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ABSTRACT

PERFORMANCE IMPROVEMENT ON
LATENCY-BOUND PARALLEL HPC APPLICATIONS
BY MESSAGE SHARING BETWEEN PROCESSORS

Mustafa Duymuş

M.S. in Computer Engineering

Advisor: Cevdet Aykanat

February 2021

The performance of paralellized High Performance Computing (HPC) applica-

tions is tied to the efficiency of the underlying processor-to-processor commu-

nication. In latency-bound applications, the performance runs into bottleneck

by the processor that is sending the maximum number of messages to the other

processors. To reduce the latency overhead, we propose a two-phase message-

sharing-based algorithm, where the bottleneck processor (the processor sending

the maximum number of messages) is paired with another processor. In the first

phase, the bottleneck processor is paired with the processor that has the maxi-

mum number of common outgoing messages. In the second phase, the bottleneck

processor is paired with the processor that has the minimum number of outgo-

ing messages. In both phases, the processor pair share the common outgoing

messages between them, reducing their total number of outgoing messages, but

especially the number of outgoing messages of the bottleneck processor. We use

Sparse Matrix-Vector Multiplication as the kernel application and a 512-processor

setting for the experiments. The proposed message-sharing algorithm achieves a

reduction of 84% in the number of messages sent by the bottleneck processor and

a reduction of 60% in the total number of messages in the system.

Keywords: High Performance Computing, Parallel applications, MPI, Store-and-

Forward Algorithms.
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ÖZET

GECİKİM-LİMİTLİ PARALEL UYGULAMALARDA
İŞLEMCİLER ARASI MESAJ PAYLAŞIM

YÖNTEMİYLE PERFORMANS İYİLEŞTİRME

Mustafa Duymuş

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Cevdet Aykanat

February 2021

Paralelleştirilmiş Yüksek Performanslı Hesaplama (HPC) uygulamalarının

başarımı, arka plandaki işlemci-işlemci iletişiminin verimliliğine bağlıdır.

Gecikim-darboğazlı uygulamalarda performans, en fazla mesaj gönderen işlemci

tarafından limitlenir. Gecikim ek yükünü düşürmek için en fazla mesaj gönderen

işlemcinin başka bir işlemci ile eşlendiği iki-fazlı mesaj-paylaşma-temelli bir algo-

ritma önermekteyiz. Birinci fazda, en fazla mesaj gönderen işlemci, sistemdeki

diğer işlemciler içerisinden en fazla ortak giden mesaja sahip olduğu işlemci ile

eşlenir. İkinci fazda ise, en fazla mesaj gönderen işlemci, en az mesaj gönderen

işlemci ile eşlenir. Her iki fazda da eşlenen işlemciler, ortak giden mesajları ar-

alarında paylaşarak mesaj sayılarını düşürmektedir. Bu, özellikle de en fazla

mesaj gönderen işlemcinin gönderdiği mesaj sayısını düşürmektedir. Çekirdek

işlem olarak seyrek matris-vektör çarpımı kullanılmış ve testler 512 işlemcili bir

sistemde yapılmıştır. Önerilen mesaj-paylaşma-temelli algoritma en fazla mesaj

gönderen işlemcinin gönderdiği mesaj sayısında %84, sistemdeki toplam mesaj

sayısında %60 düşüşe imkan tanımıştır.

Anahtar sözcükler : Yüksek Performanslı Hesaplama, Paralel Uygulamalar, MPI,

Sakla-ve-yönlendir Algoritmaları.
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Chapter 1

Introduction

High performance computing (HPC) has become more widely used with the in-

crease in the number of applications that benefit from HPC, such as deep learning,

machine learning, neural networks and scientific computing. To achieve the de-

sired computational power, HPC systems utilize parallel computing. In parallel

computing, the workload of the application is shared among different processors

in a multi-processor system. The computational success of the applications are

closely tied with the success of underlying parallel performance.

On distributed-memory systems, a processor might need to access data stored on

another processor and the intermediate result produced by it. The performance

of a parallel application depends on the communication between processors and

can be analyzed using two metrics: latency cost and bandwidth cost. Latency

cost is related to the number of messages in the system and it runs into bottleneck

by the processor that is sending the most number of messages. Bandwidth cost is

related to the volume of the messages and it runs into bottleneck by the processor

that has the largest total outgoing message volume.

For data exchange and processor communication, Message Passing Interface

(MPI) is widely used in HPC applications [1, 2]. The most basic communica-

tions scheme in MPI is point-to-point communication involving two processors;
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a sender processor and a receiver processor. MPI also provides collective op-

erations that perform one-to-many or many-to-many type of communications,

such as broadcast, allgather, alltoall and allreduce. Furthermore, neighborhood

collective operations are included in MPI standard, in which processors mostly

communicate with a certain set of other processors referred as neighbors.

In this thesis, we propose a two-phase algorithm to utilize the common outgoing

messages of the individual processors in order to reduce the latency cost of a

given parallel application. Here and hereafter, in a given task partition, we will

refer to the processor that sends the maximum number of messages as the ”bot-

tleneck” processor. We will also refer the number of messages sent by a processor

as the message load (or simply load) of that processor and the message load of the

bottleneck processor as the maximum message load of the parallel system. Since

the communication performance in a latency-bound parallel application is deter-

mined by the maximum message load, reducing the number of messages sent by

the bottleneck processor will improve the overall performance of the application.

In order to reduce the maximum message load, we propose an algorithm based

on sharing common outgoing messages within a processor pair.

The outline of the proposed two-phase algorithm can be summarized as follows:

In the first phase, the bottleneck processor is paired with another, less loaded

processor to share some of its common outgoing messages with its paired proces-

sor. The pairing processor of the bottleneck processor will be chosen according

to the number of common outgoing messages between them and the reduction of

the load will increase linearly with the number of common outgoing messages. In

the second phase, instead of number of the common outgoing messages, we use

the message load as the criteria for pairing. In this phase, the maximally-loaded

processor (bottleneck processor) is paired with the minimally-loaded processor,

which is the processor that has the least number of outgoing messages. In this

way, we aim to achieve a balance on processors’ message loads and an overall

decrease in latency.

The rest of this thesis is organized as follows: In Chapter 2, background informa-

tion and terminology are given. Related work and literature review are presented
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in Chapter 3. In Chapters 4 and 5, first and second phases of the proposed algo-

rithm are explained respectively. Experimental results and analysis are given in

Chapter 6. Finally, a conclusion is provided in Chapter 7.
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Chapter 2

Background

2.1 Sparse Matrix-Vector Multiplication

In this thesis, as a kernel application, column-parallel Sparse Matrix-Vector Mul-

tiplication (SpMV) is used. The term sparse matrix is used when the ratio of

nonzeros to the total size of the matrix is very small, and especially much smaller

than the ratio of zeros to the total size of the matrix. During SpMV applications,

only the nonzeros of the sparse matrix will be multiplied with the corresponding

element on the vector, since zeros will not add to the total of the multiplied row.

On distributed-memory systems, for column-parallel SpMV, nonzeros of the

sparse matrix are partitioned among different processor based on their columns.

A sample 4-way partitioning of 8×8 A matrix on four processors is given in Figure

2.1. In the figure, multiplication of y = Ax is shown and the nonzeros in matrix

A are indicated by ai,j. Each of the four different processors stores the data of

nonzeros of two columns of A. Processors perform all computations associated

with the nonzeros assigned to them according to owner computes rule. Also each

processor is responsible for computing the results for two y-vector elements. The

colors represent the y-vector elements which are calculated by each processor: red

for P1, yellow for P2, blue for P3 and green for P4. x-vector elements are colored
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in a similar way assuming a conformable input output partition. That is xi and

yi are assigned to the same processor.

Figure 2.1: Column-parallel SpMV example for y = Ax on four processor system
where A is a 8× 8 square matrix.

Because of the columnwise partitioning, each processor already owns x-vector

elements that are needed for its local computations. So there is no communication

on x-vector elements. However, reduce type of communication might be needed in

the final computation on some of the y-vector elements. For example, P1 and P3

compute local partial results for y6 by respectively performing the scalar multiply-

add operations y16 = a6,1 × x1 + a6,2 × x2 and y36 = a6,5 × x5 + a6,6 × x6. Since

y6 is assigned to P3, processor P1 will send y16 to processor P3 for computing the

final result y6 = y16 + y36. On the other hand, computation of y1, y2, y5, y7 and y8

do not incur any communication since all nonzeros of respective rows are already

assigned to the processor which is held responsible for computing the respective

y element.

This initial partitioning is done using PaToH (Partitioning Tool for Hypergraphs),

which is a tool developed by Çatalyürek and Aykanat, as a preprocessing step

for our work [3]. With the usage of PaToH, the initial partitioning is optimized.
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2.2 Communication Matrix and Compressed

Row Storage Format

As the result of the communication mentioned in the previous section, a commu-

nication matrix is obtained. The input of our algorithm presented in this thesis

is the communication matrix. This is a square matrix that has the same size

with the number of processors in the system. Each entry in the matrix represents

the volume of communication from one processor to another. Assume that the

communication matrix is shown with B. If entry bij = v, then the volume of

communication from processor i to processor j is v. Note that the number of

messages from processor i to processor j is 0 if Bij = 0, and is 1 otherwise.

The communication matrix for a SpMV application itself may also be a sparse

matrix. Since our input is the communication matrix and we need to perform

retrieve operations frequently, an efficient way to store the communication matrix

must be implemented. There are various storage methods proposed for efficiently

storing sparse matrices and Compressed Row Storage (CRS) is the one we used

in this work.

In CRS format, three arrays are needed to store the matrix;

• An array to store all nonzeros in the sparse matrix in row-major order

• An array to store column index of each nonzero

• A pointer array which stores starting index of each row

Note that the third array allows access for both the starting and the ending index

for each row. The starting index for processor i is just one more than the ending

index for processor i− 1. In our algorithm, the first array represents the volume

of messages and the second array corresponds to the receiver processors of the

messages.
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B =


0 2 0 0

5 0 0 3

1 0 0 6

0 0 2 0


For the B matrix given above, corresponding CRS format storage will be as

following;

Value array 2 5 3 1 6 2

Column index array 2 1 4 1 4 3

Pointer array 0 1 3 5 6

Figure 2.2: CRS storage format for matrix M

Here second entry in pointer array shows that the nonzeros of the second row

start at index 1 of the other arrays. When that index is checked, column index

of 1 and the value of 5 is observed. This indicates that entry B2,1 = 5.

The efficiency of CRS format depends on the ratio of nonzeros. Sizes of the first

two arrays are equal to the number of nonzeros in the matrix and the size of

the third array is equal to the number of processors plus one. That extra space

allows keeping track of the ending index of the last element. Compared to the

default storage format, which requires n2 space for a system with n processors,

CRS format only requires 2 ·nonzeros+n+ 1 space. Since the ratio of
nonzeros

n
is assumed to be very small in sparse matrices, CRS storage format is efficient.

2.3 Terminology and Problem Statement

In point-to-point communication, each processor has a set of processors that it

is sending messages to. Assuming that the communication matrix is stored in

CRS format, this set can be obtained using the pointer array to obtain a range

on the column index array. All elements in this range are the target processors.

For processor i, this range is from the ith element of the pointer array to the
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(i+ 1)th element of the pointer array, exclusive. The entries falling in this range

in the column index array show the target processors for processor i and the set

containing these processors is denoted as SendSet(i).

With the definition of outgoing message set given above, another important aspect

is the size of this set. The size of set SendSet(i) is shown as |SendSet(i)| or

shortly |SS(i)| and defined as the number of outgoing messages of processor i.

Until now, the communication term is used only for direct communication and a

message from processor i to processor j is shown as mi,j. However, our algorithm

results in indirect messages that is sent to the target processor via an intermediate

processor. In these cases, m is used to indicate the direct message between two

processors as mentioned and M is used to indicate a combined message, which

contains one or more direct messages.

Figure 2.3: An example to denote the difference between direct message m and
combined message M .

In Figure 2.3, an example is given for a system with five processors. In this

example, only processors P1 and P3 are sending messages and their send sets are

SendSet(P1) = {P2, P3, P4}, SendSet(P3) = {P4, P5} as shown on the left side

of the figure. Messages m1,2 and m3,5 are sent directly. However, message m1,4

is combined with m1,3 and encapsulated in M1,3. The combined message can be

denoted as M1,3 = {m1,3,m1,4}. On the right side of the figure this is shown where

8



blue arrows denote direct messages and red arrows denote combined messages.

When the combined message M1,3 is received by processor P3, message m1,3 is

arrived its target, but message m1,4 must be sent to processor P4. Here it is

combined with message m3,4 as M3,4 = {m1,4,m3,4}. In this thesis, we call this

process as message sharing from processor P1 to processor P3 and the shared

message is m1,4. Note that combining messages does not increase the number

of messages sent by a processor, however it increases the total volume sent by a

processor.

In this work, we aim to decrease latency through message combining and sharing.

Our main target is reducing the number of messages sent by the maximally-loaded

processor, since it is the bottleneck in latency-bound applications. The input

of our algorithm is a processor-to-processor communication matrix and we try

to achieve the reduction in latency by reorganizing the communication between

processors.
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Chapter 3

Related Work

3.1 Reducing Communication Overhead and

Communication Cost Metrics

In parallel applications, the overhead resulting from communication between pro-

cessors is a bound on the performance. There are numerous works in the litera-

ture, aiming an improvement on processor-to-processor communication overhead.

Some of these works include partitioning models and most of these models also

aim to maintain the computational load balancing while reducing the overhead

[4, 5, 6, 7].

In these works, different communication cost metrics are considered. Uçar and

Aykanat [5] used a two-phase methodology involving hypergraph partitioning to

address the communication cost metrics of total volume, total message count

and maximum volume. Bisseling and Meesen [6] proposed a greedy algorithm

to minimize the maximum send and receive volume loads of processors. Their

approach is also a two-phase approach, where in the first phase they reduce

total volume and in the second they reduce maximum volume while respecting

the volume attained in the first phase. Acer et al. [7] investigates graph and

hypergraph partitioning methods to address volume-related communication cost
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metrics. Their approach relies on the recursive bipartitioning framework and uses

a flexible formulation based on utilization of additional weights for vertices to

address cost metrics such as maximum send volume, maximum receive volume,

maximum sum of send and receive volume etc. In our work, we consider the

maximum number of messages sent by a processor and the average number of

messages per processor in the system as communication cost metrics.

3.2 Using Neighborhood Collectives

There are also various works using the sparse neighborhood collective opera-

tions [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Sparse collective operations first pro-

posed by Hoefler and Träff [11]. They define three sparse collective operations:

sparse gather operation, sparse all-to-all operation and sparse reduction opera-

tion. Later, MPI Forum simplified and renamed these operations as neighborhood

collective operations [12]. Hoefler and Schneider proposed further improvements

and optimizations for neighborhood collective operations [12].

Träff et. al. proposed an efficient way to implement sparse collective communica-

tions on isomorphic settings [8]. Their proposed approach allows faster setup

times if the processes are assumed to have identical, relative neighborhoods.

Renggli et. al. used the sparse communications to propose an efficient framework

for distributed machine learning applications [10].

Message-combining algorithms are first proposed by Träff et. al. [13]. However,

their work focuses only on isomorphic communication patterns. Further improve-

ments and generalizations are done by Ghazimirsaeed et. al. [14]. The authors

propose a framework to reduce the total number of messages in the system by

exploiting the common messages between processors. This is very similar to our

work, however Ghazimirsaeed et. al. fixes the number of processors in a group

during message sharing. For example, if that fixed number is chosen as four, there

would be four processors in every group and each processor shares messages with

other group members. In our work, we remove this constraint.
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3.3 Store-and-Forward Framework

A recent work by Selvitopi and Aykanat proposed a store-and-forward (STFW)

approach for reducing the latency [4]. In this work, the processors are organized

into a virtual process topology (VPT) inspired by the k-ary n-cube networks. In

an n-dimensional VPT, each processor has n value representing its coordinate in

each dimension and two processors are called as neighbors if they share the same

coordinates in all dimensions except one. So, processors Pi and Pj are called

neighbors in dimension d if;

(P d
i 6= P d

j ) ∧ (P c
i = P c

j , 1 ≤ c 6= d ≤ n)

In a VPT, direct communication between neighbors is allowed. However, a pro-

cessor might be sending messages to another processor, which is not its neighbor.

In these cases the message must be stored in an intermediate processor and for-

warded to the target processor. An example for this is given in Figure 3.1, for a

2-dimensional VPT that has 9 processors. In the figure two messages are shown:

mP1,P3 and mP1,P9 . The message mP1,P3 can be sent in a direct communication

since P1 and P3 are neighbors. However, same can not be applied for the message

mP1,P9 . Instead, this message can only be sent via an intermediate processor, P7.

In this example, the message is stored in P7 and then forwarded.

This work by Selvitopi and Aykanat achieved a reduction in both the number

of outgoing messages sent by the maximally-loaded processor and the average

number of messages sent by a processor in the system, at the expanse of average

message volume sent by a processor. However, in latency-bound applications,

the message volume is not a major concern. In our work, we take this work of

Selvitopi and Aykanat as baseline. In Chapter 6, we used same data sets and

compared our results with this work.
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Figure 3.1: A 2-dimensional VPT example for 9 processors. Message mP1,P3 is
shown with blue arrow and message mP1,P9 is shown with red arrow.
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Chapter 4

Message Sharing Utilizing the

Common Outgoing Messages

In this chapter, we provide a detailed message-sharing-based algorithm that re-

duces the number of messages sent by the maximally-loaded processor. In a single

iteration, we pair the maximally-loaded processor with another processor in order

to reduce the number of outgoing messages of the maximally-loaded processor.

We call this process as message sharing. In the next iteration, a new maximally-

loaded processor (which may be same with the previous one) is again paired with

another processor. This iterative approach will continue until there is no decrease

in the number of outgoing messages of the maximally-loaded processor despite

the message sharing. Eventually, the message load of the maximally-loaded pro-

cessor in the system will be decreased, resulting in an improvement in latency

bottleneck.

The rest of this chapter is organized as follows: in Section 4.1 general message

sharing scheme between two processors is given. In Section 4.2, this general

scheme is specified for the maximally-loaded processor. Lastly, in Section 4.3 the

iterative nature of the algorithm is discussed along with the data structure and

future changes as the message sharings occur.
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4.1 Sharing of Common Messages

In this section, we define the general message sharing scheme by exploiting the

common outgoing messages. Assume that the message sharing will occur between

processors Pa and Pb, and their outgoing message sets are defined by SendSet(Pa)

and SendSet(Pb) respectively. We refer them as pair processors. In order to

reduce either |SS(Pa)| or |SS(Pb)| (or both), we exploit their common outgoing

message set C, where C = SendSet(Pa)∩ SendSet(Pb) and the size of this set is

|SS(C)|. The aim of message sharing is creating new send sets SendSet′(Pa) and

SendSet′(Pb) where each processor in common outgoing message set C is present

in either SendSet′(Pa) or SendSet′(Pb). This means;

∀Px ∈ C : (Px ∈ SendSet′(Pa) ∧ Px /∈ SendSet′(Pb)) ∨ (Px /∈
SendSet′(Pa) ∧ Px ∈ SendSet′(Pb))

must be true. In other words, after message sharing, only one of the pair proces-

sors will be sending a message to each processor in set C.

As an example; consider Pt ∈ SendSet(Pa)∧Pt ∈ SendSet(Pb), which also means

Pt ∈ C. After message sharing Pt will be either in SendSet′(Pa) or SendSet′(Pb),

but not both. Lets assume Pt ∈ SendSet′(Pa), so the messages to processor Pt

will be sent by processor Pa. Here, processor Pb will send its own message mPb,Pt

to Pa so that it can be combined with processor Pa’s original message mPa,Pt . Now

the combined message MPa,Pt = {mPa,Pt ,mPb,Pt} can be sent by processor Pa to

processor Pt. Here Pa acted as the intermediate processor for the communication

from Pb to Pt. In this given message sharing example, |SS(Pb)| is reduced by

one. It must be noted that if Pa /∈ SendSet(Pb), then Pa must be included in

SendSet′(Pb) resulting in an increase of one in |SS(Pb)|. However, this overhead

will be ignored since the pair processors will be sharing more than one message.

Further experiments and analysis prove that this overhead is, in fact, relatively

small. This will be addressed in Chapter 6 (see Table 6.5).

A more comprehensive example can be seen in Figure 4.1 and 4.2. In Figure 4.1,
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Figure 4.1: A communication example where |P1| = |P2| = 6 and SendSet(P1) =
SendSet(P2)

two processors with exactly same outgoing message sets are shown. Outgoing

messages of P1 are shown with red arrows and outgoing messages of P1 are shown

with blue arrows. After message sharing, it is enough for both processors to send

only half of their original outgoing messages, and share the remaining ones with

their pair.

This is shown in Figure 4.2, where P1 sends messages of P2 along with its own

messages to the upper half of the receiving processor in the figure. Here the

red arrows also contain the messages of P2 which were supposed to be sent to

those processor in the upper half. P1 acts as an intermediate processor for these

messages of P2. Note that although the processors share three of their messages

with each other, the reduction in their send set size is in fact two, with the

addition of the overhead resulting from sending messages to each other.
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Figure 4.2: Resulting communication of Figure 4.1 after message sharing

4.2 Message Sharing for the Maximally-Loaded

Processor

In our algorithm, message sharing is mainly used for reducing the message load

of the maximally-loaded processor. We will refer to this processor as Pmax. For

this purpose an iterative method is applied, where at each step, Pmax is paired

with another processor, Pfriend. They will share their messages as explained in

section 4.1. After the message sharing, |SS(Pmax)| will be reduced as some of its

outgoing messages will be sent via Pfriend, and a new Pmax will be chosen (which

might still be the same processor). The processor Pfriend will be chosen among

the other processors in the system based on the criteria of number of its common

messages with Pmax.

Consider a set of processors P , where:
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Pmax ∈ P : |SS(Pmax)| ≥ |SS(Pi)|,∀Pi ∈ P

The pair processor for Pmax, Pfriend, will be chosen as:

Pfriend ∈ (P − Pmax) : |SendSet(Pfriend) ∩ SendSet(Pmax)| ≥
|SendSet(Pi) ∩ SendSet(Pmax)|,∀Pi ∈ (P − Pmax)

At each iteration of our algorithm, Pmax and Pmin are chosen according to above

criteria. This choice of Pfriend results in the most possible send set size decrease

in the system, since the decrease in |SS(Pmax)| + |SS(Pfriend)| will be equal to

|SendSet(Pfriend) ∩ SendSet(Pmax)| and our choice maximizes it. It must be

noted that the choice of Pfriend may not result in the most possible reduction for

the current Pmax. However, since our method is an iterative one, future steps

(i.e. future maximally-loaded processors) must be also considered and if needed,

|SS(Pfriend)| should also be reduced.

To achieve the best results, our algorithm aims to assign the shared messages

in such a way that |SS(Pmax)|′ = |SS(Pfriend)|′ is achieved at the end of the

sharing, where |SS(Pmax)|′ represents the size of SendSet′(Pmax). This might

not be possible and the alternatives is discussed in the following subsections.

4.2.1 Equal Sharing not Possible

During message sharing, send set sizes are always decreasing and the main aim

is decreasing the send set size of maximally-loaded processor, Pmax. However,

as explained in section 4.2, our algorithm also decreases the send set size of

pair processor of Pmax, Pfriend, if opportunity arises. On the other hand, if the

difference between send set sizes of Pmax and Pfriend is large enough, our algorithm

ignores |SS(Pfriend)| and solely tries to decrease |SS(Pmax)|.

In order to decide this, the set of common outgoing messages, C =

SendSet(Pfriend) ∩ SendSet(Pmax), must be defined. The size of this set is
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|SS(C)|. If |SS(Pmax)| > |SS(Pfriend)|+ |SS(C)|, then it can be inferred that it

is not possible to achieve equality by message sharing. The reason is that the de-

crease in |SS(Pmax)| may be as much as the size of common outgoing message set

(ignoring the possible overhead of one if Pfriend /∈ SendSet(Pmax)). As a result,

even if Pmax shares all of the common messages, |SS(Pmax)|′ > |SS(Pfriend)|′

will be true. Still, the algorithm follows this approach, since it is clear that

|SS(Pfriend)| is not a concern for this iteration. So for this case, Pmax will remove

all of the messages in C from its send set and the resulting send sets will be;

SendSet′(Pfriend) = SendSet(Pfriend) and

SendSet′(Pmax) = SendSet(Pmax)− C

This results in;

|SS(Pfriend)|′ = |SS(Pfriend)| and |SS(Pmax)|′ = |SS(Pmax)| − |SS(C)|

4.2.2 Equal Sharing Possible

For the sharing scheme explained in the previous subsection, required condition

is |SS(Pmax)| > |SS(Pfriend)| + |SS(C)|. If the condition is not satisfied, then

this sharing scheme will result in |SS(Pfriend)|′ > |SS(Pmax)|′. So, contrary to

previous scheme, assigning all of the common messages to |SS(Pfriend)| will not

be efficient in this case, since |SS(Pfriend)| might be very close |SS(Pmax)|. In

fact, even the case |SS(Pfriend)| = |SS(Pmax)| is not infrequent in our experi-

ments. Since, |SS(Pfriend)| might be large as well, the aim for this case is making

|SS(Pmax)|′ and |SS(Pfriend)|′ equal after the message sharing. This can be done

by assigning α of the common messages to |SS(Pfriend)| where;

α =
|SS(C)|+ |SS(Pmax)| − |SS(Pfriend)|

2
(4.1)
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Here α also donates the amount of reduction in |SS(Pmax)|, i.e. |SS(Pmax)|′ =

|SS(Pmax)| − α.

As a result, Pfriend will share |SS(C)| − α number of its messages to Pmax, thus

|SS(Pfriend)|′ = |SS(Pfriend)|−|SS(C)|+α. Note that if |SS(C)|+ |SS(Pmax)|−
|SS(Pfriend)| is even, then |SS(Pfriend)|′ = |SS(Pmax)|′ is obtained. In the cases

where |SS(C)| + |SS(Pmax)| − |SS(Pfriend)| is odd, it is rounded down when

dividing by two. This results in |SS(Pmax)| = |SS(Pfriend)|+ 1 after the sharing.

To further clarify the methodology explained, we provide an example. Con-

sider a scenario where |SS(Pmax)| = 100 and |SS(Pfriend)| = 80. If the size

of their common outgoing message set C is equal to 10, then |SS(Pmax)| >
|SS(Pfriend)|+ |SS(C)| and equal sharing is not possible. So Pmax will share all

of these ten messages with Pfriend and reduce its send set size by ten, resulting

in |SS(Pmax)|′ = 90 and |SS(Pfriend)|′ = 80 (since Pfriend does not share any

message, its send set size is not changed). However, if |SS(C)| = 40, then equal

sharing is possible. According to Equation 4.1, α = 30 is obtained. This indicates

that thirty messages should be shared from Pmax to Pfriend and remaining ten

messages in common outgoing set should be shared from Pfriend to Pmax. The

resulting send set sizes will be |SS(Pmax)| = |SS(Pfriend)| = 70.

4.3 Multiple Message Sharings and Grouping

In the previous section, a general message sharing scheme is proposed and ex-

plained. Our algorithm iteratively uses this scheme to reduce the message load

of maximally-loaded processor (Pmax). The iterations will continue until there is

no further decrease in the message load of the maximally-loaded processor. This

stopping condition will be triggered when the same processor is chosen as Pmax in

two consecutive iterations with the same |SS(Pmax)|. The reason for this is the

overhead that occurs during message sharing if the paired processor Pfriend is not

included in SendSet(Pmax). This overhead creates one extra message for Pmax

and if the message sharing does not result in a further reduction, it increases the
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load instead of decreasing it. It must also be noted that if the algorithm continues

at this point there is a possibility to reduce the load of other processors in the

system. However, since the latency runs into bottleneck by the maximally-loaded

processor there is no need to continue unless the load of the maximally-loaded

processor is decreased.

It is also possible that the same processor might become the maximally-loaded

processor or pair of another maximally-loaded processor multiple times, with

different send set sizes. In these cases, the processor’s original send set and the

actual send set usually differ. It might have shared some of its original outgoing

messages in the previous iterations and removed them from its send set, thus

decreasing the actual send set size.

To handle this situation, we propose an algorithm that always uses the initial send

sets for each processor in a static way. Although the send sets are updated at each

iteration, the number of common outgoing messages between two processors and

the pairings are decided according to the initial send set. Yet, the send set size for

each processor is kept dynamically for deciding the maximally-loaded processor.

The reason for keeping and using a static list for initial send sets is that; if two

processor have a common outgoing message, although one of them removed that

message from its send set in a previous iteration, that message can still be shared

between these processors. Consider that Pa and Pb are paired and they both send

a message to Pz. Also consider that in a previous iteration Pa was paired and

shared messages with Pc, such that Pz ∈ SendSet′(Pc)∧Pz /∈ SendSet′(Pa). This

means that the message mPa,Pz will be sent to Pz in combined message MPc,PZ
.

Our algorithm allows Pa to share the message mPa,Pz with Pb in current iteration.

This will result in,

Pz ∈ SendSet′(Pb) ∧ Pz /∈ SendSet′(Pa) ∧ Pz /∈ SendSet′(Pc)

However, it must not considered as the message mPa,Pz is transferred from Pa to

Pc, and then from Pc to Pb. No message transfer is made until our algorithm

fully finishes. So the message mPa,Pz will be transferred to Pb, which will send
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the message to Pz in combined message MPb,Pz .

Algorithm 1 Iterative Message Sharing for Latency Reduction

Require: A set of n processors and their outgoing message sizes in array
outgoingSize

1: prevMax = −1, prevMaxSize = −1
2: max = 0, Pmax = 0
3: while (prevMax 6= Pmax) ∨ (prevMaxSize 6= outgoingSize[Pmax]) do
4: for i← 0 to n do
5: if outgoingSize[i] > max then
5: max← outgoingSize[i]
5: Pmax ← i
6: end if
7: end for
8: prevMax← Pmax, prevMaxSize← outgoingSize[Pmax]
9: Find Pfriend that has the most common outgoing messages with Pmax

10: Share messages between Pfriend and Pmax

11: Update outgoingSize[Pmax] and outgoingSize[Pfriend]
12: end while

Algorithm 1 provides the general outline of Phase I of our algorithm. The vari-

ables prevMax and prevMaxSize is used to determine the stopping condition.

When the maximally-loaded processor and its send set size remain same as the

previous iteration, then it is obvious that the algorithm can not further reduce

the number of outgoing messages of the maximally-loaded processor. This also

indicates that the latency can not be further reduced and the first phase of our

algorithm ends.

The loop in Line 3 to 7 is used for finding the maximally-loaded processor. Here a

linear runtime approach is used, since n, the number of processors in the system,

is not likely to be large. After finding the maximally-loaded processor, in Line

8 the variables are recorded for detecting the stopping condition as mentioned.

After finding the maximally-loaded processor, a pair processor for it must be

found as well. This is indicated in Line 9 and the details for this process is given

in the next subsection. Lastly, after message sharing |SS(Pmax)| and possibly

|SS(Pfriend)| are decreased. The update in Line 11 allows the algorithm to use

their actual send set sizes when determining the maximally-loaded processor in

future iterations.
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4.3.1 Storing the Send Sets and the Data Structures

Our algorithm takes the processor-to-processor communication matrix of the ap-

plication as input and uses CRS format to store that matrix since the it is expected

to be a sparse matrix. The processors referred as integers ranging from 0 to n−1,

where n is the number of processors the parallel application uses. Here, processor

0 and P0 used interchangeably. Each processors outgoing message list is stored in

ascending order. This allows easier implementation and runtime efficiency during

both finding the number of common messages and message sharing between two

processor.

An example for n = 4 is given in Figure 4.3. In the figure, the array adja-

cency represents the column indices (explained in Section 2.2) in CRS format

of the processor-to-processor communication matrix and the array adjacencyPtr

represents the pointers showing the starting point of each processors outgoing

message set. The value array in CRS format contains the volume of communi-

cation between processor and is omitted in this part, since the volume is not a

major concern in our work. It must be noted that the example is given as a

dense communication matrix due to the small choice of n. This kind of a dense

communication matrix is unexpected in real applications.

Figure 4.3: Example for storing communication matrix in CRS format with n = 4

The ascending order of outgoing message set allows easier calculation of the num-

ber of common messages a pair of processors have. Here we use a mergesort-like

comparison, starting from the elements the pointers corresponding to the com-

pared processors show and moving to the subsequent element of the lower element

if they are not equal.
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As an example consider the comparison between processor P0 and processor P3,

shown with yellow and green colors respectively in the Figure 4.3. The outgoing

message sets are SendSet(P0) = P1, P2, P3 and SendSet(P3) = P0, P1, P2. Initial

comparison is between the first elements of the sets; P1 and P0 respectively. By

the ordering of the corresponding integer, it can be said that P0 comes before P1.

Since here P0 ∈ SendSet(P3), the next element in SendSet(P3) must be taken

to the comparison now. The next element is P1, which is same as the current

element from SendSet(P0). This indicates that there is a common outgoing

message of P0 and P3, and target of those messages are P1. Now the comparison

should continue with the next elements of both sets and the number of common

outgoing messages for this pair should be incremented by one. A full example

of this comparison in given in Figure 4.4. In the figure, finding the number of

common outgoing messages of P0 and P3 is given, whose outgoing message sets

are shown with yellow and green respectively. Red pointer is used for tracing the

list of P0 and blue pointer is used for tracing the list of P3. The rightmost integer

denotes the detected number of common outgoing messages up to that step.

As can be seen from the example, once the communication matrix is compressed

in CRS format and the outgoing message sets are stored in order, number of com-

mon outgoing messages between two processors can be calculated in linear-time

with the number of the nonzeros in the communication matrix. Since this opera-

tion is used frequently in our algorithm, its running time efficiency is important.

Note that this storage format is static and only stores the initial state of the

communication matrix, ignoring the changes occurring to the matrix as a result

of message sharings.

In order to keep track of the sharings, we use another parallel array denoted as

sender, that has the same size as the adjacency array mentioned in Figure 4.3. It

must be noted that the size of the array adjacency is equal to the total number

of messages in the system and each element in this array represent one message.

This newly defined sender array keeps track of which processor will be sending

which message. There will be an element corresponding to every single message

in this array. In Figure 4.5, an updated version of Figure 4.3 is shown, with the

addition of the initial state of sender array.
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Figure 4.4: Step by step example of finding the number of common outgoing
messages of a pair of processors.

Combined with adjacency and adjacencyPtr arrays, sender array provides infor-

mation about the communication in the system. For an integer x, adjacency[x]

denotes the target processor of a message. The entry in sender[x] denotes the

processor sending this message. However, this might not be the original sender.

The original sender is processor Pi that is satisfying;

(adjacencyP tr[i] ≤ x) ∧ (adjacencyP tr[i+ 1] > x)

Assume that adjacency[x] = k and sender[x] = j. This indicates that the mes-

sage mentioned here is mPi,Pk
and the processor Pj acts as the intermediate

processor for this message. Eventually this message will be sent to the target

processor Pk by the combined message MPj ,Pk
.
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Figure 4.5: Updated version of Figure 4.1, including sender array

4.3.2 Groupings

As shown in previous sections, it is necessary to identify the situation of proces-

sors when they are paired. The key point here is determining whether a processor

was paired with another processor in a previous iteration or not. We call those

processors who has not been paired with another processor as singleton proces-

sors. The importance of identifying whether the processor is singleton or not is

that; if the processor is not singleton, then it might need to share some of the

messages it shared in previous iterations, as explained in Section 4.3. This arises

the need to keep the information about previous sharings and a possibility to

change the intermediate processor for a message if needed. There are four differ-

ent cases our algorithm needs to handle, depending on the singleton situation of

the pair processors;

Case 1: Singleton to Singleton

The most trivial and the basic case to handle is when both processors in the

pairing are singleton. For this case, the message sharing scheme explained in

Section 4.2 is directly applied.

Algorithm 2 demonstrates the process of Singleton to Singleton message sharing.

As an input it takes the processor pair Pmax and Pfriend with their send sets

SendSet(Pmax) and SendSet(Pfriend), along with the necessary lists adjacency,
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Figure 4.6: Singleton to Singleton pairing

adjacencyP tr and sender, which are stored as 1-D arrays. As the initial step α,

the number of messages that will be shared by Pmax, is calculated based on the

send set sizes of Pmax and Pfriend, and the size of their common outgoing message

set. Note that α calculated in Line 3 is equal to α in the Equation 4.1.

In Line 5, the variables i and j are used as pointers to iterate over the outgoing

message sets of Pmax and Pfriend respectively. adjacencyP tr array keeps the

indices of starting elements of outgoing message sets and initial values of i and j

are determined using this array. The variable msgShared is used to keep track

of how many messages are shared between this pair. It helps to determine the

direction of sharing, since Pmax is supposed to share α number of messages, first

α sharing will be from Pmax to Pfriend and the rest will be from Pfriend to Pmax.

This is determined by the check in Line 8.

The if condition in Line 7 and the corresponding else part in Line 16 to 20,

demonstrates the usage of mergesort-like comparison described in Figure 4.4. If

same processor is found by two pointers, then the condition in Line 7 becomes

true and message sharing is done in Line 8 to 17. If Pmax is sharing the message to

Pfriend, then the element corresponding to the message in sender array becomes

Pfriend, indicating that the message will be sent to the target processor by Pfriend.

This decreases the send set size of Pmax by one and this is shown in Line 10. The

converse is true if the message is shared from Pfriend to Pmax.

If the pointers point to different processors then the pointer pointing to the smaller

element should be incremented by one, as in Line 19 or Line 20. Since the

outgoing message sets are kept in an increasing order, these increment operations

will result in finding all of the same elements in outgoing message sets of Pmax

and Pfriend. The stopping condition of this message sharing is triggered when one
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of the pointers is gone beyond the range of the outgoing send set of corresponding

processor. This happens when either i is equal to the first element of the processor

Pmax + 1 or j is equal to the first element of the processor Pfriend + 1. Note that

the condition for last processor is different and instead of the first element of the

next processor, the end of the list is checked. However, this is not included in

Algorithm 2, for simplicity.

Algorithm 2 Singleton to Singleton Message Sharing

Require: Two integers representing processors Pmax and Pfriend, their send sets,
their send set sizes |SS(Pmax)| and |SS(Pfriend)|, adjacency, adjacencyP tr
and sender arrays

1: C ← SendSet(Pmax) ∩ SendSet(Pfriend)
2: if |SS(Pfriend)|+ |SS(C)| ≤ |SS(Pmax)| then
2: α← |SS(C)|
3: else

3: α← |SS(C)|+ |SS(Pmax)| − |SS(Pfriend)|
2

4: end if
5: i← adjacencyP tr[Pmax], j ← adjacencyP tr[Pfriend], msgShared← 0
6: while (i < adjacencyP tr[Pmax + 1]) ∧ (j < adjacencyP tr[Pfriend + 1]) do
7: if adjacency[i] = adjacency[j] then
8: if msgShared < α then
9: sender[i]← Pfriend

10: |SS(Pmax)| ← |SS(Pmax)| − 1
11: else
12: sender[j]← Pmax

13: |SS(Pfriend)| ← |SS(Pfriend)| − 1
14: end if
15: msgShared← msgShared+ 1
16: i← i+ 1
17: j ← j + 1
18: else
19: if adjacency[i] < adjacency[j] then
19: i← i+ 1
20: else
20: j ← j + 1
21: end if
22: end if
23: end while
24: return |SS(Pmax)|, |SS(Pfriend)|
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Case 2: Singleton to Non-singleton

When Pfriend is not singleton, this indicates that it has shared some messages in

previous iteration. For this iteration, before message sharing between Pmax and

Pfriend, we can exploit the previous sharings of Pfriend. Without loss of generality,

assume that Pg is one of the processors Pfriend was paired in a previous iteration.

We define as Pfriend and Pg are in the same group. There might be a processor

Pz, which receives messages from Pmax, Pfriend and Pg, i.e;

Pz ∈ SendSet(Pmax) ∧ Pz ∈ SendSet(Pfriend) ∧ Pz ∈ SendSet(Pg)

Further assume that during the previous sharing Pfriend shared its message to Pz

with Pg, and removed it from its send set, resulting in;

Pz ∈ SendSet′(Pg) ∧ Pz /∈ SendSet′(Pfriend)

Since we consider initial send sets SendSet(Pmax) and SendSet(Pfriend), not

the actual send sets SendSet′(Pmax) and SendSet′(Pfriend) when comparing

the common messages, and since Pz is included in both SendSet(Pmax) and

SendSet(Pfriend), it is counted towards their total common messages and con-

tributed to the choice of selecting Pfriend as the pair of Pmax. However, it is not in

the actual send set of Pfriend, so if Pmax shared the message to Pz with Pfriend, this

will result in an extra message for Pfriend and will cause overhead. On the other

hand, Pz is a common target for both Pmax and Pg, and also Pz ∈ SendSet′(Pg).

Thus, Pmax can share its message mPmax,Pz with Pg, and processor Pg can send

the combined message MPg ,Pz = {mPmax,Pz ,mPfriend,Pz ,mPg ,Pz} to Pz.

When this process is finished and Pmax shared as much as it can share with

previous group members (possible more than one) of Pfriend, then the next step

is similar to Case 1 and the sharing between two processors are done as explained

in section 4.2. One thing to note is that if there is an opportunity to equally

share, then the number of message to be shared from Pmax to Pfriend, α, has to
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Figure 4.7: Singleton to Non-Singleton pairing

be calculated considering the current send set size of Pmax. This means that the

messages shared in the first part of this case (sharings between Pmax and other

group members of Pfriend) must be reduced from send set size of Pmax. This may

result in a possible equal sharing between Pmax and Pfriend, although it was not

possible when they are initially paired (since |SS(Pmax)| is decreased). In these

situations sharings will be done according to scheme explained in section 4.2.2,

not in section 4.2.1.

Case 3: Non-singleton to Singleton

When Pmax is a non-singleton processor, the approach is similar to Case 2. Just

as exploiting the previous sharings of Pfriend in Case 2, we exploit the previous

sharings of Pmax in this case. Firstly, Pfriend shares messages with group members

(i.e. the processors Pmax was paired in previous iterations) of Pmax and then two

paired processors, Pfriend and Pmax, share messages. Similar to Case 2, after

first step |SS(Pfriend)| must be updated and the equal sharing condition must be

checked again. However, contrary to Case 2, for this case the possible scenario is

that the equality may become impossible, although it was possible in the initial

pairing of Pmax and Pfriend.
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Figure 4.8: Non-Singleton to Singleton pairing

One other thing to note for Case 2 and Case 3 is that, during message sharing be-

tween Pmax and Pfriend, the non-singleton one should avoid sharing the messages

that will be sent to the processors in its group. As an example consider that Pmax

is a non-singleton processor that has processor Pg in its group and Pfriend is a

singleton processor (Case 3). Also consider that the equal sharing between Pmax

and Pfriend is not possible, so all message transfers would be from Pmax to Pfriend.

If Pg ∈ SendSet(Pmax)∧Pg ∈ SendSet(Pfriend), then Pg should be removed from

SendSet(Pmax) and the message mPmax,Pg should be sent by Pfriend. However,

since Pmax and Pg are in the same group, they must have been paired during a

previous iteration and it is very likely that Pmax shared some message with Pg.

Assume that Pz is a target of this kind of a message. This indicates that the

message mPmax,Pz will be contained in combined message MPg ,Pz . During current

iteration, if Pmax shares the message to Pg with Pfriend, then indirectly it shares

the message to Pz as well as any other message it has shared with Pg during

their pairing. Since Pz ∈ SendSet(Pfriend) is not guaranteed, the sharing of Pg to

Pfriend will result in unnecessary overhead. This overhead will occur even if only

one such processor is not included in SendSet(Pfriend) and it is likely that Pmax

shared more than one such messages with Pg. Thus, during message sharings

that involve at least one non-singleton processor, the previous groupings must be

considered and the non-singleton processor should avoid sharing messages that

targets a processor it was grouped with.
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Case 4: Non-singleton to Non-Singleton

Figure 4.9: Non-Singleton to Non-Singleton pairing

When both of the paired processors are non-singleton, the approach is similar

to combination of Case 2 and Case 3, with some minor changes. Initially we

consider as if it is Case 2, assuming Pmax is a singleton processor and shares

messages with the group members of Pfriend. However, during this process we

must also consider the group members of Pmax and avoid sharing them with group

members of Pfriend. This is the difference from Case 2, where Pmax is a singleton

processor indeed. Then the same process is applied for Pfriend, again avoiding

sharing its group members.

The last step for this case is the message sharing between Pmax and Pfriend. For

this phase, actual send set sizes of these two processors and their common set

size are calculated considering the previous steps of this case. Again during this

step, they avoid sharing the messages to the processors that are in their group.

Algorithm 3 outlines how to find out whether the target processor of the message

to be shared is in a group or not, when there is a non-singleton processor in the

pairing. This approach is applied for Case 2, Case 3 and Case 4 (twice). As

explained in last part of Case 3, this is applied in order to avoid the sharing of a

processor which is already in a group with the current sharing processor, either

Pmax or Pfriend.
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Algorithm 3 is applied when a target processor is found in the outgoing message

sets both of Pmax and Pfriend, meaning that one of them can share the message

it is sending to that target processor. Here this is represented in the perspective

of Pmax. Note that for the algorithm explained here, it does not matter whether

the Pfriend is singleton or not. If it is singleton, then a similar procedure for its

potential shared messages will be applied.

There are three necessary conditions for this algorithm to apply;

• Message from Pfriend to the target processor is not being sent by Pfriend

• Message from Pfriend to the target processor is not being sent by Pmax

• Message from Pmax to the target processor is being sent by Pmax

This indicates that Pmax is still sending its own message and the message from

Pfriend is being sent by a processor other than Pfriend or Pmax. When these

conditions are satisfied, outgoing message set of the sharing processor (in this

case Pmax) is traced, as in Line 2 of Algorithm 3. For each element in the outgoing

message send, the corresponding sender of the message is checked. If that sender

is the processor that is the target of the message to be shared, then the boolean

variable inGroup is set as true and this message sharing is simply ignored. When

this happens, the message sharings will continue with the next elements as in Line

16 and Line 17 of Algorithm 2.

Algorithm 3 Identifying Grouping During Message Sharing with Non-Singleton

Require: Two integers representing processors Pmax and Pfriend, their send sets,
pointers i and j tracing send sets of Pmax and Pfriend respectively, adjacency,
adjacencyP tr and sender arrays

1: inGroup← false
2: for k ← adjacencyP tr[Pmax] to adjacencyP tr[Pmax + 1] do
3: if sender[k] = adjacency[i] then
3: inGroup← true
4: end if
5: end for
6: return inGroup
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Chapter 5

Message Sharing Between

Maximally and

Minimally-Loaded Processors

In this chapter, the second phase of our algorithm is given, which is a follow-up

to the first phase explained in Chapter 4. After Phase I, a new communication

matrix is calculated and used in Phase II. Again CRS format is used for this

communication matrix as described in Section 4.3.1 with the same naming for

convenience. The main difference of the second phase is that the maximally-

loaded processor, Pmax, is paired with the minimally-loaded processor Pmin. The

number of common messages between these two processors are not considered

during pairing.

For the calculation of the new communication matrix, processor Pj is considered

to be in SendSet(Pi) if at least one of the following is true;

• Pi itself sending its own message to Pj

• Pi has shared one of its original messages with Pj

• Pj is a target for the message of another processor Pm, and Pm has shared
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its message mPm,Pj
with Pi

The logical expressions corresponding to the above points is respectively as fol-

lows;

• adjacency[k] = Pj ∧ sender[k] = Pi for adjacencyP tr[Pi] ≤ k <

adjacencyP tr[Pi + 1]

• sender[k] = Pj for adjacencyP tr[Pi] ≤ k < adjacencyP tr[Pi + 1]

• adjacency[k] = Pj, sender[k] = Pi for adjacencyP tr[Pm] ≤ k <

adjacencyP tr[Pm + 1]

A new communication matrix is obtained using the mentioned conditions above.

In CRS representation, the column indices for this communication matrix (i.e.

target processors for the messages) is named as adjacency′ and the corresponding

pointer matrix is named as adjacencyP tr′. Also, another parallel boolean array of

the same size with adjacency′ is used to keep track of whether the corresponding

message is shared in this stage or not. Lastly, the information of the received

messages for the minimally-loaded processor is kept dynamically. The detailed

information for these data structures are given in the explanation of algorithm 4.

In Phase II, the number of messages to be shared from Pmax to Pmin, α, is

calculated as;

α =
|SS(Pmax)| − |SS(Pmin)|

2

With this choice of α, the number of messages after sharing, |SS(Pmax)|′ and

|SS(Pmin)|′ will be equal. Similar to the first phase, with the decrease in the send

set size of Pmax, a new processor is selected as the maximally-loaded processor.

This process will continue until there is no decrease in the send set size of the

maximally-loaded processor, at which point the algorithm finishes.
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The stopping condition for the algorithm may be triggered in two ways; either

send set size of each processor in the system becomes equal to the average (with

the possibility of +/− 1) or the maximally-loaded processor is not able to share

messages anymore. The reason of the latter condition is that, the maximally-

loaded processor Pmax, avoids sharing messages which are shared with it during

a previous iteration of this phase. This approach is similar to the cases 2,3 and

4 of the first phase. Full outline of the second phase is given in Algorithm 4.

In Algortihm 4, outgoingSize[Pmax] and |SS(Pmax)| used interchangeably. The

initial variable declarations are similar to Algorithm 1, which provides the outline

of Phase I of our algorithm. However in Algorithm 4, Pmin is also found along

with Pmax. The check condition for while loop in Line 3 is same with Algorithm

1, when the send set size of Pmax can not be further reduced. Then from Line

4 to Line 9 the maximally-loaded processor and the minimally-loaded processor

is found. From Line 10 to Line 12 the initialization of the variables that will be

used during the next loop is done.

The while loop starting from Line 13 is the part where the message sharing

happens. Here we use a helper array stillOwn to identify whether a specific

message was shared in a previous iteration of this phase or not. This is a boolean

array of the same size with adjacency′ array. If a message is already shared during

this phase, the corresponding entry in stillOwn array is set to false. Thus, it is

only possible a message whose corresponding entry in stillOwn array is true and

Line 14 checks this boolean value.

If the message can be shared, then the corresponding entry in stillOwn array is

set to false and send set size of Pmax is decreased by one. In Phase II, a processor

avoids sharing a message it received from another processor in a previous iteration.

To keep track of this, we use a dynamic list transferredMsg which holds tuples

of shared messages in this phase. In Line 17 the tuple (Pmin, adjacency
′[i]) is

added to the list, since Pmax shared the message to adjacency′[i] with Pmin. In

a future iteration the list will be iterated and Pmin will not share the message

to adjacency′[i] as it is present in the list. These checks are not included in

Algorithm 4.
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Although we do not consider common outgoing messages for this phase, sharing

a common messages should not increase the send set size of Pmin. This is checked

in Line 19 to Line 23. If the target processor for the message to be shared,

adjacency′[i], is found in SendSet(Pmin), then the variable msgExist is set to

true and the send set size of Pmin does not increase.

After the message sharing for a specific message is finished, the algorithm con-

tinues with the next element in SendSet(Pmax). This is represented in Line 27.

The algorithm finishes if all the elements in SendSet(Pmax) is checked (i.e. if

i = adjacencyP tr′[Pmax + 1]) or if Pmax shared α amount of its messages to Pmin.

Note that all of the message sharings in this phase results in changes of the sender

array which keeps the actual senders for each message. These changes are not

included in Algorithm 4.
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Algorithm 4 Phase II Outline

Require: A set of n processors and their outgoing message sizes in array
outgoingSize, along with arrays adjacency′, adjacencyP tr′, stillOwn and the
list transferredMsg

1: prevMax = −1, prevMaxSize = −1
2: max = 0, Pmax = 0, min = 0, Pmin = 0
3: while (prevMax 6= Pmax) ∨ (prevMaxSize 6= outgoingSize[Pmax]) do
4: for i← 0 to n do
5: if outgoingSize[i] > max then
5: max← outgoingSize[i]
5: Pmax ← i
6: end if
7: if outgoingSize[i] < min then
7: min← outgoingSize[i]
7: Pmin ← i
8: end if
9: end for

10: α =
|SS(Pmax)| − |SS(Pmin)|

2
11: prevMax← Pmax, prevMaxSize← |SS(Pmax)|, msgShared← 0
12: i← adjacencyP tr′[Pmax]
13: while (i < adjacencyP tr′[Pmax + 1]) ∧ (msgShared < α) do
14: if stillOwn[i] then
15: stillOwn[i] = false
16: |SS(Pmax)| ← |SS(Pmax)| − 1
17: add tuple (Pmin, adjacency

′[i]) to the list transferredMsg
18: msgShared← msgShared+ 1
19: msgExist← false
20: for j ← adjacencyP tr′[Pmin] to adjacencyP tr′[Pmin + 1] do
21: if adjacency′[i] = adjacency′[j] then
21: msgExist← true
22: end if
23: end for
24: if !msgExist then
24: |SS(Pmin)| ← |SS(Pmin)|+ 1
25: end if
26: end if
27: i← i+ 1
28: end while
29: end while
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Chapter 6

Experiments and Results

For the evaluation of our algorithm we used column-parallel SpMV as kernel

application since it is a frequent application in HPC. As baseline, we used a

recent work of Selvitopi and Aykanat which uses STFW framework in order to

reduce the latency [4]. For this reason we used the same data set with this work.

The data set contains 15 different symmetric sparse matrices with different sizes

and different ratios of nonzeros. The information about these matrices are given

in Table 6.1. In the table, the last column ”cv”, stands for the coefficient of

variation on the degrees of rows/columns and indicates the irregularity of the

matrix. These matrices are obtained from SuiteSparse Matrix Collection [18].

The input of our algorithm is the processor-to-processor communication matrix

that captures the communication on a distributed-memory system for SpMV op-

eration for these 15 matrices. For our experiments, we used the communication

matrices for a system with 512 processors. In Table 6.2, for each of the 15 ma-

trices, resulting average messages and the number of messages of the maximally-

loaded processor after each of the first phase and the second phase are given along

with the initial values. The geometric means obtained for the values in Table 6.2

are given in Table 6.3 along with the initial state of the communication matrix

and the results of the work chosen as the baseline [4].
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Table 6.1: Information of the matrices used in experiments
Name # of rows/columns # of nonzeros cv

cbuckle 13,681 676,515 0.16
msc10848 10,848 1,229,778 0.42
fe rotor 99,617 1,324,862 0.29
sparsine 50,000 1,548,988 0.36
coAuthorsDBLP 299,067 1,955,352 1.50
net125 36,720 2,577,200 0.95
nd3k 9,000 3,279,360 0.26
GaAsH6 61,349 3,381,809 2.44
pkustk04 55,590 4,218,660 1.46
gupta2 62,064 4,248,286 5.20
TSOPF FS b300 c2 56,814 8,767,466 6.23
pattern1 19,242 9,323,432 0.78
SiO2 155,331 11,283,503 4.05
human gene 2 14,340 18,068,388 1.09
coPapersCiteseer 434,102 32,073,440 1.37

From Table 6.2, it can be seen that after applying our algorithm, there is a reduc-

tion in the number of average messages sent by a processor. In this parameter,

our improvement is even better than the baseline work by approximately 5% (see

Table 6.3). Of course, applying Phase II results in an overhead for the number of

average messages in the system, but that overhead is still only 2% of the average

messages. In general, our two phase algorithm results in a decrease in the number

of average messages in the system.

This decrease in average number of messages is important, yet the most important

parameter in this work is the number of messages sent by the maximally-loaded

processor, which determines the latency in the system. From Table 6.2, the

decrease of the load of maximally-loaded processor for each individual test matrix

can also be seen. After applying Phase I of the algorithm, there is an improvement

over the initial state by 54% (see Table 6.3). However, the improvement was still

much worse than the improvement of the baseline algorithm, and thus Phase II

is applied, which results in 26% and 84% improvements over the baseline and the

initial state respectively.

Another consideration for our algorithm is the number of the overhead messages
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Table 6.2: Comparison of the initial average message and bottleneck processor
against the results from Phase I and Phase II of our algorithm

Average messages per processor Messages of bottleneck processor
Name Initial Phase I Phase II Initial Phase I Phase II

cbuckle 7.43 7.36 7.6 62 41 8
msc10848 16.95 16.62 17.05 67 34 18
fe rotor 12.68 12.32 12.75 41 23 14
sparsine 76.21 56.87 57.01 223 80 58
coAuthorsDBLP 175.02 48.65 48.89 288 216 50
net125 106.44 52.01 52.03 209 123 53
nd3k 59.15 24.28 24.88 107 47 26
GaAsH6 75.96 25.66 26.18 227 77 27
pkustk04 18.52 17.4 17.87 101 51 19
gupta2 154.37 31.08 31.73 276 132 33
TSOPF FS b300 c2 140.93 74.29 74.31 497 249 124
pattern1 70.41 7.76 8.06 472 61 9
SiO2 156.86 23.92 25.4 298 147 26
human gene 2 393.25 30.48 30.66 511 256 114
coPapersCiteseer 102.99 46.83 47.1 226 131 48

occurred during message sharing. In Table 6.4, average overhead for each matrix

is given along with the average number of messages for that matrix. Geometric

mean of these overhead is 0.8, which is just 3% of the average messages.

Table 6.3: Geometric means for average of the number of messages sent by a
processor and the number of messages of the maximally-loaded processor.

Algorithm Average messages Messages of maximally-loaded

Initial 65.7 187.6
Baseline [4] 28.0 41.6
After Phase I 25.7 87.0
After Phase II 26.3 30.8

Lastly, from Table 6.2 it can be seen that for most of the test matrices, the second

phase of our algorithm achieved to reduce the send set size of the maximally-

loaded processor to the average of the system. Only for two of the test matrices,

human gene 2 and TSOPF FS b300 c2 the load of the maximally-loaded pro-

cessor is larger from the average load, and this can be attributed to irregular

communication scheme of these matrices (initial max messages of 511 and 497
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Table 6.4: Average overhead occurred during message sharing compared to the
average number of messages

Name Average Message After Phase I Average Overhead

fe rotor 12.32 0
msc10848 16.62 0
cbuckle 7.36 0.02
nd3k 24.28 0.9
pkustk04 17.4 0
pattern1 7.76 3.61
GaAsH6 25.66 0.84
sparsine 56.87 0.24
net125 52.01 1.79
coPapersCiteseer 46.83 6.15
gupta2 31.08 3.47
SiO2 23.92 1.12
coAuthorsDBLP 48.65 9.56
TSOPF FS b300 c2 74.29 0.01
human gene 2 30.48 1.27

respectively, see Table 6.3). For more regular test matrices, our algorithm success-

fully achieves a load balance. Furthermore, our algorithm still achieves our main

aim of decreasing the number of messages sent by the maximally-loaded processor

and this is achieved in all of the test matrices, regardless of the irregularity.
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Chapter 7

Conclusion

In this thesis, a two-phase algorithm is proposed for reducing the latency on

distributed-memory parallel applications. Processor-to-processor communication

in latency-bound parallel applications run into bottleneck by the processor that

is sending the most number of messages, which is called as the maximally-loaded

processor. In this work, we aimed to reduce the number of messages sent by this

processor.

For this purpose, in Phase I of our algorithm, we paired the maximally-loaded

processor with another processor for sharing the common outgoing messages be-

tween them. This allowed the maximally-loaded processor to share some of its

outgoing messages with its pair and remove some of its load. In order to maximize

the efficiency of this sharing, pair processor chosen among the other processors as

the processor that have the most common messages with the maximally-loaded

processor. After sharing, another processor might become the maximally-loaded

processor and the same procedure applied for it again. This phase will continue

until there is no decrease in the number of messages of the maximally-loaded

processor, despite the message sharing.

At that point our algorithm passes to Phase II. This phase is similar to the Phase

I except that the pair processor for the maximally-loaded processor is not chosen

43



according to the number of common messages. Instead the maximally-loaded

processor is paired with the minimally-loaded processor (the processor that has

the least number of outgoing messages). This allows in a further reduction in the

number of messages of the maximally-loaded processor, thus reducing the latency

in the system.

We used a recent work by Selvitopi and Aykanat as our baseline and compared

our results with them as well as the initial state for each of the test matrices [4].

As a result, our two phase algorithm achieves 26% improvement over the baseline

algorithm and 84% improvement over the initial state.
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