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Methods—Unexpected Effects in Galvanostatic EIS of Randles’
Cells: Initial Transients and Harmonics Generated
Gökberk Katırcı, Mohammed Ahmed Zabara,a and Burak Ülgütz

Bilkent University, Department of Chemistry, Ankara, Turkey

Non-linear EIS analysis is gaining wider attention and interest due to the deeper understanding that is provided especially when
combined with linear EIS. The nonlinear part of the data can get corrupted due to a number of effects. One of these is the initial
transient, which is the response right after excitation signal is applied before a steady-state is reached. In this study, we demonstrate
this phenomenon through analyzing simplified Randles’ cells via Kirchoff’s laws. To get rid of the effects of the initial transient,
instrument manufacturers typically discard some fraction of the response, the effectiveness of which, as demonstrated here has to
be checked.
© 2022 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ac5ad7]
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In recent years, studies involving investigations on the non-linear
response of Electrochemical Impedance Spectroscopy (EIS) mea-
surements have been increasing. The physical phenomena behind the
electrochemical processes in an electrochemical system is explained
through nonlinear relations between current and voltage e.g., Butler-
Volmer equation. Reflections of this non-linearity is observed in the
impedance response, depending on the excitation signal applied. The
investigation of the non-linear part of the response signal can lead to
invaluable information, which can complement the information
obtained from the linear part.1

In non-linear EIS, distortions from linearity in the response signal
are analyzed in the frequency domain by means of Fourier
Transform. The appearance of higher harmonics above the noise
level beside the fundamental signal is an indication of the presence
of non-linearities in the response. These harmonics are studied and
correlated to linear impedance response or directly to electroche-
mical processes. Recently, theoretical background along with some
experimental examples were reviewed by Vidaković-Koch et al.2

which highlighted the functionality of non-linear EIS for in-depth
kinetic analysis of electrochemical systems. Murbach and Schwartz
attributed nonlinear harmonic response to cell aging, thermodynamic
and kinetic properties of commercial batteries.3 In addition, studies
by Harting et al. compared aging process at different temperatures
with EIS for lithium ion batteries.4–6 Furthermore, Liebhart and co-
workers published their study about utilizing non-linear EIS in
analyzing and modeling of lithium ion batteries at different
temperatures and SoC’s.7 In another study by Kiel et al., authors
employed higher order harmonic analysis in order to investigate EIS
errors, and built simple Randles circuit models for simulation to
explain the error sources.8 Furthermore, Ernst et al. investigated non-
linear EIS of lithium ion batteries under different SoC’s and
temperatures in terms of current and overpotentials.9 A review
paper by Szekeres and co-workers thoroughly discussed advantages
and drawbacks of the methods for initial transient correction.10 In the
past, we have investigated the nonlinear harmonic analysis of
Li/SOCl2 batteries,11 and demonstrated the passivation layer effect
on harmonics. Specifically, our observations indicated that the
increase in harmonics directly correlated with an increase in the
passivation layer. The value of higher harmonics in EIS is clearly
demonstrated.

Like with any characterization technique, negative controls have
to be an integral part of nonlinear EIS analysis. Before analyzing the
response of electrochemical system, one has to make sure that any
observed non-linearities are originating from the studied systems and
not due to other artifacts. An easy control experiment can be

achieved using dummy cells constructed from components with
identical parameters to the studies system.

During such investigations, we measured several dummy cells
that were constructed as models of simplified Randles’ Cells (Fig. 1)
as negative control experiments. We observed that the harmonics of
the signals are not only significantly above the noise floor but also
frequency dependent, and can be mistaken for the non-linearities due
to the electrochemical processes. In the current manuscript, we will
describe the fundamental reason behind the non-linear response and
show that the experimental result perfectly matches a simple
simulation based on Kirchoff’s laws (Fig. A·1). We will further
show that the non-linearity observed is frequency dependent when-
ever a capacitor is involved and the cases where this frequency
dependence is not observed are only due to the noise being higher
than the non-linearities (Fig. A·2).

As we will show below, this issue is one of startup transients. As
the sine wave starts being applied, the system response takes finite
time before a steady-state response is established. This is the reason
for a typical waiting period before the analyzed data is collected.
However, the implementations across the manufacturers vary widely
and mostly left to the experimenter to adjust (somewhat hidden
under “advanced” sections). In the literature, we have been able to
find two references that mention this effect. Firstly, JR Macdonald
and Y Barsoukov the mode of measurement is not mentioned, but
the recipe for solution is “adding at least one period delay after the
sine-wave onset”(emphasis added).12 In another study referenced by
Orazem and Tribollet,1 Pollard and Comte simply calculated the
response to a single period of signal and estimated the error to be 4%
when only a single sine wave is considered in potentiostatic mode
for solid electrolytes.13 It is also worth noting that a methods have
been developed for galvanostatic modulation that selects a fre-
quency-dependent amplitude in maintaining a constant level of AC
voltage.14,15 It is important to emphasize that our study specifically
focuses on galvanostatic mode. The startup transients in potentio-
static mode are typically much shorter and beyond the scope of this
manuscript.

We will show that even when galvanostatically measuring a
dummy cell constructed in the simplified Randles’ cell configura-
tion, the frequency dependent non-linearity is clearly observable.
The level of non-linearity is typically too low to be seen in the
fundamental (typically less than 1%), however, when measuring the
non-linear spectrum, this effect has to be taken into account and
suppressed appropriately.

Experimental

Two dummy cells were built to test the effect. The first one
(10 Hz) is made of 1 kΩ resistance (in series) connected to 1 μF
capacitor and 100 kΩ resistance in parallel. Similarly, the second one
(100 Hz) is built with the same 1kΩ resistance (in series) linked withzE-mail: ulgut@fen.bilkent.edu.tr
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1 μF capacitor and 100 kΩ resistance in parallel. The simulation
parameters were also adjusted to these exact values.b Series
resistances are chosen such that a resistive response is observed at
the high frequency limit of the experiments.

Measurements with dummy cells were made with Gamry
Instruments©’ Reference 3000 potentiostat/galvanostat/ZRA, coupled
with Gamry’s Framework (version 7.8.6). The data collection
employed a modified version of the measurement script. Details of
this modification was published in a previous publication.11 The
modification to the standard script applies a sinusoidal signal of fixed
five periods and measures the voltage response. This time-domain
signal is then saved in a separate file for each frequency. The
fundamental response and its overtones (harmonics) were calculated
in a post-processing step. Unless otherwise mentioned, the Fourier
transform input is the voltage signal from 4 periods of the applied
frequency. The first cycle is discarded, as was the default in our
instrument.

Throughout the experiments, 10 μA AC current was employed on
both dummy cells, with zero as the DC current setpoint.

The simulations were done in Python’s Spyder (Anaconda) IDE,
with importing Matplotlib, NumPy and SciPy libraries.16–18 The
complete code is available in the Appendix.

Results and Discussion

Measurement.—The results of the measurement on two different
dummy cells are shown in Fig. 2, where the impedance is shown
along with the voltage amplitude of the second, third and fourth
harmonics. For both dummy cells, the harmonics clearly show a
frequency-dependent signal that reaches a maximum around the time
constant of the respective cell that is slowly decreasing with
increasing harmonic order. This observation has to be properly
explained before any further analysis of nonlinearities in the studied
system.

Simulation.—In order to investigate the issue in more detail, a
simple simulation is carried out. The voltage across the cell under
arbitrary current can be calculated as the sum of the voltage across
the series resistor (Rs) and the voltage across the capacitor(C) or
equivalently the voltage across the parallel resistor (Rp).

To calculate the voltage across the parallel part of the circuit, the
current distribution across the two parallel arms must be calculated,
based on the fact that the voltage across the parallel resistor and the
capacitor will be equal. Therefore:

∫
× = [ ]i R

i dt

C
1R p

t

C
0

where iR is the current through the parallel resistor, and iC is the
current through the capacitor. Further, the two currents must sum up
to the total current:

+ = [ ]i i i 2R C

where i is the total current. By substituting Eq. 2 in Eq. 1 and
reorganizing, an equation regarding iC as a function of C, Rp and i
can be obtained:

∫= −
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For a discrete time series, this equation may be rewritten as:
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Where ts is the sampling time and j is the index used for the current
arrays. This equation can be used iteratively to calculate the current
through the capacitor. It is important that there are no assumptions
regarding the current in this equation. This is critical in being able to
simulate arbitrary current sequences. This way, a sine wave starting
after a zero current period, as well as what is happening after the
signal is stopped can be simulated.

Once the current through the capacitor (and therefore the current
through the resistor) is calculated, the voltage across the whole cell
can be written as:

∑= [ ] × + [ ] × [ ]
=

E i j R i k t C 5s

k

index

C s

0

or equivalently

= [ ] × + ( [ ] − [ ]) × [ ]E i j R i j i j R 6s c p

It is worth noting that these equations are developed with no
assumptions regarding the waveform of the current. An analytical
solution to Eq. 3 can be achieved by assuming sinusoidal signal for
the current. However, the numerical method can be employed to
calculate the voltage progression after the sine wave is turned off, or
as a response to ill-defined sine waves during the digital-to-analog
conversion. This issue effects the amount of time required between
frequencies which is an issue that is reserved for a future study.

For each frequency of interest, the time-domain simulations were
carried out before a Fourier Transform calculation in order to simulate
the impedance response along with the harmonics of the voltage. These
results are summarized in Fig. 3 in the same format as Fig. 2. In these
simulations, 5 periods of the signal were applied and the first cycle was
discarded before the Fourier Transform just like the experimental
procedure. In addition, a random noise of 0.1% can be added to the
voltage in the time-domain, to generate a perfectly matching response
as shown in Fig. A·1. The simulations and the experiments show a
remarkable similarity indicating that the background phenomena re-
sulting in the signal is simply explained by the above fundamental
framework.

Figure 1. Two simulated and measured dummy cell diagrams with characteristic frequencies of 10 Hz (left) and 100 Hz (right).

bThe relevant characteristic frequency can be calculated by (1/(C x Rp)) since the
series resistance is only additive in the galvanostatic mode.
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In order to understand the response in more detail, the time-
domain response of the cell was inspected deeper. Figure 4 shows
examples from the three domains of the response. The middle panel

in each domain shows the applied current, with the top panel
showing the breakdown of the current to the parallel resistor and
capacitor. The bottom panel in each shows the total voltage across

Figure 2. Impedance and Non-linear Harmonic Analysis of the voltage response obtained from Galvanostatic-EIS measurements for dummy cells with
characteristic frequencies of 10 Hz and 100 Hz.

Figure 3. Modulus Impedance and Non-linear Harmonic Analysis of the voltage response obtained from Galvanostatic-EIS simulations for dummy cells with
characteristic frequencies of 10 Hz and 100 Hz.
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Table I. The information was obtained from the following software and personal communication [REF-3000 Gamry Software v7.8.6, Dr. Iosif Fromondi (Product Manager & Head of Marketing—
Metrohm Autolab), Dr. Nicolas Murer (Research Scientist—BioLogic), Mr. Luca Pini (Territory Manager MEA-LATAM—Ametek Advanced Measurement Technologies), Dr. Antonie Baars
(Manager-Ivium Technologies)].

Manufacturer Default Remarks

Gamry 1 Full Period Adjustable with a script edit
Metrohm-Autolab 10 cycles or 1 s, whichever is faster Editable under the advanced group (Newer software is faster with more dynamic selection)
BioLogic 10% of the period Editable in the standard dialog box
PAR-Solartron 0 s User specifiable as an amount of time
Ivium Half sine period, minimum 0.2 s User specifiable, number of periods and absolute time can be chosen, depending on which is longer
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the total cell. From the current breakdown, the intuitive assumption
of low frequency current mostly passing through the resistor and
high frequency current mostly passing through the capacitor in
the parallel section is confirmed. Around the critical frequency, the
current passing through both arms of the parallel section is of
the same order of magnitude in amplitude, but different in phase.
The voltage in the low frequency exhibits an in-phase response as
expected for a resistive response. In the high frequency region, the
total voltage is mostly dictated by the series resistor and therefore is
still an in-phase signal. However, the capacitance manifests itself as
a non-zero DC level, since a pure capacitor always exhibits a non-
zero voltage as shown in Fig. A·6. Around the critical frequency, the
short time response appears to have some DC offset, which
ultimately settles to no DC offset in the voltage. This transient
response is responsible for the nonlinearity that is shown above.

As mentioned in the introduction, it is commonplace among the
instrument manufacturers to get rid of the some of the signal before
doing the Fourier Transform. The amount of time varies greatly as
the time used by manufacturers to minimize nonlinearity associated
with transients is shown in Table I. This is considered as a protection
against the type of startup-transient as shown around the critical
frequency. In the case of potentiostatic EIS, there is at least one
literature example justifying this practice,13 however, in galvano-
static EIS, as shown by the middle bottom panel, this period needs to
be carefully selected. It is important to note that for the linear
impedance measurement, the effect does not cause any problems for
the selected levels of resistance and capacitance as the fundamental
signal appears to be minimally affected. As can be seen in Fig. A·5,
the fundamental voltage response has about 100 times higher
amplitude than the second, third and fourth harmonics. However,
the nonlinear part of the measurement is significantly affected. To
observe the effect of the number of cycles that are discarded during
measurement, we have adjusted the parameters in our simulation
code. As can be seen in Fig. A·3 in Appendix, measuring without
discarding any cycles with a total of 5 cycles lead to a drastic

increase in harmonic amplitudes. On the other hand, another
scenario was adopted with discarding first 35 cycles of a total of
40 cycles, as seen in the Fig. A·4. Even in this case, the nonlinearity
is still present, though with drastically reduced second, third and
fourth harmonics of below 10−10 V amplitudes. These results
explain why many instrument manufacturers employ different
scenarios for measuring and wisely allow the user to modify these
periods without limits. It is clear that there is no way to completely
get rid of the effect, however, it will get below the noise floor after
waiting long enough.

Conclusions

We have shown that even in the most ideal of cases, galvanostatic
EIS displays non-zero harmonic response in the presence of
capacitors. This is simply from the response of the capacitor to a
current signal that starts being applied after a period of no signal.

This nonlinear response has a decay time of C x Rp only at
frequencies that are around the critical frequency. Proper waiting
period for this effect would be the necessary multiple of this time
constant that pushes this response to below the noise level (i.e., 5 x C
x Rp would be enough to push it below 1%).

Further, issues such as small DC offsets in the applied current,
range and/or filter setting changes are all reasons for concern that
were not discussed within this manuscript. Nonlinear measurements
undoubtedly can provide insightful information; however, they
should always be accompanied by control measurements with a
dummy cell that mimics the impedance characteristics of the cell in
question. Only then, the nonlinear response can be attributed to the
electrochemical processes inside the battery.
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Figure 4. Excitation currents and response voltages of simulated 10 Hz dummy cell. Frequencies are 0.01 Hz, 10 Hz and 1000 Hz respectively.
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Appendix

In the script we were able to add a noise, generated by a NumPy
random function, to get the same result as our measurement. The rest
of the parameters were the same as our measurement.

Further control experiments with a simple resistor and capacitor
are conducted as shown in Fig. A·2. The resistor only shows the
noise floor, whereas the capacitor shows a linearly increasing
nonlinear signal (in the loglog scale) as frequency decreases. In
Fig. A·2, only a resistance and a capacitor measured.

The scenario for Fig. A·3 was analyzing all of the 5 cycles
without discarding any of them. By doing so, it can be deduced that
discarding a portion of the response signal is beneficial.

In Fig. A·4, a total of 30 cycles were simulated and first 25 of
these cycles were discarded. This figure demonstrates the presence
of non-linearity still exist even after 25 cycles.

Figure A·5 is the exact same figure as Fig. 2, only with the
fundamental response is plotted as voltage response instead of
impedance.

Figure A·6 emphasizes the voltage response of pure capacitor,
where a 1 μF capacitor is simulated with 10 μA AC, at 100 Hz and
1000 Hz. Only positive voltage response is observed at high
frequencies.

It is worth investigating the response of the pure capacitor
analytically as well. The voltage across a capacitor can simply be
written as:

∫
= [ · ]V

idt

C
A 1

t

0

Where t is the time, i is the current, V is the voltage and C is the
capacitance. Assuming an applied current waveform is a sinusoidal
current with zero phase shift:

ω= ( ) [ · ]i i tsin A 20

Where i0 is the amplitude and ω is the angular frequency. By
substituting Eqs. A·2 into A·1 and integration, the voltage can be
written as:

ω
ω

= − ( ) + ˆ [ · ]V
i t

C
c

cos
A 30

Where ĉ is the integration constant. Noticing that the voltage is zero
when time is zero, the integration constant can be calculated:

ω
ˆ = [ · ]c

i

C
A 40

Substituting A4 back into A3:

ω
ω ω

= − ( ) + [ · ]V
i t

C

i

C

cos
A 50 0

This equation clearly shows that there is a frequency-dependent
offset which manifests itself as the nonlinearity when the response is
capacitive.

Simulation Code for Randles Cell:
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 2 09:39:50 2021
@author: Burak Ülgüt & Gökberk Katırcı
"""
import numpy as np
import math
import matplotlib.pylab as pylab
import scipy.fftpack

Figure A·1. Modulus Impedance and Non-linear Harmonic Analysis of the voltage response obtained from Galvanostatic-EIS simulations for dummy cells with
characteristic frequencies of 10 Hz and 100 Hz with 0.1% added noise.
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Figure A·2. Modulus Impedance and Non-linear Harmonic Analysis of the voltage response obtained from Galvanostatic-EIS measurements for 1 kΩ resistor
and 100 μF capacitor.

Figure A·3. Simulations for dummy cells without discarding any cycles.
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import random
# Class Definition #########BEGIN##########
class galvanostaticrandles:

def __init__(self,signalfrequency,amplitude,R = 1.0,C = 1.0,Rp
= 10, no_of_periods = 5,pointsperperiod = 128,offsetratio = 0.01,
signaldelayratio = 0.5,noiselevel = 0.01):

Figure A·4. Simulations for dummy cells with discarding 25 cycles of 30 cycles.

Figure A·5. Modulus Impedance and Non-linear Harmonic Analysis of the voltage response obtained from Galvanostatic-EIS measurements for dummy cells
with characteristic frequency of 10 Hz and 100 Hz Harmonics with all Response Voltages
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self.samplingfrequency =
pointsperperiod*signalfrequency#Hz

self.signalfrequency = signalfrequency
offset = offsetratio * amplitude
self.signaldelayratio = signaldelayratio
signaldelay = self.signaldelayratio/signalfrequency#seconds
signallengthtime = 2*signaldelay+no_of_periods/signalfre-

quency
self.time = np.arange(0,signallengthtime,1/self.samplingfre-

quency)
signallengthpoints = len(self.time)
self.signal = np.zeros(int(signallengthpoints))
self.voltage = np.zeros(int(signallengthpoints))
self.capcurrent = np.zeros(int(signallengthpoints))
self.sinebegin = int(signaldelay * self.samplingfrequency)
self.sineend = int((signaldelay+no_of_periods/signalfre-

quency) * self.samplingfrequency)

for i in range(int(signallengthpoints)):
if i > self.sinebegin and i < self.sineend:
self.signal[i] = offset + amplitude*math.sin(2*math.pi*-

signalfrequency*(float(i)/self.samplingfrequency - signaldelay))

charge = 0.0

for i in range (int(signallengthpoints)):
charge = charge + self.capcurrent[i-1]/self.samplingfre-

quency
self.capcurrent[i] = self.signal[i] - charge/(Rp*C)
#print(charge/(Rp*C))
self.voltage[i]= R*self.signal[i]+Rp*(self.signal[i]-self.cap-

current[i])+noiselevel*random.random()

def plottimedomain(self):
pylab.subplot(221)
pylab.scatter(self.time,self.signal,label = ‘Tot. Current’)
pylab.scatter(self.time,self.capcurrent,label = “C Current”)
pylab.scatter(self.time,self.signal-self.capcurrent,label = “Rp

Current”)
pylab.ylabel(“Current”)
pylab.subplot(222)
pylab.scatter(self.time,self.voltage)
pylab.ylabel(“Voltage”)
pylab.xlabel(“Time”)
pylab.subplot(223)
pylab.scatter(self.time[self.sinebegin:self.sineend],self.signal

[self.sinebegin:self.sineend],label = ‘Tot. Current’)
pylab.scatter(self.time[self.sinebegin:self.sineend],self.cap-

current[self.sinebegin:self.sineend],label = “C Current”)
pylab.scatter(self.time[self.sinebegin:self.sineend],self.signal

[self.sinebegin:self.sineend]-self.capcurrent[self.sinebegin:self.si-
neend],label=“Rp Current”)

pylab.ylabel(“Current”)
pylab.subplot(224)
pylab.scatter(self.time[self.sinebegin:self.sineend],self.vol-

tage[self.sinebegin:self.sineend])
pylab.ylabel(“Voltage”)
pylab.xlabel(“Time”)
pylab.show(block = True)
return True
def gettimedomain(self):
return self.time[self.sinebegin:self.sineend],self.signal[self.

sinebegin:self.sineend],self.voltage[self.sinebegin:self.sineend]
def getfreqdomain(self,waitingperiods = 0):

Figure A·6. Simulated voltage response of a pure capacitor.
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begin = int(self.sinebegin + waitingperiods * self.sampling-
frequency/ self.signalfrequency)

length = self.sineend -begin
self.fdomaincurrent = 2*scipy.fft.fft(self.signal[begin:self.si-

neend])[:int(length/2)]/length
self.fdomainvoltage = 2*scipy.fft.fft(self.voltage[begin:self.

sineend])[:int(length/2)]/length
self.freq = scipy.fftpack.fftfreq(int(length),1/self.sampling-

frequency)[:int(length/2)]

return self.freq,self.fdomaincurrent,self.fdomainvoltage
# Class Definition#########END##########
initfreq = 10000.0
finalfreq = 0.01
ptsperdec = 10
no_of_decades = int(abs(math.log10(initfreq/finalfreq)))
ACAmplitude = 0.00001 #in Amps
no_of_periods = 5
WaitingPeriods = 1
freqrange = np.logspace(math.log10(initfreq), math.log10(final-

freq),num=ptsperdec*no_of_decades)
zfund = np.ndarray(shape=len(freqrange),dtype=np.com-

plex128)
vfund = np.zeros(len(freqrange))
vsecond = np.zeros(len(freqrange))
vthird = np.zeros(len(freqrange))
vfourth = np.zeros(len(freqrange))
for freq in freqrange:
simulation = galvanostaticrandles(freq,ACAmplitude,R =

1000.0,C = 0.000001,Rp=10000.0,signaldelayratio=0.0,offse-
tratio=0.00,no_of_periods=no_of_periods,pointsperperiod=8192,
noiselevel=0.000)

f,fdomi,fdomv = simulation.getfreqdomain
(waitingperiods=WaitingPeriods)

position = no_of_periods - WaitingPeriods
freqindex = np.where(freq= =freqrange)[0]
vfund[freqindex] = abs(fdomv[position])
vsecond[freqindex] = abs(fdomv[position+1])
vthird[freqindex] = abs(fdomv[position+2])
vfourth[freqindex] = abs(fdomv[position+3])
zfund[freqindex]=fdomv[position]/fdomi[position]

pylab.subplot(221)
pylab.loglog(freqrange,abs(zfund))
pylab.subplot(222)
pylab.loglog(freqrange,abs(vsecond))
pylab.subplot(223)
pylab.loglog(freqrange,abs(vthird))
pylab.subplot(224)
pylab.loglog(freqrange,abs(vfourth))
pylab.show(True)
Simulation Code for Pure Capacitor:
# -*- coding: utf-8 -*-
‘’‘

Created on Tue Nov 2 09:39:50 2021
@author: Burak Ülgüt & Gökberk Katırcı
‘’‘

import numpy as np
import math
import matplotlib.pylab as pylab
import scipy.fftpack
import random
# Class Definition #########BEGIN##########
class galvanostaticcap:
def __init__(self,signalfrequency,amplitude, C = 1.0, no_of_-

periods=5,pointsperperiod=128,offsetratio=0.01,signaldelayr-
atio=0.5,noiselevel=0.01):

self.samplingfrequency=pointsperperiod*signalfrequency#Hz

self.signalfrequency = signalfrequency
offset = offsetratio * amplitude
self.signaldelayratio = signaldelayratio
signaldelay=self.signaldelayratio/signalfrequency#seconds
signallengthtime=2*signaldelay+no_of_periods/signalfre-

quency
self.time = np.arange(0,signallengthtime,1/self.samplingfre-

quency)
signallengthpoints=len(self.time)
self.signal = np.zeros(int(signallengthpoints))
self.voltage=np.zeros(int(signallengthpoints))
self.sinebegin = int(signaldelay * self.samplingfrequency)
self.sineend = int((signaldelay+no_of_periods/signalfre-

quency) * self.samplingfrequency)

for i in range(int(signallengthpoints)):
if i > self.sinebegin and i < self.sineend:
self.signal[i]=offset + amplitude*math.sin(2*math.pi*-

signalfrequency*(float(i)/self.samplingfrequency - signaldelay))

charge = 0.0
for i in range (int(signallengthpoints)):
charge = charge + self.capcurrent[i-1]/self.samplingfre-

quency
self.voltage[i]= charge/C

def plottimedomain(self):
pylab.subplot(221)
pylab.scatter(self.time,self.signal,label = ‘Tot. Current’)
pylab.ylabel(“Current”)
pylab.subplot(222)
pylab.scatter(self.time,self.voltage)
pylab.ylabel(“Voltage”)
pylab.xlabel(“Time”)
pylab.subplot(223)
pylab.scatter(self.time[self.sinebegin:self.sineend],self.signal

[self.sinebegin:self.sineend],label = ‘Tot. Current’)
pylab.ylabel(“Current”)
pylab.subplot(224)
pylab.scatter(self.time[self.sinebegin:self.sineend],self.vol-

tage[self.sinebegin:self.sineend])
pylab.ylabel(“Voltage”)
pylab.xlabel(“Time”)
pylab.show(block = True)
return True

def gettimedomain(self):
return self.time[self.sinebegin:self.sineend],self.signal[self.

sinebegin:self.sineend],self.voltage[self.sinebegin:self.sineend]

def getfreqdomain(self,waitingperiods = 0):
begin = int(self.sinebegin + waitingperiods * self.sampling-

frequency/ self.signalfrequency)
length = self.sineend -begin
self.fdomaincurrent = 2*scipy.fft.fft(self.signal[begin:self.si-

neend])[:int(length/2)]/length
self.fdomainvoltage = 2*scipy.fft.fft(self.voltage[begin:self.

sineend])[:int(length/2)]/length
self.freq = scipy.fftpack.fftfreq(int(length),1/self.sampling-

frequency)[:int(length/2)]

return self.freq,self.fdomaincurrent,self.fdomainvoltage
# Class Definition#########END##########
initfreq = 10000.0
finalfreq = 0.01
ptsperdec = 10
no_of_decades = int(abs(math.log10(initfreq/finalfreq)))
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ACAmplitude = 0.00001 #in Amps
no_of_periods = 5
WaitingPeriods = 1
freqrange = np.logspace(math.log10(initfreq), math.log10(final-

freq),num = ptsperdec*no_of_decades)
zfund = np.ndarray(shape = len(freqrange),dtype = np.com-

plex128)
vfund = np.zeros(len(freqrange))
vsecond = np.zeros(len(freqrange))
vthird = np.zeros(len(freqrange))
vfourth = np.zeros(len(freqrange))
for freq in freqrange:
simulation = galvanostaticrandles(freq,ACAmplitude, C =

0.000001, signaldelayratio = 0.0,offsetratio = 0.00,no_of_periods
= no_of_periods,pointsperperiod = 8192,noiselevel = 0.000)

f,fdomi,fdomv = simulation.getfreqdomain(waitingperiods =
WaitingPeriods)

position = no_of_periods - WaitingPeriods
freqindex = np.where(freq==freqrange)[0]
vfund[freqindex] = abs(fdomv[position])
vsecond[freqindex] = abs(fdomv[position+1])
vthird[freqindex] = abs(fdomv[position+2])
vfourth[freqindex] = abs(fdomv[position+3])
zfund[freqindex] = fdomv[position]/fdomi[position]

pylab.subplot(221)
pylab.loglog(freqrange,abs(zfund))
pylab.subplot(222)
pylab.loglog(freqrange,abs(vsecond))
pylab.subplot(223)
pylab.loglog(freqrange,abs(vthird))
pylab.subplot(224)
pylab.loglog(freqrange,abs(vfourth))
pylab.show(True)
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