Progression Order for Synthesis in the IXI Dataset:

Volumetric PSNR (dB) measurements between the synthesized and

ground truth images in the validation set in the IXI dataset are

given as mean ± std. The measurements are provided for all

possible progression orders: 1) A → C → S, 2) A → S → C,

3) S→ A→ C, 4) S→ C→ A, 5) C→ S→ A, 6) C→ A→ S and

all many-to-one synthesis tasks: 1) T2, PD→ T1, 2) T1, PD→ T2,

3) T1, T2 → PD. Boldface indicates the highest performing pro-

gression sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Task-Optimal Progression Order for Synthesis in the In vivo

Brain Dataset: Volumetric PSNR (dB) measurements between

the synthesized and ground truth images in the validation set

in the in vivo brain dataset are given as mean ± std. The

measurements are provided for all possible progression orders:

1) A → C → S, 2) A → S → C, 3) S → A → C, 4) S → C → A,

5) C → S → A, 6) C → A → S and all many-to-one synthe-

sis tasks: 1) T2, FLAIR, T1c → T1, 2) T1, FLAIR, T1c → T2,

3) T1, T2, T1c → FLAIR, 4) T1, T2, FLAIR → T1c. Boldface

indicates the highest performing progression sequence. . . . . . . . 35

4.5 Quality of Reconstruction in the IXI Dataset: Volumetric PSNR

(dB) and SSIM (%) measurements between the reconstructed and

ground truth images in the test set in the IXI dataset are given as

mean ± std for the test set. The measurements are reported for

zero-filled images (ZF), the proposed ProvoGAN and competing

sGAN, vGAN, RefineGAN, and SparseMRI reconstruction meth-

ods for four distinct acceleration factors (R = 4, 8, 12, 16). Bold-

face indicates the best performing method. . . . . . . . . . . . . . 38



LIST OF TABLES xviii

4.6 Quality of Reconstruction in the In vivo Knee Dataset: Volumet-

ric PSNR (dB) and SSIM (%) measurements between the recon-

structed and ground truth images in the test set in the in vivo knee

dataset are given as mean ± std for the test set. The measurements

are reported for zero-filled images (ZF), the proposed ProvoGAN

and competing sGAN, vGAN, RefineGAN, and SPIRiT methods

for four distinct acceleration factors (R = 4, 8, 12, 16). Boldface

indicates the best performing method. . . . . . . . . . . . . . . . 40

4.7 Quality of Synthesis in the IXI Dataset: Volumetric PSNR (dB)

and SSIM (%) measurements between the synthesized and ground

truth images in the test set in the IXI dataset are given as mean

± std. The measurements are provided for the proposed and

competing methods for all synthesis tasks: 1) T2, PD → T1,

2) T1, PD → T2, 3) T1, T2 → PD. sGAN-A denotes the sGAN

model trained in the axial orientation, sGAN-C in the coronal ori-

entation, and sGAN-S in the sagittal orientation. Boldface indi-

cates the highest performing method. . . . . . . . . . . . . . . . . 42

4.8 Quality of Synthesis in the In vivo Brain Dataset: Volumetric

PSNR (dB) and SSIM (%) measurements between the synthe-

sized and ground truth images in the test set of the in vivo brain

dataset are given as mean ± std. The measurements are provided

for proposed and competing methods for all many-to-one synthe-

sis tasks: 1) T2, FLAIR, T1c → T1, 2) T1, FLAIR, T1c → T2,

3) T1, T2, T1c → FLAIR, 4) T1, T2, FLAIR → T1c. sGAN-A de-

notes the sGAN model trained in the axial orientation, sGAN-C

in the coronal orientation, and sGAN-S in the sagittal orientation.

Boldface indicates the highest performing method. . . . . . . . . . 43



LIST OF TABLES xix

4.9 Comparison of Volumetrization Approaches for Reconstruction in

the IXI Dataset: Volumetric PSNR (dB) and SSIM (%) measure-

ments between the reconstructed and ground truth images in the

test set in the IXI dataset are given as mean ± std. The measure-

ments are reported for the proposed ProvoGAN and competing

M3NET and TransferGAN methods for four distinct acceleration

factors (R = 4, 8, 12, 16). Boldface indicates the best performing

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Comparison of Volumetrization Approaches for Synthesis in the

IXI Dataset: Volumetric PSNR (dB) and SSIM (%) measurements

between the synthesized and ground truth images in the test set in

the IXI dataset are given as mean ± std. The measurements are

reported for the proposed ProvoGAN and competing M3NET and

TransferGAN methods for all synthesis tasks: 1) T2, PD → T1,

2) T1, PD → T2, 3) T1, T2 → PD. Boldface indicates the highest

performing method. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Model Complexity Analysis for Reconstruction in the IXI Dataset:

Volumetric PSNR (dB) and SSIM (%) measurements between

the reconstructed and ground truth images in the test set of

the IXI dataset are given as mean ± std for reconstruction of

T1-weighted acquisitions undersampled at R = 8. The mea-

surements are reported for ProvoGAN and sGAN while vary-

ing the complexity of the convolutional layers in both mod-

els by nf ∈ {1/16, 1/9, 1/4, 1, 4, 9, 16}, yielding seven distinct

ProvoGAN-sGAN pairs: ProvoGAN(nf )-sGAN(nf ) with nf times

folded number of learnable network weights. Boldface indicates

the highest performing method. . . . . . . . . . . . . . . . . . . . 52



LIST OF TABLES xx

4.12 Model Complexity Analysis for Synthesis in the IXI Dataset: Volu-

metric PSNR (dB) and SSIM (%) measurements between the syn-

thesized and ground truth images in the test set of the IXI dataset

are given as mean ± std for T1-weighted image synthesis from

T2- and PD-weighted images. The measurements are reported for

ProvoGAN and sGAN while varying the complexity of the convo-

lutional layers in both models by nf ∈ {1/16, 1/9, 1/4, 1, 4, 9, 16},
yielding seven distinct ProvoGAN-sGAN pairs: ProvoGAN(nf )-

sGAN(nf ) with nf times folded number of learnable network

weights. sGAN-A denotes the sGAN model trained in the axial

orientation, sGAN-C in the coronal orientation, and sGAN-S in

the sagittal orientation. Boldface indicates the highest performing

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Comparison of Single versus Multi-Cross-Section ProvoGAN and

sGAN Models for Reconstruction in the IXI Dataset: Volumet-

ric PSNR (dB) and SSIM (%) measurements between the recon-

structed and ground truth images in the test set of the IXI dataset

are given as mean ± std. The measurements are reported for

the proposed ProvoGAN model, its multi-cross-section variant, the

cross-sectional sGAN model and its multi-cross-section variant for

all single-coil reconstruction tasks: T1-weighted and T2-weighted

image reconstruction at R = 4, 8, 12, 16. sGAN and sGAN(multi)

are trained in the axial orientation given axial readout direction.

Boldface indicates the highest performing method. . . . . . . . . . 53



LIST OF TABLES xxi

4.14 Comparison of Single and Multi-Cross-Section ProvoGAN and

sGAN Models for Synthesis in the IXI Dataset: Volumetric PSNR

(dB) and SSIM (%) measurements between the synthesized and

ground truth images in the test set in the IXI dataset are given

as mean ± std. The measurements are reported for the pro-

posed ProvoGAN model, its multi-cross-section variant, the cross-

sectional sGAN model and its multi-cross-section variant for all

many-to-one synthesis tasks: 1) T2, PD → T1, 2) T1, PD → T2,

3) T1, T2 → PD. sGAN-A and sGAN(multi)-A denote the mod-

els trained in the axial orientation, sGAN-C and sGAN(multi)-C

denote the models trained in the coronal orientation, and sGAN-

S and sGAN(multi)-S denote the models trained in the sagittal

orientation. Boldface indicates the highest performing method. . . 54

4.15 The proposed ProvoGAN and competing sGAN and vGAN meth-

ods are evaluated in terms instantaneous model complexity (mil-

lions of parameters, M), GPU VRAM use (gigabytes, GB), FLOPs

(billions of floating point operation, G), and train duration (hours).

The model complexity of the methods is given as (pg, pd), where

pg denotes the number of free parameters in the generator and pd

denotes the number of free parameters in the discriminator. The

number of operations (FLOPs) of the methods is given as (Fg, Fd),

where Fg denotes the number of operations in the generator and

Fd denotes the number of operations in the discriminator. The

input-output volume sizes and the number training subjects are

also reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF TABLES xxii

4.16 Progressive Volumetrization of the SC-GAN Architecture: Volu-

metric PSNR (dB) and SSIM (%) measurements between the syn-

thesized and ground truth images in the test set in the IXI dataset

are given as mean ± std. Measurements are provided for pro-

posed and competing methods for all many-to-one synthesis tasks:

1) T2, PD → T1, 2) T1, PD → T2, 3) T1, T2 → PD. sSC-GAN-A

denotes the sSC-GAN model trained in the axial orientation, sSC-

GAN-C in the coronal orientation, and sSC-GAN-S in the sagittal

orientation. Boldface indicates the highest performing method. . . 57



Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a clinically preferred modality that pro-

duces volumetric images of a given anatomy under diverse tissue contrasts [1]. As

MR acquisitions are intrinsically slow, there has been persistent interest in recov-

ery methods to improve quality and diversity of images derived from accelerated

imaging protocols [2,3]. Two mainstream MRI recovery problems with pervasive

applications are reconstruction and synthesis [4–27]. While reconstruction aims

to recover high-quality images from undersampled k-space acquisitions [28], syn-

thesis aims to recover high-quality images of unacquired tissue contrasts from im-

ages of collected contrasts [29]. Learning-based models have offered performance

leaps in both recovery tasks, given their ability to solve inverse problems [30–32].

However, the trade-off between sensitivity to spatial context and model complex-

ity introduces a dilemma regarding the use of volumetric versus cross-sectional

recovery models [33]. The primary aim of this study is to introduce a novel vol-

umetrization approach to achieve the contextual sensitivity of volumetric models

while maintaining on par complexity with cross-sectional models.

Among learning-based models, a native recovery approach is to perform a

single-shot global mapping between source and target volumes [34–43]. Volumet-

ric models leverage spatial correlations across all dimensions to better capture
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contextual information [34–37]. Introduction of these contextual priors can theo-

retically lead to more consistent and accurate recovery across the volume. How-

ever, three-dimensional (3D) models involve substantially more parameters than

their two-dimensional (2D) counterparts [8,33]. Furthermore, each volume consti-

tutes a single training sample for a 3D model, whereas it would yield several tens

of samples for a 2D model. Taken together, these factors render heavier demand

for training data and impair the learning process for volumetric models [33].

A less demanding approach in terms of training data for learning-based MRI

recovery is to perform a spatially-localized mapping between individual cross-

sections [44–47,47–58]. Volumes are split along a specific rectilinear orientation,

and cross-sectional models are then trained to learn the 2D mapping [59–64].

Since a lower-dimensional mapping is to be learned, cross-sectional models are

of lower complexity and have reduced demand for training data [8]. This facil-

itates the learning process, and often results in more detailed mappings along

the transverse dimensions within cross-sections compared to 3D models. Yet, 2D

models do not fully utilize context across the longitudinal dimension, even when

simultaneously processing multiple neighboring cross-sections [36, 37, 59]. This

results in inconsistency and errors across separately recovered cross-sectional im-

ages [34, 35,38].

An effective alternative to either approach is to build hybrid architectures that

bridge 2D and 3D models. A group of studies in this domain have proposed ag-

gregated models that fuse the outputs of parallel streams, where the streams are

cross-sectional models in three orthogonal orientations [65, 66]. Pseudo target

volumes are first recovered separately by the 2D streams, and a 3D fusion net-

work then produces the final target volume [65, 66]. Other studies have instead

proposed transfer of learned model weights from 2D to 3D models [67,68]. A 2D

model is first pretrained for a cross-sectional recovery task at a selected orien-

tation, the learned weights are then used to initialize the convolutional kernels

in 3D models [67, 68]. While both approaches can improve learning behavior,

they involve a volumetric processing component that elevates memory require-

ments and places practical constraints on model complexity, potentially limiting

sensitivity to detailed image features.
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Contributions

In this thesis, we propose a novel progressive volumetrization strategy for deep

generative models (ProvoGAN) for contextual learning of MR image recovery.

To improve learning efficiency by lowering model complexity, ProvoGAN serially

decomposes volumetric recovery tasks into a sequence of cross-sectional subtasks

(e.g., axial, coronal, sagittal) for the first time in literature. For a given subtask in

a selected orientation, the source volume is split across the respective longitudinal

dimension, and a 2D model is trained to map between cross-sectional source and

target images. The predicted pseudo cross-sections are reformatted into a volume

and then input to the next subtask as spatial priors (Fig. 3.1). This progressive

nature empowers ProvoGAN to recover fine-structural details in each orientation

while ensuring contextual consistency across the volume. Furthermore, the pro-

gression order of the subtasks is adaptively optimized to enhance task-specific

performance. To ensure a high degree of realism, we primarily employ Provo-

GAN to volumetrize a recent conditional generative adversarial network based

on the ResNet architecture [59]. Note that ProvoGAN can be viewed as a model-

agnostic strategy, so it can be extended to volumetrize other 2D network models

as also demonstrated here. Comprehensive demonstrations are provided for main-

stream reconstruction and synthesis tasks in multi-contrast MRI protocols. Our

results indicate that ProvoGAN yields enhanced recovery performance compared

to cross-sectional, volumetric, and hybrid approaches in terms of image quality.

Importantly, ProvoGAN maintains these performance benefits while at the same

time offering reduced model complexity and improved learning behaviour.

• To our knowledge, ProvoGAN is the first volumetrized model for MRI re-

covery that serially decomposes a global 3D mapping into a sequence of

progressive 2D mappings.

• ProvoGAN maximizes task performance via adaptive ordering of the pro-

gression sequence of 2D mappings across rectilinear orientations.

• ProvoGAN embodies a model-agnostic learning strategy, so it can be im-

plemented to volumetrize various 2D network architectures.
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• Demonstrations on mainstream reconstruction and synthesis tasks indicate

that ProvoGAN yields superior performance to several prior 2D, 3D and

hybrid models.
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Outline

For the rest of this thesis, the organization is as follows. Chapter 2 discusses

the fundamentals of MRI. Chapter 3 describes the methods, used date-set and

experiments in details. Chapter 4 demonstrates the outcome of the experiments

and comparison results. Lastly, Chapter 5 presents the conclusive remarks.
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Chapter 2

Fundamentals of MRI

Magnetic resonance imaging (MRI) depands on atomic nuclei (1H) which has

both magnetic and angular momentum. The hydrogen nuclei are aligned based

on the magnetic field. If there is not any applied external magnetic field, the

hydrogen nuclei are randomly aligned and thereby net magnetization approxi-

mating to zero. If an external magnetic field (B0) is applied, it causes that the

hydrogen nuclei start to precessing around the longitudinal direction of the ap-

plied B0 with the frequency of ω0 = B0γ which known as the Larmor frequency.

For MRI scans, an external radio-frequency (RF) field pulse, which designated as

B1, can tips the net magnetization of the nuclei to the transverse plane up to a

desired degree which known as the lip angle. After turning off of the external RF

field, the net magnetization tend to return its equilibrium state. For this relax-

ation period, the transverse part of magnetization decays with a time constant

T2 and the longitudinal part of the magnetization recovers with a time constant

T1. In MRI, the receiver coils detect the flux changes along transverse direction

and with these flux changes, the signal in the transverse plane can be detected.

Meanwhile, for spatial encoding of the signal, additional magnetic field gradients

(G) are performed. Overall, the received signal by the coil is given as:

s(t) =

∫
x

∫
y

∫
z

M0(x, y, z)e−t/T2(r)exp(−iγ
∫ t

0

G(τ).rdτ) dx dy dz (2.1)
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where M(x, y, z) is transverse magnetization at point (x,y,z), γ is gyro-

magnetic ratio, r = [x, y, z] and G = [Gx, Gy, Gz]. To obtain a frequency domain(

k-space) formulation, equation can be rearranged by expressing the gradient terms

with spatial frequency variables kx(t) =
γ

2π

∫
Gx(τ) dτ , ky(t) =

γ

2π

∫
Gy(τ) dτ

and kz(t) =
γ

2π

∫
Gz(τ) dτ :

s(t) =

∫
x

∫
y

∫
z

M0(x, y, z)e−t/T2(r)exp(−i2π(kx(t) + ky(t) + kz(t)) dx dy dz (2.2)

Note that transverse magnetization can be manipulated via the applied RF

pulse and gradient fields based on the tissue-specific relaxation parameters. With

this manipulation, desired properties of the tissues can be imaged and this en-

ables the multi-contrast MRI acquisition. The obtained MRI signal for one of the

most regularly used spin-echo sequences can be represented as:

S0 = K0ρ(r)[1− e−TR/T1(r)]eTE/T2(r) (2.3)

where K0 is a scaling factor, ρ(r) is proton density, TR is the repetition time, and

TE are the echo time of RF pulse and T1(r) and T2(r) are relaxation parameters

of longitudinal and transverse magnetization. This equation shows how to alter

the contrast in acquired images by simply modifying TR and TE. T1-weighted

contrast images, for example, can be produced by a low TE and a moderate TR.

Similarly, T2-weighted contrast images can be acquired by a moderate TE and

long TR duration. A sample T1− and T2− weighted images are shown in Figure

2.1
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Figure 2.1: Sample T1− and T2− weighted images of the human brain
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Chapter 3

Methods and Materials

The content of this chapter reflects the study described in the following publica-

tions:

• M. Özbey, M. Yurt, S. U. H. Dar, and T. Çukur, “Three Dimensional

MR Image Synthesis with Progressive Generative Adversarial Networks,” in

IEEE 17th International Symposium on Biomedical Imaging (ISBI), (Vir-

tual Conference),4 2020

• M. Özbey, M. Yurt, S. U. H. Dar, and T. Çukur, “Three dimensional mr

image synthesis with progressive generative adversarial networks,” arXiv

preprint arXiv:2101.05218, 2020

• M. Yurt, M. Özbey, S. U. H. Dar, B. Tınaz, K. K. Oğuz, and T. Çukur,

“Progressively volumetrized deep generative models for data-efficient con-

textual learning of mr image recovery,” arXiv preprint arXiv:2011.13913,

2020

• M. Yurt, M. Özbey, S. U. H. Dar, B. Tınaz, K. K. Oğuz, and T. Çukur, “Pro-

gressively Volumetrized Deep Generative Models for Data-Efficient Contex-

tual Learning of MR Image Recovery,” in 29th Annual Meeting of Interna-

tional Society for Magnetic Resonance Imaging (ISMRM), (Virtual Confer-

ence),5 2021
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3.1 Generative Adversarial Networks

Generative adversarial networks (GAN) are generative models composed of two

subnetworks. The first subnetwork is a generator (G) that aims to synthesize

fake samples closely mimicking a target data distribution, while the second sub-

network is a discriminator (D) that aims to detect whether a given data sample

has been drawn from the target distribution or not [73]. These subnetworks are

trained alternately in a two player zero-sum min-max game in an adversarial

setup:

LGAN = Ey[log(D(y))] + Ez[log(1−D(G(z)))] (3.1)

where LGAN is the adversarial loss function, E denotes expectation, z denotes a

random noise vector sampled from a prior distribution, and y denotes an arbi-

trary real sample drawn from the target domain. In practice, the log-likelihood

terms are replaced with squared-loss terms to improve stability [74]:

LGAN = −Ey[(D(y)− 1)2]− Ez[D(G(z))2] (3.2)

where D is trained to maximize LGAN, whereas G is trained to minimize it.

While the basic GAN model synthesizes target data samples given a ran-

dom noise input, recent studies on computer vision [75, 76] and medical imag-

ing [37,38,59,63,77–80] have demonstrated that conditional GAN (cGAN) mod-

els [81] are highly effective in image-to-image translation tasks. The central aim

in these tasks is to synthesize data samples from the target image domain, given

data samples from a separate source image domain. The cGAN model is therefore

modified to condition both G and D on the source domain image:

LcGAN = −Ex,y[(D(x, y)− 1)2]− Ex[D(x,G(x))2] (3.3)
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where x denotes the source domain image, and y denotes the target domain im-

age. When paired images from the source and target domains are available, a

pixel-wise loss between the ground truth and synthesized images can also be in-

cluded:

LcGAN =− Ex,y[(D(x, y)− 1)2]− Ex[D(x,G(x))2]

+ Ex,y[||y −G(x)||1]
(3.4)

The pixel-wise loss is typically based on the mean-absolute error to reduce sen-

sitivity to outliers and alleviate undesirable smoothing. The mapping learned

by the cGAN model grows more accurate as the statistical dependence between

source and target domains gets stronger [8].

3.2 MR Image Recovery via Volumetric GANs

As MR images are intrinsically volumetric, a comprehensive approach for 3D MR

image recovery is to use volumetric GAN (vGAN) models that perform a global

mapping between source and target volumes [34–37]. To learn this mapping,

vGAN models commonly employ complex generator GV and discriminator DV

modules containing 3D convolutional kernels. The loss function is defined over

the entire volume in an adversarial setup:

LvGAN =− EX,Y [(DV (X, Y )− 1)2]− EX [DV (X,GV (X))2]

+ EX,Y [||Y −GV (X)||1]
(3.5)

where X denotes the source and Y denotes the target volumetric images. For

MRI reconstruction, X is typically the Fourier reconstruction of undersampled

acquisitions, and Y is the fully-sampled reference volume. For MRI synthesis, X

is the source contrast volume, and Y is the target contrast volume. Note that,

in MRI reconstructions, an additional constraint is introduced to enforce consis-

tency of acquired and recovered k-space data:
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Fu(GV (X)) := Fu(X) (3.6)

where Fu denotes the partial Fourier operator that is defined at the acquired

k-space points.

Due to their 3D nature, vGAN models can better incorporate contextual in-

formation across MRI volumes by leveraging spatial correlations across separate

cross-sections [36–38]. This contextual prior can lead to elevated consistency

across the volume and increased accuracy in recovery performance. That said,

learning in 3D network models is inherently more difficult since they involve sub-

stantially more parameters [33]. The learning process might be further impaired

by data scarcity as the entire volume of each subject is taken as a single training

sample [33]. These limitations often cause vGAN models to settle on suboptimal

parameter sets, compromising recovery performance.

3.3 MR Image Recovery via Cross-Sectional

GANs

A more focused approach for 3D MRI recovery is based on cross-sectional GAN

(sGAN) models that perform localized mappings between 2D cross-sectional im-

ages within source and target volumes [8,59,79,82]. These 2D images are typically

taken to be individual cross-sections within the volume in a specific rectilinear

orientation, i.e., axial, sagittal or coronal. To learn this 2D mapping, sGAN

models employ relatively simpler generator GS and discriminator DS modules

containing 2D convolutional kernels. The loss function is defined for individual

cross-sections in an adversarial setup with a pixel-wise loss:

LsGAN =− Exi
o,y

i
o
[(DS(xio, y

i
o)− 1)2]− Exi

o
[DS(xio, GS(xio))

2]

+ Exi
o,y

i
o
[||yio −GS(xio)||1]

(3.7)
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where xio and yio denote the ith cross-sections within the source and target vol-

umes in orientation o. As with sGAN models, xio-y
i
o are taken as cross-sectional

images for undersampled and fully-sampled acquisitions in MRI reconstruction,

and xio-y
i
o are taken as cross-sectional images of source and target contrasts in

MRI synthesis. Consistency between acquired and recovered data can again be

enforced during reconstruction via the following procedure:

Fu(GS(xio)) := Fu(xio) (3.8)

where Fu denotes the partial Fourier operator that is defined at the acquired k-

space points. Once the mapping between the source and target cross-sections is

learned, cross-sections of the target volumes are independently generated, and

then the target volumes are recovered by concatenating the generated cross-

sections.

Due to their 2D nature, sGAN models are less complex and so they natu-

rally have lower demand for data [8]. Individual cross-sections within a subject’s

volume are taken as separate training samples, expanding the effective size of

the dataset. As a result, more detailed cross-sectional mapping can be learned.

However, this advantage comes at the expense of neglecting global contextual in-

formation across the volume [36–38]. Therefore, sGAN models might suffer from

inconsistency or inaccuracy of recovered images across cross-sections.

3.4 Progressively Volumetrized GAN

Here, a novel architecture is proposed to address the limitations of volumetric

and cross-sectional GAN models. The proposed model, named progressively vol-

umetrized GAN (ProvoGAN), decomposes complex volumetric image recovery

tasks into a series of simpler cross-sectional tasks (Fig. 3.1). The cross-sectional
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recovery tasks are defined in separate orientations, and are implemented sequen-

tially via cascaded 2D GAN models. We consider rectilinear cross-sections of

volumetric MRI datasets in this study, so the selected orientations are axial,

coronal and sagittal. Given a specific order of the three orientations (o1, o2, o3),

ProvoGAN first learns a 2D recovery model in orientation o1. The entire source

volume is processed by this model to estimate the target volume. Afterwards,

this volumetric estimate is separated into cross-sections in orientation o2, and a

separate 2D recovery model is trained. The estimated target volume for o2 is then

fed onto the final stage, where a third 2D recovery model is trained in orientation

o3.

The cascaded 2D models in ProvoGAN are trained sequentially in the three rec-

tilinear orientations, where the 2D model weights at earlier orientations are frozen

upon training. This learning strategy empowers ProvoGAN to progressively re-

cover fine-structural details at each orientation, while bypassing the need for com-

putationally expensive calculation of error gradients across the entire volume and

across all orientations. Therefore, ProvoGAN offers the ability to efficiently cap-

ture global contextual information without drastically elevating computational

demand. At the same time, this step-wise training can increase sensitivity to

progression order. Therefore, progression order across orientations is adaptively

tuned to maximize performance in specific tasks. Detailed formulation of the

ProvoGAN model is provided below.

First Progression: ProvoGAN first learns a cross-sectional mapping between

the source-target volumes in o1 via a generator (Go1) and a discriminator (Do1).

The source and target cross-sections in o1 are extracted with a division block (do1).

xio1 ∈ {x
1
o1
, x2o1 . . . , x

I
o1
} = do1(X)

yio1 ∈ {y
1
o1
, y2o1 . . . , y

I
o1
} = do1(Y )

(3.9)

where X denotes the source volume, Y denotes the target volume, xio1 denotes the

ith cross-section of the source volume in o1, y
i
o1

denotes the ith cross-section of

the target volume in o1, and I denotes the total number of cross-sections within

the volumes in o1. Go1 then learns to recover the cross-sections of the target
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volume from the corresponding cross-sections of the source volume.

ŷip1,o1 = Go1(x
i
o1

) (3.10)

where ŷip1,o1 denotes the ith cross-section of the target volume in o1 recovered via

the first progression. Meanwhile, Do1 learns to distinguish between the real and

fake cross-sections.

Do1(x
i
o1
,m) ∈ [0, 1] (3.11)

where m is either generated (ŷip1,o1) or ground truth (yio1) target cross-section. To

simultaneously train Go1 and Do1 , a loss function (Lo1) consisting of adversarial

and pixel-wise losses is used.

Lo1 =− Exi
o1

,yio1
[(Do1(x

i
o1
, yio1)− 1)2]

− Exi
o1

[Do1(x
i
o1
, Go1(x

i
o1

))2]

+ Exi
o1

,yio1
[||yio1 −Go1(x

i
o1

)||1]

(3.12)

Once Go1 and Do1 are properly trained, cross-sections in o1 for the target volume

are independently generated, and then combined with a concatenation block (co1)

to recover the entire target volume.

Ŷp1 = co1(ŷ
1
p1,o1

, . . . , ŷIp1,o1) (3.13)

where Ŷp1 denotes the target volume recovered after the first progression.

Second Progression: Having learned the cross-sectional mapping in o1, Provo-

GAN then learns a separate recovery model in the second orientation o2 to grad-

ually enhance capture of fine-structural details and spatial correlations. The

prediction for the target volume generated in the first progression is also incor-

porated as an input to the generator Go2 to leverage global contextual priors.
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ŷjp2,o2 = Go2(x
j
o2
, ŷjp1,o2) (3.14)

where xjo2 denotes the jth cross-section of the source volume in o2, ŷ
j
p1,o2

denotes

the jth cross-section in o2 of the target volume recovered in the first progression,

and ŷjp2,o2 denotes the jth cross-section in o2 of the target volume recovered in the

second progression. Meanwhile, discriminator Do2 learns to distinguish between

the generated and real cross-sections.

Third Progression: Lastly, ProvoGAN learns a cross-sectional mapping in the

third orientation o3. As in the second progression, the prediction from the previ-

ous progression is incorporated into the mapping as prior information. Therefore,

the third generator Go3 receives as input the cross-sections in o3 of the source vol-

ume and the previously recovered volume:

ŷkp3,o3 = Go3(x
k
o3
, ŷkp2,o3) (3.15)

where xko3 denotes the kth cross-section of the source volume in o3, ŷ
k
p2,o3

denotes

the kth cross-section in o3 of the target volume recovered in the second progres-

sion, and ŷkp3,o3 denotes the kth cross-section in o3 of the target volume recovered

in the third progression. Meanwhile, discriminator Do3 learns to distinguish be-

tween the generated and real cross-sections. The final output volume Ŷp3 of the

proposed method is recovered by combining the generated cross-sections in o3 via

a concatenation block co3 :

Ŷp3 = co3(ŷ
1
p3,o3

, . . . , ŷKp3,o3) (3.16)

where K denotes the total number of cross-sections in o3. Note that, in MRI

reconstruction, an additional constraint is introduced after each progression to

enforce consistency of the acquired and recovered k-space data via the follow-

ing procedure.
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Fu(Ŷpn) := Fu(X) (3.17)

where Fu denotes the partial Fourier operator defined on the sampling mask uti-

lized to acquire X, and n denotes the ongoing progression index. Meanwhile, an

additional consistency between the progressions is enforced in the form of residual

learning for MRI synthesis, where the generator models in the second and third

progressions learn to predict the cross-sectional residuals between the target vol-

ume and the previously synthesized target volume.

ŷpn,on = ŷpn−1,on +Gon(xon , ŷpn−1,on) (3.18)

3.5 Datasets

We demonstrated the proposed ProvoGAN approach on a public brain dataset,

an in vivo knee dataset, and an in vivo brain dataset. The public dataset, IXI

(https://brain-development.org/ixi-dataset/), consisted of coil-combined

magnitude multi-contrast brain MR images of healthy subjects. The in vivo knee

dataset [83] consisted of multi-coil complex knee MR images of healthy subjects.

The in vivo brain dataset contained multi-contrast brain MR images of both

healthy subjects and glioma patients. Further details about each dataset are pro-

vided below.

IXI Dataset: T1-, T2-, and proton-density (PD-)weighted brain MR images

of 52 subjects were used, where 37 subjects were reserved for training, 5 for val-

idation, and 10 for testing. T1-weighted images were acquired sagittally with

repetition time = 9.813 ms, echo time = 4.603 ms, flip angle = 8◦, spatial reso-

lution = 0.94× 0.94× 1.2 mm3, and matrix size = 256× 256× 150. T2-weighted

images were acquired axially with repetition time = 8178 ms, echo time = 100
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Figure 3.1: ProvoGAN decomposes complex volumetric image recovery tasks into
a cascade of progressive cross-sectional subtasks defined across the rectilinear
orientations (axial, coronal, and sagittal). Given a specific order of progression
sequence (axial → sagittal → coronal is given here for demonstration), Provo-
GAN first learns a cross-sectional mapping in the first orientation, and processes
cross-sections within the entire source volume to estimate the target volume.
This volumetric estimate is then divided into cross-sections in the second orien-
tation, and a separate cross-sectional model is learned in the second orientation.
The volumetric estimate from the second progression is then fed onto the final
progression in which a third cross-sectional model is learned for final recovery.
The sequential implementation of the progressive cross-sectional models enables
ProvoGAN to gradually improve capture of fine-structural details in each ori-
entation and to ensure global contextual consistency within the volume while
at the same time manifesting reduced model complexity and improved learning
behaviour of cross-sectional mapping.
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ms, flip angle = 90◦, spatial resolution = 0.94 × 0.94 × 1.20 mm3, and matrix

size = 256 × 256 × 150. PD-weighted images were acquired axially with repeti-

tion time = 8178.34 ms, echo time = 8 ms, flip angle = 90◦, spatial resolution

= 0.94 × 0.94 × 1.2 mm3, and matrix size = 256 × 256 × 150. Since the im-

ages of separate contrasts were spatially unregistered in this dataset, T2- and

PD-weighted images were registered onto T1-weighted images using FSL [84, 85]

via an affine transformation. For synthesis images were further registered onto

the MNI template of T1-weighted images with an isotropic resolution of 1 mm3.

Registration was performed based on mutual information loss.

In vivo Knee Dataset: PD-weighted multi-coil knee MR images of 20 sub-

jects were used, where 12 subjects were reserved for training, 3 for validation,

and 5 for testing. Images were sagittally acquired with 8 receive coils, repetition

time = 1550 ms, echo time = 25.661 ms, spatial resolution = 0.5×0.5×0.6 mm3,

and matrix size = 320× 320× 256. MRI scans were performed in the Richard M.

Lucas Center at Stanford University, California, United States on 3T GE scan-

ners.

In vivo Brain Dataset: T1-weighted, contrast enhanced T1-weighted (T1c),

T2-weighted, and FLAIR coil-combined brain MR images of 11 healthy subjects,

12 glioma patients with homogenous tumor, and 62 glioma patients with het-

erogenous tumor were used. 55 subjects were reserved for training (healthy: 8,

homogenous: 7, heterogenous: 40), 15 for validation (healthy: 2, homogenous:

2, heterogenous: 11), and 15 for testing (healthy: 2, homogenous: 2, heteroge-

nous: 11). Data augmentation was performed to prevent class imbalance among

the three subject groups. Augmentation was achieved by rotating the volumes

around their longitudinal axis by a random angle in the range [−10◦, 10◦], and

repeated 10 times for healthy subjects, 9 times for glioma patients with homoge-

nous tumor, and performed once for glioma patients with heterogenous tumor.

MRI exams were performed in the Department of Radiology at Hacettepe Uni-

versity, Ankara, Turkey, on Siemens and Philips scanners under a diverse set of

protocols with varying spatial resolution across both contrast sets and subjects.

Specifically, the prescribed resolutions included 1 × 1 × 1 mm3, 0.9 × 0.9 × 1.5
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mm3, 0.9× 0.9× 1.8 mm3, 0.9× 0.9× 2.2 mm3 for T1- and T1c-weighted images,

and 0.3× 0.3× 5 mm3, 0.4× 0.4× 5 mm3, 0.5× 0.5× 5 mm3, 0.6× 0.6× 5 mm3,

0.7 × 0.7 × 5 mm3 for T2-weighted and FLAIR images. For demonstrations, all

images were registered onto the MNI template of T1-weighted images with an

isotropic resolution of 1 mm3. Registration was performed via FSL [84, 85] using

affine transformation based on mutual information loss. Imaging protocols were

approved by the local ethics committee at Hacettepe University. All participants

provided written informed consent.

For MRI reconstruction, volumes in the IXI and in vivo knee datasets were

retrospectively undersampled with variable-density sampling patterns for accel-

eration factors (R = 4, 8, 12, 16). A sampling density function across k-space was

taken a bi-variate normal distribution with mean at the center of k-space. The

variance of the distribution was adjusted to achieve the expected sampling rate

given R. The in-plane orientation was designated as axial. For MRI synthesis,

all brain images were further skull stripped using FSL [84, 85] with functional

intensity threshold of 0.5, and vertical gradient intensity threshold of 0.

3.6 Competing Methods

To demonstrate the performance of ProvoGAN in MR image recovery, we com-

pared it against several state-of-the-art 3D models (vGAN, SC-GAN, REPLICA),

2D models (sGAN, RefineGAN, SPIRiT, SparseMRI), and hybrid models

(M3NET, TransferGAN). Baselines implemented for both reconstruction and

synthesis included sGAN, vGAN, M3NET, and TransferGAN. Meanwhile, task-

specific baselines were RefineGAN, SPIRiT, and SparseMRI in MRI reconstruc-

tion, and SC-GAN and REPLICA in MRI synthesis.

vGAN: A learning-based volumetric GAN model that performs a global one-

shot mapping between source and target volumes (see Section 3.2). vGAN was

implemented with a ResNet-based generator and a PatchGAN discriminator.
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sGAN: A learning-based cross-sectional GAN model that performs a localized

mapping between cross-sections of the source and target volumes (see Section

3.3). sGAN contained a ResNet-based generator and a PatchGAN discriminator.

RefineGAN: A learning-based cross-sectional GAN model proposed for MRI

reconstruction [57]. RefineGAN uses a cycle-consistency loss for acquired k-space

samples in addition to adversarial and pixel-wise image loss to improve recon-

struction quality. The overall architecture and loss terms were taken from [57],

but a ResNet-based generator was implemented to enable fair comparisons against

ProvoGAN as it was observed here to yield higher reconstruction quality.

SC-GAN: A learning-based volumetric GAN model proposed for MRI synthe-

sis [34]. SC-GAN leverages self-attention modules to improve capture of long-

range spatial dependencies. SC-GAN was implemented with a U-Net based gen-

erator and a PatchGAN discriminator as described in [34], where the encoder and

decoder components in the generator and the intermediate layer in the discrimi-

nator contained a self-attention module.

M3NET: A learning-based hybrid model proposed for MRI segmentation [65].

First, M3NET separately learns orthogonal cross-sectional mappings in three rec-

tilinear orientations (i.e., axial, coronal, sagittal). Using these 2D mappings as

parallel streams, it fuses their outputs with a 3D fusion module to recover the

target volume. The overall architecture, 3D fusion module, and loss functions

were adopted from [65], where 2D models were implemented with ResNet-based

generators and PatchGAN discriminators as they were observed to yield enhanced

performance in this study.

TransferGAN: A learning-based hybrid GAN model proposed for low-dose CT

denoising [67]. TransferGAN pretrains a 2D model for image recovery in a specific

orientation, and then performs domain transfer from 2D onto 3D by transferring

model weights. The transfer learning procedure was implemented as described

in [67], with 2D-3D models implemented as conditional GANs using ResNet-based

generators and PatchGAN discriminators for fair comparison against ProvoGAN.
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SparseMRI: A compressed sensing-based cross-sectional method for single-coil

MRI reconstruction [28]. SparseMRI enforces transform domain sparsity as

prior information during reconstruction from undersampled acquisitions. Here,

SparseMRI was implemented as described in [28].

SPIRiT: A compressed sensing-based cross-sectional method for multi-coil MRI

reconstruction [86]. SPIRiT employs k-space interpolation kernels to estimate

missing k-space samples. Here, SPIRiT was implemented as described in [86].

REPLICA: A compressed sensing-based volumetric method for multi-contrast

MRI synthesis [87]. REPLICA performs a nonlinear intensity transformation in

multi-resolution feature space via a regression ensemble based on random forests.

Here, REPLICA was implemented as described in [87].

The main effect that we seeked in comparing ProvoGAN against sGAN and

vGAN was the benefit of progressive volumetrization over purely 2D or 3D pro-

cessing. To improve reliability of these comparisons, we wanted to control for

potential confounds from secondary factors such as network architecture or loss

function. Therefore, the sGAN and vGAN models embodied consistent generator-

discriminator architectures and loss functions with ProvoGAN. Detailed infor-

mation of network architecture and implementation details of ProvoGAN and

competing methodas are as follows:

ProvoGAN: Network Architecture

The proposed ProvoGAN model is based on conditional generative adversarial

networks (GANs) [81]. Each GAN model within the progressions consisted of a

generator that contains an encoder of 3 convolutional layers, a residual network

of 9 ResNet blocks, and a decoder of 3 convolutional layers, and a discrimina-

tor that contains a convolutional network of 5 convolutional layers, all with 2D

kernels. The kernel size, number of filters, stride, activation function, and con-

nections of the network layers in the generators and discriminators are provided

22



in Figure 3.2. The generator in the first progression received as input the cross-

sections of the source volume in the first orientation, whereas the generators in

the second and third progressions received as input the cross-sections of both

source and previously recovered target volumes in the second and third orienta-

tions, respectively. Conditional PatchGAN discriminator architectures were used

to effectively incorporate priors. The discriminator received as input the con-

catenation of source and target cross-sectional images. The source cross-sections

were identical to the inputs of the corresponding generator. Ground truth target

images were designated as real target images, whereas generator-recovered target

images were designated as the fake target images.

ProvoGAN: Implementation Details

The training procedure of ProvoGAN comprised three progressive phases, and

within each phase the respective pair of generator and discriminator architec-

tures were trained to learn cross-sectional recovery in the given orientation.

Hyperparameter-selection procedures for all phases were adopted from [59]. The

number of epochs and relative weighting of the loss terms were optimized via

PSNR measurements in the validation set. The generator and discriminator were

trained with the ADAM optimizer [88] (β1 = 0.5, β2 = 0.999) for 100 epochs. The

learning rate was set to 2× 10−4 in the first 50 epochs and was linearly decayed

to 0 in the last 50 epochs. All cross-sectional training samples were processed by

the networks in every training epoch with a batch size of 1, and instance nor-

malization was performed. The optimal relative weighing of the pixel-wise loss

to the adversarial loss was selected as 100.

Competing Methods: Network Architectures

The cross-sectional sGAN and RefineGAN models as well as cross-sectional com-

ponents of the hybrid M3NET and TransferGAN models were based on 2D con-

ditional GANs [81] with a ResNet backbone [59]. The resultant GAN model

consisted of a generator that contains an encoder of 3 convolutional layers, a

residual network of 9 ResNet blocks, and a decoder of 3 convolutional layers, and
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a discriminator that contains a convolutional network of 5 convolutional layers,

all formed with 2D kernels. The kernel size, number of filters, stride, activation

function, and connections of the network layers in the generators and discrimi-

nators are provided in Figure 3.3a. The generators in these models received as

input cross-sections of the source contrast in the selected orientation. The dis-

criminators received as input either recovered or ground truth cross-sections of

the target contrast concatenated with cross-sections of the source contrast in the

same orientation.

On the other hand, the volumetric vGAN model and the volumetric component

of the hybrid TransferGAN model were based on 3D conditional GANs [81] again

with a ResNet backbone. GAN models consisted of a generator that contains

an encoder of 3 convolutional layers, a residual network of 9 ResNet blocks,

and a decoder of 3 convolutional layers, and a discriminator that contains a

convolutional network of 5 convolutional layers, all with 3D kernels. The kernel

size, number of filters, stride, activation function, and connections of the network

layers in the generators and discriminators are provided in Figure 3.3b. The

generators in these volumetric models received as input the entire volume of the

source contrast. The discriminators received as input the entire volume of either

recovered or ground truth target contrast concatenated with the entire volume of

the source contrast.

The architecture of the hybrid M3NET method was adopted from [65]. Mean-

while, SC-GAN embodied a generator based on a U-Net architecture and a dis-

criminator based on a PatchGAN architecture. Both subnetworks contained 3D

self-attention modules as described in [34]. The generators in these volumetric

models again received as input the entire volume of the source contrast. The

discriminators received as input the entire volume of either recovered or ground

truth target contrast concatenated with the entire volume of the source contrast.

The compressed-sensing-based REPLICA, SparseMRI, and SPIRiT methods were

implemented as described in [87], [28], and [86], respectively. REPLICA received

as input the entire volume of the source contrast to recover the target volume.

Meanwhile, SparseMRI and SPIRiT received as input cross-sections of the un-

dersampled source volume to recover cross-sections of the target volume.
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Competing Methods: Implementation Details

For the cross-sectional sGAN and RefineGAN models and cross-sectional compo-

nents of hybrid M3NET and TransferGAN models, generator-discriminator pairs

were trained to learn a recovery task in the selected orientation. Hyperparameter

selection procedures were again adopted from [59]. The number of epochs and

relative weighting of the loss terms were optimized via PSNR measurements in

the validation set. The generator and discriminator were trained with the ADAM

optimizer [88] (β1 = 0.5, β2 = 0.999) for 100 epochs. The learning rate was set

to 2 × 10−4 in the first 50 epochs and was linearly decayed to 0 in the last 50

epochs. All cross-sectional training samples were processed by the models in every

training epoch with a batch size of 1, and instance normalization was performed.

The relative weighing of the pixel-wise loss to the adversarial loss was selected

as 100 for sGAN and cross-sectional components of M3NET and TransferGAN.

For RefineGAN, the relative weighing of the pixel-wise loss and cycle consistency

loss of acquired k-space samples to the adversarial loss [57] were taken as 10

and 1. For the volumetric vGAN and volumetric component of TransferGAN,

generator-discriminator pairs were trained to learn a volumetric recovery task.

The number of epochs and relative weighting of the loss terms were optimized

via PSNR measurements in the validation set. The generator and discrimina-

tor were trained with the ADAM optimizer [88] (β1 = 0.5, β2 = 0.999) for 200

epochs. The learning rate was set to 2 × 10−4 for synthesis tasks and 5 × 10−4

for reconstruction tasks in the first 100 epochs, and was linearly decayed to 0 in

the last 100 epochs. All training samples were processed by the models in every

training epoch with a batch size of 1, and instance normalization was performed.

The relative weighing of the pixel-wise loss to the adversarial loss was selected as

50 for synthesis tasks and 200 for reconstruction tasks.

Training procedures of compressed-sensing-based REPLICA, SparseMRI and

SPIRIT methods were implemented following procedures outlined in [87], [28],

and [86], respectively. For REPLICA, hyperparameter selections reported in [87]

were adopted as they were observed to yield high performance. For SparseMRI
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and SPIRIT, number of iterations and relative weighting of the loss terms were

optimized via PSNR measurements in the validation set. For SparseMRI, number

of iterations was selected as 40. L1 regularization weight of wavelet coefficients

was set to 0.002 for T1reconstruction with R=4x, 0.004 for T2reconstruction

with R=16x, and 0.01 for remaining reconstruction tasks. For SPIRIT, number

of iterations was selected as 30 and interpolation kernel size was set to 5. L1

and L2 regularization weights were respectively selected as 0.01− 0.1 for R=4,8,

0.01− 0.001 for R=12, and 0.01− 0.0001 for R=16.

In single-coil reconstruction, learning-based models were trained to recover a

magnitude image given real and imaginary parts of the undersampled image. In

multi-coil reconstruction, learning-based models were first trained to recover a

coil-combined magnitude image given real and imaginary parts of coil-combined

Fourier reconstructions of undersampled acquisitions. A complex image was then

formed by mapping the phase of the coil-combined undersampled image onto the

predicted magnitude image. Coil combination was performed using sensitivity

maps estimated via ESPIRiT [89]. A multi-coil complex image was obtained by

projecting the coil-combined network prediction onto individual coils with the

estimated sensitivity maps. Data-consistency was enforced in Fourier domain

using the multi-coil complex images. In synthesis, learning-based models were

trained to recover the magnitude image of the target contrast given magnitude

images of the source contrasts.

The volumetric vGAN, SC-GAN, and REPLICA methods received as input

volumetric source images. The cross-sectional sGAN-A, sGAN-C, sGAN-S, Re-

fineGAN, SPIRiT, and SparseMRI methods received as input individual cross-

sections of source volumes. M3NET received cross-sectional inputs, aggregated

them across the volume and finally processed the entire volume. TransferGAN

received cross-sectional inputs during pretraining of the 2D model, and instead

received volumetric inputs during training of the 3D model.
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Figure 3.2: The architectural details of the generator and discriminator submod-
ules in ProvoGAN are displayed (here a progression order of A → S → C is
used for illustration). The generator architectures are the same for the pro-
gressions and consist of an encoder with 3 convolutional layers: conv2D(k =
7, f = 24, s = 1, a = ReLU), conv2D(k = 3, f = 48, s = 2, a = ReLU),
conv2D(k = 3, f = 96, s = 2, a = ReLU), a residual network of 9 ResNet blocks:
9 × ResNet2D(k = 3, f = 96, s = 1, a = ReLU), and a decoder of 3 convolu-
tional layers: deconv2D(k = 3, f = 48, s = 2, a = ReLU), deconv2D(k = 3, f =
24, s = 2, a = ReLU), conv2D(k = 7, f = 1, s = 1, a = Tanh), where k denotes
kernel size, f denotes number of filters, s denotes stride, and a denotes activation
function. Similarly, the discriminator architectures are identical for the progre-
sions and consist of a convolutional network of 5 convolutional layers in series:
conv2D(k = 4, f = 24, s = 2, a = leakyReLU), conv2D(k = 4, f = 48, s = 2, a =
leakyReLU), conv2D(k = 4, f = 96, s = 2, a = leakyReLU), conv2D(k = 4, f =
192, s = 1, a = leakyReLU), conv2D(k = 4, f = 1, s = 1, a = none).
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Figure 3.3: a) The architectural details of the generator and discrimi-
nator in sGAN are displayed (here an sGAN model trained in the axial
orientation referred to as sGAN-A is used for illustration). The gen-
erator consists of an encoder with 3 convolutional layers: conv2D(k =
7, f = 24, s = 1, a = ReLU), conv2D(k = 3, f = 48, s = 2, a = ReLU),
conv2D(k = 3, f = 96, s = 2, a = ReLU), a residual network of 9 ResNet
blocks: 9 × ResNet2D(k = 3, f = 96, s = 1, a = ReLU), and a decoder of 3
convolutional layers: deconv2D(k = 3, f = 48, s = 2, a = ReLU), deconv2D(k =
3, f = 24, s = 2, a = ReLU), conv2D(k = 7, f = 1, s = 1, a = Tanh), where k
denotes kernel size, f denotes number of filters, s denotes stride, and a denotes
activation function. The discriminator consists of a convolutional network of 5
convolutional layers in series: conv2D(k = 4, f = 24, s = 2, a = leakyReLU),
conv2D(k = 4, f = 48, s = 2, a = leakyReLU), conv2D(k = 4, f = 96, s =
2, a = leakyReLU), conv2D(k = 4, f = 192, s = 1, a = leakyReLU),
conv2D(k = 4, f = 1, s = 1, a = none).

b) The architectural details of the generator and discriminator in vGAN
are displayed. The generator consists of an encoder with 3 convolutional layers:
conv3D(k = 7, f = 24, s = 1, a = ReLU), conv3D(k = 3, f = 48, s = 2, a =
ReLU), conv3D(k = 3, f = 96, s = 2, a = ReLU), a residual network of 9 ResNet
blocks: 9 × ResNet3D(k = 3, f = 96, s = 1, a = ReLU), and a decoder of 3
convolutional layers: deconv3D(k = 3, f = 48, s = 2, a = ReLU), deconv3D(k =
3, f = 24, s = 2, a = ReLU), conv3D(k = 7, f = 1, s = 1, a = Tanh).
The discriminator consists of a convolutional network of 5 convolu-
tional layers in series: conv3D(k = 4, f = 24, s = 2, a = leakyReLU),
conv3D(k = 4, f = 48, s = 2, a = leakyReLU), conv3D(k = 4, f = 96, s =
2, a = leakyReLU), conv3D(k = 4, f = 192, s = 1, a = leakyReLU),
conv3D(k = 4, f = 1, s = 1, a = none).
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3.7 Experiments

Task-Specific Progression Order in ProvoGAN: Experiments were per-

formed on ProvoGAN to optimize its progression order across the rectilinear ori-

entations for specific tasks. To do this, multiple independent ProvoGAN models

were trained while varying the progression order: 1) A→ C→ S, 2) A→ S→ C,

3) C → A → S, 4) C → S → A, 5) S → A → C, 6) S → C → A, where

A denotes the axial, C denotes the coronal, and S denotes the sagittal orienta-

tion. Performance of these models were evaluated on the validation set via PSNR

measurements. The experiments were performed separately for all synthesis and

reconstruction tasks, and the progression orders optimized for specific tasks were

used in all evaluations thereafter.

MRI Reconstruction: Reconstruction experiments were performed on the IXI

and in vivo knee datasets to compare ProvoGAN against sGAN, vGAN, Refine-

GAN, SparseMRI, and SPIRiT. In the IXI dataset, the proposed and compet-

ing methods were demonstrated separately for single-coil reconstruction of T1-

and T2-weighted images with four distinct acceleration factors (R = 4, 8, 12, 16).

Meanwhile, in the in vivo knee dataset, the proposed and competing methods

were demonstrated for multi-coil reconstruction of PD-weighted images again

with (R = 4, 8, 12, 16). Note that a single sGAN model was trained in the axial

orientation (sGAN-A) given the axial readout direction.

MRI Synthesis: Synthesis experiments were performed on the IXI and in

vivo brain datasets to demonstrate ProvoGAN against sGAN, vGAN, SC-GAN,

and REPLICA. All synthesis experiments were conducted on coil-combined

magnitude images. In the IXI dataset, three synthesis tasks were consid-

ered: 1) T2, PD → T1, 2) T1, PD → T2, 3) T1, T2 → PD. In the in vivo

brain dataset, four synthesis tasks were considered: 1) T2, FLAIR, T1c → T1,

2) T1, FLAIR, T1c → T2, 3) T1, T2, T1c → FLAIR, 4) T1, T2, FLAIR→ T1c. For

each task, three independent sGAN models were implemented to recover target

cross-sections in separate orientations: sGAN-A for the axial, sGAN-C for the
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coronal, sGAN-S for the sagittal orientation.

Progressive Volumetrization versus Hybrid Models: Experiments were

conducted on the IXI dataset to demonstrate ProvoGAN against M3NET

and TransferGAN. Reconstruction experiments were conducted for T1- and

T2-weighted image recovery tasks at four distinct acceleration factors (R =

4, 8, 12, 16). Meanwhile, synthesis experiments were conducted for the many-

to-one recovery tasks of T2, PD → T1, T1, PD → T2, and T1, T2 → PD.

Radiological Evaluation: To assess the clinical value of the recovered images,

an expert radiologist (25+ years of experience) gave opinion scores to the im-

ages while blinded to the method name and order of presentation. Reconstructed

images were evaluated for single-coil reconstructions of T1- and T2-weighted ac-

quisitions at R = 8 in the IXI dataset, and multi-coil reconstructions of PD-

weighted acquisitions at R = 8 in the in vivo knee dataset. Synthesized images

were evaluated for T2, PD→ T1 in IXI and T1, T2, T1c → FLAIR in the in vivo

brain datasets. From each recovered volume, intermediate axial, coronal, and

sagittal cross-sections were randomly selected, and the image quality was rated

as the similarity to ground truth images on a five-point scale (5: perfect match,

4: good, 3: moderate, 2: limited, 1: very poor, 0: unacceptable).

Multi-Cross-Section Models: To demonstrate the benefit of leveraging con-

textual priors by incorporating multiple neighboring cross-sections at the input

level, variants of ProvoGAN and sGAN, referred to as ProvoGAN(multi) and

sGAN(multi), were implemented, which receive as input nc consecutive cross-

sections to recover the corresponding central cross-section in the target volume.

Here nc = 3 was selected as higher number of cross-sections did not yield a notable

benefit in recovery performance [59]. Experiments were performed on the IXI

dataset for reconstruction of T1- and T2-weighted images with distinct accelera-

tion factors (R = 4, 8, 12, 16), and for many-to-one synthesis tasks (T2, PD→ T1,

T1, PD→ T2, T1, T2 → PD). The ordering of the progressions across the orienta-

tions in ProvoGAN was optimized via PSNR measurements in the validation set.
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Three separate sGAN(multi) models were implemented in each individual recti-

linear orientation: sGAN(multi)-A for the axial, sGAN(multi)-C for the coronal,

and sGAN(multi)-S for the sagittal orientation.

Cross-Sectional Models of Varying Complexity: An additional analysis

was performed on ProvoGAN and sGAN to examine recovery performance as a

function of the complexity of convolutional layers. Several variants of ProvoGAN

and sGAN were implemented while the number of network weights in individual

convolutional layers were scaled by nf ∈ {1/16, 1/9, 1/4, 1, 4, 9, 16}, where the

kernel size, number of layers, number of hidden units were kept fixed but the

number of filters were modified. This resulted in seven distinct ProvoGAN and

sGAN pairs: ProvoGAN(nf )-sGAN(nf ). Experiments were performed on the IXI

dataset for single-coil reconstruction of T1-weighted acquisitions undersampled at

R = 8 and a many-to-one synthesis task of T2, PD → T1. The ordering of the

progressions across the orientations in ProvoGAN(nf ) was optimized via PSNR

measurements in the validation set. Separate sGAN models were trained in the

individual rectilinear orientations (axial, coronal, and sagittal) for each model

complexity level: sGAN(nf )-A, sGAN(nf )-C, sGAN(nf )-S.

Generalizability of Progressive Volumetrization: Experiments were con-

ducted to demonstrate the generalizability of the proposed progressive vol-

umetrization to another network architecture. Demonstrations were performed

on the IXI dataset for T1, T2 → PD, T1, PD → T2, and T2, PD → T1 synthe-

sis tasks. A recent state-of-the-architecture, SC-GAN, with a U-Net backbone

using intermittent self-attention layers [34] was considered. Variants of sGAN,

vGAN, and ProvoGAN were implemented based on this architecture: sSC-GAN,

vSC-GAN, ProvoSC-GAN. Again, three separate sSC-GAN models were trained

in each orientation: sSC-GAN-A in the axial, sSC-GAN-C in the coronal, and

sSC-GAN-S in the sagittal orientation.

Statistical Assessments: PSNR, SSIM, and opinion scores were utilized to

quantitatively evaluate the recovery quality of the methods under comparison.

Since the performance measurements from these metrics followed a non-normal
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distribution (p < 0.05 with Shapiro-Willks test), significance of differences in

quantitative metrics were evaluated using non-parametric statistical tests. As-

sessments of progression order in ProvoGAN were performed via Kruskal-Wallis

tests, whereas performance comparisons among competing methods were per-

formed via Wilcoxon signed-rank tests.
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Chapter 4

Results

4.1 Task-Specific Progression Order

ProvoGAN serially decomposes a given volumetric recovery task into cross-

sectional mappings in three rectilinear orientations. Subsequent 2D mappings

are residually learned based on outputs from earlier progressions. Please note

that spatial distribution of the tissues and the correlations between the source-

target images may vary uniquely across orientations for each recovery task. In

this setup, if an earlier 2D model yields relatively higher artifacts, the task diffi-

culty for the remaining progressions would be elevated. Contrarily, initiating the

progression at a different orientation with lower artifacts can reduce task difficulty

for the remaining stages. Therefore, we predicted that the progression sequence

in ProvoGAN can significantly affect task-specific recovery performance.

To test this prediction, we performed reconstruction and synthesis experiments

separately on the IXI, in vivo brain, and in vivo knee datasets (see Section 3.5

for details). We comparatively evaluated performance of multiple independent

ProvoGAN models for the six possible permutations of the progression sequence:

1) A → C → S, 2) A → S → C, 3) C → A → S, 4) C → S → A, 5) S → A → C,

6) S → C → A, where A denotes the axial, C denotes the coronal, and S denotes
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the sagittal orientation. Here, we considered volumetric PSNR measurements

between the recovered and reference target volumes within the validation set.

The highest and lowest performing ProvoGAN models yield an average PSNR

difference of 3.44 dB for single-coil reconstruction tasks in IXI and 3.42 dB for

multi-coil reconstruction tasks in the in vivo knee dataset (see Tables 4.1, 4.2

for details). Meanwhile, the average PSNR difference between the highest and

lowest performing ProvoGAN models is 1.46 dB for synthesis in IXI, and 1.01 dB

for synthesis in the in vivo brain dataset (see Tables 4.3, 4.4). Optimization of

the progression order enables a significant performance increase in both recon-

struction (p < 0.05, Kruskal-Wallis test) and synthesis (p < 0.05). Therefore, the

optimal orders were utilized for each recovery task in all evaluations thereafter

unless otherwise stated.

Table 4.1: Task-Optimal Progression Order for Reconstruction in the IXI Dataset:
Volumetric PSNR (dB) measurements between the reconstructed and ground
truth images in the validation set in the IXI dataset are given as mean ± std.
The measurements are provided for all possible progression orders: 1) A→ C→ S,
2) A→ S→ C, 3) S→ A→ C, 4) S→ C→ A, 5) C→ S→ A, 6) C→ A→ S and
acceleration factors: R = 4, 8, 12, 16. Boldface indicates the highest performing
progression sequence.

A → C → S A → S → C S → A → C S → C → A C → S → A C → A → S

R=4
T1 35.12 ± 1.73 36.12 ± 1.22 35.80 ± 1.81 35.50 ± 1.63 35.84 ± 1.05 35.21 ± 1.87

T2 36.42 ± 1.84 36.62 ± 1.24 36.69 ± 1.72 26.92 ± 1.02 29.50 ± 0.64 36.51 ± 2.68

R=8
T1 32.48 ± 0.42 33.51 ± 0.75 33.52 ± 0.70 33.41 ± 0.49 32.85 ± 0.83 32.66 ± 0.33

T2 32.66 ± 1.66 33.73 ± 2.67 32.71 ± 2.13 28.52 ± 1.14 30.77 ± 0.92 33.10 ± 1.78

R=12
T1 30.43 ± 0.44 30.20 ± 0.72 30.94 ± 0.94 30.18 ± 0.73 30.04 ± 0.70 31.26 ± 1.08

T2 30.76 ± 0.76 30.57 ± 1.09 30.86 ± 1.13 30.75 ± 2.27 27.79 ± 0.59 31.09 ± 0.78

R=16
T1 29.44 ± 0.69 29.11 ± 0.97 29.35 ± 0.73 29.82 ± 0.61 29.39 ± 0.90 30.38 ± 1.37

T2 30.74 ± 0.77 29.73 ± 0.38 31.84 ± 0.62 27.15 ± 2.19 29.26 ± 1.37 30.27 ± 0.61
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Table 4.2: Task-Optimal Progression Order for Reconstruction in the In vivo
Knee Dataset: Volumetric PSNR (dB) measurements between the reconstructed
and ground truth images in the validation set in the in vivo knee dataset are given
as mean± std. The measurements are provided for all possible progression orders:
1) A → C → S, 2) A → S → C, 3) S → A → C, 4) S → C → A, 5) C → S → A,
6) C → A → S and acceleration factors: R = 4, 8, 12, 16. Boldface indicates the
highest performing progression sequence.

A → C → S A → S → C S → A → C S → C → A C → S → A C → A → S

R=4 37.56 ± 1.09 37.91 ± 0.49 39.72 ± 1.63 38.73 ± 1.60 38.18 ± 1.99 38.27 ± 1.52

R=8 38.80 ± 1.39 38.25 ± 1.13 36.38 ± 1.09 39.95 ± 0.64 37.44 ± 1.18 35.59 ± 1.19

R=12 35.20 ± 0.04 38.36 ± 0.42 37.22 ± 1.29 39.14 ± 0.44 37.49 ± 0.81 37.61 ± 1.07

R=16 37.26 ± 1.19 35.05 ± 3.30 37.38 ± 1.10 38.01 ± 0.27 38.28 ± 0.25 37.49 ± 0.94

Table 4.3: Task-Optimal Progression Order for Synthesis in the IXI Dataset:
Volumetric PSNR (dB) measurements between the synthesized and ground truth
images in the validation set in the IXI dataset are given as mean ± std. The
measurements are provided for all possible progression orders: 1) A → C → S,
2) A → S → C, 3) S → A → C, 4) S → C → A, 5) C → S → A,
6) C → A → S and all many-to-one synthesis tasks: 1) T2, PD → T1,
2) T1, PD → T2, 3) T1, T2 → PD. Boldface indicates the highest performing
progression sequence.

A → C → S A → S → C S → A → C S → C → A C → S → A C → A → S

T2, PD → T1 23.38 ± 2.38 23.75 ± 2.59 24.24 ± 3.81 24.01 ± 3.65 25.35 ± 2.23 24.90 ± 2.06

T1, PD → T2 28.35 ± 1.65 28.34 ± 1.67 28.50 ± 1.16 28.37 ± 1.04 29.51 ± 1.41 28.62 ± 1.08

T1, T2 → PD 30.42 ± 1.29 31.50 ± 1.61 30.46 ± 1.08 30.50 ± 1.14 31.44 ± 1.87 30.25 ± 1.51

Table 4.4: Task-Optimal Progression Order for Synthesis in the In vivo Brain
Dataset: Volumetric PSNR (dB) measurements between the synthesized and
ground truth images in the validation set in the in vivo brain dataset are given as
mean ± std. The measurements are provided for all possible progression orders:
1) A → C → S, 2) A → S → C, 3) S → A → C, 4) S → C → A, 5) C → S → A,
6) C → A → S and all many-to-one synthesis tasks: 1) T2, FLAIR, T1c → T1,
2) T1, FLAIR, T1c → T2, 3) T1, T2, T1c → FLAIR, 4) T1, T2, FLAIR → T1c.
Boldface indicates the highest performing progression sequence.

A → C → S A → S → C S → A → C S → C → A C → S → A C → A → S

T2, FLAIR, T1c → T1 24.48 ± 2.91 24.49 ± 2.85 24.48 ± 3.32 24.45 ± 3.27 25.63 ± 3.53 24.81 ± 3.14

T1, FLAIR, T1c → T2 27.37 ± 2.96 27.14 ± 2.86 27.66 ± 2.91 27.19 ± 2.76 26.96 ± 2.81 27.68 ± 2.99

T1, T2, T1c → FLAIR 24.93 ± 2.40 25.58 ± 2.47 24.90 ± 3.36 25.35 ± 3.45 25.51 ± 2.93 25.58 ± 3.09

T1, T2, FLAIR → T1c 28.83 ± 2.08 29.88 ± 2.44 28.75 ± 2.54 28.83 ± 2.34 28.94 ± 2.26 28.43 ± 2.14
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4.2 Accelerated MRI Reconstruction

Next, we performed comprehensive experiments on the IXI and in vivo knee

datasets for accelerated MRI reconstruction. We comparatively demonstrated

the recovery quality of ProvoGAN against state-of-the-art cross-sectional (sGAN,

RefineGAN, SparseMRI, and SPIRiT), and volumetric (vGAN) models (see Sec-

tion 3.6 for details). We first assessed the performance of the competing methods

quantitatively based on volumetric PSNR and SSIM measurements between the

reconstructed and high-quality reference images in the test set. We considered

single-coil reconstruction tasks in the IXI dataset for T1- and T2-weighted images

with distinct acceleration factors (R = 4, 8, 12, 16). The proposed ProvoGAN

model offers enhanced recovery performance compared to competing methods

(p < 0.05), where it achieves in the range of [1.85, 6.55] dB higher PSNR and

[3.26, 23.17] % higher SSIM (see Table 4.5). We then considered multi-coil recon-

struction of PD-weighted images in the in vivo brain dataset with R = 4, 8, 12, 16.

ProvoGAN again maintains superior performance to the competing methods

(p < 0.05), where it achieves in the range of [1.03, 7.35] dB higher PSNR and

[1.48, 5.59] % higher SSIM (see Table 4.6).

To corroborate quantitative assessments, we visually examined the recon-

structed volumes from individual methods to identify the nature of reconstruction

errors ProvoGAN alleviates. Representative results from the competing methods

are shown in Fig. 4.1 for IXI and in Fig. 4.2 for the in vivo knee dataset. Overall,

cross-sectional models (sGAN, RefineGAN, SparseMRI, SPIRiT) that perform

2D mapping via compressed sensing or deep learning suffer from discontinuity

artifacts across individually recovered cross-sections and retrograded capture of

fine-structural details. Meanwhile, the volumetric vGAN model performing 3D

mapping suffers from loss of spatial resolution within the reconstructed volumes

due to noticeable over-smoothing. In contrast, ProvoGAN reconstructs the tar-

get volumes with higher consistency across the cross-sections in all orientations

and offers sharper delineation of brain and knee tissues. Taken together, these

findings clearly outline ProvoGAN’s potential to mitigate the limitations of vol-

umetric and cross-sectional models for accelerated MRI reconstruction.
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Figure 4.1: The proposed ProvoGAN method is demonstrated on the IXI dataset
for single-coil reconstruction of T1-weighted acquisitions undersampled at R = 8.
Representative results are displayed for all competing methods together with the
zero-filled (ZF) undersampled source images (first column) and the reference tar-
get images (second column). The top two rows display results for the axial, the
middle two rows for the coronal, and the last two rows for the sagittal orientation.
Error was taken as the absolute difference between the reconstructed and reference
images (see colorbar). Overall, the proposed ProvoGAN method offers delineation
of tissues with higher acuity compared to the volumetric (vGAN) model, and al-
leviates undesirable discontinuities compared to cross-sectional models (sGAN,
RefineGAN, SparseMRI) by improving reconstruction performance in all orien-
tations.
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Table 4.5: Quality of Reconstruction in the IXI Dataset: Volumetric PSNR (dB)
and SSIM (%) measurements between the reconstructed and ground truth images
in the test set in the IXI dataset are given as mean ± std for the test set. The
measurements are reported for zero-filled images (ZF), the proposed ProvoGAN
and competing sGAN, vGAN, RefineGAN, and SparseMRI reconstruction meth-
ods for four distinct acceleration factors (R = 4, 8, 12, 16). Boldface indicates the
best performing method.
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Figure 4.2: The proposed method is demonstrated on the in vivo multi-coil knee
dataset for reconstruction at an acceleration ratio of R = 8. Representative re-
sults are displayed for all competing methods together with the zero-filled (ZF)
undersampled source images (first column) and the reference target images (sec-
ond column). The top two rows display results for the axial, the middle two rows
for the coronal, and the last two rows for the sagittal orientation. Error was
taken as the absolute difference between the reconstructed and reference images
(see colorbar). Overall, ProvoGAN achieves sharper tissue depiction compared
to vGAN, and alleviates undesirable discontinuities compared to cross-sectional
models (sGAN, RefineGAN, SPIRiT) by improving reconstruction performance
in all orientations.
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Table 4.6: Quality of Reconstruction in the In vivo Knee Dataset: Volumetric
PSNR (dB) and SSIM (%) measurements between the reconstructed and ground
truth images in the test set in the in vivo knee dataset are given as mean ±
std for the test set. The measurements are reported for zero-filled images (ZF),
the proposed ProvoGAN and competing sGAN, vGAN, RefineGAN, and SPIRiT
methods for four distinct acceleration factors (R = 4, 8, 12, 16). Boldface indicates
the best performing method.

ProvoGAN sGAN vGAN RefineGAN SPIRiT ZF

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

R=4
40.75 95.74 40.34 95.69 36.80 92.79 40.31 95.21 39.46 95.35 32.17 93.50

± 1.35 ± 0.94 ± 1.43 ± 0.87 ± 1.69 ± 1.36 ± 1.50 ± 1.15 ± 1.39 ± 1.12 ± 2.38 ± 1.85

R=8
39.45 95.13 38.73 93.73 30.83 87.54 38.22 92.43 35.61 93.16 29.85 90.81

± 2.15 ± 1.08 ± 1.01 ± 0.98 ± 1.44 ± 2.80 ± 1.43 ± 1.58 ± 2.70 ± 1.60 ± 1.77 ± 1.88

R=12
36.99 93.63 36.76 91.99 29.03 88.10 36.21 90.82 33.58 91.66 28.65 89.17

± 1.29 ± 0.95 ± 1.18 ± 0.97 ± 1.49 ± 1.78 ± 0.88 ± 1.47 ± 3.17 ± 1.86 ± 1.25 ± 1.64

R=16
37.86 92.27 35.11 89.34 28.99 86.00 35.42 89.70 32.28 90.69 27.93 87.94

± 0.50 ± 1.45 ± 1.06 ± 1.61 ± 2.21 ± 2.28 ± 0.55 ± 1.13 ± 2.63 ± 1.85 ± 1.25 ± 1.60

4.3 Multi-Contrast MRI Synthesis

We further conducted experiments on the IXI and in vivo brain datasets for

multi-contrast MRI synthesis to demonstrate ProvoGAN against state-of-the-

art cross-sectional (sGAN) and volumetric (vGAN, SC-GAN, REPLICA) models

(see Section 3.6 for details). We again measured volumetric PSNR and SSIM

between the synthesized and reference target images for quantitative performance

evaluation. In the IXI dataset, we considered synthesis tasks of T2, PD → T1,

T1, PD→ T2, and T1, T2→ PD. ProvoGAN outperforms the competing methods

in all tasks (p < 0.05), where it achieves in the range of [1.20, 2.90] dB higher

PSNR and [2.08, 4.37] % higher SSIM (see Table 4.7). In the in vivo brain dataset,

we considered synthesis tasks of T2, FLAIR, T1c → T1, T1, FLAIR, T1c → T2,

T1, T2, T1c → FLAIR, and T1, T2, FLAIR → T1c. ProvoGAN again yields

enhanced recovery performance in all tasks compared to the competing methods

(p < 0.05), where it maintains [0.59, 5.01] dB higher PSNR and [1.96, 5.36] %

higher SSIM (see Table 4.8).

The superior synthesis quality offered by ProvoGAN is clearly visible in rep-

resentative results displayed in Fig. 4.3 for the IXI dataset and Fig. 4.4 for the

in vivo brain dataset. These results indicate that the cross-sectional sGAN-A,
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sGAN-C, and sGAN-S models suffer from suboptimal recovery in the longitu-

dinal dimension due to independent synthesis of cross-sections. Meanwhile vol-

umetric vGAN, SC-GAN, and REPLICA models suffer from poor recovery of

fine-structural details and loss of spatial resolution in the target images due to

increased model complexity. In comparison to cross-sectional baselines, Provo-

GAN alleviates discontinuity artifacts by pooling global contextual information

via progressive execution of cross-sectional mappings. In comparison to volumet-

ric baselines, ProvoGAN offers sharper and improved tissue depiction particularly

near tumor regions due to its improved learning behavior. Overall, these find-

ings demonstrate ProvoGAN’s utility for diverse synthesis tasks in multi-contrast

MRI exams.

Figure 4.3: The proposed method is demonstrated on the IXI dataset for T2-
weighted image synthesis from T1- and PD-weighted images. Representative re-
sults are displayed for all competing methods together with the reference target
images (first column). The first row displays results for the axial orientation,
the second row for the coronal orientation, and the third row for the sagittal
orientation. Overall, the proposed method delineates tissues with higher spa-
tial resolution compared to volumetric vGAN, SC-GAN, and REPLICA models,
and alleviates discontinuity artifacts by improving synthesis performance in all
orientations compared to cross-sectional sGAN-A, sGAN-C, and sGAN-S models.
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Table 4.7: Quality of Synthesis in the IXI Dataset: Volumetric PSNR (dB) and
SSIM (%) measurements between the synthesized and ground truth images in
the test set in the IXI dataset are given as mean ± std. The measurements
are provided for the proposed and competing methods for all synthesis tasks:
1) T2, PD→ T1, 2) T1, PD→ T2, 3) T1, T2 → PD. sGAN-A denotes the sGAN
model trained in the axial orientation, sGAN-C in the coronal orientation, and
sGAN-S in the sagittal orientation. Boldface indicates the highest performing
method.

ProvoGAN sGAN-A sGAN-C sGAN-S vGAN SC-GAN REPLICA

T2, PD → T1

PSNR
24.15 23.20 22.58 23.65 23.35 22.58 21.14

± 2.80 ± 2.08 ± 2.11 ± 1.98 ± 2.89 ± 2.99 ± 4.15

SSIM
90.33 85.81 86.60 87.71 85.48 85.32 86.30

± 4.47 ± 3.95 ± 4.05 ± 4.15 ± 4.18 ± 4.00 ± 3.80

T1, PD → T2

PSNR
28.97 27.64 27.74 27.93 25.97 25.29 26.98

± 2.91 ± 2.59 ± 2.67 ± 2.19 ± 1.81 ± 1.95 ± 2.37

SSIM
94.17 92.49 92.671 93.28 90.61 89.81 92.51

± 4.16 ± 4.20 ± 4.31 ± 2.88 ± 4.04 ± 4.31 ± 4.57

T1, T2 → PD

PSNR
29.81 27.69 29.00 27.12 26.17 26.36 26.96

± 2.96 ± 2.20 ± 2.41 ± 1.61 ± 1.41 ± 1.41 ± 2.93

SSIM
95.41 93.64 94.21 92.67 90.70 92.12 94.10

± 2.75 ± 3.00 ± 2.99 ± 2.95 ± 2.47 ± 2.59 ± 3.03

Figure 4.4: The proposed method is demonstrated on the in vivo brain dataset for
T1-weighted image synthesis from T2-, T1c-weighted and FLAIR images. Repre-
sentative results are displayed for all competing methods together with the refer-
ence target images (first column). The first row displays results for the axial, the
second row for the coronal, and the third row for the sagittal orientation. Overall,
the proposed method delineates tissues with higher spatial resolution compared
to volumetric vGAN, SC-GAN, and REPLICA models, and alleviates disconti-
nuity artifacts by improving synthesis performance in all orientations compared
to cross-sectional sGAN-A, sGAN-C, and sGAN-S models. Meanwhile, the pro-
posed method achieves more accurate depictions for tumor regions, which are
suboptimally recovered by the competing methods.
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Table 4.8: Quality of Synthesis in the In vivo Brain Dataset: Volumetric PSNR
(dB) and SSIM (%) measurements between the synthesized and ground truth
images in the test set of the in vivo brain dataset are given as mean ± std. The
measurements are provided for proposed and competing methods for all many-
to-one synthesis tasks: 1) T2, FLAIR, T1c → T1, 2) T1, FLAIR, T1c → T2,
3) T1, T2, T1c → FLAIR, 4) T1, T2, FLAIR → T1c. sGAN-A denotes the sGAN
model trained in the axial orientation, sGAN-C in the coronal orientation, and
sGAN-S in the sagittal orientation. Boldface indicates the highest performing
method.

ProvoGAN sGAN-A sGAN-C sGAN-S vGAN SC-GAN REPLICA

T2, FLAIR, T1c → T1

PSNR
26.92 24.17 25.31 26.22 22.73 21.70 17.14

± 4.55 ± 3.83 ± 4.12 ± 3.09 ± 3.69 ± 2.96 ± 4.43

SSIM
94.24 88.23 90.78 91.17 87.73 85.60 83.34

± 3.41 ± 4.68 ± 4.09 ± 3.03 ± 3.60 ±3.45 ± 7.43

T1, FLAIR, T1c → T2

PSNR
26.87 25.67 25.98 26.85 25.48 24.48 24.68

± 2.40 ± 1.75 ± 2.18 ± 2.38 ± 1.82 ± 1.72 ± 1.94

SSIM
92.79 89.76 90.95 92.11 89.75 88.63 89.06

± 4.22 ± 3.20 ± 4.10 ± 4.11 ± 3.93 ± 3.54 ± 3.16

T1, T2, T1c → FLAIR

PSNR
25.52 24.50 24.95 24.81 22.94 23.07 22.70

± 2.22 ± 1.84 ± 2.03 ± 2.21 ± 1.61 ± 2.23 ±2.79

SSIM
90.39 87.21 88.09 88.39 85.67 85.88 87.63

± 3.06 ± 2.73 ± 3.18 ± 2.67 ± 3.23 ±2.62 ± 2.97

T1, T2, FLAIR → T1c

PSNR
29.67 28.53 28.48 28.75 27.21 27.57 24.44

± 2.23 ± 1.98 ± 2.11 ± 2.23 ± 1.46 ± 1.68 ± 2.49

SSIM
94.14 91.70 89.91 92.06 89.11 90.19 90.09

± 2.09 ± 2.34 ± 3.09 ± 2.44 ± 1.74 ± 2.00 ± 3.03

4.4 Demonstrations Against Hybrid Models

Having demonstrated the superior performance of ProvoGAN against several

state-of-the-art cross-sectional and volumetric models, we conducted additional

experiments to comparatively evaluate it against alternative volumetrization

methods. In particular, ProvoGAN was compared with hybrid models based on

fusion (M3NET) and transfer learning strategies (TransferGAN) that both involve

a mixture of cross-sectional and volumetric mappings (see Section 3.6 for details).

Experiments were performed on the IXI dataset for accelerated MRI reconstruc-

tion and multi-contrast MRI synthesis. For reconstruction, T1- and T2-weighted

image recovery tasks at four distinct acceleration factors (R = 4, 8, 12, 16) were

examined. Table 4.9 reports performance measurements for the methods under
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comparison. ProvoGAN yields superior performance compared to both hybrid

models in all reconstruction tasks (p < 0.05), where on average it achieves 1.87

dB higher PSNR and 4.34 % higher SSIM compared to M3NET, and 1.83 dB

higher PSNR and 5.02 % higher SSIM compared to TransferGAN. Meanwhile,

T1, T2 → PD, T1, PD → T2, T2, PD → T1 recovery tasks were considered for

synthesis. The respective measurements are reported in Table 4.10. We find that

ProvoGAN again maintains enhanced recovery performance in all synthesis tasks

(p < 0.05), where it achieves an average of 2.94 dB higher PSNR and 2.81 %

higher SSIM compared to M3NET, and 0.87 dB higher PSNR and 1.76 % higher

SSIM compared to TransferGAN.

Quantitative improvements that ProvoGAN offers are also visible in represen-

tative images displayed in Fig. 4.6 for reconstruction and in Fig. 4.5 for synthesis.

The M3NET model that performs 3D fusion of 2D model outputs at separate ori-

entations moderately increases contextual sensitivity, but suffers from residual

discontinuity artifacts and over-smoothing. Meanwhile, the TransferGAN model

that transfers pretrained weights from a 2D model to condition the final 3D model

improves learning behavior, but it suffers from elevated model complexity lead-

ing to loss of spatial resolution and structural details. In contrast, ProvoGAN

yields enhanced recovery performance in all orientations with higher contextual

consistency and sensitivity to structural details in the recovered images.
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Figure 4.5: The proposed ProvoGAN method is demonstrated on the IXI dataset
against hybrid models (M3NET and TransferGAN) for T1-weighted image syn-
thesis from T2- and PD-weighted images. Representative results are displayed
for all methods under comparison together with the ground truth target images
(first column). The first row displays results for the axial orientation, the second
row for the coronal orientation, and the third row for the sagittal orientation.
Error was taken as the absolute difference between the reconstructed and ref-
erence images (see colorbar). Overall, the proposed method offers sharper and
more accurate delineation of tissues than the competing methods. Furthermore,
ProvoGAN better alleviates residual discontinuity artifacts compared to M3NET.

Table 4.9: Comparison of Volumetrization Approaches for Reconstruction in the
IXI Dataset: Volumetric PSNR (dB) and SSIM (%) measurements between the
reconstructed and ground truth images in the test set in the IXI dataset are given
as mean ± std. The measurements are reported for the proposed ProvoGAN
and competing M3NET and TransferGAN methods for four distinct acceleration
factors (R = 4, 8, 12, 16). Boldface indicates the best performing method.

ProvoGAN M3NET TransferGAN

PSNR SSIM PSNR SSIM PSNR SSIM

R=4

T1
35.25 96.73 31.25 92.07 31.80 89.11

± 1.78 ± 0.57 ± 1.87 ± 1.18 ± 0.88 ± 1.10

T2
35.50 96.08 33.85 92.88 34.18 94.12

± 2.62 ± 1.07 ± 2.73 ± 1.12 ± 1.30 ± 0.84

R=8

T1
31.38 94.93 29.61 90.78 30.37 88.44

± 1.26 ± 0.86 ± 1.03 ± 1.05 ± 1.22 ± 0.99

T2
33.49 95.92 32.12 93.09 31.69 93.49

± 2.21 ± 1.01 ± 2.25 ± 1.32 ± 0.83 ± 0.71

R=12

T1
29.67 92.48 28.55 87.61 28.79 85.31

± 0.91 ± 0.90 ± 1.05 ± 1.46 ± 0.89 ± 1.54

T2
30.41 91.98 30.29 88.31 29.18 90.49

± 1.03 ± 1.40 ± 1.00 ± 1.08 ± 0.81 ± 0.94

R=16

T1
29.15 91.40 25.83 85.59 27.61 83.31

± 1.09 ± 1.09 ± 1.13 ± 1.90 ± 0.88 ± 1.65

T2
30.66 93.74 29.02 88.03 27.28 88.84

± 1.60 ± 1.35 ± 1.24 ± 1.71 ± 1.69 ± 1.36
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Figure 4.6: The proposed ProvoGAN method is demonstrated against hybrid
models (M3NET and TransferGAN) on the IXI dataset for reconstruction of
T1-weighted acquisitions undersampled at R = 8. Representative results are
displayed for the methods under comparison together with the undersampled
zero-filled source images (first column) and the reference target images (second
column). The top two rows display results for the axial, the middle two rows
for the coronal, and the last two rows for the sagittal orientation. Error was
taken as the absolute difference between the reconstructed and reference images
(see colorbar). Overall, the proposed method enables sharper tissue delineation
against competing methods, and it improves mitigation of discontinuity artifacts
compared to M3NET.
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Table 4.10: Comparison of Volumetrization Approaches for Synthesis in the
IXI Dataset: Volumetric PSNR (dB) and SSIM (%) measurements between
the synthesized and ground truth images in the test set in the IXI dataset are
given as mean ± std. The measurements are reported for the proposed Provo-
GAN and competing M3NET and TransferGAN methods for all synthesis tasks:
1) T2, PD → T1, 2) T1, PD → T2, 3) T1, T2 → PD. Boldface indicates the
highest performing method.

ProvoGAN M3NET TransferGAN

PSNR SSIM PSNR SSIM PSNR SSIM

T2, PD → T1
24.15 90.33 20.85 86.81 23.84 87.09

± 2.80 ± 4.47 ± 4.08 ± 5.00 ± 3.37 ± 4.09

T1, PD → T2
28.97 94.17 23.79 89.82 27.78 93.10

± 2.91 ± 4.16 ± 1.23 ± 3.12 ± 2.47 ± 3.98

T1, T2 → PD
29.81 95.41 29.48 94.84 28.71 94.45

± 2.96 ± 2.75 ± 2.24 ± 2.41 ± 1.89 ± 2.52
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4.5 Radiological Evaluation

Quantitative performance assessments in MRI recovery tasks clearly indicate

that ProvoGAN outperforms competing volumetric and cross-sectional mod-

els in terms of image quality metrics (i.e., PSNR, SSIM). Yet, an important

question concerns to what extent these quantitative improvements will bene-

fit diagnostic assessments. Given its ability to effectively capture global con-

text as well as fine structural details, we hypothesized that ProvoGAN will re-

cover MR images of equivalent or higher diagnostic value than competing mod-

els. To test this hypothesis, radiological evaluations were performed on images

recovered via ProvoGAN, sGAN and vGAN, as well as SC-GAN, REPLICA

for synthesis, and RefineGAN, compressed-sensing methods (SparseMRI and

SPIRIT) for reconstruction (see Section 2.7 for details). Opinion scores for

all methods in axial, coronal, and sagittal orientations denoted as (OSA, OSC,

OSS) are reported in Fig. 4.7a-c for reconstruction and in Fig. 4.7d,e for

synthesis. Across reconstruction tasks, ProvoGAN achieves average opinion

scores of (4.13, 3.97, 3.93) where sGAN yields (3.33, 2.77, 2.67), vGAN yields

(2.00, 1.93, 1.70), RefineGAN yields (3.63, 3.67, 3.13) and compressed-sensing re-

constructions yield (2.00, 2.27, 2.13). Across synthesis tasks, ProvoGAN achieves

average opinion scores of (3.73, 3.85, 4.10) whereas vGAN yields (1.50, 1.63, 1.33),

SC-GAN yields (1.47, 1.43, 1.40) and REPLICA yields (2.40, 2.17, 1.83). Mean-

while, transverse sGAN models 1 maintain (2.90, 3.23, 3.38) and longitudinal

sGAN models 2 yield (1.64, 1.81, 1.47). Overall, ProvoGAN outperforms all com-

peting methods in synthesis (p < 0.05, Wilcoxon signed-ranked test) and recon-

struction (p < 0.05) tasks, except for RefineGAN and SPIRIT in the in-vivo

knee dataset where the three methods perform similarly (p > 0.05). In synthesis,

ProvoGAN surpasses not only longitudinal sGAN models in transverse dimen-

sions but also transverse sGAN models in transverse dimensions for which they

have been optimized.

1In radiological evaluation, an sGAN model is called transverse for those opinion scores given
for the orientation where that sGAN model is trained, e.g., sGAN-A for OSA.

2In radiological evaluation, an sGAN model is called longitudinal for those opinion scores
given for the orientation where that sGAN model is not trained, e.g., sGAN-A for OSC or OSS.
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Radiological evaluations were also performed on recovered images from M3NET

and TransferGAN, as competing volumetrization baselines. Opinion scores for all

volumetrization approaches in axial, coronal, and sagittal orientations denoted

as (OSA, OSC, OSS) are reported for the IXI dataset in Fig. 4.8. Across recon-

struction tasks, ProvoGAN achieves average opinion scores of (4.00, 3.95, 3.90)

where M3NET yields (2.95, 3.25, 3.50) and TransferGAN yields (2.80, 2.75, 2.8).

For synthesis, ProvoGAN achieves average opinion scores of (4.00, 4.3, 4.2) where

M3NET yields (2.90, 3.20, 3.00) and TransferGAN yields (1.90, 2.10, 1.9). Over-

all, ProvoGAN outperforms competing volumetrization methods in both synthesis

(p < 0.05) and reconstruction (p < 0.05) tasks. Taken together, these findings

strongly suggest that ProvoGAN can offer improved diagnostic quality in accel-

erated multi-contrast MRI protocols.

Figure 4.7: Methods were compared in terms of radiological opinion scores
for three reconstruction tasks: a) single-coil reconstruction of T1-weighted im-
ages undersampled by R = 8 in the IXI dataset, b) single-coil reconstruc-
tion of T2-weighted images undersampled by R = 8 in the IXI dataset, c)
multi-coil reconstruction of PD-weighted images undersampled by R = 8 in
the in vivo knee dataset, and for two synthesis tasks: d) many-to-one synthe-
sis task of T2, PD → T1 in the IXI dataset, e) many-to-one synthesis task of
T1, T2, T1c → FLAIR in the in vivo brain dataset. The quality of the recovered
axial, coronal, and sagittal cross-sections were rated by an expert radiologist by
assessing their similarity to the reference cross-sections via a five-point scale (0:
unacceptable, 1: very poor, 2: limited, 3: moderate, 4: good, 5: perfect match).
Figure legends denote the colors used for marking the methods under comparison.
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Figure 4.8: Volumetrization approaches were compared in terms of radiological
opinion scores for three representative tasks: a) reconstruction of T1-weighted im-
ages undersampled by R = 8 in the IXI dataset, b) reconstruction of T2-weighted
images undersampled by R = 8 in the IXI dataset, c) T2, PD → T1 synthe-
sis in the IXI dataset. The quality of the recovered axial, coronal, and sagittal
cross-sections were rated by an expert radiologist by assessing their similarity to
the reference cross-sections via a five-point scale (0: unacceptable, 1: very poor,
2: limited, 3: moderate, 4: good, 5: perfect match). Figure legend denotes the
colors used for the methods under comparison.

4.6 Complexity of Cross-Sectional Mappings

Model complexity in deep neural networks depends on several architectural

choices, including the number of layers, number of filters in each layer, and kernel

size. To minimize bias in performance comparisons, here we aligned the archi-

tectural designs as closely as possible among the competing methods. To do

this, the number of layers, number of filters, and kernel size were all kept fixed

across methods, except that 2D convolutional kernels were used in sGAN and

ProvoGAN whereas 3D convolutional kernels were used in vGAN (see Figs. 3.2,

3.3). The precise parameter values were guided by the demanding vGAN model.

We selected the parameter set that resulted in maximal model complexity while

still allowing us to fit a single vGAN model into the VRAM of the GPUs used

to conduct the experiments here. Thus, it is reasonable to consider that vGAN

is at its performance limits. That said, a relevant question is whether and how

the relative performance benefits of ProvoGAN over sGAN change with model

complexity. To examine this issue, we performed separate experiments on re-

construction and synthesis tasks (see Section 3.7 for details) while systematically

varying the complexity of the convolutional layers in both models by a factor of
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nf ∈ {1/16, 1/9, 1/4, 1, 4, 9, 16}. This resulted in seven distinct pairs of models:

ProvoGAN(nf )-sGAN(nf ) with nf -fold change in number of learnable network

weights. PSNR and SSIM measurements between the recovered and reference

volumes reported in Table 4.11 demonstrate that ProvoGAN achieves superior

reconstruction performance to sGAN at all complexity levels, with on average

1.42 dB higher PSNR and 3.20% higher SSIM (p < 0.05, Wilcoxon signed-rank

test). Meanwhile, PSNR and SSIM measurements reported in Table 4.12 indicate

that ProvoGAN increases synthesis performance on average by 1.22 dB in PSNR,

and 2.82% in SSIM compared to sGAN across complexity levels (p < 0.05). Taken

together, these findings suggest that the benefits of ProvoGAN over sGAN in MRI

recovery tasks are reliable across variations in complexity of network layers.

An alternative approach to help improve performance of cross-sectional models

without substantially altering model complexity would be to admit inputs from

multiple neighboring cross-sections. Given several neighboring cross-sections as

input, this would enable a 2D model to incorporate local context in the vicinity of

the central cross-section. To examine the utility of this approach in cross-sectional

processing, we implemented multi-cross-section variants of the two methods,

namely ProvoGAN(multi) and sGAN(multi). Both variants received as input

three consecutive cross-sections and learned to recover the central cross-section

of the target volume. We postulated that while this approach might increase

sGAN performance to a limited degree, ProvoGAN that leverages broad spatial

priors across all orientations should still yield superior performance. To test this

prediction, we performed comprehensive experiments on the IXI dataset for recon-

struction and synthesis tasks (see Section 3.7 for details). PSNR and SSIM mea-

surements were performed between the recovered and reference target volumes

(see Tables 4.13, 4.14). Overall, ProvoGAN enhances recovery performance com-

pared to sGAN(multi) in both tasks (p < 0.05), where it achieves on average 1.48

dB higher PSNR and 6.87% higher SSIM in reconstruction, and 0.87 dB higher

PSNR and 1.71% higher SSIM in synthesis. These findings reveal that ProvoGAN

outperforms cross-sectional mappings implemented with extended spatial priors

across the longitudinal dimension. Note that ProvoGAN and ProvoGAN(multi)

perform similarly across tasks (p > 0.05), whereas sGAN(multi) generally yields
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on par or higher performance than sGAN. This result suggests that sGAN process-

ing each cross-section independently suffers from loss of spatial context across the

longitudinal dimension, whereas sGAN(multi) improves performance by incorpo-

rating short-range context across this dimension. In contrast, ProvoGAN(multi)

captures limited additional information from multiple neighboring cross-sections,

since ProvoGAN readily captures global context across the volume.

Comprehensive experiments performed on various reconstruction and synthesis

tasks in the public IXI, in vivo knee, and in vivo brain datasets clearly demon-

strate that ProvoGAN advances recovery quality in accelerated multi-contrast

MRI compared to cross-sectional and volumetric models. Table 4.15 lists com-

parisons between sGAN, ProvoGAN and vGAN in terms of model complexity,

memory load, number of floating point operations per second (FLOPS), and to-

tal training time. Compared to vGAN, ProvoGAN reduces model complexity by

3-fold, memory load by 20-fold, FLOPS by 80-fold approximately. Collectively,

these benefits empower ProvoGAN to offer improved learning behavior and com-

putationally efficient inference while enhancing the capture of global context in

volumetric images. Compared to sGAN, each progression in ProvoGAN naturally

maintains the same model complexity and memory load. As such, ProvoGAN of-

fers a desirable solution in the trade-off between cross-sectional and volumetric

models

Table 4.11: Model Complexity Analysis for Reconstruction in the IXI Dataset:
Volumetric PSNR (dB) and SSIM (%) measurements between the reconstructed
and ground truth images in the test set of the IXI dataset are given as mean ±
std for reconstruction of T1-weighted acquisitions undersampled at R = 8. The
measurements are reported for ProvoGAN and sGAN while varying the complex-
ity of the convolutional layers in both models by nf ∈ {1/16, 1/9, 1/4, 1, 4, 9, 16},
yielding seven distinct ProvoGAN-sGAN pairs: ProvoGAN(nf )-sGAN(nf ) with
nf times folded number of learnable network weights. Boldface indicates the
highest performing method.

1/16 1/9 1/4 1 4 9 16

ProvoGAN
PSNR 31.53 ± 1.31 31.02 ± 0.96 30.96 ± 0.85 31.38 ± 1.26 32.16 ± 1.80 32.23 ± 1.81 32.52 ± 1.76

SSIM 93.74 ± 1.10 91.29 ± 1.02 90.62 ± 1.10 94.93 ± 0.86 95.68 ± 0.97 95.78 ± 1.00 95.81 ± 1.05

sGAN-A
PSNR 29.58 ± 0.99 30.14 ± 0.93 30.09 ± 1.45 30.08 ± 1.32 30.17 ± 1.56 30.82 ± 1.61 30.96 ± 1.53

SSIM 89.07 ± 1.19 89.84 ± 1.03 90.50 ± 1.07 91.18 ± 1.01 91.47 ± 1.15 91.73 ± 1.20 91.66 ± 1.13
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Table 4.12: Model Complexity Analysis for Synthesis in the IXI Dataset: Vol-
umetric PSNR (dB) and SSIM (%) measurements between the synthesized and
ground truth images in the test set of the IXI dataset are given as mean ± std for
T1-weighted image synthesis from T2- and PD-weighted images. The measure-
ments are reported for ProvoGAN and sGAN while varying the complexity of the
convolutional layers in both models by nf ∈ {1/16, 1/9, 1/4, 1, 4, 9, 16}, yielding
seven distinct ProvoGAN-sGAN pairs: ProvoGAN(nf )-sGAN(nf ) with nf times
folded number of learnable network weights. sGAN-A denotes the sGAN model
trained in the axial orientation, sGAN-C in the coronal orientation, and sGAN-S
in the sagittal orientation. Boldface indicates the highest performing method.

1/16 1/9 1/4 1 4 9 16

ProvoGAN
PSNR 24.25 ± 2.12 24.32 ± 2.11 24.10 ± 2.14 24.15 ± 2.80 24.74 ± 2.59 25.27 ± 2.65 25.36 ± 2.14

SSIM 88.61 ± 4.16 88.49 ± 4.30 88.53 ± 4.23 90.33 ± 4.47 89.51 ± 4.39 90.05 ± 4.36 89.92 ± 4.34

sGAN-A
PSNR 23.13 ± 2.03 23.13 ± 1.95 22.90 ± 1.78 23.20 ± 2.08 23.63 ± 2.22 23.96 ± 87.34 24.22 ± 1.76

SSIM 84.84 ± 3.52 84.66 ± 3.61 85.08 ± 3.71 85.81 ± 3.95 86.51 ± 4.03 87.34 ± 3.95 87.38 ± 3.96

sGAN-C
PSNR 22.75 ± 2.51 22.82 ± 2.19 22.84 ± 2.04 22.58 ± 2.11 23.32 ± 2.35 23.77 ± 2.27 23.32 ± 2.51

SSIM 85.24 ± 3.66 85.75 ± 3.93 86.21 ± 3.88 86.60 ± 4.05 87.47 ± 3.94 88.19 ± 4.04 88.10 ± 4.10

sGAN-S
PSNR 23.08 ± 1.63 22.33 ± 1.81 23.74 ± 1.76 23.65 ± 1.98 24.07 ± 2.14 24.14 ± 2.18 24.30 ± 2.17

SSIM 85.23 ± 3.65 81.14 ± 4.65 87.43 ± 4.26 87.71 ± 4.15 88.76 ± 4.74 88.70 ± 4.81 88.90 ± 4.84

Table 4.13: Comparison of Single versus Multi-Cross-Section ProvoGAN and
sGAN Models for Reconstruction in the IXI Dataset: Volumetric PSNR (dB)
and SSIM (%) measurements between the reconstructed and ground truth images
in the test set of the IXI dataset are given as mean ± std. The measurements
are reported for the proposed ProvoGAN model, its multi-cross-section variant,
the cross-sectional sGAN model and its multi-cross-section variant for all single-
coil reconstruction tasks: T1-weighted and T2-weighted image reconstruction at
R = 4, 8, 12, 16. sGAN and sGAN(multi) are trained in the axial orientation
given axial readout direction. Boldface indicates the highest performing method.

R=4 R=8 R=12 R=16

T1 T2 T1 T2 T1 T2 T1 T2

ProvoGAN
PSNR 35.25 ± 1.78 35.50 ± 2.62 31.83 ± 1.26 33.49 ± 2.21 29.67 ± 0.91 30.28 ± 1.31 29.14 ± 1.09 30.66 ± 1.60

SSIM 96.73 ± 0.57 96.08 ± 1.07 94.93 ± 0.86 95.92 ± 1.01 92.48 ± 0.90 91.96 ± 1.40 91.40 ± 1.09 93.74 ± 1.35

ProvoGAN(multi)
PSNR 34.65 ± 1.61 36.36 ± 2.05 31.71 ± 1.31 32.63 ± 1.58 29.26 ± 0.92 30.24 ± 1.05 28.44 ± 1.05 29.29 ± 1.09

SSIM 96.27 ± 0.63 96.73 ± 0.70 95.08 ± 0.95 94.45 ± 0.91 88.58 ± 1.26 92.10 ± 1.26 88.11 ± 1.50 91.74 ± 1.27

sGAN
PSNR 33.85 ± 1.29 32.95 ± 1.50 30.08 ± 1.32 32.24 ± 2.14 27.34 ± 1.06 28.48 ± 1.06 26.73 ± 1.53 29.05 ± 1.04

SSIM 93.21 ± 0.78 86.44 ± 1.23 91.18 ± 1.01 90.47 ± 0.95 86.23 ± 1.36 79.50 ± 2.15 85.23 ± 1.75 83.38 ± 1.22

sGAN(multi)
PSNR 33.71 ± 1.35 34.11 ± 1.58 31.00 ± 1.05 29.51 ± 0.93 28.43 ± 1.04 29.28 ± 1.27 27.80 ± 0.96 29.83 ± 1.28

SSIM 93.69 ± 0.65 88.86 ± 1.24 92.17 ± 0.77 80.54 ± 1.88 88.03 ± 1.07 82.51 ± 1.69 87.07 ± 1.32 85.43 ± 1.22
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Table 4.14: Comparison of Single and Multi-Cross-Section ProvoGAN and sGAN
Models for Synthesis in the IXI Dataset: Volumetric PSNR (dB) and SSIM (%)
measurements between the synthesized and ground truth images in the test set
in the IXI dataset are given as mean ± std. The measurements are reported
for the proposed ProvoGAN model, its multi-cross-section variant, the cross-
sectional sGAN model and its multi-cross-section variant for all many-to-one
synthesis tasks: 1) T2, PD → T1, 2) T1, PD → T2, 3) T1, T2 → PD. sGAN-A
and sGAN(multi)-A denote the models trained in the axial orientation, sGAN-
C and sGAN(multi)-C denote the models trained in the coronal orientation, and
sGAN-S and sGAN(multi)-S denote the models trained in the sagittal orientation.
Boldface indicates the highest performing method.

T2, PD → T1 T1, PD → T2 T1, T2 → PD

ProvoGAN
PSNR 24.15 ± 2.80 28.97 ± 2.91 29.81 ± 2.96

SSIM 90.33 ± 4.47 94.17 ± 4.16 95.41 ± 2.75

ProvoGAN(multi)
PSNR 24.23 ± 2.56 28.32 ± 2.69 29.64 ± 2.42

SSIM 90.49 ± 4.50 93.52 ± 3.93 94.96 ± 2.62

sGAN-A
PSNR 23.20 ± 2.08 27.64 ± 2.60 27.70 ± 2.20

SSIM 85.81 ± 3.95 92.94 ± 4.20 93.64 ± 3.00

sGAN(multi)-A
PSNR 23.55 ± 2.24 27.87 ± 2.54 28.69 ± 2.38

SSIM 86.53 ± 4.26 93.09 ± 3.89 93.89 ± 3.07

sGAN-C
PSNR 22.56 ± 2.11 27.74 ± 2.67 29.00 ± 2.41

SSIM 86.60 ± 4.05 92.67 ± 4.31 94.21 ± 2.99

sGAN(multi)-C
PSNR 22.96 ± 2.07 27.97 ± 2.61 29.18 ± 2.42

SSIM 87.53 ± 4.27 92.97 ± 4.06 94.46 ± 2.97

sGAN-S
PSNR 23.65 ± 1.98 27.93 ± 2.19 27.12 ± 1.61

SSIM 87.71 ± 4.15 93.28 ± 2.88 92.67 ± 2.95

sGAN(multi)-S
PSNR 24.33 ± 2.29 28.08 ± 2.18 28.36 ± 1.98

SSIM 88.67 ± 4.45 93.43 ± 2.90 93.80 ± 2.87
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Table 4.15: The proposed ProvoGAN and competing sGAN and vGAN methods
are evaluated in terms instantaneous model complexity (millions of parameters,
M), GPU VRAM use (gigabytes, GB), FLOPs (billions of floating point operation,
G), and train duration (hours). The model complexity of the methods is given
as (pg, pd), where pg denotes the number of free parameters in the generator and
pd denotes the number of free parameters in the discriminator. The number of
operations (FLOPs) of the methods is given as (Fg, Fd), where Fg denotes the
number of operations in the generator and Fd denotes the number of operations
in the discriminator. The input-output volume sizes and the number training
subjects are also reported.

(a) Reconstruction in the IXI Dataset (Input Volume Size: 256× 150× 256, Output
Volume Size: 256× 150× 256, Number of Training Subjects: 37 )

sGAN vGAN ProvoGAN

Model Complexity (M) (1.60, 0.39) (4.8, 1.17) (1.6, 0.39)

GPU VRAM Usage (GB) 0.6 19 0.6

FLOPs (G) (4.66, 0.26) (1428.30, 31.79) (17.55, 0.98)

Train Duration (hours) 11 20 33

(b) Reconstruction in the In vivo Knee Dataset (Input Subvolume Size:
320× 320× 256, Output Subvolume Size: 320× 320× 256, Number of Training

Subjects: 12 )

sGAN vGAN ProvoGAN

Model Complexity (M) (1.60, 0.39) (4.8, 1.17) (1.6, 0.39)

GPU VRAM Usage (GB) 0.8 19 0.8

FLOPs (G) (10.07, 0.58) (3860.27, 88.73) (33.12, 1.90)

Train Duration (hours) 7 28 22

(c) Synthesis in the IXI Dataset (Input Volume Size: 2× 192× 160× 160, Output
Volume Size: 192× 160× 160, Number of Training Subjects: 37 )

sGAN vGAN ProvoGAN

Model Complexity (M) (1.60, 0.39) (4.8, 1.17) (1.6, 0.39)

GPU VRAM Usage (GB) 0.6 9 0.6

FLOPs (G) (3.57, 0.20) (723.80, 16.27) (10.77, 0.60)

Train Duration (hours) 4 12 12

(d) Synthesis in the In-vivo Brain Dataset (Input Volume Size: 3× 192× 160× 160,
Output Volume Size: 192× 160× 160, Number of Training Subjects: 237 )

sGAN vGAN ProvoGAN

Model Complexity (M) (1.60, 0.39) (4.8, 1.17) (1.6, 0.39)

GPU VRAM Usage (GB) 0.6 9 0.6

FLOPs (G) (3.60, 0.20) (764.26, 16.98) (10.87, 0.61)

Train Duration (hours) 6 16 18
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4.7 Generalizability of Progressive Volumetriza-

tion

Here we primarily implemented ProvoGAN on a recent conditional GAN archi-

tecture with a ResNet backbone within the generator [59]. That said, progressive

volumetrization can be viewed as a model-agnostic approach that can be adapted

to various 2D network architectures. To illustrate the generalizability of Provo-

GAN, we performed progressive volumetrization on another state-of-the-art archi-

tecture SC-GAN with a U-Net backbone injected with self-attention layers [34].

Cross-sectional (sSC-GAN), volumetric (vSC-GAN) and volumetrized (ProvoSC-

GAN) variants of this architecture were built. Demonstrations were performed

for T1, T2 → PD, T1, PD → T2, and T2, PD → T1 synthesis tasks on the IXI

dataset. Resulting PSNR and SSIM measurements are listed in Table 4.16, where

ProvoSC-GAN achieves in the range [0.35, 2.42] dB higher PSNR and [0.47, 3.05]

% higher SSIM compared to sSC-GAN and vSC-GAN (p < 0.05). The superior

synthesis quality offered by ProvoSC-GAN is also visible in representative results

displayed in Fig. 4.9. Specifically, sSC-GAN models manifest discontinuity arti-

facts across the respective longitudinal dimensions, and vSC-GAN is suboptimal

in recovering fine-structural details. In contrast, ProvoSC-GAN alleviates the

limitations of both sSC-GAN and vSC-GAN models to enable more detailed and

spatially-coherent tissue depiction. Taken together, these results strongly suggest

that the proposed progressive volumetrization strategy can be extended to other

network architectures while preserving its advantages against cross-sectional and

volumetric mappings.
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Table 4.16: Progressive Volumetrization of the SC-GAN Architecture: Volumet-
ric PSNR (dB) and SSIM (%) measurements between the synthesized and ground
truth images in the test set in the IXI dataset are given as mean ± std. Mea-
surements are provided for proposed and competing methods for all many-to-one
synthesis tasks: 1) T2, PD → T1, 2) T1, PD → T2, 3) T1, T2 → PD. sSC-GAN-
A denotes the sSC-GAN model trained in the axial orientation, sSC-GAN-C in
the coronal orientation, and sSC-GAN-S in the sagittal orientation. Boldface
indicates the highest performing method.

ProvoSC-GAN sSC-GAN-A sSC-GAN-C sSC-GAN-S vSC-GAN

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

T2, PD → T1
23.64 88.27 22.74 85.63 23.03 86.94 23.30 87.53 22.58 85.32

± 3.12 ± 4.50 ± 2.27 ± 3.74 ± 2.42 ± 3.80 ± 2.95 ± 4.46 ± 2.99 ± 4.00

T1, PD → T2
28.20 93.26 27.79 92.64 27.72 92.45 28.09 93.22 25.29 89.81

± 2.97 ± 4.53 ± 2.71 ± 4.44 ± 2.74 ± 4.53 ± 2.86 ± 4.35 ± 1.95 ± 4.31

T1, T2 → PD
29.66 94.86 28.83 94.02 28.93 93.93 29.05 94.21 26.36 92.12

± 2.37 ± 2.96 ± 2.12 ± 2.86 ± 2.11 ± 2.95 ± 1.92 ± 2.46 ± 1.41 ± 2.59

Figure 4.9: Progressive volumetrization was performed on recently proposed SC-
GAN architecture. Representative results for T1-weighted image synthesis from
T2- and PD-weighted images in the IXI dataset are displayed. Results are shown
for progressively volumetrized (ProvoSC-GAN), cross-sectional (sSC-GAN), and
volumetric (vSC-GAN) models, along with the ground truth target images (first
column). The first row displays results for the axial orientation, the second row
for the coronal orientation, and the third row for the sagittal orientation. Overall,
ProvoSC-GAN improves delineation of structural details compared to vSC-GAN,
and enhances contextual consistency in the longitudinal dimensions compared to
sSC-GAN models.
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Chapter 5

Conclusion

Here, we introduced a progressively volumetrized deep generative model (Provo-

GAN) for accelerated MRI that decomposes complex volumetric image recovery

tasks into a series of cross-sectional mappings task-optimally ordered across indi-

vidual rectilinear orientations. This progressive decomposition empowers Provo-

GAN to learn both global contextual priors and fine-structural details in each

orientation with enhanced data efficiency. Comprehensive evaluations on brain

and knee MRI datasets illustrate the superior performance of ProvoGAN against

state-of-the-art volumetric and cross-sectional models. Compared to volumetric

models, ProvoGAN better captures fine structural details while at the same time

maintaining lower instantaneous model complexity. As subtasks in ProvoGAN

take single cross-sections as separate training samples, the effective size of the

training set is expanded. Therefore, for a given model complexity, ProvoGAN

demands an order of magnitude lower memory load than volumetric models.

Compared to cross-sectional models, ProvoGAN mitigates discontinuity artifacts

across the longitudinal dimensions and extends reliable capture of structural de-

tails from transverse onto longitudinal dimensions. Importantly, ProvoGAN of-

fers this advanced recovery performance for the same budget of model complexity

and memory load as cross-sectional models, albeit at the expense of a three-times

prolonged training procedure due to sequential learning.
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Several recent studies in medical image processing have focused on improving

learning behavior in volumetric models. An earlier group of studies proposed

spatially-focused 3D models to process volumetric patches during MRI recov-

ery [7, 10, 11, 87, 90–94]. Patch-based models that restrict the spatial extent of

network inputs-outputs can reduce model size to offer performance improvements.

That said, a compact 3D patch incorporates context along the longitudinal axis

at the expense of narrowing coverage in the in-plane dimensions. Since patches

are processed independently, the predicted volumes might also manifest disconti-

nuity artifacts. These limitations can undercut potential benefits of patch-based

processing for 3D models. Later studies proposed hybrid models to bridge 2D

and 3D models in an effort to combine their strengths [65–68]. Among hybrid

methods are fusion models that aggregate the outputs of parallel 2D models in

multiple orientations [65, 66]. Fusion models employ a cascade of 2D and 3D

processing, so they incur high computational complexity, and sensitivity to fine

structural details might be limited by the aggregation process across orientations.

An alternative approach is transfer learning from 2D onto 3D models to facilitate

model training [67, 68]. A full-scale 3D model is leveraged in transfer learning

methods that lead to elevated model complexity, and a similar computational

footprint to conventional 3D models. In contrast, ProvoGAN is composed of a

sequence of 2D models, without any 3D module, resulting in substantially lower

model complexity and computational load.

An alternative approach to volumetrization in medical imaging tasks has been

to revise cross-sectional models to help them better incorporate spatial con-

text. In [95], enhanced spatial consistency during cardiac image segmentation

was aimed by performing cross-sectional mapping on short-axis images sequen-

tially across neighboring cross-sections. The segmentation map from the earlier

cross-section was used to initialize the map for the current cross-section [95].

While benefits were demonstrated over 2D processing, this approach limits ac-

cumulation of contextual information to a single direction and to neighboring

cross-sections. A different strategy for cardiac MRI segmentation was to per-

form cross-sectional mapping in short-axis orientation while latent representa-

tions captured via an autoencoder on a multitude of view orientations were fused

59



at intermediate layers [96]. The complexity of the resulting models scales with

the number of additional views included, and this promising approach might be

limited in applications where a multitude of different views on the same anatomy

are unavailable. In [97–99], MR images at three rectilinear views that span across

a target voxel were incorporated as inputs to a cross-sectional model during seg-

mentation or classification tasks. Classifying a center voxel by fusing information

across orientations might limit flow of contextual information from nearby voxels

not covered by the input image views.

Several technical lines of development can be taken to further improve the per-

formance and reliability of progressive volumetrization. In this study, ProvoGAN

was independently demonstrated for mainstream MRI reconstruction and syn-

thesis tasks. ProvoGAN can also be adopted for a joint reconstruction-synthesis

task to further improve the utility and practicality of accelerated multi-contrast

MRI protocols [60,100,101]. Here ProvoGAN was trained using a fully-supervised

learning framework, which assumes the availability of datasets containing high-

quality ground truth target images. However, compiling large datasets with high-

quality references might prove difficult due to various concerns such as patient

motion or examination costs [102]. An alternative would be to train ProvoGAN in

a self-supervised setting for reconstruction tasks [103–107] or in a semi-supervised

setting for synthesis tasks [101] to alleviate dependency on high-quality training

datasets. Another avenue of development concerns the generalization of Provo-

GAN to work on nonrectilinear orientations [108–110]. While ProvoGAN was

mainly demonstrated for rectilinear acquisitions in this work, similar decomposi-

tions can be viable for nonrectilinear sampling schemes in MRI such as radial and

spiral acquisitions. Additionally, the number of total progressions in ProvoGAN

can be adaptively modified together with the specific ordering of the orientations

used in the progressions to enhance task-optimal recovery performance. Instead

of performing a separate sequential training of each progression, an end-to-end

training of the whole network can also be performed for improved performance

by leveraging advanced model parallelism techniques [111].

In this work, we demonstrated the proposed progressive volumetrization ap-

proach via a data-driven deep generative model that performs recovery in the
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image domain. Although image-to-image learning of deep models proves pop-

ular in MRI recovery tasks [57, 112–116], there are other successful approaches

to MRI processing based on k-space-to-k-space learning [117], k-space-to-image

learning [44, 118–120], or model-based learning with unrolled network archi-

tectures [121–125]. In principle, ProvoGAN can also be implemented to vol-

umetrize models based on these recent powerful approaches. Thus, it remains

important future work to investigate the potential benefits of progressive vol-

umetrization to the contextual sensitivity of a broader family of recovery meth-

ods [39,112,126–137].

In summary, here we introduced a progressive volumetrization framework for

deep network models to process 3D imaging datasets. The superior learning

behavior of ProvoGAN was demonstrated for inverse problem solutions in two

mainstream MRI tasks, reconstruction and synthesis. Additional to structural

MRI, proposed framework can be applied for other MRI applications such as

functional [138–148, 148–150] and diffusion MRI [151, 152]. Yet, our frame-

work can be adopted to other imaging modalities and tasks with minimal ef-

fort [33, 95, 98, 99, 153–162]. As the key idea of subtasking across cross-sectional

orientations is domain general, ProvoGAN has further implications for computer

vision applications that rely on 3D processing such as style transfer, semantic

segmentation and video processing [163,164].
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[72] M. Yurt, M. Özbey, S. U. H. Dar, B. Tınaz, K. K. Oğuz, and T. Çukur,
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[143] T. Çukur, A. G. Huth, S. Nishimoto, and J. L. Gallant, “Functional sub-

domains within scene-selective cortex: parahippocampal place area, retros-

plenial complex, and occipital place area,” Journal of Neuroscience, vol. 36,

no. 40, pp. 10257–10273, 2016.

79



[144] T. Cukur, S. Nishimoto, A. G. Huth, and J. L. Gallant, “Attention dur-

ing natural vision warps semantic representation across the human brain,”

Nature neuroscience, vol. 16, no. 6, pp. 763–770, 2013.
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