Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, 1. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

A Simulation-Based Support Tool for Data-Driven Decision Making:

Operational Testing for Dependence Modeling

Bahar Biller Alp Akcay
Tepper School of Business Department of Industrial Engineering
Carnegie Mellon University Bilkent University
Pittsburgh, PA 15213, USA Ankara, 06800, TURKEY
Canan Corlu Sridhar Tayur
Metropolitan College Tepper School of Business
Boston University Carnegie Mellon University
Boston, MA 2215, USA Pittsburgh, PA 15213, USA

ABSTRACT

Dependencies occur naturally between input processes of many manufacturing and service applications.
When the dependence parameters are known with certainty, the failure to factor the dependencies into
decisions is well known to waste significant resources in system management. Our focus is on the case of
unknown dependence parameters that must be estimated from finite amounts of historical input data. In
this case, the estimates of the unknown dependence parameters are random variables and simulations are
designed to account for the dependence parameter uncertainty to better support the data-driven decision
making. The premise of our paper is that there are certain cases in which the assumption of an independent
input process to minimize the expected cost of input parameter uncertainty becomes preferable to accounting
for the dependence parameter uncertainty in the simulation. Therefore, a fundamental question to answer
before capturing the dependence parameter uncertainty in a stochastic system simulation is whether there is
sufficient statistical evidence to represent the dependence, despite the uncertainty around its estimate, in the
presence of limited data. We seek an answer for this question within a data-driven inventory-management
context by considering an intermittent demand process with correlated demand size and number of inter-
demand periods. We propose two new finite-sample hypothesis tests to serve as the decision support
tools determining when to ignore the correlation and when to account for the correlation together with the
uncertainty around its estimate. We show that a statistical test accounting for the expected cost of correlation
parameter uncertainty tends to reject the independence assumption less frequently than a statistical test
which only considers the sampling distribution of the correlation-parameter estimator. The use of these tests
is illustrated with examples and insights are provided into operational testing for dependence modeling.

1 INTRODUCTION

An effective management of inventory is crucial for the success of any business system where the goal is
to keep stock at a minimum while filling orders on time. In particular, simulation arises as an immediate
choice of aid for industry practitioners making inventory decisions under uncertainty. However, when the
demand distributions and their parameters are unknown and they must be estimated from finite amounts of
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historical demand data, linking historical demand data with simulation design and analysis for inventory
management turns into a challenge to be overcome in the search of a successful inventory control policy.

The common practice is to model stochastic demand using a probability distribution and then estimate
the parameters of this distribution from the historical data to compute an inventory policy via simulation.
However, this inventory policy would be optimal only if the demand parameter values were known with
certainty. Therefore, the sequential process of first estimating the demand parameters and then using the
demand parameter estimates for inventory-target optimization in a simulation casts doubt on the performance
of the resulting inventory policy in the presence of historical demand data of finite length. This is clearly
not an issue when there is a large amount of demand data and the demand parameter estimates converge
to their true values. Today, however, the product life cycles are getting shorter, leading to the availability
of even fewer observations in historical demand data sets. Consequently, the discrepancy between the
performance of an optimal but unknown inventory target and the performance of its estimate from the
simulation driven by a short demand history arises as a serious, but often ignored, problem in the design
and analysis of stochastic inventory systems.

At first glance, our consideration of short demand history in a modern business environment might
appear to contradict with the fact that we live in an era of big data. Yet there are still many situations
where we unfortunately do not have sufficiently large amounts of data to make decisions with confidence.
Brian Lewis, the chief data scientist and co-founder of Fractal Sciences, describes this situation as “big
data dreams, small data reality” (Analytics Magazine, January/February 2014). It is this small data reality
that our paper addresses when the demand history available for driving the simulation to support inventory
decisions is short, and therefore, the inventory targets must be estimated from limited amounts of historical
demand data. More importantly, we address this problem when the demand history contains dependent
demand data. We present a simulation-based decision support tool to determine when the dependence in
the demand process should be taken into consideration for inventory-target estimation in the presence of
limited data. We expect this tool to form the building block of a data-driven framework for various streams
of fragmented dependent demand data in a fast moving world with an explosive variety of products.

Representing demand uncertainty in a stochastic inventory simulation is often performed by treating
item demands as a sequence of independent random variables. Unfortunately, the resulting demand model
fails to capture the stochastic properties of demand processes exhibiting marked dependencies that occur
naturally in many business systems. For example, the dependencies of demands for different component
items may be induced by a bill of materials or product options. In an assemble-to-order system, the
demands for component items that are stocked before final order assembly are usually dependent (Hausman
et al. 1998). Even when the focus narrows down to the management of inventory for a single item, one
of the data challenges to overcome in data-driven inventory management is the temporal dependence in
a demand process; i.e., the dependence between consecutive demand realizations (Akcay et al. 2013a).
Dependence might also arise between the demand size and the number of inter-demand periods — the number
of zero-demand periods between two consecutive positive demands — in an intermittent demand process.
In fact, a large percentage of items in industries ranging from aerospace to electronics have intermittent
demand histories with positive realizations that only appear at random periods. It is a challenge to manage
the inventory of an item with this type of demand process due to the dual sources of variation; i.e., both
the demand size and the number of inter-demand periods are uncertain. Furthermore, the demand size and
the number of inter-demand periods might be dependent. It is crucial to capture the demand dependencies
through accurate multivariate demand modeling to avoid decision-making errors.

However, it is imperative to ask the following question prior to making any decisions to hedge against
the dependent demand parameter uncertainty; i.e., the uncertainty around the parameters of the dependent
demand distribution obtained from historical data of finite length: Is there sufficient statistical evidence to
capture the correlation in the demand process despite the uncertainty around its estimate in the presence of
limited demand data? Focusing on an intermittent demand process, seeking an answer to this fundamental
question is the primary contribution of our paper. Specifically, we construct two new finite-sample hypothesis
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tests to identify the situations in which it may be acceptable to ignore the correlation between the demand
size and the number of inter-demand periods, and hence, the dependence parameter uncertainty in a short
intermittent demand history, despite the existence of dependence in the demand process. These tests play
the role of a new decision support tool for data-driven inventory management. If the test suggests sufficient
evidence for the existence of demand dependence, then we incorporate it into the simulation to support
the inventory-target estimation. Therefore, the key novelty of our work is to present solutions to guide
the data-driven decision making, choosing the domain of application as inventory management where the
intermittent demand process exhibits dependence between its size and the number of inter-demand periods.
It is important to note that there are powerful tools in statistics to test the existence of correlation in
bivariate normal data (Fosdick and Raftery 2012). Traditionally, the distribution of a test statistic is based
on asymptotic theory. In contrast, we generate test-statistic realizations from a limited amount of demand
data to build an empirical distribution of the test statistic. We first introduce a statistical test that is solely
based on the sampling distribution of the dependence parameter estimator. We then switch our focus to
the fact that, as opposed to searching for the statistical significance of a dependence parameter estimate, a
decision maker would be more interested in the performance of the decision based on this estimate. This
motivates us to introduce an alternative (operational) test building on the difference between the expected
cost of an inventory-target estimate and the minimum expected cost. Contrary to our correlation test, this
operational test accounts for the costs of overestimation and underestimation of the optimal inventory target,
and hence, the asymmetry in the cost function, in its investigation for the existence of demand correlation.
We find that the difference between the inventory holding and backlogging costs — which is ignored by the
correlation test — plays an important role when the expected cost of parameter uncertainty is the criterion
used to decide whether or not to account for the demand correlation in simulation design and analysis.
We show that our operational test — which accounts for the expected cost of correlation parameter
uncertainty — tends to reject the independence assumption less frequently than the correlation test —
which only considers the sampling distribution of the dependence parameter estimator — especially when
the length of the demand history and the strength of the demand dependence are not very high. This
can be explained by the additional statistical estimation error around the dependence parameter when the
independence assumption is relaxed. To put it another way, the benefit of accounting for the demand
correlation is dominated by the additional expected cost associated with the incorrect estimation of the
dependence parameter. When the amount of data is limited and the strength of demand dependence is
low, the dependence parameter estimator has the highest variance, and therefore the estimated value of the
demand dependence is subject to the highest statistical estimation error. This is why the operational test is
in favor of the simpler model with no dependence when the demand history is short with low strength of
dependence. Therefore, the correlation test is more appropriate if the goal is merely to make an inference
about the demand process. The operational test is, on the other hand, more pragmatic to consider when the
question is whether the dependence parameter estimate should be used as an input for decision making,
as is the case of using simulation to support data-driven inventory management. We conclude with the
note that our tests work for any measure of demand dependence. In addition to demand correlation, our
tests also work for non-linear dependence measures, which arise as alternatives to the use of correlation
for demand modeling when the dependence occurs between very low or very high demand realizations.
The remainder of the paper is organized as follows. Section 2 presents the demand and inventory
models. Section 3 develops the hypothesis tests to determine whether to account for the intermittent demand
correlation in inventory-target estimation and presents numerical insights into the effect of dependence
parameter uncertainty on data-driven decision making. Section 4 concludes with future research directions.

2 BACKGROUND

Section 2.1 presents a copula-based intermittent demand model to capture correlation between a demand
size and number of zero-demand periods preceding the demand. Section 2.2 characterizes the optimal
policy assuming the complete knowledge of the underlying demand distribution.
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2.1 A Copula-Based Intermittent Demand Process

We consider a discrete-time model with inventory review periods that are often shorter than the times
between successive demand arrivals. We model the randomness in the demand arrivals by a Bernoulli
process; i.e., the number of inter-demand periods, which we denote by Y € {0,1,2,...}, has the geometric
distribution with cumulative distribution function (cdf) G(y; p) = 1 — (1 — p)**1. Thus, the probability of
observing a positive demand in any period is equal to p. We let the distribution of (positive) demand size,
denoted by X, be a member of the location-scale family of distributions with location parameter T and scale
parameter 0. In fact, our copula-based intermittent demand model is flexible enough to combine an arbitrary
distribution of the number of inter-demand periods with an arbitrary distribution of the demand size. The
motivation behind the choice of the location-scale family of distributions in this paper is to describe the
development of our finite-sample hypothesis tests in a way that is independent of the unknown parameters
of the demand-size distribution. Hence, we represent the cdf of X, F(x;7,0) as F((x—17)/6;0,1) in the
remainder of the paper, where F(+;0,1) is the standardized cdf that does not depend on 7 and 6.

Willemain et al. (1994) show the existence of correlation in the historical intermittent shipment data
of items ranging from electrical equipment to health products. Eaves (2002) investigates spare parts data
from the Royal Air Force and finds statistically significant correlation between demand size and number of
inter-demand periods in 18% of more than ten thousand items. More recently, Altay et al. (2012) analyze
aircraft service parts data from the U.S. Defense Logistics Agency and identify significant correlation in
35% of the items. We have also encountered correlation in our own experience with a data set from a
global luxury manufacturer in consumer-product space: A two-sided t test shows that 292 items (out of
1149) have statistically significant correlation between the demand size and the number of inter-demand
periods (Akcay et al. 2013b).

As demonstrated by these real-life examples, the need to address the issue of an unknown correlation
between demand size and number of inter-demand periods arises as a challenge in an inventory system
simulation with limited intermittent demand history. More specifically, the challenge is to model the
distribution of demand size, conditional on the number of periods since the last demand, while retaining
the distribution of demand size X from the location-scale family along with the geometric distribution for
the number of inter-demand periods Y. We address this issue by constructing the joint distribution of X
and Y with a copula, which allows us to model the univariate distributions of X and Y and the dependence
structure between them separately. Sklar’s theorem (Nelsen 2006) elucidates the role played by a copula
in the relation between a joint distribution and its univariate cdfs:

Theorem 1 Given the bivariate cdf H(x,y) for the random variables X and Y with univariate cdfs F(x; 7, 0)
and G(y; p), there exists a copula ¢ such that H(x,y) =% (F(x;1,0),G(y; p)). Conversely, if € is a copula
and F(x;7,0) and G(y; p) are univariate cdfs, then H(x,y) is a bivariate cdf for random variables X and Y.

More specifically, we construct the bivariate distribution of X and Y using the normal copula, which
encodes the dependence precisely the same way a bivariate normal distribution does and, hence, measures
the dependence between X and Y with correlation: H(x,y) = @, {® ! (F(x;7,0)),® ' (G(y; p));r} where
®,{-,-;r} is the bivariate standard normal cdf with correlation r (Nelsen 2006). However, the use of this
model for intermittent demand modeling should only follow after the application of our operational test
investigating whether there is sufficient statistical evidence to capture this dependence in the presence of
limited intermittent demand data.

2.2 Inventory Model

The decision of how much inventory to keep, if any, is made at the beginning of each period and is
contingent on the amount of inventory on hand. We consider linear procurement, holding, and backlogging
costs ¢, h, and b per unit, respectively, and the time lag between procurement and delivery is negligible.
Holding and backlogging costs are calculated based on the amount of ending inventory in each period. All
the backlogged demand is satisfied before the next period starts, and the decision maker cannot dispose any
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inventory during the multi-period planning horizon. At the end of the finite planning horizon, the decision
maker obtains reimbursement of the procurement cost for each leftover unit and incurs the procurement cost
for each backlogged unit. The goal is to find an ordering policy that minimizes the overall expected cost.
Therefore, we can characterize the optimal policy when the parameters of our copula-based intermittent
demand model (i.e., the demand-size distribution parameters T and 6, the demand-occurrence probability
p, and the normal copula parameter r) are known as follows, where y denotes the number of zero-demand
periods since the last demand:

(1) A base-stock policy is optimal in any time period for all values of y.
(i)  For the demand-occurrence probability p > h/(h+b), the optimal inventory target ¢* is given by
7+ F~1(x%,0,1) 0, where k* is the unique value of k that solves the equation
h/(h+b)

@2 {®~ (), 2~ (G(3p))sry — P2 {P ' (K), @ H(GO—Lip))iry | "
(1-pPp p
(iii)  For p <h/(h+b), the optimal inventory target ¢* is zero.

We refer the reader to Akcay et al. (2013b) for the derivation of this result. It is important to note that the
solution k* does not depend on the demand-size parameters due to our copula-based representation of the
intermittent demand process. We will make use of this important property in establishing the distribution
of the test statistic for the operational test in Section 3.

As outlined above, the decision maker obtains the optimal inventory target g* for p > h/(h+b) by
minimizing the single-period expected cost knowing that the myopic policy is optimal. To implement the
policy, however, she obtains the point estimates of the unknown parameters p, 7, 8, and r from the historical
demand data, and plugs these estimates into the functional form of ¢* which is optimal only when the
intermittent demand parameters are completely known. Hence, this well-known practice of inventory-target
estimation ignores the uncertainty around the intermittent demand parameter estimates, which are inevitably
obtained from a single realization of the demand history.

3 A SIMULATION-BASED DECISION SUPPORT TOOL: OPERATIONAL TESTING

We introduce the correlation test based on the sampling distribution of the correlation parameter estimator in
Section 3.1 and the operational test based on the difference between the expected cost of an inventory-target
estimate and the minimum expected cost in Section 3.2. We illustrate the use of these tests with examples
and provide insights into operational testing for dependence modeling in Section 3.3.

3.1 The Correlation Test

The copula-based representation of intermittent demand allows the marginal demand distribution parameters
T, 0, and p, and the normal copula parameter r to be estimated separately, potentially with different methods.
In this section, we first obtain the marginal-distribution parameter estimators 7, 6, and p and transform
the historical data {(x;,y;);t = 1,2,...,n4} into {(ui,u;);i: 1,2,...,n4} with u! := F((x;—%)/6;0,1) and
u; :=G(y;p). Then we use the maximum likelihood method to estimate the copula parameter r by fitting
the normal copula to the transformed data:

ng . .
Foi= argmax,g_j Z log ¢ {® (i), @ ! (uy);r}, 2)
i=1

where @,{-,-;r} is the bivariate standard normal probability density function (pdf) with correlation r. The
transformation of historical data into a unit hypercube by the parametric estimates of their univariate cdfs is
known as the inference functions for margins; we refer the reader to Cherubini et al. (2011 for the details.
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Clearly, the estimated value of 7 never takes the exact value of zero. Thus, the immediate task of a
decision maker — before accounting for any correlation between demand size and number of inter-demand
periods — is to investigate whether the historical data carry sufficient information to reject the independence
between the demand size and the number of inter-demand periods. There are powerful tools in statistics
to test the existence of correlation in bivariate normal data; see Fosdick and Raftery (2012) for a review.

Traditionally, the distribution of a test statistic is based on asymptotic theory. In contrast, we generate
realizations of the test statistic from the limited demand data to build an empirical distribution of the test
statistic. The so-called bootstrap hypothesis testing has become increasingly attractive due to advances
in computing (MacKinnon 2009). We let the null hypothesis .77 be r = 0 and the two-tailed alternative
hypothesis 774 be r # 0. The correlation test compares the observed value of the test statistic 7# with the
distribution that it would follow if the null hypothesis were true. The null hypothesis is then rejected if 7
is sufficiently high relative to this distribution. The decision maker performs the test by specifying only
the length of the demand history and the number of positive realizations.

Correlation Test Testing for correlation with 4 : r =0 and J%4 : r # 0.
Initialization. Specify the number of bootstrap samples (B), the length of historical data (n),
the number of positive realizations (n4), and the significance level (1 — o).
Set p<ng/nand b+ 1.
Compute the test statistic 7 as in (2) from the historical data {(x;,y,);r =1,2,...,n4}.
while b < B:
Step 1. Generate the bootstrap sample path:
Seti< 1and <+ 1.
while r <n
Generate (.,@i{’i, pr.i) from the bivariate standard normal cdf with correlation r = 0.
Obtain 22 = F~1(®(2?);0,1) and y? = G~ (@(ZL): p).
Sett 44y’ +1and i< i+l.
Let nZ be the number of nonzero demands in bth bootstrap sample path.

end
Step 2. Compute the test statistic from the bootstrap sample path:
Let Z and s, be the sample mean and sample standard deviation of {z}f ,zg, e ,zzd}.

b
Set 7 - argmax,c_ 1) T14 log 6 (@ (F (5 —2)/5::0.1)), @~ (GO /m)er).
b—b+1
end
Step 3. Construct the critical region to reject the null hypothesis:
Sort #, b=1,2,...,B in ascending order (r()s7@)s- -5 7 (B))-
Reject the null hypothesis 7 if 7 < r(|(q/2)8]) OF 7> r([(1-a/2)8))-

We note that the copula-based representation of intermittent demand and the assumption of a location-scale
family for the distribution of demand size allow the use of standardized demand samples {z}l’ ,zg, ... ’sz}
instead of the actual demand samples {xlf,x’;, ...,x2 1, which could be generated only if the true values of

> Xn,
T and 0 were known.

3.2 The Operational Test

As opposed to searching for the statistical significance of a normal copula parameter estimate, a decision
maker would be more interested in the performance of the decision based on this estimate. In this section,
we propose an alternative test — the operational test — considering the sampling distribution of the
difference between the expected costs of the optimal inventory target and its estimate. Hence, contrary to
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the correlation test, the operational test accounts for the costs of overestimation and underestimation of
the optimal inventory target in its investigation for the existence of correlation in the presence of limited
historical intermittent demand data.

We start with reducing the expected cost function to an alternative form, which will be used to construct
the sampling distribution of the test statistic. First, we let C(g|y; p, 7,0, r) denote the single-period expected
cost conditional on the number of periods y since the last demand and represent the expected cost function

C(qly:p,t,0,r) as
90(‘1: y;p,O,l,r>+hT(1—p). 3)

We refer the reader to Akcay et al. (2013b) for a detailed discussion of this characterization.

The decision maker implements the optimal policy with the threshold y = h/(h+ b) as follows: If the
estimate of the demand-occurrence probability p > 7, then the inventory target is set to £+ F ! (&y;0, 1)@;
and if p < 7, then it is set to zero. We let Ky be the value of x that solves the equation I(x; p,y,7) = 1 —y/p,
where I1(k; p,y,7) is the left-hand side of (1) for notational convenience.

Building on the definitions % := (£ —17)/6 and ¥ := /6, the difference between the expected cost
of an inventory-target estimate and the minimum expected cost of the optimal inventory target takes the

form OA(Ky, %,V ,y;Y,p,r), where A(Ky, %,V ,y;Y,p,r) is given by

C(% +F ' (k0,1)¥|y;p,0,1,r) =C(F~1(1 = y/p;0,1)|y; p,0,1,r) for p>yand p <y,
(F~

C(% +F Y (&;0,1)7|y;p,0,1,r) — C(F~1(x*;0,1)|y; p,0,1,r) for p>vyand p >y,
C(F~ (1 =y/p;0,1)ly; p,0,1,r) = C(F~" (k") y; p,0,1,7) for p<yand p>y,
0 forp<vyand p<7.

We use the nonnegative random variable A(Ky, %, 7 ,y;v,p,r) as the test statistic. The operational test
compares the observed value of this test statistic to the distribution that it would follow under the null
hypothesis of no correlation. The null hypothesis is then rejected when the observed value of the test
statistic is sufficiently high relative to this distribution.

Operational Test Testing for correlation with 5% : r = 0 and %A : r # 0.

Initialization. Specify the number of bootstrap samples (B), the length of historical data (n),
the number of positive realizations (n,), the number of periods since last demand (y),
and the significance level (1 — ).

Set p < ng/n and b <+ 1.

Compute the test statistic A := A(Ky,0,1,y;7,p,0) from the data set {(x;,y;);t =1,2,...,n4}.

while b < B:

Step 1. Generate the bth bootstrap sample path as in Step 1 of the correlation test.

Step 2. Compute the test statistic from the bootstrap sample path:

Set p* « nb /n.

Let Z and s, be the sample mean and sample standard deviation of {22,725, ... ,sz}.
Set 77 ¢ argmax,_ 1) L4 log 2{ @~ (F((zi —2)/5:30,1)), @~ (G °))s -
Set Kfj to the value of K that solves the equation IT(k; p?,y,#) =1 —1vy/p".

Set u’ + z—a? and VP « s,/ /as.

Al ARy, ub VP, y;,p2,0).

b+—b+1

end

Step 3. Construct the critical region to reject the null hypothesis:

Sort A?, b=1,2,...,B in ascending order (Aay,A@)s- - A))-
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Reject the null hypothesis 7% if A > A((1-a)B))-

In the following section, we investigate how the consideration of the expected cost of the correlation
parameter uncertainty affects the decision maker in assessing the need for modeling the correlation.

3.3 Results and Insights

We design our experiments by letting the number of independent bootstrap sample paths B take the value
of 10,000. We also take the number of positive realizations ny; as 20%, 40%, 60%, and 80% of n, the
length of the demand history. Our first numerical finding is that there exists an interval of the correlation
between the demand size and the number of inter-demand periods in which the expected cost of parameter
uncertainty is smaller if the intermittent demand process is assumed to be independent despite the existence
of the correlation. For the significance level of 95% (i.e., o = 0.05), we refer to the lower and upper limits
of this interval as the 95% confidence bounds and provide the values identified for the correlation test in
Table 1. We note that the correlation test rejects the hypothesis that the correlation is zero in favor of the
alternative that it is not zero if the copula-parameter estimate is less than 2.5% quantile or greater than
97.5% quantile.

We identify the 95% significance test bounds as {—0.89,0.89} for a demand history of length 30 with
6 (= (30)(20%)) positive demand realizations. That is, the decision maker has sufficient evidence to reject
the independence assumption only if the estimated value of the copula parameter is less than —0.89 or
greater than 0.89. On the other hand, the significance test bounds are {—0.14,0.14} for a demand history of
length 250 with 200 positive demand realizations. In this case, the estimated value of the copula parameter
must be less than —0.14 or greater than 0.14 to justify the modeling of correlation in intermittent demand.
The significance bounds approach zero (i.e., the critical region becomes larger) as the length of the demand
history and the number of positive realizations increase.

In Table 2, we focus on the fraction of time that the decision maker rejects the null hypothesis at the level
a = 0.05 based on 500 replications of the correlation test. In each scenario, we let the percentage of positive
realizations be 20% (top) or 40% (bottom) of the demand history to focus on highly intermittent demand
histories. Clearly, the fraction of rejections approaches one as the length of the demand history and the true
value of the copula parameter (i.e., the strength of correlation) increases. For example, the decision maker
rejects the null hypothesis of no correlation 5% of the time when the copula parameter is 0.15 in a demand
history of length 30 with 12 positive demand realizations. In this case, the fraction of rejections reaches
94% when the copula parameter is as high as 0.90. It is worth noting that the correlation test only considers
the sampling distribution of the copula-parameter estimator to decide whether to model the correlation. We
next present our findings for the operational test that accounts for the expected cost associated with the
overestimation and underestimation of the optimal inventory target from limited historical demand data.

In Table 3 we present the fraction of time in which the decision maker rejects the independence
assumption, as a result of using the operational test, at the o = 0.05 level when the cost ratio y=h/(h+ D)
is equal to 0.1. We observe that the fraction of time in which the decision maker rejects the independence
assumption is considerably smaller in Table 3 compared to Table 2, especially when the length of the demand
history and the strength of the correlation are not very high. This can be explained by the additional statistical

Table 1: The 95% significance bounds in the correlation test to reject » = 0 against r £ 0

The percentage of positive realizations in the n-period history

n 20% 40% 60% 80%
30 {-0.89, 0.89} {-0.62, 0.62} {-0.48, 0.48} {-041, 0.41}
50 {-0.70, 0.70} {-0.46, 0.46} {-0.36, 0.36} {-0.31, 0.31}
100 {-0.47, 0.47} {-0.32, 0.32} {-0.26, 0.26} {-0.22, 0.22}
250 {-0.28, 0.28} {-0.20, 0.20} {-0.16, 0.16} {-0.14, 0.14}
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Table 2: The fraction of time the correlation test rejects .74j : ¥ = 0 at 95% significance level

The percentage of positive realizations in the n-period history is 20%

r
n ng 0.15 0.3 0.45 0.6 0.75 0.90
30 6 3% 3% 5% 12% 17% 38%
50 10 5% 7% 13% 32% 62% 85%
100 20 9% 20% 46% 77% 95% 100%
250 50 20% 53% 90% 99% 100% 100%
The percentage of positive realizations in the n-period history is 40%

30 12 5% 9% 22% 37% 75% 94%
50 20 7% 20% 41% 71% 94% 100%
100 40 11% 37% 75% 96% 100% 100%
250 100 31% 80% 99% 100% 100% 100%

estimation error around the normal copula parameter when the independence assumption is relaxed. To
put it another way, the benefit of accounting for the correlation is dominated by the additional expected
cost associated with the incorrect estimation of the normal copula parameter. When the amount of data is
limited and the strength of the correlation is low, the copula-parameter estimator has the highest variance,
and therefore the estimated value of correlation is subject to the highest statistical estimation error. This
is why the operational test, which considers the expected cost of parameter uncertainty, is in favor of
the simpler model with no correlation when the intermittent demand history is short with low strength of
dependence between demand size and number of inter-demand periods.

We observe that the difference between the inventory holding and backlogging costs, and hence, the
asymmetry in the expected cost function — which is ignored by the correlation test — plays an important role
when the expected cost of parameter uncertainty is the criterion used to decide whether or not to model the
correlation. To illustrate, we present the fraction of time that the decision maker rejects the independence
assumption in Table 4 when 7 is equal to 0.25 and the percentage of positive realizations in the n-period
history is 40%. Clearly, the fraction of time the decision maker rejects the independence assumption is
smaller in Table 4 compared to the second half of Table 3. In these tables, the values of n and n, are both
the same, while the difference between the ratio of n; to n and the value of 7y is smaller in Table 4. The
decision maker is more likely to set a zero inventory target when the ratio of n; to n is not sufficiently
higher than 7, leading to smaller values for the probability of rejecting the independence assumption in
Table 4. Intuitively, the decision maker is less likely to model the correlation since the inventory target is set

Table 3: The fraction of time the operational test rejects %) : r = 0 at 95% significance level for y= 0.1

The percentage of positive realizations in the n-period history is 20%

,

n ng 0.15 0.3 0.45 0.6 0.75 0.90
30 6 0% 0% 0% 0% 0% 2%
50 10 0% 0% 0% 0% 3% 5%
100 20 0% 1% 3% 9% 21% 27%

250 50 3% 7% 26% 33% 46% 69%
The percentage of positive realizations in the n-period history is 40%

30 12 0% 1% 3% 5% 8% 28%
50 20 0% 3% 8% 13% 35% 45%
100 40 0% 8% 28% 46% 49% 58%

250 100 0% 15% 51% 63% 73% 84%
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Table 4: The fraction of time the operational test rejects %) : r = 0 at 95% significance level for y = 0.25

The percentage of positive realizations in the n-period history is 40%

’
n ng 0.15 0.3 0.45 0.6 0.75 0.90
30 12 0% 0% 0% 1% 3% 5%
50 20 0% 0% 2% 5% 11% 14%

100 40 0% 2% 5% 13% 41% 53%
250 100 1% 10% 35% 69% 72% 81%

to zero anyway. Indeed, we observe that the fraction of time the decision maker rejects the independence
assumption in the operational test is almost zero in all the cases when the ratio of n; to n is 20% with
Y= 0.25 and when the ratio of n; to n is 20% and 40% with y=0.5.

A natural question to ask is which statistical test to use for investigating the existence of correlation in
an intermittent demand history. The correlation test considers the normal copula parameter in isolation, and
therefore, it is more appropriate if the goal is merely to make an inference about the intermittent demand
process. On the other hand, the operational test incorporates the expected cost of incorrectly estimating
the copula parameter into the decision of modeling the correlation. Thus, the operational test is more
pragmatic to consider when the question is whether the copula parameter estimate should be used as an
input in decision making, as is the case in this paper.

4 CONCLUSION

When we have the full knowledge of the dependence parameters of an input distribution function, it is
well known that accounting for the dependence in the input process can provide significant benefits. In
the absence of this information, however, the benefit of accounting for the correlation may be dominated
by the additional expected cost associated with the incorrect estimation of the correlation parameter. This
insight into the price of correlation parameter uncertainty led us to ask whether we should always model the
correlation despite the statistical estimation error around the copula parameter. We answer this fundamental
question before attempting to account for the correlation in simulation design and analysis with a focus
on data-driven inventory management for a product with an intermittent demand process. We present an
operational test that is in favor of the simpler model with no dependence when the demand history is short
with low strength of dependence. As we consider settings with many input processes, this simplicity may
potentially lead to sparse correlation matrices for system inputs, leading to the identification of clusters of
input processes, where only the input processes in a cluster are considered to be dependent under parameter
uncertainty. In certain cases, this simplicity may also allow us to ensure computational efficiency by the
cluster-based decomposition of large-scale simulation optimization problems with dependent inputs into a
series of small-scale simulation optimization problems. This is the subject of ongoing work.
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