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Abstract

We study the ground-state static properties of Bose–Einstein condensates in the high density
regime using a trial wave function of the form of a q-Gaussian. The ,exibility a/orded by a
q-Gaussian trial function yields very accurate ground-state energies for large number of particles.
The resulting condensate wave function pro0les are also in good agreement in the high density
regime. Comparing our results with those of numerical calculations we provide information on
the possible limitations of the q-Gaussian trial functions.
c© 2002 Elsevier Science B.V. All rights reserved.
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Advances in the laser and evaporative cooling techniques as well as the trapping
methods have culminated in successful realization of Bose–Einstein condensation in
atomic gases [1]. This stirred a great deal of experimental and theoretical activity in
the study of quantum gases [2]. The original experiments used dilute systems, namely
when the interatomic distance is much larger than the range of interactions. More
quantitatively, the dimensionless parameter na3�1, where n is the mean density and
a is the s-wave scattering length characterizing the interaction strength between atoms.
Recently, there has been experimental [3–5] and theoretical [6–11] interest in the regime
where the diluteness condition does not hold. This may be achieved either by increasing
the number of atoms N in the condensate, or by tuning the interaction strength (or
equivalently a) through Feshbach resonance. Investigation of atomic systems at high
density renders useful information on the role of interactions.
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The ground-state static properties of dilute bosonic gases are well described by the
Gross–Pitaevskii (GP) equation which assumes that all the particles are in the con-
densed state. Condensate density and other thermodynamic properties can be obtained
by the numerical solution of the GP equation [2]. Because of their physical and
intuitive content variational approaches have also been quite popular [12–14]. Recently,
Fa et al. [15] introduced q-Gaussian trial functions to minimize variationally the GP
energy functional, and have found good agreement with the results of numerical calcu-
lations. q-Gaussians were originally employed in the context of Tsallis’ nonextensive
statistics [16].
In this work we employ the q-Gaussian trial function as introduced by Fa et al. [15]

to variationally calculate the ground-state energy and condensate wave function pro0les
of a Bose gas in the high density regime. We are 0rst motivated by the success of
this trial function in the low density regime and intend to test the applicability at high
densities. Second, in comparing the results of the variational calculation to those of
numerical methods, it was noticed [14] that some inconsistent discrepancies exist. We,
thus, provide more accurate results for the numerical solution of the GP equation at
high densities.
The ground state static properties of a condensed system of bosons con0ned in an

harmonic trap and in the high density regime is described by the modi0ed Gross–
Pitaevskii (MGP) energy functional [6]. In the following, we use harmonic oscillator
length aHO = (˝=m!)1=2, ˝!, and (Na3HO)

1=2 to scale lengths, energies, and the con-
densate wave function  , respectively. In terms of the scaled variables, the MGP
functional is
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This equation is obtained within the local-density approximation making use of the
perturbatively calculated homogeneous system energy density. If the terms beyond
2�aN | |4 are neglected the usual Gross–Pitaevskii (GP) energy functional is recov-
ered. Functional minimization of the above energy subject to the normalization of  
yields the modi0ed Gross–Pitaevskii (MGP) equation [6][
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where � is the chemical potential.
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Table 1
The ground-state energies per particle E=N for 87Rb (a=aHO=4:33×10−3) compared in di/erent approaches

N E=N

q-Gaussian MTF Numerical Ref. [14]

105 12.24 12.04 12.19 12.21
106 30.45 30.33 30.40 30.51
107 76.47 76.41 76.42 76.75
108 192.28 192.38 192.23 193.13
109 481.55 482.42 481.55 483.81

In a previous work, Fa et al. [15] considered the q-Gaussian trial function to calcu-
late the ground-state properties of an anisotropic system within the GP approximation,
and found good agreement with numerical calculations. For isotropic systems, the
q-Gaussian trial function takes the form

 (r) =

{
A[1− (1− q)�r2]1=(1−q) if 1− (1− q)�r2 ¿ 0 ;

0 otherwise :
(3)

Here � and q are variational parameters and A is the normalization constant. As sug-
gested by Fa et al. [15] we allow q to vary from q=1 (which corresponds to the Gaus-
sian wave function of an ideal gas) to q=−1 (which corresponds to the Thomas–Fermi
limit). Similarly to the widely used Gaussian trial functions, the present q-Gaussians
provide analytical expressions for the integrated MGP functional. 1 We have checked
that q-Gaussian trial function within a variational approach works very well for the
isotropic systems too.
We have performed variational and purely numerical calculations on a system of

87Rb atoms in an isotropic harmonic trap characterized by the angular frequency
!=2� = 77:78 Hz. The s-wave scattering length for this trap frequency is given by
a = 4:33 × 10−3aHO where aHO = (˝=m!)1=2 is the harmonic oscillator length. The
numerical solution of the MGP equation is obtained by the steepest descent method
[6,17]. To test the 0delity of the q-Gaussian trial function at high density, we con-
sider systems with large number of particles, i.e., N = 105 − 109. Our variational
and numerical results for the ground-state energy (per particle) E=N are tabulated in
Table 1, along with the variational results of Banerjee and Singh [14]. We 0rst note
that the numerical solution of the MGP equation yields ground-state energies consis-
tently lower than the variational results for a given N . This is to be expected, since
the variational principle ensures that the variationally calculated ground-state energy
is an upper bound. Thus, the possible mistakes in the quoted numerical values of
Refs. [6] and [10] are corrected. We have also checked that our E=N within the MGP
theory is in better agreement with the correlated basis function calculation [6]. Second,

1 The integral of the logarithmic term can be expressed in terms of the Digamma function �(x). Since
the analytical expressions are not particularly illuminating we omit their presentations here.
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our variational results using q-Gaussian wave function are in better agreement with the
MGP results than those of Banerjee and Singh [14] and they also satisfy the variational
principle. In Table 1, we have also given the ground state energy within the Thomas–
Fermi approximation for comparison. This is calculated to be [14]

ETF=N =
5
7
�TF

[
1 +

7
8
(�na3)1=2 +

32
15

(4�=3−
√
3)na3 ln (na3)

]
; (4)

where the gas parameter is na3 = (15N )2=5a12=5=8�. Similar levels of agreement and
improvement is obtained for other quantities such as the chemical potential �, and
root-mean-square of radial coordinate 〈r2〉1=2.
To elucidate the performance of the q-Gaussian functions within the GP and MGP

approaches we have plotted the variationally determined q values as a function of N ,
as shown in Fig. 1. For the GP functional without the high density corrections, q has
the expected dependence on N , which ranges from 1 (small N ) to −1 (large N ). In
the case of MGP functional, q shows essentially the same behavior but starts to depart
from the expected N -dependence around N = 109. This means that the wave function
pro0le is not very similar to the TF pro0le at these values of N . Such a behavior
is not physical and it leads us to conclude that q-Gaussians would be less useful
for N ¿ 109. The results shown in Fig. 1(a) were calculated for the scattering length
a=aHO=4:33×10−3. By increasing the harmonic oscillator frequency !, or making use
of the Feshbach resonance a=aHO may be increased. We show the N -dependence of
variational q parameter for a=aHO = 10−2 in Fig. 1(b). In this case, the departure from
the expected behavior starts around N=106. Using the TF result for the gas parameter,
we 0nd that for a=aHO=4:33×10−3 and N=109, one obtains na3 ≈ 10−3. It was noted
[7] that for na3 & 10−3 the logarithmic term in the MGP energy functional starts to
become appreciable and the validity of the perturbation expression breaks down. Thus,
it is not surprising that the q-Gaussian trial functions also fail for na3 & 10−3.

The condensate wave function  (r) as a function of the radial distance within the
present q-Gaussian approach is shown in Fig. 2(a) and (b). Compared to the numerical
solution of the MGP equation, q-Gaussian wave function appears to be in very good
agreement. The only discrepancy is around the edge of the condensate, because the
q-Gaussian has a TF-like behavior.
In summary we have tested the q-Gaussian trial function in the regime beyond the

mean-0eld approximation for which high density e/ects become noticeable. We have
found that similar to the low density regime where the mean-0eld GP equation gives an
accurate description, the variational method using q-Gaussian trial function also works
well at higher densities. We have quantitatively calculated the regime of applicability
of q-Gaussian trial function. We have also provided seemingly more accurate results
for the ground-state properties of 87Rb gas at large particle numbers. Our calculations
may straightforwardly be extended to anisotropic traps and lower dimensional systems.
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(a)

(b)

Fig. 1. The variational parameter q as a function of N within the GP (dashed) and MGP (solid) approaches.
The interaction strength is (a) a=aHO = 4:33× 10−3 and (b) a=aHO = 10−2.
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(b)

(a)

Fig. 2. The condensate wave function  as a function of the radial distance within the q-Gaussian (solid
lines) and numerical (dashed lines) approaches. (a) N=108; a=aHO=4:33×10−3, (b) N=106; a=aHO=10−2.
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