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Adding noise to inputs of some suboptimal detectors or estimators can improve their
performance under certain conditions. In the literature, noise benefits have been studied
for detection and estimation systems separately. In this study, noise benefits are
investigated for joint detection and estimation systems. The analysis is performed under
the Neyman–Pearson (NP) and Bayesian detection frameworks and according to the
Bayesian estimation criterion. The maximization of the system performance is formulated
as an optimization problem. The optimal additive noise is shown to have a specific form,
which is derived under both NP and Bayesian detection frameworks. In addition, the
proposed optimization problem is approximated as a linear programming (LP) problem,
and conditions under which the performance of the system can or cannot be improved via
additive noise are obtained. With an illustrative numerical example, performance
comparison between the noise enhanced system and the original system is presented
to support the theoretical analysis.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Although an increase in the noise power is generally
associated with performance degradation, addition of noise
to a system may introduce performance improvements
under certain arrangements and conditions in a number of
electrical engineering applications including neural signal
processing, biomedical signal processing, lasers, nano-elec-
tronics, digital audio and image processing, analog-to-digital
converters, control theory, statistical signal processing, and
information theory, as exemplified in [1] and references
therein. In the field of statistical signal processing, noise
benefits are investigated in various studies such as [2–17]. In
[2], it is shown that the detection probability of the optimal
detector for a described network with nonlinear elements
nal Processing and
).
: þ90 312 266 4192.
i).
driven by a weak sinusoidal signal in white Gaussian noise is
non-monotonic with respect to the noise power and fixed
false alarm probability; hence, detection probability
enhancements can be achieved via increasing the noise level
in certain scenarios. For an optimal Bayesian estimator, in a
given nonlinear setting, with examples of a quantizer [3] and
phase noise on a periodic wave [4], a non-monotonic
behavior in the estimation mean-square error is demon-
strated as the intrinsic noise level increases. In [5], the
proposed simple suboptimal nonlinear detector scheme, in
which the detector parameters are chosen according to the
system noise level and distribution, outperforms the
matched filter under non-Gaussian noise in the Neyman–
Pearson (NP) framework. In [6], it is noted that the perfor-
mance of some optimal detection strategies display a non-
monotonic behavior with respect to the noise root-mean
square amplitude in a binary hypothesis testing problem
with a nonlinear setting, where non-Gaussian noise (two
different distributions are examined for numerical purposes:
Gaussian mixture and uniform distributions) acts on the
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Fig. 1. Joint detection and estimation scheme with noise enhancement:
The only modification on the original system is the introduction of the
additive noise N.
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phase of a periodic signal. In [16] and [17], theoretical
conditions are provided related to improvability and non-
improvability of suboptimal detectors for weak signal detec-
tion via noise benefits.

One approach for realizing noise benefits is to tune the
parameters of a nonlinear system, as employed, e.g., in [8–
12]. An alternative approach is the injection of a random
process independent of both the meaningful information
signal (transmitted or hidden signal) and the background
noise (undesired signal). It is firstly shown by Kay in [13]
that addition of independent randomness may improve
suboptimal detectors under certain conditions. Later, it is
proved that a suboptimal detector in the Bayesian frame-
work may be improved (i.e., the Bayes risk can be reduced)
by adding a constant signal to the observation signal; that
is, the optimal probability density function is a single Dirac
delta function [14]. This intuition is extended in various
directions and it is demonstrated that injection of additive
noise to the observation signal at the input of a suboptimal
detector can enhance the system performance [15,18–34].
In this paper, performance improvements through noise
benefits are addressed in the context of joint detection and
estimation systems by adding an independent noise com-
ponent to the observation signal at the input of a subopti-
mal system. Notice that the most critical keyword in this
approach is suboptimality. Under non-Gaussian background
noise, optimal detectors/estimators are often nonlinear,
difficult to implement, and complex systems [35,36]. Hence,
the main aim is to improve the performance of a fairly
simple and practical system by adding specific randomness
(noise) at the input.

Chen et al. revealed that the detection probability of a
suboptimal detector in the NP framework can be increased
via additive independent noise [15]. They examined the
convex structure of the problem and specified the nature of
the optimal probability distribution of additive noise as a
probability mass function with at most two point masses.
This result is generalized for M-ary composite hypothesis
testing problems under NP, restricted NP and restricted
Bayes criteria [25,29,34]. In estimation problems, additive
noise can also be utilized to improve the performance of a
given suboptimal estimator [4,19,30]. As an example of
noise benefits for an estimation system, it is shown that
Bayesian estimator performance can be enhanced by adding
non-Gaussian noise to the system, and this result is
extended to the general parameter estimation problem in
[19]. As an alternative example of noise enhancement
application, injection of noise to blind multiple error rate
estimators in wireless relay networks is presented in [30].

In this study, noise benefits are investigated for a joint
detection and estimation system, which is presented in
[37]. Without introducing any modification to the structure
of the system, the aim is to improve the performance of the
joint detection and estimation system by only adding noise
to the observation signal at the input. Therefore, the
detector and the estimator are assumed to be given and
fixed. In [37], optimal detectors and estimators are derived
for this joint system. However, the optimal structures may
be overcomplicated for an implementation. In this study, it
is assumed that the given joint detection and estimation
system is suboptimal, and the purpose is defined as the
examination of the performance improvements via additive
noise under this assumption. The main contributions of this
study can be summarized as follows:
�
 Noise benefits are investigated for joint detection and
estimation systems for the first time.
�
 Both Bayesian and NP detection frameworks are con-
sidered, and the probability distribution of the optimal
additive noise is shown to correspond to a discrete
probability mass function with a certain number of
point masses under each framework.
�
 For practical applications in which additive noise can
take finitely many different values, a linear program-
ming (LP) problem is formulated to obtain the optimal
additive noise.
�
 Necessary and sufficient conditions are derived to
specify the scenarios in which additive noise can or
cannot improve system performance.

In addition, theoretical results are also illustrated on a
numerical example and noise benefits are investigated
from various perspectives.

2. Problem formulation

Consider a joint detection and estimation system as
illustrated in Fig. 1, where the aim is to investigate possible
improvements on the performance of the system by
adding “noise” N to observation X. In other words, instead
of employing the original observation X, the system
operates based on the noise modified observation Y, which
is generated as follows:

Y¼XþN: ð1Þ
The problem is defined as the determination of the
optimum probability distribution for the additive noise
without modifying the given joint detection and estima-
tion system; that is, detector ϕð�Þ and estimator θ̂ð�Þ are
fixed. Also, the additive noise N is independent of the
observation signal X.

For the joint detection and estimation system, the
model in [37] is adopted. Namely, the system consists of
a detector and an estimator subsequent to it, and the
detection is based on the following binary composite
hypothesis testing problem [37]:

H0: X� f X0 ðxÞ
H1: X� f X1 ðxjΘ¼ θÞ; Θ� πðθÞ ð2Þ
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where XARK is the observation signal. Under hypothesis
H0, the probability density function of the observation
signal is completely known, which is denoted by f X0 ðxÞ. On
the other hand, under hypothesis H1, the probability
density function f X1 ðxjθÞ of the observation signal X is given
as a function of the unknown parameter θ. It is also
assumed that the prior distribution of the unknown para-
meter Θ is available as πðθÞ in the parameter space Λ [37].

In Fig. 1, the detector is modeled as a generic decision
rule ϕðxÞ, which specifies the decision probability in
preference to hypothesis H1 with 0rϕðxÞr1.1 After the
decision, there are two scenarios. If the decision is in favor
of hypothesis H0, then there is no need for parameter
estimation since the unknown parameter value is a known
value, say θ0, under H0, and this knowledge is already
included in f X0 ðxÞ (see (2)). If the decision is hypothesis H1,
then the estimator in Fig. 1 estimates the value of the
unknown parameter as θ̂ðyÞ.

In general, the optimality of the detector and estimator
to minimize the decision cost and estimation risk is an
important goal in the detection and estimation theory.
Optimal detectors and estimators for this joint detection
and estimation scheme in the NP hypothesis-testing frame-
work are already obtained in [37]. Since optimal detectors
and estimators can have high computational complexity in
some scenarios, the focus in this study is to consider fixed
(given) detector and estimator structures with low com-
plexity and to improve the performance of the given system
only by adding “noise” to the observation as shown in Fig. 1.

With respect to the problem definition, different decision
schemes such as Bayesian or NP approaches and estimation
functions can be regarded in this context. If the prior
probabilities of the hypotheses, PðHiÞ, are unknown, an NP
type hypothesis-testing problem can be defined. On the
other hand, if the prior probabilities are given, the Bayesian
approach could be adopted [38]. The noise enhanced joint
detection and estimation system is analyzed in both of these
frameworks in parallel throughout the manuscript. For both
frameworks, the aim is described as the optimization of the
estimation performance without causing any degradation in
the detection performance. Depending upon the application,
the problem can be posed differently. It is not possible to
cover all cases here, and the provided discussion can be
considered to construct and solve similar problems (dual
formulations) as well.
2.1. NP hypothesis-testing framework

When the prior probabilities of the hypotheses are
unknown, the NP framework can be employed for detec-
tion. In the NP detection framework, the main parameters
are the probability of false alarm and the probability of
detection [38]. Based on the hypotheses in (2) and the
system model in Fig. 1, the probabilities of false alarm and
1 Since a given (fixed) detection and estimation system is considered,
the detector (decision rule) is modeled to be a generic one; that is, any
deterministic or randomized decision rule can be considered.
detection can be obtained, respectively, as

P0ðĤ1Þ ¼
Z
RK
f NðnÞ

Z
RK

ϕðyÞf X0 ðy�nÞ dy dn ð3Þ

P1ðĤ1Þ ¼
Z
RK
f NðnÞ

Z
Λ

Z
RK
ϕðyÞπðθÞf X1 ðy�njθÞ dy dθ dn ð4Þ

where PiðĤ1Þ denotes the probability that the decision is
hypothesis H1, denoted by Ĥ1, when hypothesis Hi is the
true hypothesis.

Since the prior distribution of Θ is known (see (2)), the
Bayesian approach is employed for the estimation part;
that is, the Bayes estimation risk is used as the perfor-
mance criterion. The Bayes estimation risk is given by

rðθ̂Þ ¼ EfC½Θ; θ̂ðYÞ�g; ð5Þ
which is the expectation of the cost function C½Θ; θ̂ðYÞ�
over the joint distribution of noise modified observation Y
and parameter Θ. Squared error, absolute error, and uni-
form cost functions are three most commonly used cost
functions in the literature [38]; the choice may depend on
the application. For the binary hypothesis-testing problem
in (2) and the system model in Fig. 1, the Bayes risk in (5)
can be expressed as

rðθ̂Þ ¼
X1
i ¼ 0

X1
j ¼ 0

PðHiÞPiðĤ jÞEfCðΘ; θ̂ðYÞjHi; Ĥ jg: ð6Þ

In the joint detection and estimation system, the esti-
mation is dependent on the detection result; hence, the
overall Bayes estimation risk is not independent of the
detection performance. Due to this dependency, the calcu-
lation of the Bayes estimation risk requires the evaluation of
the conditional risks for different true hypothesis and
decided hypothesis pairs. As it is clear from (6), it is not
possible to analytically evaluate the overall Bayes estima-
tion risk function rðθ̂Þ in the NP framework since the prior
probabilities of the hypotheses, PðHiÞ, are unknown. To
avoid this complication, the conditional Bayes estimation
risk Jðϕ; θ̂Þ, which is presented in [37] as the Bayes estima-
tion risk under the true hypothesis H1 and decision Ĥ j, is
adopted in the following. Furthermore, it should be noted
that if the decision is not correct, it is expected that the
estimation error is relatively higher and may be regarded as
useless for specific applications. Therefore, taking into
consideration only the estimation error when the decision
is correct could be justified as a rational argument. Since a
probability distribution for unknown parameter Θ is not
defined under true hypothesis H0, the estimation error
conditioned on the true hypothesis testing event is equiva-
lent to the estimation error given true hypothesis H1 and
decision Ĥ j. The conditional Bayes estimation risk is defined
as [37]

Jðϕ; θ̂Þ ¼ EfCðΘ; θ̂ðYÞÞjH1; Ĥ1g ð7Þ
which can be expressed based on (7) in [37], the hypotheses
in (2), and the system model in Fig. 1, as

J ϕ; θ̂
� �

¼
R
RK f NðnÞ

R
Λ

R
RK Cðθ; θ̂ðyÞÞϕðyÞπðθÞf X1 ðy�njθÞ dy dθ dn

P1ðĤ1Þ
:

ð8Þ
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After some manipulation, (3), (4) and (8) can be
expressed as the expectations of certain auxiliary func-
tions with respect to additive noise distribution:

P0ðĤ1Þ ¼ EfTðnÞg where TðnÞ9
Z
RK
ϕðyÞf X0 ðy�nÞ dy ð9Þ

P1ðĤ1Þ ¼ EfRðnÞg where RðnÞ9
Z
Λ

Z
RK
ϕðyÞπðθÞf X1 ðy�njθÞ dy dθ

ð10Þ

J ϕ; θ̂
� �

¼ EfG11ðnÞg
EfRðnÞg where

G11ðnÞ9
Z
Λ

Z
RK
Cðθ; θ̂ðyÞÞϕðyÞπðθÞf X1 ðy�njθÞ dy dθ: ð11Þ

It is noted that Rðn0Þ, Tðn0Þ, and G11ðn0Þ=Rðn0Þ correspond,
respectively, to the detection probability, false alarm
probability, and estimation risks of the system when the
additive noise is equal to n0.

In the NP framework, the aim is to obtain the optimal
probability distribution of the additive noise that mini-
mizes the conditional estimation risk in (8) subject to the
constraints on the probability of false alarm in (3) and the
probability of detection in (4). The constraints are selected
as the probabilities of false alarm and detection of the
original system without any additive noise, which corre-
spond to Rð0Þ and Tð0Þ, respectively (see (9) and (10)). In
other words, while minimizing the conditional estimation
risk, no degradation is allowed in the detection part of the
system. The proposed optimization problem can be
expressed as

minimize
f NðnÞ

EfG11ðnÞg
EfRðnÞg subject to EfT nð ÞgrT 0ð Þ and EfR nð ÞgZR 0ð Þ:

ð12Þ
It is important to emphasize that a generic and fixed
decision rule and estimator structure is considered in
(12), and the aim is to improve the performance of the
given system via the optimal additive noise as shown in
Fig. 1. Since the optimal decision rule and estimator in [37]
can be quite complex in some cases, the use of a practical
(low-complexity) decision rule and estimator structure
together with noise enhancement can be considered for
motivating the problem in (12).

2.2. Bayesian hypothesis-testing framework

When the prior probabilities of the hypotheses, PðHiÞ,
are known, the Bayesian detection framework can be
employed. In this framework, the Bayes detection risk,
rðϕÞ, is the main objective, which is defined as the average
of the conditional risks as follows:

rðϕÞ ¼ PðH0Þ
X1
j ¼ 0

Cj0P0ðĤ jÞþPðH1Þ
X1
j ¼ 0

Cj1P1ðĤ jÞ ð13Þ

where Cji is the cost of choosing Hj (i.e., the decision is Ĥ j)
when Hi is the true hypothesis, and

P1
j ¼ 0 CjiPiðĤ jÞ is the

conditional risk when hypothesis Hi is true [38].
Determining the values of the costs Cji generally

depends on the application. As a reasonable choice, Cji
can be set to zero when j¼ i and to one when ja i, which is
called uniform cost assignment (UCA) [38]. In that case,
the Bayes detection risk is calculated as

rðϕÞ ¼ PðH0ÞP0ðĤ1ÞþPðH1ÞP1ðĤ0Þ: ð14Þ
Based on the expressions in (9) and (10), (14) can be stated
as

rðϕÞ ¼ PðH0ÞEfTðnÞgþPðH1Þð1�EfRðnÞgÞ
¼ PðH1ÞþE PðH0ÞTðnÞ�PðH1ÞRðnÞ

� �
: ð15Þ

Since the prior probabilities of the hypotheses are
known, the overall Bayes estimation risk function given
in (6) can be evaluated in this case. As discussed pre-
viously, under H0, parameter Θ is assumed to have a
deterministic value, which is equal to θ0. If the decision
is Ĥ1, the estimate θ̂ðyÞ is produced for given observation
y. If the decision is Ĥ0, the trivial estimation result is θ0.
Notice that if the decision is correct when the true
hypothesis is H0, the conditional estimation risk for this
case is equal to zero. With this remark, the Bayes estima-
tion risk in (6) becomes

rðθ̂Þ ¼ PðH0ÞP0ðĤ1ÞEfCðΘ; θ̂ðYÞjH0; Ĥ1g
þPðH1Þ P1ðĤ0ÞEfCðΘ; θ̂ðYÞjH1; Ĥ0g

�
þP1ðĤ1ÞEfCðΘ; θ̂ðYÞjH1; Ĥ1g

�
ð16Þ

Similar to (7) and (8), (16) can be calculated as

rðθ̂Þ ¼
Z
RK
f NðnÞ PðH0Þ

Z
RK

Cðθ0; θ̂ðyÞÞϕðyÞf X0 ðy�nÞ dy
�

þPðH1Þ
Z
Λ

Z
RK
Cðθ; θ0Þð1�ϕðyÞÞf X1 ðy�njθÞπðθÞ dy dθ

�

þ
Z
Λ

Z
RK
Cðθ; θ̂ðyÞÞϕðyÞf X1 ðy�njθÞπðθÞ dy dθ

�	
dn:

ð17Þ
With the introduction of new auxiliary functions G01ðnÞ
and G10ðnÞ, in addition to G11ðnÞ in (11), the Bayes estima-
tion risk in (17) can be expressed as

rðθ̂Þ ¼ E PðH0ÞG01ðnÞþPðH1Þ G11ðnÞþG10ðnÞ½ �� � ð18Þ

where

G01ðnÞ9
Z
RK
Cðθ0; θ̂ðyÞÞϕðyÞf X0 ðy�nÞ dy ð19Þ

G10ðnÞ9
Z
Λ

Z
RK
Cðθ; θ0Þð1�ϕðyÞÞf X1 ðy�njθÞπðθÞ dy dθ: ð20Þ

In the Bayesian framework, the aim is the minimization
of the Bayes estimation risk under a constraint on the
Bayes detection risk. The Bayes detection risk constraint
for the noise modified system is specified as the Bayes
detection risk of the original system, which is PðH1Þþ
PðH0ÞTð0Þ�PðH1ÞRð0Þ. Then, the proposed optimization
problem is given by

minimize
f N ðnÞ

E PðH0ÞG01ðnÞþPðH1Þ G11ðnÞþG10ðnÞ½ �� �
subject to E PðH0ÞTðnÞ�PðH1ÞRðnÞ

� �
rPðH0ÞTð0Þ�PðH1ÞRð0Þ:

ð21Þ
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3. Optimum noise distributions

The optimization problems in (12) and (21) require
searches over all possible probability density functions
(PDFs). These complex problems can be simplified by
specifying the structure of the optimum noise probability
distribution. Similar approaches are employed in various
studies related to noise enhanced detection such as [15],
which utilizes Caratheodory's theorem for noise enhanced
binary hypothesis testing problems. It is proved that the
optimum additive noise is characterized by a probability
mass function (PMF) with at most two point masses under
certain conditions in the binary hypothesis testing problem,
where the objective function is the detection probability
and the constraint function is the false alarm probability
[15]. Using the primal-dual concept, [23] reaches PMFs with
at most two point masses under certain conditions for
binary hypothesis testing problems. In [29] and [25], the
proof given in [15] is extended to hypothesis testing
problems with ðM�1Þ constraint functions and the opti-
mum noise distribution is found to have M point masses.

In this study, the objective function is the Bayes
estimation risk in both of the proposed optimization
problems in (12) and (21), and the constraint functions
are defined in terms of the probability of detection and the
probability of false alarm. The structures of the proposed
problems are similar to those in [15,23,25,29]. The same
principles can be applied to both of the optimization
problems in (12) and (21) and the optimum noise dis-
tribution structure can be specified under certain condi-
tions as follows:

Theorem 3.1. Define set Z as Z ¼ fz¼ ðz0; z1;…;

zK�1Þ: ziA ½ai; bi�; i¼ 1;2;…Kg, where ai and bi are finite
numbers, and define set U as U ¼ fu¼ ðu0;u1;u2Þ:u0 ¼
RðnÞ;u1 ¼ TðnÞ;u2 ¼ G11ðnÞ; for nAZg. Assume that the sup-
port set of the additive noise random variable is set Z. If U is a
compact set in RK , the optimal solution of (12) can be
represented by a discrete probability distribution with at
most three point masses; that is,

f NoptðnÞ ¼
X3
i ¼ 1

κi δðn�niÞ: ð22Þ

Proof. U is the set of all possible detection probability,
false alarm probability and conditional estimation risk
triples for a given additive noise value n, where nAZ. By
the assumption in the theorem; U is a compact set; hence,
it is a closed and bounded set. (A subset of RK is a closed
and bounded set if and only if it is a compact set by Heine–
Borel theorem.) Define set V as the convex hull of set U,
and define W as the set of all possible values of EfRðnÞg,
EfTðnÞg and EfG11ðnÞg triples as follows:

W ¼ fðw0;w1;w2Þ:w0 ¼ EfRðnÞg;w1 ¼ EfTðnÞg;
w2 ¼ EfG11ðnÞg; 8 f NðnÞ; nAZg: ð23Þ
It is already shown in the literature that set W and set V
are equal [39]; that is, W¼V. By the corollary of Car-
athéodory's theorem, V is also a compact set [40]. Due to
the structure of the minimization problem in (12), the
optimal solution must lie on the boundary of W;
equivalently, V [15,23,25,29]. Then, from Carathéodory's
theorem [40], it can be concluded that any point on the
boundary of V can be expressed as the convex combination
of at most three different points in U. The convex combi-
nation of three elements of U is equivalent to an expecta-
tion operation over additive noise N, where its distribution
is a probability mass function with three point masses.□

The same approach can be adopted to obtain the
optimal solution of the problem in (21) and it is stated
without a proof. Define U as the set of all possible Bayes
detection risk (14) and Bayes estimation risk (18) pairs for
a given additive noise value nAZ, where Z is Z ¼ fz¼
ðz0; z1;…; zK�1Þ: ziA ½ai; bi�; i¼ 1;2;…Kg, with ai and bi
being finite numbers. Assume that the support set of the
additive noise random variable is set Z. If U is a compact
set in RK , the optimal solution of (21) is given by a
probability mass function with at most two point masses;
that is,

f NoptðnÞ ¼
X2
i ¼ 1

κi δðn�niÞ: ð24Þ

The results in Theorem 3.1 and (24) state that when
additive noise values are confined to some finite intervals
(which always holds for practical systems), the optimal
additive noise can be represented by a discrete random
variable with three (two) point masses in the NP (Baye-
sian) detection framework. Then, from (22) and (24), the
optimization problems in (12) and (21) can be restated as
follows:

For the NP detection framework

minimize
κ1 ;κ2 ;κ3 ;n1 ;n2 ;n3

P3
i ¼ 1 κiG11ðniÞP3
i ¼ 1 κiRðniÞ

subject to
X3
i ¼ 1

κiTðniÞrTð0Þ;
X3
i ¼ 1

κiRðniÞZRð0Þ

κ1; κ2; κ3Z0 and κ1þκ2þκ3 ¼ 1: ð25Þ

For the Bayes detection framework

minimize
κ1 ;κ2 ;n1 ;n2

X2
i ¼ 1

κi PðH0ÞG01ðniÞþPðH1Þ G11ðniÞþG10ðniÞ½ �½ �

subject to
X2
i ¼ 1

κi PðH0ÞTðniÞ�PðH1ÞRðniÞ½ �rPðH0ÞTð0Þ

�PðH1ÞRð0Þ
κ1; κ2Z0 and κ1þκ2 ¼ 1: ð26Þ

Compared to the optimization problems in (12) and (21),
which require searches over all possible PDFs, the formula-
tions in (25) and (26) provide significant reductions in the
computational complexity. However, the computational
complexity of (25) and (26) can still be quite high in some
cases since the problems are not convex in general. (The
non-convexity of (25) and (26) is mainly due to the
generality of the auxiliary functions, and the multiplication
and division of functions involving the optimization vari-
ables.) Hence, a practical approach is considered in the next
section.
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4. Linear programming (LP) approach

The characteristics of the optimization problems in (25)
and (26) are related to the given joint detection and
estimation mechanism and the statistics of observation
signal X and parameter Θ. The problems may not be convex
in general. Therefore, the application of global optimization
techniques can be necessary to obtain the solutions [41,42].
As an alternative method, the optimization problems in (12)
and (21) can be approximated as linear programming (LP)
problems. LP problems are a special case of convex pro-
blems and they have lower computational load (solvable in
polynomial time) than the possible global optimization
techniques [43].

In order to achieve the LP approximation of the problem
in (12), the support of the additive noise is restricted to a
finite set S¼ fn1;n2;…;nMg. In real life applications, it is
not possible to generate an additive noise component
which can take infinitely many different values in an
interval; hence, it is a reasonable assumption that additive
noise component can only have finite precision. With this
approach, the possible values of RðnÞ, TðnÞ and G11ðnÞ can be
expressed as M dimensional column vectors and the expec-
tation operation reduces to a convex combination of the
elements of these column vectors with weights λ1; λ2;…λM .
The optimal values of the LP approximated problems are
worse than or equal to the optimal values of the original
optimization problems in (12) and (21) (equivalently, in (25)
and (26)), and the gap between these results is dependent
upon the number of noise samples, which is denoted by M
in this formulation. For notational convenience, the follow-
ing column vectors are defined:

t> ¼ Tðn1Þ Tðn2Þ⋯ TðnMÞ½ �
r> ¼ Rðn1Þ Rðn2Þ⋯ RðnMÞ½ �
g> ¼ G11ðn1Þ G11ðn2Þ⋯G11ðnMÞ½ �

Then, the optimization problem in (12), which considers the
minimization of the conditional Bayes estimation risk, can
be approximated as the following linear fractional program-
ming (LFP) problem:

minimize
λ

g>λ
r>λ

subject to r>λZRð0Þ
t> λrTð0Þ
1> λ¼ 1
λ≽0: ð27Þ
An example of transformation from an LFP problem to

an LP problem is presented in [43]. The same approach can
be adopted to obtain an LP problem as explained in the
following. The optimization variable l in the LP problem, to
be employed in (29), is expressed as

l¼ λ
r>λ

: ð28Þ

Notice that r and λ have non-negative components, and
r> λ represents the detection probability of the noise
modified mechanism. Therefore, it can be assumed that
r> λ is positive valued and less than or equal to 1. With this
assumption, it is straightforward to prove the equivalence
of the LP and LFP problems by showing that if λ is feasible
in (27), then l is also feasible in (29) with the same
objective value, and vice versa. Hence, the following
problem is obtained:

minimize
l

g> l

subject to t> lrTð0Þð1T lÞ
1> lr1=Rð0Þ
r> l¼ 1
l≽0: ð29Þ
The LP approximation of the optimization problem (21)

is also obtained by limiting the possible additive noise
values to a finite set S0 ¼ fn1;n2;…;nM0 g. With that restric-
tion, the LP problem is given by

minimize
λ

q> λ

subject to p> λrPðH0ÞTð0Þ�PðH1ÞRð0Þ
1> λ¼ 1
λ≽0: ð30Þ

where

p> ¼ ½p1 p2 ⋯ pM0 �; pi ¼ PðH0ÞTðniÞ�PðH1ÞRðniÞ
q> ¼ ½q1 q2 ⋯ qM0 �; qi ¼ PðH0ÞG01ðniÞþPðH1Þ G11ðniÞþG10ðniÞ½ �:

Compared to (25) and (26), the problems in (29) and
(30) can have significantly lower computational complex-
ity in general since they are in the form of linear programs.
In addition, as the number of possible noise values
increases (i.e., as M or M0 increases), the solution obtained
from the LP approach gets closer to the optimal solution.
Therefore, the LP approach can be more preferable in
practical applications.

5. Improvability and non-improvability conditions

Before attempting to solve the optimization problems
in (25) and (26), or the LP problems in (29) and (30), it is
worthwhile to investigate the improvability of the given
system via additive noise. The joint detection and estima-
tion system in the NP framework is called improvable if

there exists a PDF f NðnÞ for the additive noise N such that
Jðϕ; θ̂ÞoG11ð0Þ=Rð0Þ, P1ðĤ1ÞZRð0Þ and P0ðĤ1ÞrTð0Þ, and
non-improvable if there does not exist such a PDF (cf. (9)–
(12)). Similarly, the joint system in the Bayes detection

framework is called improvable if there exists a PDF f NðnÞ
such that rðθ̂ÞoPðH0ÞG01ð0ÞþPðH1Þ½G11ð0ÞþG10ð0Þ� and
rðϕÞrPðH0ÞTð0Þ�PðH1ÞRð0Þ, and non-improvable other-
wise (cf. (15), (18) and (21)). Improvable and non-
improvable joint detection and estimation systems under
the LP approximation can also be defined in a similar
fashion for both detection frameworks.

In the following, necessary and sufficient conditions are
presented for the non-improvability (improbability) of
given detection and estimation systems under the NP and
Bayesian detection frameworks for the LP formulations.

Theorem 5.1. Consider the LFP problem in (27), where the
aim is to optimize the system performance in the NP
detection framework via additive noise, which is restricted
to a finite set S¼ fn1;n2;…;nMg. Then, the joint detection
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and estimation system is non-improvable if and only if there
exist γ1; γ2; νAR, with γ1; γ2Z0, and νr�½G11ð0Þþγ2�=Rð0Þ,
that satisfy the following set of inequalities:

G11ðniÞþγ1ðTðniÞ�Tð0ÞÞþγ2þνRðniÞZ0; 8 iAf1;2;…;Mg:
ð31Þ

Proof. In (29), the equivalent LP problem of the LFP
problem in (27) is given. The dual problem of the LP
problem is found as the following:

maximize
ν;γ1 ;γ2 ;u

�ν�γ2=Rð0Þ
subject to G11ðniÞþγ1ðTðniÞ�Tð0ÞÞþγ2þνRðniÞ ¼ ui;

8 iAf1;2;…;Mg
γ1; γ2;u1;u2;…;uMZ0 ð32Þ

where u> ¼ ½u1 u2 ⋯ uM�. Let P and D be the feasible sets
of the primal (27) and dual (32) problems, respectively.
The objective functions of the primal and dual problems

are denoted, respectively, as f PobjðpÞ and f DobjðdÞ, where pAP

and dAD. Also, pn and dn represent the optimal solutions
of the primal and dual problems, respectively. By the
strong duality property of the LP problems, pn ¼ dn [43].
Sufficient condition for non-improvability: Assume that

( γ1; γ2; νAR; uARK such that γ1; γ2Z0; u≽0, νr�½G11

ð0Þþ γ2�=Rð0Þ, and γ1; γ2; ν;u satisfy the following set of
equations: G11ðniÞþγ1ðTðniÞ�Tð0ÞÞþγ2þ νRðniÞ ¼ uiZ0;
8 iA f1;2;…;Mg. These variables describe an element of
the dual feasible set do ¼ ðγ1; γ2; ν;uÞAD. f DobjðdoÞ ¼ � ν�
γ2=Rð0ÞZG11ð0Þ=Rð0Þ by the assumption. This implies that
G11ð0Þ=Rð0Þr f DobjðdoÞrdn ¼ pn; hence, the conditional
Bayes risk of the system in the NP framework cannot be
reduced from its original value.
Necessary condition for non-improvability: To prove the

necessary condition, it is equivalent to show that the
system performance can be improved if 8 γ1; γ2; νA

R; uARK such that γ1; γ2Z0; u≽0, νZ�½G11ð0Þþ
γ2�=Rð0Þ, the following set of equations is satisfied:
G11ðniÞþγ1ðTðniÞ�Tð0ÞÞþ γ2þνRðniÞ ¼ uiZ0; 8 iAf1;2;…;

Mg. Observe that γ2 or ν can always be picked arbitrarily
large to satisfy the equality constraints given in (32), since
1ZRðniÞZ0, 1ZTðniÞZ0 and G11ðniÞZ0. Therefore, the
feasible set of the dual problem cannot be empty, i.e.,
Da∅. Notice that the assumption implies 8dAD,

f DobjðdÞoG11ð0Þ=Rð0Þ. For this reason and with the strong

duality property it can be asserted that dn ¼ pno
G11ð0Þ=Rð0Þ since dn ¼ f DobjðdoptÞ, doptAD.□

Theorem 5.2. Consider the LP problem in (30), where the
aim is to optimize the system performance in the Bayes
detection framework via additive noise, which is restricted to
a finite set S0 ¼ fn1;n2;…;nM0 g. Then, the joint detection and
estimation system is non-improvable if and only if there exist
γ; νAR with γZ0 that satisfy the following set of
inequalities:

PðH0Þ γTð0ÞþG01ð0Þ½ �þPðH1Þ G11ð0ÞþG10ð0Þ�γRð0Þ½ �þνr0

ð33Þ

PðH0Þ γTðniÞþG01ðniÞ½ �þPðH1Þ G11ðniÞþG10ðniÞ�γRðniÞ½ �þνZ0

ð34Þ
8 iAf1;2;…;M0g. Note that if 0AS0 ¼ fn1;n2;…;nM0 g, then
the inequality in (33) must be satisfied with equality. With
this, the necessary and sufficient conditions in (33) and (34)
are expressed as

PðH1Þ G11ðniÞþG10ðniÞ�γRðniÞ�G11ð0Þ�G10ð0ÞþγRð0Þ½ �
þPðH0Þ G01ðniÞþγTðniÞ�G01ð0Þ�γTð0Þ½ �Z0: ð35Þ

The proof of Theorem 5.2 is not presented since it can be
obtained based on an approach similar to that employed in
the proof of Theorem 5.1. It should be emphasized that the
conditions in these theorems specify whether the system can
be improved via additive noise or not. In other words, there
are both improvability and non-improvability conditions: If
the conditions in the theorems are satisfied, the system is
non-improvable (performance cannot be enhanced via addi-
tive noise); otherwise, the system is improvable (perfor-
mance can be enhanced via additive noise).

Notice that the LP approach is based on sampling the
objective and constraint functions. Therefore, the presented
sufficient and necessary conditions in Theorems 5.1 and 5.2
demonstrate the convex geometry of the optimization pro-
blems in (12) and (21). For similar problem formulations,
different necessary or sufficient improvability or nonimprova-
bility conditions are stated in the literature [15,23–25,28]. In
[28], firstly, a necessary and sufficient condition is presented
for a similar single inequality constrained problem with a
continuous support set. It should be noted that (21) is a single
inequality constrained problem and its necessary and suffi-
cient non-improvability condition for the LP approach in (35)
share the same structure with the inequality (10) in [28]
under a certain condition. Theorem 5.1 extends this result to
the problems with multiple inequality constraints and finite
noise random variable support set from a completely different
perspective. The merit of this approach, which is presented in
the proof of Theorem 5.1, is that it is generic and can easily be
adapted to different problems. In this study, the main focus is
on the justification of the LP approach for noise enhancement
problems in joint detection and estimation systems. A natural
extension of Theorem 5.1 which is the formulation for a
continuous support set is omitted.
6. Analysis of a given joint detection estimation system

In this section, a binary hypothesis testing example is
analyzed to demonstrate the noise enhancement effects on
the described joint detection and estimation system.

The hypothesis testing problem is specified as follows:

H0: X¼ ϵ

H1: X¼ ϵþΘ ð36Þ

where X is the observation with X¼ ½X1 X2 ⋯ XK �> , Θ is
the parameter with Θ¼Θ 1 ð1¼ ½1 1⋯ 1�> Þ, and ϵ¼ ½ϵ1
ϵ2 ⋯ ϵK �> is the system noise. In the example, Θ is taken to
be Gaussian distributed random variable and its value is to
be estimated. Also, ϵ0k s are identically and independently
distributed according to a known Gaussian mixture dis-
tribution. It is assumed that both of these distributions
are known.
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More specifically, the parameter Θ is taken as Gaussian
distributed with Θ�N ða; b2Þ; that is,

π θð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πb2

p exp �ðθ�aÞ2
2b2

( )
: ð37Þ

In addition, the components of the system noise ϵ are
identical, independent and Gaussian mixture distributed
as follows:

f ϵk ϵð Þ ¼
XNm

i ¼ 1

νiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp �ðϵ�μiÞ2
2σ2

( )
ð38Þ

Notice that each element of the Gaussian mixture has
different mean μi and weight νi with the same standard
deviation σ. The mixture background noise is encountered
in a variety of contexts [44] (and references therein) such
as co-channel interference [45], ultra-wideband synthetic
aperture radar (UWB SAR) imaging [46], and underwater
noise modeling [47]. The standard deviation values are
taken to be equal for all the mixture components just to
simplify the analytical evaluation of this problem for K41.
The standard deviation values can also be taken to be
different for each mixture component.

Noise N is added to observation X as shown in Fig. 1 for
the purpose of noise enhancement, and the noise modified
observation Y is obtained as in (1). The decision rule is a
threshold detector, and it outputs the probability of
deciding in favor of H1 as follows:

ϕ yð Þ ¼
1 if

1
K

XK
i ¼ 1

yi4τPF

0 if
1
K

XK
i ¼ 1

yirτPF

8>>>>><
>>>>>:

ð39Þ

where the subscript PF is used for the threshold τ to
emphasize that threshold τPF is determined according to
the predetermined probability of false alarm. The decision
rule in (39) is a simple and reasonable one which com-
pares the sample mean of the observations against the
threshold. In addition, the estimation cost function in (5) is
a uniform cost function specified by
G01 nð Þ ¼

XNm

i ¼ 1

νi Q
τPF�μi�n

σi

� �
if τPF4Δ

XNm

i ¼ 1

νi Q
Δ�μi�n

σi

� �
if ΔZτPF4�Δ

XNm

i ¼ 1

νi Q
τPF�μi�n

σi

� �
þQ

Δ�μi�n
σi

� �
�Q

�Δ�μi�n
σi

� �� �
if �ΔZτPF

8>>>>>>>>>>><
>>>>>>>>>>>:

ð45Þ

2 The details of the derivations are not presented.
Cðθ; θ̂ðyÞÞ ¼ 1 if jθ̂ðyÞ�θj4Δ

0 otherwise

(
ð40Þ

where Δ40 is the threshold of the uniform cost function
[38]. More specifically, according to this cost function,
estimation errors up to Δ are tolerable and they incur no
cost, whereas estimation errors higher than Δ are
associated with a unit cost. For the estimator in Fig. 1, a
sample mean estimator is considered, which is expressed
as

θ̂ yð Þ ¼ 1
K

XK
i ¼ 1

yi: ð41Þ

Notice that the considered detector and estimator
structures are not optimal due to the presence of Gaussian
mixture noise ϵ. However, they are practical ones with
low-computational complexity. The optimal detector and
estimator in [37] would have significantly higher compu-
tational complexity for the considered scenario with
Gaussian mixture noise. Therefore, the aim is to employ
the low-complexity structures in (39) and (41) and to
improve their performance via additive noise.

6.1. Scalar case, K¼1

In this case, functions T(n), R(n), G11ðnÞ, G01ðnÞ, and
G10ðnÞ defined, respectively, in (9), (10), (11), (19), and (20)
are derived as follows2:

T nð Þ ¼
XNm

i ¼ 1

νi Q
τPF�μi�n

σi

� �
ð42Þ

R nð Þ ¼
XNm

i ¼ 1

νi Q
τPF �μi�a�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2i þb2
q

0
B@

1
CA ð43Þ

G11 nð Þ ¼
XNm

i ¼ 1

νi

0
B@Q

τPF�μi�n�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þσ2i

q
0
B@

1
CA

�
Z τPF þΔ

τPF �Δ
π θð Þ Q τPF�μi�n�θ

σi

� �
dθ

þQ
Δ�μi�n

σi

� �
Q

τPF�Δ�a
b

� �

þQ
�Δ�μi�n

σi

� �
Q

τPFþΔ�a
b

� �1CA ð44Þ
G10 nð Þ ¼
XNm

i ¼ 1

νi Φ
τPF�μi�n�affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þσ2i

q
0
B@

1
CA�

Z Δ

�Δ
π θð Þ Φ τPF�μi�n�θ

σi

� �
dθ

0
B@

1
CA
ð46Þ
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Fig. 2. Noise enhancement effects in the NP framework for K¼1.
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Fig. 3. Noise enhancement effects in the NP framework for K¼4.
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where Q ð�Þ and Φð�Þ are, respectively, the tail probability
function and the cumulative distribution function of the
standard Gaussian random variable.

6.2. Vector case, K41

To evaluate the performance of this system (with and

without noise enhancement), the statistics of ð1=KÞPK
i ¼ 1 xi

need to be revealed. Additive noise and noise modified
observation are represented as N¼ ½N1 N2 ⋯ NK �> and

Y¼ ½Y1 Y2 ⋯ YK �> , respectively. Denote ð1=KÞPK
i ¼ 1 Ni with

~N and ð1=KÞPK
i ¼ 1 ϵi with ~ϵK . Under H1 and with additive

noise, this vector joint detection and estimation problem
can be reexpressed as a scalar problem as follows:

Under H1:
1
K

XK
i ¼ 1

Yi ¼
1
K

XK
i ¼ 1

ΘþNiþϵið Þ ¼Θþ ~Nþ ~ϵK : ð47Þ

It can be shown that ~ϵ has the following Gaussian
mixture distribution [48]:

f ~ϵK ϵð Þ ¼
X~Nm

j ¼ 1

~ν iffiffiffiffiffiffiffiffiffiffiffi
2π ~σ2

p exp �ðϵ� ~μ iÞ2
2 ~σ2

( )
; ð48Þ

where

~Nm ¼
KþNm�1
Nm�1;

 !
; ~σ2 ¼ σ2

K
3;

~νj ¼
K!

l1! l2!⋯ lNm !

� �
∏
Nm

i ¼ 1
νlii

 !
; ~μ j ¼

1
K

XNm

i ¼ 1

μili

for each distinct fl1; l2;…; lNm g set satisfying
l1þ l2þ⋯þ lNm ¼ K , liAf1;2;…;Kg, iAf1;2;…;Nmg. With
this result, the vector case reduces to the scalar case. The
derived expressions in the K¼1 case for function T(n), R(n),
G11ðnÞ, G10ðnÞ, and G01ðnÞ (see (42)–(46)) do also apply to
the K41 case, where the only necessary modification is
the usage of new mean ~μ j, weight ~νj, and standard
deviation ~σ values. With this approach, the optimal statis-
tics for the design of random variable ~N is revealed. The
mapping from ~N to N is left to the designer. A very
straightforward choice can be N¼ ½ ~NK 0⋯ 0�> .

In this joint detection and estimation problem, the
components of the system noise ϵ are independent and
identically distributed Gaussian mixture random variables.
A similar analysis can also be carried out for a system noise
with components being generalized Gaussian distributed.
However, in general, it is not possible to express the density
of the sum of the independent and identically distributed
generalized Gaussian random variables with an exact ana-
lytical expression. The distribution of the sum is not
generalized Gaussian (only exception is the Gaussian dis-
tribution) [49]. However, functions T, R, G11, G10, and G01 can
be evaluated numerically and the LP approximation can be
applied.

6.3. Asymptotic behavior of the system, large K values

As K goes to infinity ðK-1Þ, by Lindeberg Lévy Central

Limit Theorem,
ffiffiffiffi
K

p
ð1=KÞPK

i ¼ 1 ϵi
� �

�μϵ

� �
converges in
distribution to a Gaussian random variable N ð0; σ2ϵ Þ given
that fϵ1; ϵ2;…; ϵKg is a sequence of independent and identi-
cally distributed random variables with Efϵig ¼ μϵ, Varfϵig ¼
σ2ϵ o1. This general result applies to the analysis of the
given joint detection and estimation problem in this section.
For large K values, the probability density function of

~ϵK ¼ ð1=KÞPK
i ¼ 1 ϵi can be approximated by the distribution

of a Gaussian random variable N ðμϵ; σ2ϵ =KÞ.
7. Numerical results for the joint detection and
estimation system

For the numerical examples, the joint detection and
estimation system in Section 6 is considered, and the
parameter values are set as follows: for each element ϵk of
the Gaussian mixture noise specified by the PDF in (38), the
weights and the means of the Gaussian components are set
to ν¼ ½0:40 0:15 0:45� and μ¼ ½5:25 �0:5 �4:5�, respec-
tively. Also, the standard deviation of the mixture compo-
nents, denoted by σ in (38), is considered as a variable to
evaluate the performance of noise enhancement for various
signal-to-noise ratio (SNR) values. The decision rule is as



Table 1
The conditional estimation risk, the detection probability, and the false alarm probability for the original system (i.e., no additive noise), for the optimal
solution of the problem in (25) and for the solution of the LP problem in (29).

τPF EfTð0Þg EfRð0Þg EfG11ð0Þg
EfRð0Þg EfTðnÞg EfRðnÞg EfG11 ðnÞg

EfRðnÞg

σ ¼ 0.3, K ¼ 1
LP (2.0) 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.9376
LP (1.0) 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.7796
LP (0.2) 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.7694
Opt. Sol. 5.3456 0.1500 0.4220 0.9533 0.1500 0.4220 0.7684

σ ¼ 0.3, K ¼ 4
LP (0.5) 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6651
LP (0.2) 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6522
LP (0.1) 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6496
Opt. Sol. 2.7140 0.1500 0.7474 0.6890 0.1500 0.7474 0.6494

σ ¼ 0.4, K ¼ 4
LP(0.5) 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6707
LP (0.2) 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6584
LP (0.1) 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6584
Opt. Sol. 2.6867 0.1500 0.7505 0.6889 0.1500 0.7505 0.6579
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Fig. 4. Optimal solutions of the problem in (25) and the solutions of the
LP problem defined in (29) for K¼1 and σ ¼ 0:3.
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Fig. 5. Optimal solutions of the problem in (25) and the solutions of the
LP problem defined in (29) for K¼4 and σ ¼ 0:3.
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Fig. 6. Optimal solutions of the problem in (25) and the solutions of the
LP problem defined in (29) for K¼4 and σ ¼ 0:4.
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specified in (39), where τPF is set in such a way that the
probability of false alarm of the given system is equal to
0.15 for all standard deviation values. Regarding the prior
PDF of the unknown parameter in (37), the mean parameter
a is set to 4.5 and the standard deviation b is equal to 1.25. It
can be shown that the estimator in (41) is unbiased for the
considered scenario in the absence of additive noise. In
addition, for the uniform estimation cost function in (40),
parameter Δ is taken as 0.75. Furthermore, the support of
the additive noise is considered as ½�10;10�.

First, the NP detection framework is considered and the
optimal additive noise distributions are obtained from (25)
for the exact (global) solution, and from (29) for the LP
based solution. The conditional estimation risks are
plotted versus σ in Fig. 2 for K¼1 and in Fig. 3 for K¼4,
in the absence of (original) and in the presence of additive
noise. It is observed that the performance improvement
via additive noise is reduced as the standard deviation σ
increases. In other words, the noise enhancement is more
significant in the high SNR region. The improvement is
mainly caused by the multimodal nature of the observa-
tion statistics and increasing the standard deviation σ
reduces this effect. In both of the figures, the performances
of the LP approximations are also illustrated in comparison
with the global (exact) solution. In obtaining the LP based
solutions, the additive noise samples are taken uniformly
from the support of the additive noise with the specified
step size values in the figures. It is observed that the LP
based solution achieves improved performance as the step
size decreases; i.e., as more additive noise values are
considered. It is also noted that the LP based approach
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Fig. 7. Noise enhancement effects in the Bayes detection framework for
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Fig. 8. Noise enhancement effects in the Bayes detection framework for
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Table 2
The Bayes estimation risk and the Bayes detection risk for the original
system (i.e., n¼0), for the optimal solution of the problem in (26), and for
the solution of the LP problem in (30).

rðϕÞ, n¼0 rðθ̂Þ, n¼0 rðϕÞ rðθ̂Þ

σ ¼ 0.5, K ¼ 1
LP (1.0) 0.1959 0.4757 0.3266 0.4061
LP (0.5) 0.4216 0.6514 0.3057 0.3411
LP (0.2) 0.4216 0.6514 0.3057 0.3411
Opt. Sol. 0.4216 0.6514 0.3088 0.3333

σ ¼ 0.5, K ¼ 4
LP (1.0) 0.1959 0.4757 0.1956 0.4076
LP (0.5) 0.1959 0.4757 0.1956 0.4076
LP (0.2) 0.1959 0.4757 0.1899 0.4015
Opt. Sol. 0.1959 0.4757 0.1906 0.4005

σ ¼ 0.75, K ¼ 4
LP (1.0) 0.1933 0.4734 0.1933 0.4734
LP (0.5) 0.1933 0.4734 0.1933 0.4514
LP (0.2) 0.1933 0.4734 0.1933 0.4372
Opt. Sol. 0.1933 0.4734 0.1933 0.4357
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Fig. 9. Optimal solutions of the problem in (26) and the solutions of the
LP problem in (30) for K¼1 and σ ¼ 0:5.
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achieves very close performance to the global solution for
reasonable step sizes. Another observation is that the
conditional estimation risk is not always monotone with
respect to the standard deviation for the original system
and the LP approach with step size 0.5, which is mainly
due to the suboptimality of the employed decision rule
and the estimator (see, e.g., [15] and [29] for similar
observations). As it is clear from Figs. 2 and 3, the
performance of the given joint detection system is super-
ior for K¼4 in comparison to the scalar case, K¼1. In this
numerical example, the vector case corresponds to taking
more samples and an increase in the SNR. Some numerical
values of the conditional estimation risk, the detection
probability, and the false alarm probability of this noise
enhanced system are presented in Table 1, together with
the original values in the absence of additive noise. Also,
the values of the detector threshold, τPF, are shown in the
table. It is observed that the noise enhanced systems have
the same detection and false alarm probabilities as the
original system (i.e., they satisfy the constraints in (25) and
(29) with equality), and they achieve a lower conditional
estimation risk than the original system.
In Figs. 4–6 the solutions of the optimization problem
in (25) are presented together with the solutions of the LP
problem in (29) for various step sizes, where the standard
deviations for the components of the Gaussian mixture
system noise are equal to 0.3, 0.3, and 0.4, and K is set to 1,
4, and 4 for Figs. 4, 5, and 6, respectively. In the figures, the
locations and weights of the point masses are presented.
According to Theorem 3.1, the optimal solution of the
optimization problem in (12) is a probability mass function
with at most three point masses as shown in the figures. It
should also be emphasized that Theorem 3.1 is valid only
for the exact (global) solution; hence, the LP approach can
in general have a solution with more than three point
masses although it is not the case in this specific example.

Next, for the same system noise PDF f ϵk ðεÞ, the problem in
the Bayes detection framework is studied for PðH0Þ ¼ 0:5
and τPF ¼ a=2 (see (37)). The optimization problems in (26)
and (30) are considered for obtaining the exact (global) and
LP based solutions. In Fig. 7 (K¼1) and Fig. 8 ðK ¼ 4Þ, the
Bayes estimation risks are plotted versus the standard
deviation in the absence (original) and the presence of
additive noise, where both the global and LP based solutions
are shown for noise enhancement. For the LP based solution,
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Fig. 10. Optimal solutions of the problem in (26) and the solutions of the
LP problem in (30) for K¼4 and σ ¼ 0:5.
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Fig. 11. Optimal solutions of the problem in (26) and the solutions of the
LP problem in (30) for K¼4 and σ ¼ 0:75.
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various step sizes are considered. The behaviors of the curves
are very similar to those in the NP detection framework. In
particular, the noise enhancement effects are again more
significant in the high SNR region, and the LP based approach
gets very close to the global solution for reasonable step
sizes. Some numerical values of the Bayes estimation risk
and the Bayes detection risk of both the original and the
noise enhanced systems are presented in Table 2.

In practice, the step size for the LP based approach can
be adapted as follows: starting from a reasonably large
step size, the step size is decreased (say by a certain
fraction) and the difference between the estimated values
is monitored. This operation of step size reduction can
continue until the difference between consecutive esti-
mated values gets smaller than a certain threshold. (If
there is a difference between the decisions, i.e., selection of
different hypotheses, then this is considered as a signifi-
cant difference and the step size reduction continues.)

As discussed in Section 3, the optimal additive noise in the
Bayes detection framework is specified by a probability mass
function with one or two point masses. In Figs. 9, 10, and 11
the optimal solutions of the problem in (26) and the solutions
of the LP problem in (30) are illustrated for K¼1 and σ ¼ 0:5,
K¼4 and σ ¼ 0:5, and K¼4 and σ ¼ 0:75, respectively. It is
observed from Figs. 9 and 10 that the optimal solution is a
single point mass in the first two scenarios whereas it involves
two point masses in the third scenario (Fig. 11). Notice that the
LP solutionwith step size 1 corresponds to a single point mass
at location 0 in the third scenario, which means that the LP
solution becomes the same as the original system that
involves no additive noise. This observation can also be
verified based on the results in Table 2.
8. Conclusion

In this study, noise benefits have been investigated for
joint detection and estimation systems under the NP and
Bayesian detection frameworks and according to the
Bayesian estimation criterion. It has been shown that the
optimal additive noise can be represented by a discrete
random variable with three and two point masses under
the NP and Bayesian detection frameworks, respectively.
Also, the proposed optimization problems have been
approximately modeled by LP problems and conditions
under which the performance of the system can or cannot
be improved via additive noise have been derived. Numer-
ical examples have been presented to provide performance
comparison between the noise enhanced system and the
original system and to support the theoretical analysis.
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