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Abstract 

Killing vector fields in three dimensions play an important role in the 

construction of the related spacetime geometry. In this work we show that 

when a three-dimensional geometry admits a Killing vector field then the Ricci 

tensor of the geometry is determined in terms of the Killing vector field and 

its scalars. In this way we can generate all products and covariant derivatives 

at any order of the Ricci tensor. Using this property we give ways to solve the 

field equations of topologically massive gravity (TMG) and new massive 

gravity (NMG) introduced recently. In particular when the scalars of the 

Killing vector field (timelike, spacelike and null cases) are constants then all 

three-dimensional symmetric tensors of the geometry, the Ricci and Einstein 

tensors, their covariant derivatives at all orders, and their products of all orders 

are completely determined by the Killing vector field and the metric. Hence, 

the corresponding three-dimensional metrics are strong candidates for solving 

all higher derivative gravitational field equations in three dimensions. 

PACS numbers: 04.20.Jb, 04.60.Kd, 04.70.Bw 

1. Introduction 

Einstein gravity in three dimensions is trivial because it contains no dynamics. A theory in 

three dimensions with dynamics is known as topologically massive gravity (TMG) [1, 2]. The 

action of TMG is the sum of the standard Einstein–Hilbert and Chern–Simons terms in three 

dimensions. TMG with cosmological constant has been considered recently [3, 4]. This theory 

violates parity; it is renormalizable but not unitary. Recently a new massive gravity (NMG) 

theory has been introduced. In the framework of perturbation theory NMG is both 

renormalizable and unitary [5–7] (see also [8, 9]). Although higher derivative theories play 

an important role to have a consistent quantum gravity, it is however very difficult to obtain 

classical solutions of these theories. For this purpose there have been several attempts made 

 0264-9381/10/205018+15$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 

to solve these theories, in particular to find black hole solutions. In these attempts different 

methods were used. In [10] we used perfect fluid solutions of Einstein theory to solve the 

TMG field equations. In [11–16] by assuming commuting two Killing vector fields Clement 

gave some solutions of the TMG and NMG field equations. Another method is the principle 

of symmetric criticality [17–19]. In [20] the algebraic classification of the Ricci tensor is used 
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and all known solutions of the TMG are reviewed. In this work the importance of the Killing 

vector fields in obtaining the solutions of the TMG field equations has also been emphasized. 

It was shown that (see also [21]) all solutions locally belong to one of three solutions: 

timelikesquashed AdS3, spacelike-squashed AdS3 and AdS pp-waves [22–24]. In [25] Chow 

et al used the Kundt metrics to solve TMG field equations and they obtained new solutions 

of TMG. Another method is to use the Godel-type metrics [¨ 26–28] in three dimensions [29]. 

There are also some other attempts [30–32] made to solve the field equations of TMG. AdS 

pp-wave solutions of the NMG field equations were considered in [33]. The importance of 

the Killing vectors in finding the solutions of the massive gravity field equations in three 

dimensions is also observed in some of these works. If they exist, Killing vectors in three 

dimensions are not only important in the derivation of the exact solutions but they also control 

the whole geometry of spacetime. 

In this work we shall introduce a new method for three-dimensional gravity theories. The 

starting point is to assume a one parameter family of isometry. This implies the existence of 

a Killing vector field in the spacetime geometry. In general this assumption may simplify and 

reduce the number of the field equations by choosing a suitable coordinate patch so that one 

coordinate in the line element becomes cyclic. In the case of four- and higher-dimensional 

geometries this may give information about some components of the curvature and hence the 

Ricci tensors, but it does not provide all components of these tensors. We shall show that this 

is possible in three dimensions. 

If a three-dimensional spacetime admits a non-null Killing vector field, writing it in terms 

of two scalars, its norm and rotation scalar, we show that the metric and the Ricci tensors are 

completely determined in terms of the Killing vector, its scalars and vectors obtained through 

these scalars (theorem 1). Physical interpretation of the corresponding spacetime metric is 

that it solves the Einstein–Maxwell–dilaton field equations in three dimensions. When the 

scalars of the Killing vector field become constant then the corresponding Ricci tensor 

becomes relatively simple (theorem 2). We show that the spacetime metric, in this case, solves 

the field equations of TMG and NMG. Indeed these metrics (for timelike and spacelike cases) 

not only solve these field equations, but they also solve all higher (curvature) derivative 

theories at any order. When the Killing vector field is null we have a similar result (theorem 

3). Without referring to the metric tensor we construct the Einstein tensor when the spacetime 

geometry admits a null vector. The corresponding metric solves Einstein field equations with 

a null fluid distribution and an exotic scalar field. When the rotation scalar of the null Killing 

vector field becomes constant the Einstein tensor becomes simpler (theorem 4) and the metric 

solves the field equations of the TMG and NMG. Both for non-null and null cases when the 

scalars of the Killing vector fields become constant then the metric solves not only the field 

equations of the TMG and NMG but also all higher derivative gravitational field equations in 

three dimensions. 

In section 2 we give Ricci and metric tensors in terms of the non-null Killing vector field 

and its scalars. The Einstein tensor represents a charged fluid with a dilaton field. In particular, 

if the scalars are constants the Ricci tensor is expressed in terms of the Killing vector field 

and the Gaussian curvature of the two-dimensional background space in section 3. In section 

4 we show that when the Killing vector field is null then the Ricci tensor is calculated in terms 

of the null Killing vector field and its rotation scalar. In section 5 we investigate the 



Class. Quantum Grav. 27 (2010) 205018 M Gurses¨ 

2 

case when the rotation scalar is a constant. In sections 6 and 7, by using Ricci tensors found 

in the previous sections, we solve the field equations of the TMG and NMG respectively. 

2. Non-null Killing vectors in three dimensions 

In this section we shall construct the metric and Einstein tensors in terms of scalar functions 

of a non-null Killing vector. Our conventions in this paper are similar to the convention of 

Hawking–Ellis [34]. 

Let uμ be a non-null Killing vector field satisfying the Killing equation 

 uμ;ν + uν ;μ = 0 (1) 

with 0. One can show that 

 . (2) 

The norm function α is in general not a constant. It is possible to write the Killing equation as 

 , (3) 

where vα is any vector field and ημνα is the Levi-Civita alternating symbol. Using (2) we find 

that 

 vρ = wuρ + ηρμσ φ,μ uσ , (4) 

where . Using (4) in (3) we get 

 uμ;ν = w ημνα uα + uμ φ,ν − uν φ,μ, (5) 

where . The functions w and φ specify the Killing vector field and they are assumed 

to be linearly independent. Differentiating (5) with respect to xσ and anti-symmetrizing both 

sides with respect to ν and σ we get 

uμ;ν σ − uμ;σ ν = w,σ ημνα uα − w,ν ημσα uα − w ημνα φα u,σ + w ημσα φα uν −2ηνσα uα φ,μ 

− uν φ,σ φ,μ + uσ φ,μ φ,ν − uν φ;μσ + uσ φ;μν +w2 (gμν uσ − gμσ uν). 

Using the identities 

w,σ ημνα uα + w,μ ηνσα uα + w,ν ησμα uα = ησμν uα φ,α = 0, ημνα φα u,σ + 

ηνσα φα u,μ + ησμα φα u,ν = ησμν φα uα = 0 

equation (6) reduces to (here φα = gαμ φ,μ) 

 αα 

σuμ;σ ν = w ηνσα φ uμ − ηνσα u yμ + φ,μ (uσ φ,ν − uν φ,σ ) uμ;ν 

2 

+w (gμν uσ − gμσ uν), 

where 

(6) 

(7) 

(8) 

(9) 
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yμ = w,μ + 2w φ,μ. (10) 

Using the Ricci identity uμ;ν σ − uμ;σ ν = Rρ 
μνσ uρ in (9) we get 

Rρ μνσ uρ = w ηνσα φα uμ − ηνσα uα yμ + φ,μ (uσ φ,ν − uν φ,σ ) + w2 (gμν uσ − gμσ uν) 

(11) 

and hence we obtain  

Rρ 
ν uρ = −ζν − (∇2 φ + 2w2)uν, (12) 

where 

 ζμ = ημαβ yα uβ. (13) 

In three dimensions the Weyl tensor vanishes and hence the curvature tensor is expressed 

solely in terms of the Ricci tensor 

 (14) 

Combining equations (11) and (14) we obtain 

 ,

 (15) 

where 

(16) 

(17) 

In addition to identities (7) we also have the following identities:  

zμ uσ − zσ uν = α ημσρ φρ, ζμ yσ − ζσ 

yν = −(yα yα)ημσρ uρ. 

Using these identities in (15) we arrive at the following theorem. 

(18) 

(19) 

Theorem 1. If a three-dimensional spacetime admits a non-null Killing vector field uμ, then 

its metric and the Einstein tensors are respectively given by 

(20) 

 ]

 (21) 

(22) 

(23) 

(24) 

where R is the Ricci scalar provided that the functions w and φ are not constant at the same 

time. Here we assume that α nowhere vanishes in the spacetime. 



Class. Quantum Grav. 27 (2010) 205018 M Gurses¨ 

4 

Remark 1. When uμ is a timelike Killing vector field, letting α = −e2φ, then it can be shown 

that the source of the Einstein equations is composed of a charged fluid distribution and a 

dilaton field φ (in the Einstein frame). The electromagnetic field tensor fμν is given by fμν = w 

ημνα uα − uμ φ,ν + uν φ,μ (25) 

so that 

 f μν 
;μ = −ζν + (∇2 φ − 2w2)uν. (26) 

The Maxwell energy momentum tensor is given as 

 
Then the field equations are 

, (28) 

where J μ = f αμ 
;α and f2 = fαβ f αβ. 

All our analysis so far is valid when the norm α of the Killing vector field uμ is different 

than zero everywhere in spacetime. If there are points where α = 0 we exclude them from the 

spacetime manifold for causality reasons. This set of points defines the Killing horizons which 

are in general coordinate singularities of the spacetime [34]. We may find suitable coordinate 

patches where these coordinate singularities are removed (maximal extension) [35]. Examples 

of such Killing horizons in three dimensions are discussed in the BTZ spacetime [36]. The 

Killing horizon in general is a subset of the set of fixed points of the isometry whose generator 

is the Killing vector u. Such a set is called the local isometry horizon (LIH) by Carter [35]. 

The fixed points of an isometry are the set of points where the Killing vector field vanishes, 

i.e. critical points of u, u(p) = 0. It is obvious that our analysis fails at the points of the LIH. 

For a given Killing vector field we have [37] 

 uμ;αβ = uρ Rρ 
βμα. (29) 

At the critical points of u the second covariant derivative of the Killing vector field vanishes. 

This implies that all higher derivatives of u at p are either zero or expressed in terms of the 

first partial derivative Fμν(p) = uμ,ν(p). The integrability of (29) at p gives 

 Fμα(p)Rα 
ν + Fνα(p)Rα 

μ = 0, (30) 

which imply that the Segre type of the Ricci tensor is special at the critical points of u [38, 

39]. In the neighborhood U of the critical point p the Killing vector has the linearized form 

 uμ = Fμα(p)Zα, (31) 

where Zμ = xμ − pμ. Theorem 1 is valid in U with 

. (32) 
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To identify the real structure of the spacetime about the critical points for a given particular 

exact solution it may be useful to study the maximal extension of the corresponding 

coordinate patches. 

If the norm α of a Killing vector field is constant everywhere in spacetime, then there are 

no fixed points of the corresponding isometry. Then theorem 1 is valid everywhere in 

spacetime. This is the case which will be considered in the next sections. This will be true not 

only for spacelike and timelike Killing vector fields but also for null Killing vector fields. 

3. Non-null case with constant scalars 

In the previous section we assumed that the scalars w and φ of the Killing vector field are not 

simultaneously constant. If w and φ are both constants, then we obtain 

 uμ;ν = w ημνα uα. (33) 

Then following the above procedure and using (21) we have the following result. 

Theorem 2. If a three-dimensional spacetime admits a non-null Killing vector field uμ 

with both w and α being constants, then the Einstein tensor is given as 

 . (34) 

In this case, since the vector ζμ vanishes in (15), the metric tensor is not obtained. 

Remark 2. If uμ is a timelike Killing vector field the above Einstein tensor represents a dust 

distribution in a spacetime with a positive cosmological constant. 

For completeness let us give the spacetime metrics of each case: we shall consider the 

case where α and w are the constants. 

1. Let  be the timelike vector field then uμ uμ = −1. Hence, α = −1 and uμ = gμα 

uα; then . Then the spacetime metric can be taken 

as (xμ = (t,r,z)): 

 ds2 = −(u0 dt + u1 dr + u2 dz)2 + M2 dr2 + 2Ldr dz + N2 dz2, (35) 

where . Here u0 is a constant (due to the 

Killing equation) and the metric functions M, N, L , u1 and u2 depend on the variables r 

and z. The metric in (35) is of the Godel type which was used in [¨ 29]. The Einstein 

tensor is given in (34) with α = −1. The only field equation is 

 , (36) 

. For simplicity consider the  where 

case L = 0. Then 

R = 2K +2w2 whereKistheGaussiancurvatureofthelocallyEuclidiantwo-dimensional 

background space with the line element d . Metric (35) gives the 
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Einstein tensor (34) where the only field equation is given in equation (36) with α = −1 

and w is constant. 

2. Let  be the spacelike vector field; then uμ uμ = 1. Hence α = 1 and 

; then . Then the spacetime 

metric can be taken as 

 ds2 = (u2 dz + u1 dr + u0 dt)2 + M2 dr2 + 2Ldr dt − N2 dt2, (37) 

where  is a constant (due to the 

Killing equation) and the metric functions M, N, L, u1 and u0 depend on the variables t 

and r. The Einstein tensor is given in (34) with α = 1. The only field equation is 

 , (38) 

. In both cases the Ricci scalar where 

R is not constant. In this case as well take L = 0 for simplicity then we have R = 2K + 

2w2 where K is the Gaussian curvature of two-dimensional locally Minkowskian 

background space with the line element d . Metric (37) gives the 

Einstein tensor (34) where the only field equation is given in (38) with α = 1 and w being 

the constant. In both cases the Ricci and Einstein tensors are respectively given as 

 ,

 (39) 

(40) 

Itispossibletopassfromthetimelikecasetothespacelikecasebycomplextransformation [13]. 

When the background two-dimensional spaces are de Sitter or anti-de Sitter, in each case, 

these solutions are known as timelike squashed AdS3 and spacelike squashed AdS3, 

respectively [11, 20, 21]. 

When R is a constant, the Cotton tensor and the Laplacian of the Ricci tensor take simple 

forms (for both cases). They will be used later: 

(41) 

 .

 (42) 

4. Three-dimensional spacetime admitting a null Killing vector field 

In this section we shall construct the Einstein tensor with respect to the scalar functions of a 

null Killing vector field. 

Let ξμ be the Killing vector field. It satisfies the Killing equation 
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 − ,

 (43) 

where  and vμ is an arbitrary vector field and a semicolon defines the 

covariant derivative with respect to the metric gμν. Here  is the three-dimensional Levi-

Civita alternating symbol. Since ξα ξα;β = 0 and ξα ξβ;α = 0, then vμ = wξμ. Hence 

(43) becomes 

 ξμ;ν = w ημνα ξα, (44) 

where w is an arbitrary function. Taking one more covariant derivative of (44) we find that 

 ξμ;να = w,α ημνρ ξρ − w2 (gμα ξν − gνα ξμ). (45) 

Using this equation and the Ricci identity we get 

ξμ;να − ξμ;αν = w,α ημνρ ξρ − w,ν ημαρ ξρ − w2 (gμα ξν − gνμ ξα) = Rρ μνα ξρ. (46) 

On the other hand, since the Weyl tensor vanishes in three dimensions the Riemann tensor is 

expressed totally in terms of the Ricci tensor as expressed in (14). Using (46) and (14) we 

find 

 Qμν ξα − Qμα ξν − ζν gμα + ζα gμν = w,α ημνρ ξρ − w,ν ημαρ ξρ, (47) 

where 

 ζμ = ημαβ wα ξβ, (48) 

 . (49) 

Here R is the Ricci scalar and wα = gαμ w,μ. Let the vector Xμ be defined as 

 Xμ = ημαβ F α ξβ, (50) 

where F μ = gμα F,α and F is any function independent of t. It is easy to show that ξμ Xμ = Xμ Xμ 

= 0. Since the orthogonal null vectors can only be parallel, then we have 

 Xμ = σξμ. (51) 

Hence, 

 ζμ = ψξμ, (52) 

and 

 , (53) 

which also leads to 

wα w,α = ψ2. 

Using (53) in (47) we obtain 

(54) 
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 . (55) 

Hence, 

 , (56) 

where ρ is a function to be determined and the Ricci scalar is given by  

R = −6w2 − 4ψ. 

Then we have the following theorem. 

(57) 

Theorem 3. Let ξμ be a null Killing vector field of a three-dimensional spacetime; then the 

corresponding Einstein tensor is given by 

 , (58) 

where ρ is a function to be determined. Furthermore the scalar field satisfies the following 

partial differential equation: 

  (59) 

It is quite interesting that by imposing a null Killing vector in a three-dimensional spacetime 

geometryweobtaintheformoftheEinsteintensorwithoutknowingthemetrictensorexplicitly, 

except the function ρ. The source of the Einstein field equations is composed of a null fluid 

and a scalar field. The scalar field satisfies a nonlinear differential equation (59). From the 

Einstein equations the energy momentum tensor Tμν of the source satisfies Tμν ξμ ξν = 0. For 

any timelike unit vector field√ uμ we have Tμν uμ uν = ρ (ξμ uμ)2 − ψ1 (w,μ uμ)2 + (ψ + w2). 

Choosing ψ = − w,μ wμ the sign of the energy depends on the sign of the function ρ. 

As a summary we can conclude this section as: if ξμ is a null Killing vector field of a 

three-dimensional spacetime geometry, then the corresponding metric solves the Einstein null 

fluid scalar field equations. The only field equations are (44) and the scalar field equation 

given in equation (59). 

5. Null case without the scalar field 

In the previous section we considered the case  0. Vanishing of ψ is a distinct case. Due 

to this reason we consider it in a separate section. We have the following result: 

Theorem 4. When the scalar function ψ in theorem 3 is zero then w becomes a constant and 

the Ricci and Einstein tensors take the simple forms 

 ,

 (60) 

(61) 

with R = −6w2. 

For explicit solutions we shall adopt some simplifying assumptions. 
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(5.A). As an example let us assume that . Then ξμ = gμα ξα = gμ0. Since ξμ is a null 

vector, ξ0 = 0. Hence, we get g00 = 0,g01 = ξ1,g02 = ξ2. The corresponding spacetime metric can 

be given as (xμ = (t,r,z)) 

 d  (62) 

where ξ1,ξ2, m, n and  are the functions of r and z. Let 0; then det (g) 

, and the function ψ defined in (52) takes the form  and 

 . (63) 

Equation (44) reduces to 

  (64) 

The function ρ can be calculated in terms of the metric functions ξ1,ξ2,m and n. By using a 

transformation r = f(R,Z) and z = g(R,Z) where f and g are any differentiable functions, 

without losing any generality, we can let one of the functions ξ1 or ξ2 be zero. Here in this 

work we will take ξ1 = 0 and let ξ2 = q. With these simplifications we obtain q,r = 

−2w q m, and 

 ds2 = 2q dz dt + m2 dr2 + n2 dz2. (65) 

where w is a nonzero constant. With such a choice we have 

 

Remark 3. If w = 0, the Killing vector becomes hypersurface orthogonal and q becomes a 

constant. Then 

 . (67) 

(5.B). Letting q = ey and n = m we get 0. Here y is a function of r and z. 

Then 

 . (68) 

We get a nonlinear partial differential equation for y when ρ = ρ0 is a constant: 

 , (69) 



Class. Quantum Grav. 27 (2010) 205018 M Gurses¨ 

10 

where ρ1 is an integration constant. An exact solution of the above equation is given as y = 

−ln[A + B(r→−√r0)2] where→ √ρ1 = 0 and ρ0 ==4AB. After performing some scale= 

transformations z Az,r Ar and letting B w and r0 0 the metric becomes 

 dt dz r2 
 2 2 2 

ds = + (dr + dz ). (70) ρ0 + w r2 [ρ0 + w r2]2 

This metric solves Einstein field equations (61) with null fluid whose energy density ρ = ρ0 is 

a constant. All curvature invariants are constants. For instance R = −6w2, Rαβ Rαβ = 12w4. 

Hence, the spacetime is not asymptotically flat. When ρ0 = 0 the solution corresponds to AdS3. 

(5.C). When w = 0, the Killing vector becomes covariantly constant. By taking m = n the 

function ρ becomes 

  (71) 

and the metric takes the form  

ds2 = 2q dz dt + m2 (dr2 + dz2), 

where q is a constant. The Einstein tensor becomes 

(72) 

Gμν = ρξμ ξν. (73) 

All scalars constructed from the Ricci tensor vanish. We will not consider this case in the 

following. 

6. Topologically massive gravity theory 

TMG equations were found by Deser, Jackiw and Templeton (DJT) [1]. Recently [3, 4] this 

theory was extended to the case with a cosmological constant. They are given as follows: 

 . (74) 

Here Gμν and Rμν are the Einstein and Ricci tensors respectively and Cν
μ is the Cotton tensor 

which is given by 

 . (75) 

The constants μ and λ are respectively the DJT parameter and the cosmological constant. 

Solutions of this theory were studied by several authors [10–29]. 

1. When the spacetime admits a non-null Killing vector field uμ, assuming that the Ricci 

scalar R is a constant (or the Gaussian curvature, R = 2K + 2w2, of the two spaces 

orthogonal to the Killing directions is a constant) and using equation (34) we get 
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  . (76) 

Using the TMG field equations we obtain 

 , (77) 

which is valid for both spacelike and timelike cases. Metrics (35) with equations (36) and 

(37) with equation (38) are exact solutions of TMG with parameters satisfying conditions 

(77). 

2. If the spacetime admits a null Killing vector, the Einstein tensor takes the form (61). 

Using the Killing equation (44) and the Einstein tensor (61) we get 

 , (78) 

which leads to the following equations: 

(79) 

 .

 (80) 

In addition to the Killing equation (64) these equations constitute the field equations to 

be solved for the DJT theory. With the simplification done in 5.A of the last section we 

get 

 , (81) 

where ρ0 is an arbitrary constant. As far as the solutions are concerned we have the 

following three classes. 

(a) We obtain a simple solution of (80) when μ = −w, which leads to ρ = ρ0 constant. 

Thenusingthesimplificationsdonein5.Bofthelastsection , 

we get all metric functions related to the function y which satisfies 

the differential equation (69). An exact solution and metric of the spacetime is given 

in (70) of 5.B of the last section. 

(b) A more general solution is obtained when μ + 3w = 0 where the function y satisfies 

the equation 

, 

where ρ2 is an integration constant. A solution of this equation is 

−ρ0. Then the metric becomes 

 d  .

 (83) 

Here  

(c) The case when 0. The function y satisfies the equation 

 , (84) 
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where ρ3 is an integration constant and . The circularly symmetric metric 

has the form d 

− 

where the function y = y(r) satisfies the equation 

 . (86) 

Here ρ4 is also an integration constant. All other cases will be considered later. 

Remark 4. In the case of the non-null Killing vector field when w = 0 the Killing vector 

becomes hypersurface orthogonal and the Cotton tensor vanishes. TMG field equations with 

hypersurface orthogonal Killing vectors were previously considered. With a hypersurface 

orthogonal Killing vector Aliev and Nutku showed that TMG allows only a flat solution [40]. 

Recently Deser and Franklin [41] considered circularly symmetric spacetime in TMG. They 

showed that such symmetry (existence of the hypersurface orthogonal spacelike Killing 

vector  breaks TMG with a cosmological constant down to vanishing of Cotton and 

Einstein sectors separately. 

7. A new massive gravity in three dimensions 

Recently a new parity-preserving theory has been introduced by Bergshoeff–Hohm–

Townsend (BHT) [5] in three dimensions that is equivalent to the Pauli–Fierz massive field 

theory at the linearized level. Originally this theory, known as NMG, did not contain a 

cosmological term in the action. Adding a cosmological constant λ the NMG field equations 

(CNMG) are given as 

 , (87) 

where 

 

where m0 is the relative mass parameter and ∇2 is the Laplace–Beltrami operator. Here we 

used the mass parameter as m0 not to confuse with the metric function m. Solutions of these 

equations have been recently studied in [6, 15]. 

1. When the spacetime admits a non-null Killing vector field, assuming that the Ricci scalar 

R is a constant and using the equation (34) we get R = 2K + 2w2 and 
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(89) 

(90) 

 .

 (91) 

Then using the field equations of the NMG gravity we obtain  

  (92) 

Metrics (35) with equation (36) and (37) with equation (38) are exact solutions of the 

NMG with parameters satisfying conditions (92). As an example the metric found in [10] 

as an exact solution of the TMG is also an exact solution of the NMG with parameters 

satisfying conditions (92). 

If 3 , then we obtain 

 . (93) 

2. When the spacetime admits a null Killing vector field, using equation (44) and the 

Einstein tensor (61) we obtain R = −6w2 and 

(94) 

(95) 

 .

 (96) 

These equations lead to the following results: 

 ,

 (97) 

(98) 

The full massive gravity field equations reduce to (97) and (98) and equation (44). A 

circularly symmetric solution of this equation is given by ρ = ρ0 ek y where ρ0 is a constant 

and k satisfies the quadratic equation 8  0. The circularly 

symmetric metric becomes 

 d  (99) 

Here y satisfies a similar equation such as (86): 

 , (100) 

where ρ1 is an integration constant. For each value of k (k1 and k2) we have two different 

metrics. 



Class. Quantum Grav. 27 (2010) 205018 M Gurses¨ 

14 

BHT introduced also a more general model [5] which also includes TMG as a special 

case: 

 , (101) 

where λ, α and β are the dimensionless parameters. For m0 → ∞ and for fixed μ generalized 

BHT equations reduce to the DJT equations (74). The solutions of these equations are given 

as follows. 

1. Non-null case : 

(102) 

 .

 (103) 

 If 3 0, then 

 . (104) 

2. Null case: 

 ,

 (105) 

(106) 

In a similar fashion letting ρ = ρ0 ek y we get a quadratic equation for k: 

 . (107) 

In order to have the roots exist, the following condition should be satisfied: 

 . (108) 

The metric function y satisfies exactly the same equation (100) but k solves the 

quadratic equation (107) in this case. The circularly symmetric metric is of the form 

given in (99), where y(r) satisfies (100). 

Both for the null and non-null cases when the scalars of the Killing vector fields are 

constants then we have a more general result. The following conjecture implies that the 

corresponding metrics solve all higher derivative gravitational field equations in three 

dimensions. 

Conjecture. Let a three-dimensional spacetime admit a Killing vector field uμ (non-null or 

null) with constant scalars. Let the Gaussian curvature K of the two-dimensional spaces be a 

constant for the case of non-null vector fields where the corresponding Einstein tensors are 
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respectively given in (39) and (61). Then any symmetric covariant second rank tensor 

constructed from the Ricci tensor by covariant differentiation and by contraction is the linear 

sum of uμ uν and the metric tensor gμν. 

8. Conclusion 

In this work we first studied Killing vector fields in a three-dimensional spacetime geometry. 

We showed that, independent of the type of the Killing vector fields, the Ricci tensor can be 

determined in terms of the Killing vector fields and their scalars. Usually the components of 

this tensor are calculated in terms of the components of the metric tensor in a given coordinate 

system. In three dimensions, when the geometry admits at least one Killing vector field we 

do not have to follow such a direction to determine the components of the Ricci tensor. Using 

this property in each case (when the Killing vector field is timelike, spacelike or null) we first 

presented the solutions of Einstein field equations with sources. Then by using special cases, 

when the scalars of the Killing vector fields are constants, we gave solutions of the field 

equations of the topologically massive gravity and new massive gravity theories. Some of the 

solutions of the topologically massive gravity field equations which we obtained in this work 

may already be known. Our basic purpose in this work is to present a new method to solve 

higher derivative gravity theories rather than finding specific solutions. We conjecture at the 

end that for the three types of Killing vector fields with constant scalars our method solves 

all higher derivative theories in three dimensions. 

Acknowledgments 

This work is partially supported by the Scientific and Technological Research Council of 

Turkey (TUBITAK) and Turkish Academy of Sciences (TUBA). 

References 

[1] Deser S, Jackiw R and Templeton S 1982 Phys. Rev. Lett. 48 975 
[2] Deser S, Jackiw R and Templeton S 1982 Ann. Phys., NY 140 372 

Deser S, Jackiw R and Templeton S 1988 Ann. Phys., NY 185 406 (erratum) 
[3] Carlip S, Deser S, Waldraon A and Wise D K 2009 Class. Quantum Grav. 26 075008 

Carlip S, Deser S, Waldraon A and Wise D K 2008 Phys. Lett. B 666 272 
[4] Song W Ki and Strominger A 2008 J. High Energy Phys. JHEP04(2008)082 
[5] Bergshoeff E, Hohm O and Townsend P K 2009 Phys. Rev. Lett. 102 201301 
[6] Bergshoeff E, Hohm O and Townsend P K 2009 Phys. Rev. D 79 24042 
[7] Bergshoeff E, Hohm O and Townsend P K 2009 On massive gravitons in 2+1 dimensions Proc. Spanish 

Relativity Meeting ERE2009 (Bilbao) (arXiv:0912.2944 [hep-th]) 
[8] Deser S 2009 Phys. Rev. Lett. 103 101302 
[9] Tekin B and Gull¨ u I 2009¨ Phys. Rev. D 80 064033 
[10] Gurses M 1994¨ Class. Quantum Grav. 11 2585 
[11] Clement G 1994 Phys. Rev. 49 5131 
[12] Clement G 1994 Class. Quantum Grav. 11 L115 
[13] Moussa K A, Clement G and Leygnac C 2003 Class. Quantum Grav. 20 L277–83 
[14] Moussa K A, Clement G, Guennoune H and Leygnac C 2008 Phys. Rev. D 78 064065 
[15] Clement G 2009 Class. Quantum Grav. 26 105015 
[16] Clement G 2009 Class. Quantum Grav. 26 165002 
[17] Palais R S 1979 Commun. Math. Phys. 69 19 
[18] Fels M E and Torre C G 2002 Class. Quantum Grav. 19 641 

http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1016/0003-4916(88)90053-X
http://dx.doi.org/10.1016/0003-4916(88)90053-X
http://dx.doi.org/10.1088/0264-9381/26/7/075008
http://dx.doi.org/10.1088/0264-9381/26/7/075008
http://dx.doi.org/10.1016/j.physletb.2008.07.057
http://dx.doi.org/10.1016/j.physletb.2008.07.057
http://dx.doi.org/10.1016/j.physletb.2008.07.057
http://dx.doi.org/10.1088/1126-6708/2008/04/082
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://dx.doi.org/10.1103/PhysRevD.79.124042
http://dx.doi.org/10.1103/PhysRevD.79.124042
http://dx.doi.org/10.1103/PhysRevD.79.124042
http://www.arxiv.org/abs/0912.2944
http://dx.doi.org/10.1103/PhysRevLett.103.101302
http://dx.doi.org/10.1103/PhysRevLett.103.101302
http://dx.doi.org/10.1103/PhysRevD.80.064033
http://dx.doi.org/10.1103/PhysRevD.80.064033
http://dx.doi.org/10.1103/PhysRevD.80.064033
http://dx.doi.org/10.1088/0264-9381/11/10/017
http://dx.doi.org/10.1088/0264-9381/11/10/017
http://dx.doi.org/10.1103/PhysRevA.49.5131
http://dx.doi.org/10.1103/PhysRevA.49.5131
http://dx.doi.org/10.1088/0264-9381/11/9/001
http://dx.doi.org/10.1088/0264-9381/11/9/001
http://dx.doi.org/10.1088/0264-9381/20/24/L01
http://dx.doi.org/10.1088/0264-9381/20/24/L01
http://dx.doi.org/10.1103/PhysRevD.78.064065
http://dx.doi.org/10.1103/PhysRevD.78.064065
http://dx.doi.org/10.1103/PhysRevD.78.064065
http://dx.doi.org/10.1088/0264-9381/26/10/105015
http://dx.doi.org/10.1088/0264-9381/26/10/105015
http://dx.doi.org/10.1088/0264-9381/26/16/165002
http://dx.doi.org/10.1088/0264-9381/26/16/165002
http://dx.doi.org/10.1007/BF01941322
http://dx.doi.org/10.1007/BF01941322
http://dx.doi.org/10.1088/0264-9381/19/4/303
http://dx.doi.org/10.1088/0264-9381/19/4/303


Class. Quantum Grav. 27 (2010) 205018 M Gurses¨ 

16 

[19] Deser S and Tekin B 2003 Class. Quantum Grav. 20 4877 
[20] Chow D D K, Pope C N and Sezgin E 2010 Class. Quantum Grav. 27 105001 
[21] Anninos D, Li W, Song W and Strominger A 2009 J. High Energy Phys. JHEP03(2009)130 
[22] Deser S, Jackiw R and Pi S Y 2005 Cotton blend gravity pp-waves (dedicated to Andrzej Staruszkiewicz, a 

pioneer in d = 3 gravity, on his 65th birthday) Acta Phys. Pol. B 36 27–34 (arXiv:gr-qc/0409011) 

[23] Ayon-Beato E and Hassaine M 2005 Ann. Phys. 317 175 
[24] Ayon-Beato E and Hassaine M 2006 Phys. Rev. D 73 104001 
[25] Chow D D K, Pope C N and Sezgin E 2010 Class. Quantum Grav. 27 105002 

[26] Gurses M, Karasu A and Sarıo¨ glu˜ O 2005¨ Class. Quantum Grav. 22 1527–43 

[27] Gurses M and Sarıo¨ glu˜ O 2005¨ Class. Quantum Grav. 22 4699 

[28] Gleiser R J, Gurses M, Karasu A and Sarıo¨ glu˜ O 2006¨ Class. Quantum Grav. 23 2653 
[29] Gurses M 2010¨ Gen. Rel. Grav. 42 1413 
[30] Barrow J D, Shaw D J and Tsagas C G 2006 Class. Quantum Grav. 23 5291–322 
[31] Nutku Y 1993 Class. Quantum. Grav. 10 2657 
[32] Vuorio I 1985 Phys. Lett. B 163 91 

Percacci R, Sodano P and Vuorio I 1987 Ann. Phys., NY 176 344 
[33] Ayon-Beato E, Giribet G and Hassaine M 2009 J. High Energy Phys. JHEP05(2009)029 
[34] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Spacetime (Cambridge: Cambridge 

University 
Press) 

[35] Carter B 1969 J. Math. Phys. 10 70 
[36] Banados M, Henneaux M, Teitelboim C and Zanelli J 1993˜ Phys. Rev. D 48 1506 
[37] Eisenhart L P 1964 Riemannian Geometry 5th edn (Princeton, NJ: Princeton University Press) 
[38] Hall G S 1990 J. Math. Phys. 31 1198 
[39] Carot J 2000 Class. Quantum Grav. 17 2675 
[40] Aliev A N and Nutku Y 1996 Class. Quantum Grav. 13 L29–32 
[41] Deser S and Franklin J 2010 Class. Quantum Grav. 27 107002 

http://dx.doi.org/10.1088/0264-9381/20/22/011
http://dx.doi.org/10.1088/0264-9381/20/22/011
http://dx.doi.org/10.1088/0264-9381/27/10/105001
http://dx.doi.org/10.1088/0264-9381/27/10/105001
http://dx.doi.org/10.1088/1126-6708/2009/03/130
http://www.arxiv.org/abs/gr-qc/0409011
http://www.arxiv.org/abs/gr-qc/0409011
http://dx.doi.org/10.1016/j.aop.2004.11.006
http://dx.doi.org/10.1016/j.aop.2004.11.006
http://dx.doi.org/10.1103/PhysRevD.73.104001
http://dx.doi.org/10.1103/PhysRevD.73.104001
http://dx.doi.org/10.1103/PhysRevD.73.104001
http://dx.doi.org/10.1088/0264-9381/27/10/105002
http://dx.doi.org/10.1088/0264-9381/27/10/105002
http://dx.doi.org/10.1088/0264-9381/22/9/003
http://dx.doi.org/10.1088/0264-9381/22/9/003
http://dx.doi.org/10.1088/0264-9381/22/22/004
http://dx.doi.org/10.1088/0264-9381/22/22/004
http://dx.doi.org/10.1088/0264-9381/23/7/025
http://dx.doi.org/10.1088/0264-9381/23/7/025
http://dx.doi.org/10.1007/s10714-009-0914-7
http://dx.doi.org/10.1007/s10714-009-0914-7
http://dx.doi.org/10.1088/0264-9381/23/17/012
http://dx.doi.org/10.1088/0264-9381/23/17/012
http://dx.doi.org/10.1088/0264-9381/10/12/022
http://dx.doi.org/10.1088/0264-9381/10/12/022
http://dx.doi.org/10.1016/0370-2693(85)90199-6
http://dx.doi.org/10.1016/0370-2693(85)90199-6
http://dx.doi.org/10.1016/0370-2693(85)90199-6
http://dx.doi.org/10.1016/0003-4916(87)90006-6
http://dx.doi.org/10.1016/0003-4916(87)90006-6
http://dx.doi.org/10.1088/1126-6708/2009/05/029
http://dx.doi.org/10.1063/1.1664763
http://dx.doi.org/10.1063/1.1664763
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://dx.doi.org/10.1063/1.528753
http://dx.doi.org/10.1063/1.528753
http://dx.doi.org/10.1088/0264-9381/17/14/306
http://dx.doi.org/10.1088/0264-9381/17/14/306
http://dx.doi.org/10.1088/0264-9381/13/3/001
http://dx.doi.org/10.1088/0264-9381/13/3/001
http://dx.doi.org/10.1088/0264-9381/27/10/107002
http://dx.doi.org/10.1088/0264-9381/27/10/107002

