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Humans have an impressive ability to rapidly process global information in natural scenes

to infer their category. Yet, it remains unclear whether and how scene categories observed

dynamically in the natural world are represented in cerebral cortex beyond few canonical

scene-selective areas. To address this question, here we examined the representation of

dynamic visual scenes by recording whole-brain blood oxygenation level-dependent

(BOLD) responses while subjects viewed natural movies. We fit voxelwise encoding

models to estimate tuning for scene categories that reflect statistical ensembles of objects

and actions in the natural world. We find that this scene-category model explains a sig-

nificant portion of the response variance broadly across cerebral cortex. Cluster analysis of

scene-category tuning profiles across cortex reveals nine spatially-segregated networks of

brain regions consistently across subjects. These networks show heterogeneous tuning for

a diverse set of dynamic scene categories related to navigation, human activity, social

interaction, civilization, natural environment, non-human animals, motion-energy, and

texture, suggesting that the organization of scene category representation is quite

complex.
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r (E. Çelik).

rved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2021.07.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2021.07.008&domain=pdf
mailto:emin.celik@bilkent.edu.tr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2021.07.008&domain=pdf
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
https://doi.org/10.1016/j.cortex.2021.07.008
https://doi.org/10.1016/j.cortex.2021.07.008
https://doi.org/10.1016/j.cortex.2021.07.008


c o r t e x 1 4 3 ( 2 0 2 1 ) 1 2 7e1 4 7128
1. Introduction

A primary aim of visual neuroscience is to shed light on how

the human brain represents diverse information in natural

scenes. Behavioral research on scene perception suggests that

humans categorize scenes to more efficiently process the

wealth of information in visual scenes (Greene & Oliva, 2009;

Konkle, Brady, Alvarez, & Oliva, 2010; Rousselet, Joubert, &

Fabre-Thorpe, 2005). Therefore, it is likely that information

on scene categories is represented across cortex. Consistent

with this notion, previous neuroimaging studies have

demonstrated that the category of a visual scene could be

classified among a limited number of basic categories (e.g.,

beaches, forests, mountains) based on blood-oxygen level-

dependent (BOLD) responses in classical scene-selective re-

gions (parahippocampal place area, PPA; retrosplenial com-

plex, RSC; and occipital place area, OPA), object-selective

lateral occipital complex (LO), and anterior visual cortex

(Epstein & Morgan, 2012; Jung, Larsen, & Walther, 2018;

Walther, Caddigan, FeieFei, & Beck, 2009; Walther, Chai,

Caddigan, Beck, & FeieFei, 2011). A common approach in

these studies was to operationally define visual scenes into

few non-overlapping categories. However, natural scene cat-

egories might show varying degrees of statistical correlation,

and a real-world scene might be characterized under several

distinct categories. In addition, because these studies used

static scenes, they did not possess the necessary tools to

demonstrate how dynamic scene categories are represented

in the human brain.

To examine the statistics of natural scene categories, a

recent study (Stansbury, Naselaris, & Gallant, 2013) used a

data-driven algorithm to procure a broad set of scene cate-

gories wherein potential similarities between the categories

were also taken into account. In this approach, each scene

category is defined as a list of presence probabilities for a large

array of constituent objects that appearwithin natural scenes.

Once the algorithm learns a set of categories, the likelihood

that a given scene belongs to each of the learned categories

can be inferred based on the objects within the scene. This

scene category model has been reported to yield improved

predictions of single-voxel BOLD responses in classical face-

and scene-selective areas compared to an alternative model

based on the presence of a few diagnostic objects that

frequently appeared in the presented natural images

(Stansbury et al., 2013). This result raises the possibility that

object co-occurrence statistics form the basis of scene cate-

gory definitions above and beyond individual objects present

in scenes.

Stansbury et al. defined categories of static scenes via their

constituent objects and focused on category responses in

classical scene-selective regions like many prior studies on

scene representation (Epstein&Morgan, 2012; Jung et al., 2018;

Walther et al., 2009, 2011). Yet, several recent studies imply

that much of anterior visual cortex might be organized by

differential tuning of voxels for actions within visual scenes

(Tarhan & Konkle, 2020; Çukur, Huth, Nishimoto, & Gallant,

2016). In fact, real-world scenes contain dynamic in-

teractions between objects and actions leading to more elab-

orate categories (Greene, Baldassano, Esteva, Beck, & FeieFei,
2016), and they have been reported to elicit widespread re-

sponses across visual cortex (Deen, Koldewyn, Kanwisher, &

Saxe, 2015; Epstein & Baker, 2019; Isik, Koldewyn, Beeler, &

Kanwisher, 2017; Maguire et al., 1998). Therefore, it is likely

that natural scene categories based on co-occurrence of ob-

jects and actions are represented across broadly distributed

networks in the human brain.

Here, we sought to learn high-level features that capture

scene-category information in dynamic visual scenes, and to

examine how this information is represented across cerebral

cortex. We first recorded BOLD responses while subjects

viewed a large set of natural movies that contained 5252

distinct objects and actions. To identify scene-category fea-

tures, we employed a statistical learning algorithm that

learned a large set of categories on the basis of the co-

occurrence statistics of objects and actions in the natural

world. We then used the learned scene categories within a

voxelwise modeling framework (Huth, Nishimoto, Vu, &

Gallant, 2012; Nishimoto et al., 2011; Çukur et al., 2016;

Çukur, Nishimoto, Huth, & Gallant, 2013) to estimate scene-

category tuning profiles in single voxels across cerebral cor-

tex. Subsequently, we performed a clustering analysis in order

to reveal large-scale networks of brain regions that differ in

their scene-category tuning.
2. Materials and Methods

2.1. Experimental design

2.1.1. Subjects
Five healthy human subjects (all male, ages 25e32 years) with

normal or corrected-to-normal vision participated in this

study. MRI data were collected in five separate scan sessions:

three sessions for the main experiment, one session for

acquiring functional localizers, and one session for acquiring

anatomical data. Experimental protocols were approved by

the Committee for the Protection of Human Subjects at the

University of California, Berkeley. All subjects gave written

informed consent prior to scanning.

2.1.2. MRI protocols
MRI data were collected on a 3T Siemens Tim Trio scanner

(with a 32-channel head coil) located in the Brain Imaging

Center at the University of California, Berkeley. T2*-weighted

functional data were acquired using a gradient-echo echo-

planar imaging sequence with the following parameters:

repetition time (TR)¼ 2 sec, echo time (TE)¼ 31msec, a water-

excitation pulse with flip angle ¼ 70�, voxel

size ¼ 2.24 � 2.24 � 3.5 mm3, field of view ¼ 224 � 224 mm2,

and 32 axial slices spanning across the entire brain.

Anatomical scans were performed with a T1-weighted

magnetization-prepared rapid-acquisition gradient-echo

sequence with the following parameters: TR ¼ 2.30 sec,

TE¼ 3.45msec, flip angle¼ 10�, voxel size¼ 1� 1� 1mm3 and

field of view ¼ 256 � 256 � 192 mm3.

2.1.3. Main experiment
Whole-brain BOLD responses were recorded while subjects

passively viewed two hours of color natural movies. The

https://doi.org/10.1016/j.cortex.2021.07.008
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movies were compiled by combining 10e20 sec movie clips

selected from the Apple QuickTime HD gallery and YouTube.

com (Nishimoto et al., 2011). The stimulus was separated

into two independent sets. The first set was used to train

voxelwise encoding models and it consisted of 12 separate

runs of 10 min each. Each clip appeared only once in the

training set. The second set was used to test the performance

of fit models, and it consisted of 9 runs of 10 min each. Each

10 min run was composed of the same ten 1 min blocks, but

the presentation order of the blocks were randomly shuffled

in each run. Each 1 min block was presented 9 times in total

and the respective BOLD responses were averaged across re-

peats. The movies (512 � 512 pixels) were presented at a 24� �
24� visual angle, using an MRI-compatible projector (Avotec)

and a custom-built mirror system. A fixation spot (.16� � .16�)
with alternating color (3 Hz) was overlaid onto the movies.

Note that the dataset reported here was also analyzed in

several other studies (Huth et al., 2012; Çelik, Dar, Yılmaz,

Keles‚ , & Çukur, 2019; Çukur et al., 2016; Çukur, Huth,

Nishimoto, & Gallant, 2013). The experimental stimuli are

available at https://crcns.org/data-sets/vc/vim-2. Subject data

and labeled stimuli are available at https://crcns.org/data-

sets/vc/vim-4.

2.1.4. Functional localizers
Functional localizer and retinotopic mapping data were ac-

quired separately from the main experiment. Localizers for

category-selective regions of interest (ROIs) were acquired in

six 4.5 min runs, each divided into 16 blocks. Each block lasted

16 sec and contained 20 static images from each of the

following categories: human faces, human body parts, non-

human animals, household objects, spatially scrambled ob-

jects, and places. These category blocks were displayed in a

different order in each run. Each image was displayed for

300 msec, and 500 msec blank periods were inserted between

consecutive images. To sustain vigilance, subjects were

instructed to press a button when two consecutive images

were identical. The localizer for area V5/MTþ was acquired in

four 90 sec runs, each divided into 6 blocks. Each block con-

tained 15 sec of continuous or temporally scrambled natural

movies (Tootell et al., 1995). Retinotopic mapping data were

acquired in four 9 min runs. The runs contained clockwise or

counter-clockwise rotating polar wedges, and expanding or

contracting rings, respectively (Hansen, Kay, & Gallant, 2007).

2.1.5. Data preprocessing
The FMRIB Linear Image Registration Tool (FLIRT) from FSL 5.0

(Jenkinson, Bannister, Brady, & Smith, 2002) was used for

functional alignment. First, intra-run transformations were

estimated to align volumes within each run. A template vol-

ume was then generated for each run as the temporal average

of the aligned volumes. In each subject, the template volume

of the first run in the first experimental session was selected

as the target template. Afterwards, inter-run transformations

were estimated between the template of each run and the

target template. The transformations for intra-run and inter-

run alignment were combined, and finally applied on fMRI

data in a single step. Following alignment, low-frequency

drifts in BOLD responses were removed from each voxel

using a median filter with a 120 sec temporal window. Lastly,
each voxel's response was normalized to zero mean and unit

variance across time. No temporal or spatial smoothing was

applied to the functional data collected in the main experi-

ment. The functional localizer data were also motion-

corrected and aligned to the target template of the main

experiment. The localizer data were smoothed using a

Gaussian kernel of 4-mm full-width at half-maximum

(Spiridon, Fischl, & Kanwisher, 2006).

2.1.6. Definition of functional ROIs
Standard procedures (Spiridon et al., 2006) were used to define

functional ROIs in each subject. Functional localizer data were

examined to identify contiguous groups of voxels that showed

significantly stronger responses to a specific stimulus cate-

gory according to standard contrasts (t test, p < 10�4, uncor-

rected). Places versus isolated objects contrast was used to

define the PPA in the parahippocampal gyrus (Aguirre &

D'Esposito, 1997; Epstein & Kanwisher, 1998), the RSC in the

retrosplenial sulcus (Maguire, 2001), and the OPA in the

temporal-occipital sulcus (Dilks, Julian, Paunov, & Kanwisher,

2013). In addition, faces versus objects contrast was used to

define the fusiform face area (FFA) (Kanwisher, McDermott, &

Chun, 1997) and occipital face area (OFA) (Gauthier, Tarr, et al.,

2000). Human body parts versus objects contrast was used to

define the extrastriate body area (EBA) (Downing, Jiang,

Shuman, & Kanwisher, 2001). Objects versus spatially scram-

bled objects contrast was used to define the lateral occipital

complex (LO) (Malach et al., 1995). Continuous versus tempo-

rally scrambled movies contrast was used to define the area

V5/MTþ (Tootell et al., 1995). Last, the retinotopic mapping

data were used to define the early visual areas (V1e4)

following standard procedures (Engel, Glover, & Wandell,

1997; Hansen et al., 2007).

2.1.7. Visualization on flatmaps
The organization of scene category representation across

cortex was visualized by using flattened cortical maps. Indi-

vidual subjects' flatmaps were generated from their anatom-

ical data (T1-weighted brain scans) using Caret5 software (Van

Essen et al., 2001). Information about the clustermemberships

of individual voxels was projected onto the flattened cortical

maps by aligning functional and anatomical data, using the

Pycortex package (Gao, Huth, Lescroart, & Gallant, 2015).

2.2. Voxelwise scene category models

An encodingmodel was used to measure voxelwise tuning for

scene categories (Fig. 1). In addition, a control model based on

parts of scenes was used to measure voxelwise tuning for

object and action components of natural scenes. The perfor-

mances of these two models were compared in terms of the

variance they explained in recorded BOLD responses.

2.2.1. Scene-category model
A comprehensive model of scene categories that build on

constituent objects and actions in scenes is lacking. Thus, to

objectively identify the features of the scene-category model,

we used a data-driven approach based on the latent

Dirichlet allocation (LDA) algorithm (Blei, Ng, & Jordan, 2003;

Phan&Nguyen, 2007). LDAwas originally proposed to uncover

http://YouTube.com
http://YouTube.com
https://crcns.org/data-sets/vc/vim-2
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Fig. 1 e Overview of the voxelwise modeling framework. a, Whole-brain BOLD responses were recorded while subjects

passively viewed two hours of natural movies. b, A scene-category model was fit to individual voxels to assess scene

category representations of natural movies across neocortex. Model features were extracted via unsupervised learning on a

large corpus of natural scene annotations. Scene-category features (C1, C2 etc.) were extracted using latent

Dirichlet allocation (LDA) in order to capture co-occurrence statistics of objects and actions in dynamic natural scenes. Each

model feature is defined as a list of probabilities that reflect the likelihood of individual objects and actions occurring in a

scene. (Font weights for object-action categories reflect their respective probabilities.) c, Salient objects and actions in each

1-sec clip of the movies were labeled manually. The movies were then projected onto scene-category features to determine

stimulus time courses. Regularized linear regression was used to fit voxelwise models that optimally predict BOLD

responses in individual voxels. The estimated model weights characterize the tuning of individual voxels for distinct model

features.
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latent topics from a large text corpus on the basis of word co-

occurrence statistics (Blei et al., 2003). A recent study

(Stansbury et al., 2013) used LDA to learn scene categories

from a database of natural images based on object co-

occurrence statistics. Here, we used the LDA algorithm to

learn dynamic scene categories that capture co-occurrence

statistics of not only objects, but also actions in dynamic

natural scenes.

LDA was performed on a large training corpus of movie

scripts and scene annotations containing 5252 distinct object

and action categories (see Training corpus for details). Scene-

category featureswere learned that capture the co-occurrence

statistics of objects and actions in this corpus. Each scene-

category feature was a 5252-dimensional vector that re-

flected the probability of occurrence for individual objects and

actions within the respective scene category. Given the list of

objects and actions in a novel scene, an LDA-based inference

procedure can also be performed to calculate the probability
that the scene belongs to a particular scene category. This

procedure was performed on each 1-sec clip of the movies,

yielding for each clip a probability distribution over the scene-

category features.

Representative scene-category features are shown in Fig. 1.

The features correspond to natural scene categories that

capture the co-occurrence of multiple objects and actions

frequently encountered in the real world. For example, one

feature reflects information about urban street scenes: “in a

street view, a bus is driven on a road while a truck, a park

appears in the background” (C1 in Fig. 1). Another feature re-

flects information about a roadway scene: “a car is driven by a

driver on a road” (C2 in Fig. 1).

2.2.2. Training corpus
A training corpus was compiled to learn the features of the

scene-category and part-of-scene models. This corpus con-

sisted of the annotations in the Microsoft COCO data set (Lin

https://doi.org/10.1016/j.cortex.2021.07.008
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et al., 2014), the Microsoft Research video description corpus

(Chen & Dolan, 2011), and subtitles of 4068 documentaries.

Raw text in the compiled corpus contained 26millionwords in

approximately 700,000 separate entries. Standard pre-

processing routines were applied including tokenization,

stemming, removal of frequent stop words, and part-of-

speech tagging (Bird, Klein, & Loper, 2009) to only retain ob-

jects (i.e., nouns) and actions (i.e., verbs). Following pre-

processing, the corpus contained 10 million words with a

vocabulary of nearly 28,000 words. The vocabulary was

further reduced to 5252 objects and actions that commonly

appeared in both the corpus and the movie descriptions pro-

vided by Amazon Mechanical Turk workers.

2.2.3. Stimulus time courses
To project the movies onto the features of the scene-category

model, objects and actions that appeared in each 1-sec clip

were manually labeled. During labeling, the WordNet lexicon

(Miller, 1995) was used to take into account hierarchical re-

lationships among object and action categories (Huth et al.,

2012). For instance, for a clip containing the object “dog”, la-

bels for superordinate categories “canine”, “carnivore”,

“mammal”, “animal”, “organism”, and “living thing”were also

assigned. Next, the LDA algorithm was used to infer the dis-

tribution of model features in each 1-sec movie clip based on

the constituent object and action labels. The distributions

were aggregated across clips to form the stimulus time course.

High-level semantic features in natural visual stimuli

may be partly correlated with low-level motion-energy fea-

tures, including spatiotemporal frequency, spatial position,

and orientation (Çukur et al., 2016; Çukur, Nishimoto, et al.,

2013; Lescroart, Stansbury, & Gallant, 2015). To reduce

spurious correlations, a motion-energy regressor was

appended to the scene-category model. The motion-energy

features were previously shown to account for BOLD re-

sponses elicited by natural movies in early visual areas

(Nishimoto et al., 2011). To calculate the motion-energy

features of the movies, the movie frames were filtered with

2,139 spatiotemporal Gabor wavelets at 3 temporal fre-

quencies (0, 2, and 4 Hz), 6 spatial frequencies (0, 1.5, 3, 6, 12,

and 24 cycles/image) and 8 directions (0, 45, 90, …, 315�). The
nuisance regressor characterized the total motion energy as

the summed output of 2,139 Gabor filters.

2.3. Statistical analysis

2.3.1. Model fitting
A voxelwisemodeling frameworkwas used tomeasure single-

voxel tuning in individual subjects (Çukur et al., 2016; Çukur,

Huth, et al., 2013; Çukur, Nishimoto, et al., 2013; Ester,

Sprague, & Serences, 2020; Han et al., 2019; Huth et al., 2012;

Serences & Saproo, 2012; Wen et al., 2017). In this framework,

each voxelwisemodel contains a set of weights that reflect the

effect of individual model features on the voxel's responses.

Because model weights are signed, they do not only capture

response magnitude but also differentiate between relative

increases and decreases in responses. For the scene-category

model, the direction in which a given scene-category feature

effects BOLD responses will therefore be captured in the sign

of the corresponding model weight. Note that subsequent
clustering analyses are also based on fit model weights. As

such, the differentiation between characteristic response in-

creases/decreases will be reflected in functional cluster defi-

nitions. Models were fit to optimally predict measured BOLD

responses (Fig. 1, see https://github.com/icon-lab/SPIN-VM).

Fitting was performed on 7200 sec of training data using linear

regression with l2-regularization. The stimulus time course

was temporally down-sampled to match the temporal sam-

pling rate of BOLD responses. To capture hemodynamic de-

lays, separate finite-impulse-response (FIR) filters were

appended to each feature. These filters introduced temporal

delays of two, three, and four samples (or equivalently 4, 6,

and 8 sec). The FIR coefficients were fit together with the

model weights. A 20-fold cross validation procedure was used

to determine the optimal regularization parameter (l) for each

voxel. In each fold, voxelwise models were trained on a

randomly sub-sampled set (at a rate of 90%) of the training

data. Model performance was then measured on the held-out

10% of the training data. Performance was taken as the cor-

relation coefficient (Pearson's r) between the measured and

predicted BOLD responses. Raw correlation coefficients are

biased downward by noise in the measured BOLD responses

(David & Gallant, 2005). Hence, correlation coefficients were

corrected for noise bias following the procedure detailed in

Huth et al. (2012). The optimal l for each voxel was selected to

maximize averagemodel performance across cross-validation

folds. Voxelwise models were refit using this optimal l on the

entire training data. The performance of the fit models was

then evaluated on 540 sec of test data using a 10,000-fold

jackknife resampling (at a rate of 80%) procedure. Prediction

scoresweremeasured on jackknife samples. Significance level

was taken as the proportion of jackknife samples with nega-

tive scores. Corrections for multiple comparisons were con-

ducted using false-discovery-rate (FDR) control (Benjamini &

Yekutieli, 2001).

2.4. Control models

2.4.1. Part-of-scene model
To identify object-action components of natural scenes, we

used a data-driven approach based on the non-negative ma-

trix factorization (NMF) algorithm (Lee & Seung, 1999;

Pedregosa et al., 2011). An original application of the NMF al-

gorithm was extraction of sparsely distributed, additive se-

mantic features from a large text corpus (Lee & Seung, 1999).

Here, NMFwas performed on the same training corpus as LDA

to learn part-of-scene features that reflect object and action

components of natural scenes (Supp. Figure 1). Each part-of-

scene feature was a 5252-dimensional vector that reflected

the probability of occurrence for individual object and action

categories. Given a novel scene, an NMF-based inference

procedure was performed to express the distribution of part-

of-scene features within that scene. This procedure was per-

formed on each 1-sec clip of the movies, yielding for each clip

a distribution over the part-of-scene features. Representative

part-of-scene features are shown in Fig. 2.

2.4.2. Gist model
We used voxelwise gist models to measure tuning for low-

level spatial features in the movies. While early visual areas

https://github.com/icon-lab/SPIN-VM
https://doi.org/10.1016/j.cortex.2021.07.008
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Fig. 2 e Examples of part-of-scene (P1eP5) features. The non-negative matrix factorization (NMF) algorithm was used to

identify the part-of-scene features that reflect constituent object and action components of natural scenes such as “a bus”,

“a car”, “driving”, “road”, and “amotorcycle”. Eachmodel feature was expressed as a 5252-dimensional vector that reflected

the probability of occurrence for individual object and action categories. In this example, a total of 80 features were learned.

For each feature, seven most probable object and action categories are listed with their probabilities (here indicated as

differences in font weights).

c o r t e x 1 4 3 ( 2 0 2 1 ) 1 2 7e1 4 7132
are commonly assumed to represent low-level features of vi-

sual scenes (Grill-Spector & Malach, 2004), it remains unclear

what specific information in natural scenes is represented in

PPA, OPA, and RSC (Epstein, 2014). Recent studies suggest that

these areas might represent both low-level spatial features

(Kravitz, Peng, & Baker, 2011; Park, Brady, Greene, & Oliva,

2011; Watson, Hartley, & Andrews, 2014), and high-level se-

mantic features (Huth et al., 2012; Stansbury et al., 2013;

Walther et al., 2009; Çukur et al., 2016).

Voxelwise gist models were fit to measure tuning for

spatial layout and texture of visual scenes. The gist features

were shown to be effective in capturing the global spatial

properties such as openness, expansion, and texture of nat-

ural scenes (Oliva & Torralba, 2001). To calculate the gist fea-

tures of the movies, the movie frames were first down-

sampled to 256 � 256 pixels. A total of 512 gist features were

then computed in 16 image blocks, each containing 4 spatial

scales and 8 orientations per scale (Oliva & Torralba, 2001).

2.5. Model selection

Humans can perceive a vast number of scene categories as

well as constituent object and action categories within scenes

(Huth et al., 2012; Stansbury et al., 2013; Çukur et al., 2016).

However, because the spatiotemporal resolution of fMRI is

coarse, BOLD responses will admit sensitive examination of

only a portion of these categories (Stansbury et al., 2013).

Thus, we separately identified the set of scene-category and

the set of part-of-scene features that best explain measured

BOLD responses across subjects.

To do so, we incremented the number of features learned

by the LDA (for the scene category model) and NMF (for the

part-of-scene model) algorithms from 10 to 200. We fit sepa-

rate voxelwise models for each distinct number of features,

and we measured the relative number of significantly pre-

dicted cortical voxels across subjects.We find that the optimal

number of features is 180 for the scene-category model and

190 for the part-of-scene model (Fig. 3). Because the optimal

numbers of features were very close acrossmodels, the scene-

categorymodel with 180 features and the part-of-scenemodel

with 190 features (as control model) were used in subsequent

analyses.
We also note that although the best performance for the

scene-category model is attained with 180 features, a reduced

model based on 60 features has a close performance. The

difference between these two models in terms of the number

of significantly predicted cortical voxels was less than .02%

across subjects. Yet the smaller number of features in the

reduced model offers an advantage in visualization and

interpretation of scene category representations. Thus, we

used this reduced model in cluster analysis and subsequent

visualization on the cortical surface.

2.6. Cluster analysis

The natural movies used here span a broad variety of complex

real-world scenes. The movies contain static scenes involving

objects such as urban views or landscapes and complex, dy-

namic scenes that involve both objects and actions such as

locomotion or social interaction. A core issue that this report

addresses is how these various scene categories are repre-

sented in the brain. To investigate this issue, we performed

cluster analysis on voxelwise tuning profiles (i.e., vectors of

model weights) for scene categories. Because the specific

areas that are involved in scene category representation

remain unclear, the cluster analysis included all cortical

voxels significantly predicted by the scene-category model (p

< .05, FDR corrected). Clusters were obtained via the k-means

algorithm, where similarity of voxelwise tuning profiles was

measured using Euclidean distance (James, Witten, Hastie, &

Tibshirani, 2013). To avoid unstable clustering solutions, we

employed k-meansþþ with smart initialization of cluster

centers (Arthur & Vassilvitskii, 2007). Lastly, each cluster

center was taken as the mean tuning profile across voxels

within that cluster.

To examine the consistency of clusters across subjects, we

performed a cluster analysis on each subject separately and

obtained individual-subject cluster centers. Only the signifi-

cantly predicted voxels (p < .05, FDR corrected) in each subject

were included in individual-subject level analyses. We also

performed a cluster analysis after pooling voxels across sub-

jects and obtained group-level cluster centers. To prevent bias

due to across-subject variability in signal-to-noise ratios of

fMRI data and brain sizes, a fixed number of voxels were
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Fig. 3 e Identifying the set of model features that best explain BOLD responses across subjects. The number of features to be

extracted by LDA was systematically varied from 10 to 200 in 20 steps. For each number of features, voxelwise models were

fit and the relative number of cortical voxels that was significantly predicted was measured (p < .05, FDR corrected). To

determine the optimal number of features, these measurements in each subject were normalized to yield a sum of 1 across

20 steps (to account for individual differences in the brain volume and signal-to-noise ratios in BOLD responses). Next, the

normalized measurements were averaged across subjects. This matrix shows the number of cortical voxels that were

significantly predicted by the scene-category model for individual subjects (S1eS5) and across subjects (Across). The red

square indicates the optimal number of features, which is 180 for the scene-category model.
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selected from each individual subject in the group-level

analysis. A minimum of 10,222 significantly predicted voxels

were obtained for subject S3 (p < .05, FDR corrected), therefore

a total of 51,110 voxels were included across all five subjects.

Across-subject consistency was then assessed by measuring

the similarities between individual-subject cluster centers

and also by measuring the similarities between individual-

subject cluster centers and the group-level cluster centers.

Similarity was taken as the correlation coefficient (Pearson's r)
between the cluster centers.

A critical hyperparameter for cluster analysis is the number

of voxel clusters to recover. We determined the number of

voxel clusters using an unsupervised procedure. This proced-

ure measured the proportion of explained variance in tuning

profiles by the respective cluster centers. To do this, the total

variance in tuning profiles was measured across all voxels.

Then, within-cluster variances in tuning profiles across voxels

were identified within each cluster. Subsequently, the differ-

ence between the total variance and the sum of within-cluster

variances across clusters was calculated. The proportion of

explained variance in tuning profiles was taken as the ratio of

this difference to the total variance (James et al., 2013). The

optimalnumberof clusterswasselectedas thenumberbeyond

which the improvement in explained variance fell below one

percent, since at that point clusters started to differentiate

between subjects as opposed to functional selectivity profiles.

Scene categories that elicit differential responses across

voxel clusters were manually labeled (see Fig. 4). Labeling for

each scene categorywas performed by visual inspection of the

top five movie frames that yielded the maximum probability

for that category. To ensure reliability of the scene category

labels, four healthy adult males who were naı̈ve as to the

purposes of the study were asked to rate the labels. A 5-point

Likert scale was used to measure labeling accuracy. The raters

were asked to inspect the movie frames for each scene cate-

gory, rate the assigned labels for accuracy (1 ¼ inaccurate, 3 ¼
moderately accurate, 5 ¼ accurate), and provide their own

labels. Rater consistency was measured by pooling all ratings

and calculating the average and standard error of the mean
(SEM). Cluster labeling was also based on the same four raters'
suggestions by majority voting.

2.7. Control for stimulus sampling bias

Separate scene categories in natural movies may contain a

shared subset of objects or actions. For instance, the object

“human body” and the action “jumping” can take part in “a

concert” scene as well as in “a sports activity” scene. Thus, the

scene-category features learned here might show correlations

in terms of their distribution over objects and actions. In turn,

these correlations may bias the voxelwise tuning profiles for

scene categories and subsequent cluster analysis on these pro-

files. To assess whether our results are biased by this potential

confound,weperformedanadditional cluster analysis basedon

the stimulus time course of scene-category features. To control

for temporally lagged stimulus correlations, we generated

multiple time courses for scene-category features temporally

delayedby lags from�5 to5sec.Weaveragedthese timecourses

to obtain an aggregate stimulus matrix (time � scene-category

features). We then performed cluster analysis on the aggregate

stimulusmatrix to groupmovieclips into clusters basedon their

scene category distributions. Stimulus cluster centers were

taken as the mean profile of scene-category features across

movie clips within each cluster. Finally, we compared the vari-

ance explained in voxelwise tuning profiles by the voxel cluster

centers to thatexplainedbythestimuluscluster centers. For this

comparison, each voxel was assigned to a stimulus cluster

center that was most similar to its tuning profile.

2.8. Power analyses

Several a priori power analyses were conducted for statistical

assessment of model prediction scores. As in the main ana-

lyses, prediction score was taken as the correlation coefficient

between measured and predicted BOLD responses. First, to

determine theminimumdetectable effect size for single-voxel

prediction scores, a Monte Carlo procedure of 1000 iterations

was performed. During each iteration, “measured” and
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Fig. 4 e Examples of scene categories that elicit differential responses across voxel clusters. We determined twenty distinct

scene categories frequently observed in daily life that elicited differential responses across voxel clusters. Representative

scene categories among this set are shown along with frames from five movie clips with the highest projections onto each

category. Scene categories were manually assigned labels to summarize the main scene category information that they

captured, including verbal and written communication, entertainment (e.g., playing game, dancing, singing), human female

and male, text, anthropomorphic animal, sports activity, locomotion (e.g., jumping, cycling, skiing), pedestrian, car driven

on a road, and flying objects (e.g., airplane, insect, bird). These labels were rated by four healthy adult males (non-authors)

as a reliability measure.
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“predicted” BOLD responses were simulated as sets of random

samples from a bivariate normal distribution. The set size was

taken as 270 to match that of the test set used in the main

analyses. Both variables in the normal distribution had zero

mean and unit variance. The effect size was systematically

controlled by varying the correlation between the two vari-

ables. Given ameasured-predicted response set, responses for

a single voxel were resampled without replacement using a

10,000-fold jackknife resampling (at a rate of 80%) procedure

to calculate significance level (p). Power was taken as the

percentage of Monte Carlo iterations with significant test re-

sults (p < .05). For a desired power level of .8, the minimum

detectable effect size in single-voxel prediction scores was .05.

Second, a Monte Carlo simulation was performed to detect

the minimum detectable effect size for differences in single-

voxel prediction scores between two competing models. In

this case, two distinct bivariate normal distributionswere used

to simulate prediction scores from the two models, respec-

tively. For the first model taken as a reference, the correlation

between the variables in the bivariate distribution was set to

zero. For the second model, the correlation between the vari-

ables in the bivariate distribution was systematically varied.

Given a pair ofmeasured-predicted response sets from the two

models, responses were again resampledwithout replacement
10,000 times at a rate of 80% to calculate significance level (p).

Power was taken as the percentage of Monte Carlo iterations

with significant test results (p < .05). For a desired power level

of .8, the minimum detectable effect size in difference of

single-voxel prediction score between two models was .05.

Lastly, aMonteCarlosimulationwasperformedtodetect the

minimum detectable effect size in ROI-level prediction scores

between competing models. Note that the smallest ROI exam-

ined in this study contained more than 10 voxels. Therefore,

simulationswere run for a hypothetical ROIwith 10 voxels. The

simulations for between-model differences in single-voxel

prediction score were expanded to include 10 independent

voxels. In each iteration, significance level was calculated after

averaging prediction scores across 10 voxels within the ROI.

Power was taken as the percentage of Monte Carlo iterations

with significant test results (p< .05). For a desired power level of

.8, theminimumdetectable effect size inROI-level difference in

prediction score between two models was .02.

A separate power analysis was conducted for statistical

assessment of clusterecenter correlations across subjects. As

in the main analyses, similarity was taken as the correlation

coefficient between the cluster centers. To determine the

minimum detectable effect size, a Monte Carlo procedure of

1000 iterations was performed. During each iteration, cluster
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Table 1 e Proportion of voxels where the scene-category
model outperforms the control model.

% voxels S1 S2 S3 S4 S5 Aggregate

RET 53.68 27.26 24.76 33.43 74.44 42.71 ± 9.42

V7 56.96 5.71 16.48 63.35 39.06 36.31 ± 11.17

LO 50.00 5.26 3.45 87.93 65.00 42.33 ± 16.64

MTþ 49.42 8.54 22.92 56.36 48.97 37.24 ± 9.17

EBA 53.38 2.40 11.84 64.81 45.06 35.50 ± 12.09

FFA 16.13 7.32 6.25 52.17 30.77 22.53 ± 8.61

PPA 88.46 62.71 72.92 90.00 74.56 77.73 ± 5.12

OPA 79.41 6.00 46.15 100.00 90.74 64.46 ± 17.22

RSC 65.45 91.30 82.43 79.17 68.57 77.38 ± 4.70

IPS 61.33 18.53 40.43 76.67 69.91 53.37 ± 10.63

pSTS 25.34 24.13 33.45 63.83 47.52 38.85 ± 7.51

Percentage of voxels where the scene-category model outperforms
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centers were simulated as sets of random samples from a

bivariate normal distribution. The number of clusters was

taken as 9 to match the number of clusters used in the main

analyses. Both variables in the normal distribution had zero

mean and unit variance. The effect size was systematically

controlled by varying the correlation between the two vari-

ables. Cluster centers were resampled without replacement

using a 10,000-fold bootstrap resampling procedure to calcu-

late significance level (p). Power was taken as the percentage

of Monte Carlo iterations with significant test results (p < .05).

For a desired power level of .8, the minimum detectable effect

size in cluster center correlations was .055. Effects measured

in the main analyses were only deemed significant if they

exceeded the minimum detectable effect sizes identified by

these a priori power analyses.

the control model among voxels significantly predicted by either of

the two models is calculated for eleven ROIs for all subjects

(Dr > .02). Aggregate values are reported as mean ± SEM across five

subjects.

3. Results

To investigate thenatureofhigh-level scene information that is

represented across the cerebral cortex, we recorded BOLD re-

sponses while subjects passively viewed 2 h of natural movies.

Weusedvoxelwisemodeling to assess scene representations in

single voxels.We fit a scene-categorymodel tomeasure tuning

for scene categories (e.g., an urban street, a forest) that reflect

co-occurrence statistics of objects and actions in natural

scenes. Model performance was evaluated by calculating vox-

elwise prediction scores on BOLD responses reserved for this

purpose. Prediction scoreswere assessed in PPA, OPA, and RSC,

as well as several other classical functional ROIs including

intraparietal sulcus (IPS), posterior superior temporal sulcus

(pSTS), fusiform face area (FFA), extrastriate body area (EBA),

human MT (V5/MTþ), lateral occipital complex (LO), visual

retinotopicareaV7, andearlyvisualareas (RET:V1eV3).Wealso

fit a part-of-scene model that acted as a control model. This

model measures tuning for scene components (e.g., a car, a

road, or a driving action) that reflect constituent objects and

actions in natural scenes (see Supp. Figure 1).

The scene-category and part-of-scene models significantly

predict BOLD responses both at the group- and the individual-

subject levels (jackknife test; p < .05 (FDR corrected), predic-

tion score (r) > .05). Yet, we find that the scene-categorymodel

outperforms the control model in single voxels distributed

across much of cortex (jackknife test; p < .05, Dr > .05). Among

voxels that are significantly predicted by either of the two

models, the proportion of voxels in which the scene-category

model outperforms the control model is given in Table 1

(Dr > .02; see Supp. Table 1 for the proportion of voxels

where the control model outperforms the scene-category

model). The scene-category model shows dominant perfor-

mance in PPA, OPA, RSC, IPS implicated in spatial attention,

and pSTS implicated in representing humaneobject in-

teractions. In contrast, the control model appears relatively

dominant, albeit to a lesser degree, in face-selective FFA and

object-selective V7. Meanwhile, the two models show rela-

tively balanced performance in RET, LO, MTþ, and EBA. Thus,

scene-category representations are more dominant in brain

regions involved in various aspects of scene processing, and

scene-category and object representations are equally domi-

nant in many other visual areas except some specialized
object-selective regions. Overall, these results suggest that

many cortical regions represent holistic information about

scene categories beyond information conveyed by constituent

object and action components. Therefore, functional selec-

tivity as measured by the scene-category model was further

examined in subsequent analyses to assess scene category

representations across cortex.

3.1. Organization of scene category representation
across the cerebral cortex

Several previous studies provided evidence that category

representations are organized into a multi-dimensional se-

mantic space distributed systematically across the cerebral

cortex (Haxby et al., 2011; Huth et al., 2012). We have recently

shown that this organization is apparent evenwithin classical

category-selective areas, such as FFA and PPA, resulting in

several spatially-segregated functional voxel clusters with

distinct semantic tuning profiles in each ROI (Çukur et al.,

2016; Çukur, Huth, et al., 2013). Collectively, these results

imply that representation of scene category information

shows amore fine-grained cortical organization than typically

assumed (Grill-Spector & Weiner, 2014). Therefore, we hy-

pothesized that scene categories that reflect the co-

occurrence statistics of objects and actions are systemati-

cally represented in multiple spatially-segregated functional

voxel clusters across the cerebral cortex.

To examine the cortical organization of scene category

representation, we performed cluster analysis on voxelwise

tuning profiles that were estimated by the scene-category

model. We first determined the optimal number of voxel

clusters by examining the variance in tuning profiles that was

explained by cluster centers (see Materials and Methods). The

optimal number of voxel clusters was determined as nine (see

Supp. Figure 2). These nine clusters were identified by pooling

voxels across subjects. But it was not clear how similarly

these clusters were expressed in individual subjects. Thus,

we examined the inter-subject consistency of cluster centers

by assessing the correlation coefficient between individual-

subject cluster centers. We find that the individual-subject
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cluster centers are significantly correlated across subjects

(r ¼ .52 ± .02, mean ± sem across subjects; bootstrap test,

p < .05) and they are significantly correlated with the group

cluster centers (r ¼ .70 ± .03; p < .05). These results suggest

that scene category representation is organized into nine

functional voxel clusters consistently in each individual

subject. Because the cluster centers are highly consistent

across subjects, to facilitate inter-subject comparisons and

enhance sensitivity, we used the group-level clustering in

subsequent analyses.

We expected these 9 voxel clusters to be tuned to different

scene categories and that therewould be ameaningful pattern

providing a sensible functional interpretation. To determine

these differences, we measured the average response of each

cluster to 20 scene categories frequently observed in daily life

(Fig. 4). These 20 categories were labeled by the authors and

rated by four healthy adult males (non-authors). Rater con-

sistency was very high (4.71 ± .06; 1 ¼ inaccurate labeling,

5 ¼ accurate labeling, lowest category ¼ 3.75 ± .48) across

categories. Fig. 5 shows the average responses of each cluster.

Clusters were named based on the same four raters' sugges-
tions. Cluster 1 contains 12% ± 2% (mean ± sem across sub-

jects) of the significantly predicted voxels across subjects on

average, and yields greater responses to scenes showing

navigation, such as a car driven on a road or a pedestrian
Fig. 5 e Predicted responses to scene-category features in voxe

category tuning profiles identified nine functional clusters. To i

cluster, we measured the average predicted response (mean ±
features. Results are shown for a subset of scene categories tha

Cluster 1 (dark brown) responds to scene categories depicting n

landscapes (e.g., a mountain or seaside view). Clusters 2e4 resp

responds to actions of humans and anthropomorphic animals; C

social interactions; Cluster 4 responds to human-made environ

responds broadly to natural environments, while Cluster 6 respo

energy in the movies and Cluster 8 responds to texture in visu

scene category selectivity in this experiment. The clusters were

characteristics.
walking, and in a lesser degree, to scenes showing amountain

or a seaside. Reduced responses are observed for scenes

depicting verbal communication, whichmostly contain close-

up views of human faces (p < .05, bootstrap test).

Clusters 2e4 contain 9% ± 2%, 11% ± 2%, and 8% ± 2% of the

significantly predicted voxels across subjects on average,

respectively. These yield greater responses to scenes showing

humans and human-made environments and artifacts, such

as a person jumping, cycling or walking outdoors, and

humans engaged in verbal communication (p < .05). Reduced

responses are observed for scenes that contain landscapes

such as a mountain or a seaside view (p < .05). More specif-

ically, Cluster 3 yields greater responses to scenes depicting

social communication, such as verbal or textual communi-

cation (p < .05) and Cluster 4 yields greater responses to urban

scenes with human-made environments and artifacts, such

as vehicles, train stations, or trains (p < .05). For these two

clusters, reduced responses are observed for scenes showing

natural environments or non-human animals (p < .05).

Cluster 5 contains 15% ± 3% of the significantly predicted

voxels across subjects on average, and yields greater re-

sponses to scenes showing natural environments such as a

mountain, a body of water, or aquatic animals (p < .05). Cluster

6 contains 7% ± 2% of the significantly predicted voxels across

subjects on average, and yields greater responses to scenes
l clusters. Clustering of voxels according to their scene-

dentify scene category information represented in each

sem across subjects) of each cluster to 60 scene-category

t capture the key response differences across clusters.

avigation (e.g., human locomotion and vehicles) and

ond to humans and human-made environments: Cluster 2

luster 3 responds to human communication and broadly to

ments and artifacts such as vehicles. In contrast, Cluster 5

nds to non-human animals. Cluster 7 responds to motion-

al scenes. Cluster 9 contains the voxels that showed low

manually assigned names to reflect their response
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showing non-human animals (p < .05). For these two clusters,

reduced responses are observed for scenes showing humans

and human-made environments (p < .05).

Clusters 7 and 8 contain 12% ± 2% and 13% ± 3% of the

significantly predicted voxels across subjects on average,
Fig. 6 e Organization of scene category representation across n

category representation, each cortical voxel in each subject was

colors were then projected onto cortical flatmaps. Projections o

representation is organized into nine spatially-segregated netw

categories related to navigation (see Fig. 5). Red-blush voxels re

interaction, and civilization (e.g., human-made artifacts and en

categories related to natural environments and non-human anim

Voxels that were not significantly predicted by the scene-catego

are shown in dark gray. Conventional ROIs identified using sep

white boundaries. Major anatomical landmarks and sulci are a

collateral sulcus, CoS; inferior frontal sulcus, IFS; intraparietal s

sulcus, MTS; prefrontal cortex, PfC; postcentral sulcus, PoCeS; p

temporal sulcus, STS; temporo-parietal junction, TPJ.
respectively. These yield greater responses to low-level fea-

tures of the movies. More specifically, Cluster 7 yields greater

responses to motion-energy in the movies, such as a scene

showing a person involved in a sports activity or in locomo-

tion; or an animal or a vehicle in motion. Reduced responses
eocortex. To examine the cortical distribution of scene

assigned a color according to its cluster membership. Voxel

btained for all five subjects are shown. Scene category

orks of brain regions. Dark-brown voxels represent scene

present scene categories related to human activity, social

vironments). Dark-blue and orange voxels represent scene

als. Light-blue voxels show low scene category selectivity.

ry model are shown in gray. Regions of fMRI signal dropout

arate functional localizers are labeled and marked with

lso shown: central sulcus, CeS; cingulate sulcus, CiS;

ulcus, IPS; inferior temporal sulcus, ITS; middle temporal

recuneus, PrCu; superior frontal sulcus, SFS; superior
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are observed for static scenes such as a mountain view

(p < .05). Cluster 8 yields greater responses to texture in scenes

such as dynamic text on a smooth background or a flying

object against a cluttered background (p < .05). Finally, Cluster

9 contains 13% ± 1% of the significantly predicted voxels

across subjects on average, but these voxels are not selective

for any particular scene category.

3.2. Cortical maps of scene category representation

To visualize the distribution of scene category tuning across

cerebral cortex, we projected the clusters onto the cortical

flatmaps of individual subjects (Fig. 6). The distribution of voxel

clusters across the cerebral cortex reveals that scene category

representation is organized in nine spatially-segregated net-

works of brain regions. We named the networks according to

their respective scene-category tuning as revealed by inspec-

tion: navigation, human activity, social interaction, civiliza-

tion, natural environment, non-human animal, motion-

energy, texture, and low-category selectivity networks.

3.2.1. Navigation
This network shows high selectivity for navigational scenes

and is distributed broadly across occipital, posterior parietal,

and ventral temporal cortices. The navigation network over-

laps with scene-selective areas PPA, OPA, and RSC. It also in-

cludes voxels located in posterior subregions of IPS and some
Fig. 7 e Distribution of networks of brain regions within conven

Çukur, Huth, et al., 2013) suggests that voxels within ROIs defin

network, but rather are associated with multiple different netwo

of networks within PPA, OPA, RSC, FFA, EBA, MTþ, pSTS, LO, V7

voxels (mean ± sem across subjects) that belong to the nine net

different than zero (p < .05, bootstrap test, FDR corrected). Most

with distinct scene-category tuning. This result suggests that s

more diverse than commonly assumed.
voxels located near superior and posterior primary somato-

sensory cortex (S1F), regions that have been associated with

visual attention (Culham & Kanwisher, 2001; Posner, Sheese,

Odludas‚ , & Tang, 2006).

3.2.2. Human activity
Networks related to animacy, such as human activity, social

interaction, civilization, and non-human animals, are

distributed broadly across occipital, posterior parietal, and

ventral temporal cortices. The human activity network in-

cludes several previously identified functional areas in occi-

pitotemporal cortex that represent human faces and bodies,

such as FFA, OFA, and EBA (Kanwisher, 2010). The human

activity network also overlaps with MTþ and the posterior

bank of the inferior temporal sulcus (ITS), two areas suggested

to be involved in processing of biological motion (Thompson,

Clarke, Stewart, & Puce, 2005).

3.2.3. Social interaction
The social interaction network includes areas that have previ-

ouslybeenassociatedwithprocessingof social informationand

theory of mind (Saxe, 2006). More specifically, within temporal

cortex, this network includes voxels located in pSTS, an area

previously linked to face perception, human motion and ac-

tions, and social interaction (Deen et al., 2015; Isik et al., 2017).

The social interaction network also includes voxels in parietal

cortex that run along the anterior regions of precuneus (PrCu),
tional ROIs. Previous work from our lab (Çukur et al., 2016;

ed by conventional localizers do not belong to a single

rks. To address this question, we assessed the distribution

, and RET. Bar plots for each ROI indicate the percentages of

works. Asterisks indicate percentages that are significantly

of the ROIs examined here contain multiple subdomains

cene category representations in many functional ROIs are
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an area previously associated with social cognition (Cavanna&

Trimble, 2006). Finally, it also includes voxels in frontal cortex

that are located in the inferior frontal sulcus face patch (IFSFP)

which has previously been linked to visual speech processing

(Calvert & Campbell, 2003; Tsao, Moeller, & Freiwald, 2008).

3.2.4. Civilization
The civilization network shows high selectivity for human-

made artifacts and environments. It neighbors the social

interaction network and includes voxels near pSTS, which has

previously been linked to the representation of actions

involving human-made objects (Kable & Chatterjee, 2006).

3.2.5. Non-human animal
The non-human animal network is broadly distributed across

several ventral temporal areas near FFA and EBA, and includes

voxels that are located in V7 and V3B. The non-human animal

network also includes voxels located in the postcentral sulcus

(PoCeSu). These regions have previously been associated with

the representation of non-human animals (Huth et al., 2012;

Mruczek, Von Loga, & Kastner, 2013).

3.2.6. Others
The remaining networks that predominantly represent mo-

tion and form information in visual scenes are broadly

distributed across striate, extrastriate, occipitotemporal, and

parietal cortices. The natural environment network includes

voxels within occipital cortex, mainly in retinotopically orga-

nized early visual areas (V1eV4). The texture network also
Fig. 8 e The prediction scores of scene-category and gist model

scene-category tuning across neocortex was biased by heteroge

scenes, we compared the prediction scores of the scene-categor

by the scene-category model. Bar plots show prediction scores

outperforms the gist model in all networks (jackknife test, p <
spans across early visual areas (jackknife test, p ¼ .23). Note th

within the navigation network, which was found to largely ove

result suggests that differences in scene-category tuning betwe

tuning for low-level spatial features.
largely overlaps with retinotopically organized early visual

areas, as expected. Lastly, the motion-energy network in-

cludes voxels located in V3A, V7, EBA, and MTþ, as well as

anterior IPS and superior bank of PoCeSu.

3.3. Distribution of networks within conventional
functional ROIs

Previous neuroimaging studies have suggested several brain

areas in ventral temporal cortex that are homogeneously

tuned for specific categories, such as face-selective area FFA

and scene-selective areas PPA, OPA, and RSC (Kanwisher,

2010). However, recent studies have indicated that these

classical ROIs consist of several functional subdomains with

differential tuning for individual object and action categories

(Çukur et al., 2016; Çukur, Huth, et al., 2013; Weiner, Sayres,

Vinberg, & Grill-Spector, 2010). Thus, it is possible that some

ROIs might contain distinct functional subdomains that

exhibit differential tuning for scene categories. To test this

functional heterogeneity hypothesis, we examined the rela-

tive size of the nine scene-category networks within func-

tional ROIs. Specifically, we measured the percentage of

voxels that belong to each network in PPA, OPA, RSC, FFA, EBA,

MTþ, pSTS, LO, V7, and retinotopically organized early visual

areas (Fig. 7).

First, we examined the proportion of networks within

scene-selective areas PPA, OPA, and RSC. We find that the

navigation network is dominant in PPA (74% ± 6%,

mean ± sem across subjects, p < .05, bootstrap test, FDR
s in each network. To control whether heterogeneity of

neity of tuning for low-level spatial features of natural

y and gist models within the networks that were identified

(mean ± sem across subjects). The scene-category model

.05, Dr > .02), except for the texture network that mainly

at the largest difference in prediction scores is observed

rlap with scene-selective areas PPA, OPA, and RSC. This

en the identified networks cannot be fully attributed to
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corrected), OPA (70% ± 6%, p < .05), and RSC (61% ± 10%,

p < .05). This result is consistent with previous reports sug-

gesting that voxels in these areas respond selectively to

stimuli that contain scenes depicting navigation (Epstein,

2008). In addition to the navigation network, there is a

considerable proportion of voxels in RSC (26% ± 8%, p < .05)

that respond selectively to stimuli that fall into the civilization

network. Several previous reports suggest that RSCmight play

a different role in representation of scenes compared to PPA

and OPA (Malcolm, Groen, & Baker, 2016). Whereas PPA and

OPA are assumed to represent local scene information, RSC is

hypothesized to represent the broader environment likely to

capture navigationally-relevant information in the sur-

roundings (Epstein, 2008). Because the presence and locomo-

tion of humans can serve navigational cues in the real world,

the larger portion of civilization network in RSC might be a

reflection of the distinct functional role of RSC.
Fig. 9 e Correlation between the scene-category features and th

across neocortex could potentially be biased by heterogeneity o

systematically across scene-categories. To rule out this bias, th

features and the first 20 PCs of gist features was calculated. a, Co

matrix form (see color legend). A few scene categories includin

text show moderate correlations with the first five gist PCs (see

communication and mountain view categories with the gist PC

scenes, such as roughness, openness, verticalness, mean depth

that elicit differential responses between the networks have ne
3.4. Functional heterogeneity in scene selective areas

We recently provided evidence that PPA, OPA, and RSC each

contain two functional subdivisions that differ in their re-

sponses to static scenes that show human-made artifacts

such as buildings, furniture, instruments versus dynamic

scenes that show human and animal locomotion and vehicles

(Çukur et al., 2016). That previous study aimed to examine the

organization of object and action category representation

within scene-selective areas, whereas the current study ex-

amines the large-scale organization of scene category repre-

sentation across the cerebral cortex. Therefore, we

hypothesized that there would be two distinct functional

subdomains in PPA, OPA, and RSC. To test this hypothesis, we

performed an additional ROI-wise cluster analysis based on

voxelwise scene-category tuning profiles (not shown).We find

that ROI-wise cluster analysis identifies two functional
e gist features. Heterogeneity of scene-category tuning

f tuning for low-level spatial features that differ

e degree of correlation between the 20 scene-category

rrelation among scene categories and gist PCs presented in

g verbal communication, mountain view, pedestrian, and

bottom panel for a bar plot of correlations of the verbal

s). These PCs assess global spatial properties of natural

, and expansion. Even so, the majority of scene categories

gligible correlations with the gist PCs.
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subdomains in PPA, RSC, and OPA. The first subdomain is

tuned for static scene categories such as urban or natural

environments, and the second subdomain is tuned for dy-

namic scene categories such as human and animal locomo-

tion, and vehicles in motion. Therefore, our current set of

results are generally consistent with our previous study that

identified functional subdomains within scene-selective ROIs.

3.5. Functional heterogeneity across cerebral cortex

We expect functional heterogeneity to be a prevalent feature

across the cerebral cortex, rather than being restricted to the

scene selective areas. Therefore, we examined the distribution

of networks within FFA, EBA, MTþ, and pSTS. In FFA, we find

that the human activity (61% ± 10%, p < .05) and the social

interaction (23% ± 6%, p < .05) (representing scene categories

related to verbal communication and entertainment; see Fig. 6)

are the two leading networks. In EBA and MTþ, the human

activity network and the motion-energy network occupy a

relatively larger portion compared to the remaining networks

(44% ± 7% in EBA, p < .05; 38% ± 6% in MTþ, p < .05). In pSTS,

voxels are more broadly distributed across the human activity,

social interaction, and civilization networks (22% ± 8%, p < .05;

36% ± 8%, p < .05; and 30% ± 9%, p < .05; respectively). This

result is in line with previous findings that pSTS is selective for

visual stimuli related to social perception, including the

perception of faces, biological motion, others' actions and

mental states, and linguistic processing (Deen et al., 2015).

In addition, we examined functional heterogeneity in LO.

LO has been associatedwith the representation of a number of

different scene categories (Grill-Spector, Kourtzi, &

Kanwisher, 2001; Kim & Biederman, 2011; Lowe, Rajsic,

Gallivan, Ferber, & Cant, 2017). In line with previous find-

ings, we find that voxels in LO are broadly distributed across

the human activity, motion-energy, texture, and non-human

animal networks (37% ± 4%, p < .05; 30% ± 3%, p < .05;

16% ± 5%, p < .05; and 10% ± 4%, p < .05; respectively).

Next, we examined retinotopically-organized visual areas

that are known to be selective for low-level structural features

(Grill-Spector & Malach, 2004). As expected, we find that the

motion-energy network predominates in V7 (54% ± 4%,

p < .05). However, a large number of voxels in V7 fall into the

navigation, non-human animal, and texture networks

(16% ± 7%, p < .05; 13% ± 6%, p < .05; and 11% ± 4%, p < .05;

respectively). Meanwhile, early visual areas V1-3 are largely

dominated by the texture network (68% ± 8%, p < .05).

In summary, scene-category tuning that we measured

within functional ROIs is largely consistent with previously

reported response profiles of these areas. Yet, we find that

none of the examined ROIs represent a single network.

Instead, multiple networks are present in all the ROIs tested.

This result implies that selectivity of voxels within conven-

tional ROIs is more diverse than commonly assumed, thus

providing further support for the functional heterogeneity

hypothesis (Çukur et al., 2016; Çukur, Huth, et al., 2013).

3.6. Control analyses

Theoretical and behavioral accounts suggest that scene cate-

gories are partly correlated with global spatial features of
natural scenes such as openness, expansion, or roughness,

and that human observers might leverage these properties to

rapidly categorize visual scenes (Greene & Oliva, 2009; Oliva &

Torralba, 2006). Neuroimaging studies have also debated

whether PPA represents scene categories or rather correlated

low-level spatial features that differ systematically across

scene categories (Kravitz et al., 2011; Park et al., 2011; Watson

et al., 2014). If the features of the scene-category model are

partly correlated with low-level spatial features, then the

scene-category model estimated in PPA, OPA, and RSC might

be biased.

To rule out this potential confound, we performed several

control analyses. First, we fit a separate control modeldthe

gist modeldthat measures tuning for spatial layout features

(Oliva & Torralba, 2001). We find that while the gist model

provides significant prediction scores in place-selective ROIs

(.14 ± .03 in PPA, .15 ± .02 in OPA, and .13 ± .04 in RSC; jackknife

test, p < .05 (FDR corrected)), the scene-category model is su-

perior to the gistmodel in each ROI (.38± .03 in PPA, .41 ± .01 in

OPA, and .35 ± .03 in RSC; jackknife test, p < .05). Second, to

ensure that heterogeneity of scene-category tuning across the

cerebral cortex is not biased by heterogeneity of tuning for

low-level spatial features, we compared the average predic-

tion score of the scene-category model and the gist model

within the brain networks that were identified by the scene-

category model. We find that the scene-category model out-

performs the gist model in all networks (jackknife test, p < .05

(FDR corrected), Dr > .02), except for the texture network that

mainly spans across retinotopically-organized early visual

areas (jackknife test, p ¼ .23; Fig. 8). This finding is consistent

with the notion that early visual areas respond preferentially

to low-level spatial features in natural scenes, whereas

downstream visual areas respond preferentially to high-level

features including scene categories (Grill-Spector & Malach,

2004). Taken together, our results suggest that tuning for

low-level spatial features captured by the gist model cannot

fully account for scene-category tuning in scene-selective

areas, and more broadly across the cerebral cortex.

Previous evidence suggests that scenes that are classified

into the same basic-level category (e.g., street, beach,

mountain) by human observers tend to possess character-

istic distributions across scene gist features (Oliva &

Torralba, 2006). We therefore performed another control

analysis to assess the degree of correlation between the

scene categories and the gist features. To characterize the

distribution of gist features of visual scenes, we performed

principal component analysis (PCA) on gist features of nat-

ural images from a large public database (Xiao, Hays,

Ehinger, Oliva, & Torralba, 2010). The first 20 gist PCs were

retained that explained more than 80% of the total variance

of gist features in the movies. The movies were projected

onto the gist PCs, and Pearson's correlation was then

measured between individual scene categories and gist PCs

(Fig. 9). On average, we find no significant correlation be-

tween scene categories and gist PCs (|r| ¼ .05; p ¼ .35,

bootstrap test). Only few scene categories (verbal commu-

nication, mountain view, pedestrian, text) show modest

correlations with the first five gist PCs. To ensure that the

scene-category models are not biased by these correlations,

we performed a control analysis where we included
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nuisance regressors that characterized the time course of

the first five gist PCs. Scene-category models were fit, and

voxel cluster centers were computed. We find that the

cluster centers obtained with and without nuisance re-

gressors are nearly identical (r ¼ .93 ± .01, mean ± sem

across subjects; bootstrap test, p < .05). This result affirms

that the differences in scene-category tuning between the

brain networks cannot be explained by tuning for low-level

spatial features in the stimulus.
4. Discussion

The aim of this study was to investigate representation of

dynamic visual scenes across the human brain. To do this, we

fit a scene-category model to measure voxelwise tuning for

hundreds of scene categories, where categories were learned

inductively as statistical ensembles of objects and actions in

natural scenes. We find that this scene-category model ex-

plains a significant portion of the response variance broadly

across cerebral cortex. We then performed cluster analysis on

voxelwise tuning profiles across cortex. Consistently across

subjects, we find nine spatially-segregated networks of brain

regions that differ in terms of their scene-category tuning.

These networks represent a broad variety of natural scene

categories related to navigation, human activity, social inter-

action, civilization, natural environment, non-human ani-

mals, motion-energy, and texture.

At a rudimentary level, our results on the spatial organi-

zation of scene-category representation suggest a certain de-

gree of functional specialization (Kanwisher, 2010). For

instance, areas selective for natural scenes (PPA, OPA, and

RSC) are within the navigation network; areas selective for

human faces (FFA), bodies (EBA), and social interaction (pSTS)

are within the human activity, social interaction, and civili-

zation networks. Yet, an in-depth examination reveals that

many conventional ROIs show significant functional hetero-

geneity. In particular, high-tier areas including FFA, EBA,MTþ,

RSC, and pSTS each comprise several functional subdomains

with differential tuning for scene categories. This result is

consistent with two recent studies from our lab analyzing the

same natural movies dataset considered here that have

identified spatially-segregated subdomains in FFA, PPA, OPA,

and RSC, with differential tuning for object categories (Çukur

et al., 2016; Çukur, Huth, et al., 2013). Çukur et al. had identi-

fied two subdomains within PPA, OPA, and RSC, which

differentially responded to dynamic versus static scenes

(Çukur et al., 2016). Similarly, we observe clusters within RSC,

and to a lesser extent in PPA and OPA, that differentially

respond to scenes related to navigation (i.e., dynamic) and

civilization (i.e., static).

Large parts of not only visual but alsononvisual cortexhave

been shown to be semantically selective to various categories

of objects and actions in a previous study that performed

voxelwise modeling on the natural movies dataset analyzed

here (Huth et al., 2012). In that previous study, 1705 salient

object and action categories in the movies were labeled

manually, and then used as binary stimulus features during

model fitting. Here we instead used a descriptive learning al-

gorithm to construct scene categories on the basis of detailed
co-occurrence statistics of 5252 common objects and actions

that were carefully compiled based on movie descriptions

provided byAmazonMechanical Turkworkers and a large text

corpus. Each scene category was taken as a 5252-dimensional

vector containing the probability of occurrence for individual

objects and actions within that category. These descriptive

features likely increased our sensitivity to capture differences

in selectivity for distinct scene categories. For instance,

considering a scene where a woman is holding an umbrella

while crossing the street on a rainy day and another scene

where a woman is holding a cell phone and talking to a man,

‘woman’ and ‘hold’ would come across as two salient features

commonly present in both scenes. A model that measures

selectivity for salient objects and actions would then predict

highly similar responses to these scenes. In contrast, here we

can observe a higher-level functional division between these

two scenes as the former would elicit responses from naviga-

tion and civilization clusters while the latter would elicit re-

sponses from human activity and social interaction clusters.

This result suggests that scene categories represent nonlinear

features beyond a simple linear superposition of objects and

actions. While the model proposed by Huth et al. can be more

sensitive to changes at the object/action level, our model is

more sensitive to changes at the scene-category level.

Another recent study showed that the anterior visual cor-

tex represents scene categories that capture co-occurrence

statistics of objects in a large collection of natural images

(Stansbury et al., 2013). Here, in addition to using dynamic

movies instead of static images, we have also taken into ac-

count actions (not only objects) while determining our scene-

category features. Furthermore, while Stansbury et al. mostly

focused on anterior visual cortex and Çukur et al. focused

either on FFA or classical scene-selective regions, here we

further considered MTþ and pSTS (Çukur et al., 2016; Çukur,

Huth, et al., 2013; Stansbury et al., 2013). This allowed us to

identify additional functional subdivisions according to scene

category tuning: social interaction, human activity and civili-

zation networks in pSTS and human activity and motion-

energy networks in MTþ. Finally, we were able to identify a

more varied selection of action-related scene categories such

as ‘locomotion’, ‘sports activity’, and ‘pedestrian’ whereas

Stansbury et al. only had a broad ‘people moving’ category.

Hence, our study is based on a fundamentallymore diverse set

of scene categories that include actions derived from dynamic

movies in addition to objects and that are represented not

only in anterior visual cortex but also in MTþ and pSTS.

Here we focused on the representation of scene categories

based on co-occurrence statistics of objects and actions.

However, it has been suggested that at least some scene cat-

egories might have discriminating structural features (Oliva &

Torralba, 2001, 2006). Therefore, it is possible that scene-

selective areas do not represent scene categories exclusively,

but also other structural features that might be systematically

related to scene categories (Andrews,Watson, Rice,&Hartley,

2015; Watson et al., 2014). To rule out this confound, we ran

control analyses showing that scene category tuning in scene-

selective areas cannot be attributed to tuning for low-level

spatial texture and layout features, and that heterogeneity of

scene-category tuning across neocortex cannot be simply

explained by heterogeneity of tuning for these low-level
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features. Our results add to a growing body of evidence that

suggests that high-tier visual areas yield differential re-

sponses to images of distinct scene categories, even when the

stimuli are controlled to minimize potential correlations be-

tween high- and low-level features (Schindler& Bartels, 2016).

That said, it is difficult to compile natural stimuli in which

feature correlations are completely removed, so it is inher-

ently challenging to disentangle the contributions of low- and

high-level features to the organization of scene category rep-

resentation (Groen, Silson, & Baker, 2017; Lescroart et al.,

2015). Further research is required to examine whether, and

to what extent, other structural features such as subjective

spatial distance (Lescroart et al., 2015), distance to and

orientation of large surfaces (Lescroart&Gallant, 2019), spatial

expanse (Kravitz et al., 2011; Op de Beeck, Haushofer, &

Kanwisher, 2008), or space-defining properties (Mullally &

Maguire, 2011) contribute to the representation of scene

categories.

In this study, we leveraged co-occurrence statistics of ob-

jects and actions to investigate the organization of scene

category representation across the cerebral cortex. Because

early visual areas predominantly represent low-level visual

features of scenes, such as contrast and texture, a scene-

category model may not be ideally suited to these areas. A

comprehensive assessment of scene representation across

the entire cerebral cortex thus requires a hierarchical model

that contains features ranging from elementary visual prop-

erties to object parts, entire objects, and up to scene cate-

gories. Recent studies have utilized convolutional neural

networks to extract hierarchical features of natural visual

scenes (Agrawal, Stansbury, Malik, & Gallant, 2014; Cadieu

et al., 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;

Eickenberg, Gramfort, Varoquaux, & Thirion, 2017; Groen

et al., 2018; Güçlü & van Gerven, 2015; Khaligh-Razavi &

Kriegeskorte, 2014; Yamins et al., 2014). These studies

compared network features at different levels in terms of their

success in predicting responses across visual cortex, and they

reported that the optimal network level progressively in-

creases towards later visual areas. Although our scene-

category model does not explicitly leverage low-level fea-

tures, the functional organization revealed by voxelwise

scene-category tuning profiles is consistent with the cortical

hierarchy suggested by these previous reports.

In the scene-category model, each category is defined ac-

cording to a canonical set of objects and actions that typically

occur within that category. Yet, previous reports suggest that

not only the category of objects but also the spatial distribu-

tion of objects within a scene alters responses in scene-

selective areas (Green & Hummel, 2006; Kim & Biederman,

2011; Kim, Biederman, & Juan, 2011). Unlike Stansbury et al.

joint consideration of object and action categories in our

model carries some implicit information about the spatial

distribution of objects (e.g., woman þ drive þ car vs

womanþ loadþ car). However, explicit incorporation of scene

layout features would likely further help improve model

performance.

A number of cortical networks identified in this study

manifest tuning for contemporary scene categories such as

“car driven on a road”. It is unlikely for evolution to have

sculpted representations of categories that humans have
started encountering in present-day environments. Note,

however, that visual representations in the human brain do

not solely reflect evolution-driven hard-wired aspects of

sensory processing. Instead, they also reflect influences from

circumstantial factors including sensory experience and

functional affordance (Barrett, 2012). Expertise in discrimi-

nating exemplars of specific visual categories is thought to

alter cortical representations (Tanaka & Curran, 2001). For

example, expertise for cars and birds has been associated

with increased responses to these objects in FFA (Bilali�c,

2016; Gauthier, Skudlarski, Gore, & Anderson, 2000).

Furthermore, many brain regions examined here have been

implicated in the representation of functional affordances of

objects and scenes. For instance, RSC has been reported to

represent whether a scene boundary impedes potential

navigation (Ferrara & Park, 2016), whereas PPA has been

linked to object and scene texture representation (Lowe

et al., 2017). Therefore, it is likely that the human brain de-

velops through experience and environmental interactions

to code ecologically-important, contemporary scene cate-

gories. Yet, we cannot definitively rule out the possibility

that scene representations might be influenced by interme-

diate visual features beyond those examined here. Future

studies on scene representation are warranted to shed

further light on this issue.

Representation of low-level structural aspects of visual

stimuli (e.g., depth and texture) is largely driven by automatic,

bottom-up processing (Andrews et al., 2015). In contrast,

representation of high-level semantic aspects is influenced by

higher cognitive processes and semantic abstraction

(Henderson & Hollingworth, 1999). To elicit robust responses

from high-level brain regions, here we used an engaging

natural movie stimulus, and our subjects were all trained

psychophysical observers. Still, some subjects might have

inherently maintained lower vigilance than others, which

could contribute to across-subject variability. In particular,

the scene-category model showed relatively lower perfor-

mance in S2 compared to remaining subjects (see Table 1). In

control analyses, we compared the performance of the scene-

category model against the gist model that measures tuning

for low-level spatial features. We find that the scene-category

model yields substantially higher performance than the gist

model in all subjects, except S2 for which the performance

improvements with the scene-category model are relatively

lower. Thus, a potential explanation for apparent variability in

S2 is relatively limited high-level engagement during movie

watching.

The VM framework aims to sensitively measure tuning

profiles of single voxels in individual subjects. For the natural

vision experiment conducted here, the tuning profiles are

characterized over a high-dimensional space containing

hundreds of scene-category features. To maximize sensitivity

of VM models, we conducted prolonged experiments in indi-

vidual subjects extending over multiple scan sessions. This

procedure substantially increases the amount and diversity of

fMRI data collected per subject, and enhances the quality of

resulting VM models (Çelik et al., 2019). At the same time,

given experimental limits, it inevitably constrains the number

of subjects that can be recruited. While inclusion of additional

subjects might help improve statistical power, the current set
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of results presented were observed to be highly robust across

subjects. We conducted an a priori power analysis to draw

robust inferences about statistical assessment of prediction

scores. We found that the outcome of this analysis justifies

the results presented in this study.

In summary, we find that cortical areas in visual and

nonvisual cortex show heterogeneous tuning for a diverse set

of scene categories, and that they are clustered into nine

functional networks according to scene-category selectivity.

These findings primarily indicate a broader organization of

scene representation across the cerebral cortex than typically

assumed. Our results also add to a growing body of evidence

suggesting a systematic functional organization based on a

multi-dimensional semantic space spreading across and

extending beyond conventional functional ROIs (Haxby et al.,

2011; Huth et al., 2012). The current study supports the idea

that information about statistical ensembles of objects and

actions is an important contributing factor to the semantic

space.
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Tolga Çukur: Conceptualization, Investigation, Resources,

Writing e Review & Editing, Supervision, Project Administra-

tion, Funding Acquisition.
Open practices

The study in this article earned Open Data and OpenMaterials

badges for transparent practices. Data for this study can be

found at https://crcns.org/data-sets/vc/vim-2 and https://

crcns.org/data-sets/vc/vim-4.

Acknowledgments

The authors declare no competing financial interests. The

work was supported in part by a National Eye Institute Grant

(EY019684), by a Marie Curie Actions Career Integration Grant

(PCIG13-GA-2013-618101), by a European Molecular Biology

Organization Installation Grant (IG 3028), by a TUBA GEBIP

2015 fellowship, and by a Science Academy BAGEP 2017

award. We thank D. Stansbury, A. Huth, and S. Nishimoto for

assistance in various aspects of this research. We report how

we determined our sample size, all data exclusions, all in-

clusion/exclusion criteria, whether inclusion/exclusion

criteria were established prior to data analysis, all manipula-

tions, and all measures in the study. No part of the study

procedures or analyses was pre-registered prior to the

research being conducted.
Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.cortex.2021.07.008.
r e f e r e n c e s

Agrawal, P., Stansbury, D. E., Malik, J., & Gallant, J. L. (2014). Pixels
to voxels: Modeling visual representation in the human brain. ArXiv.

Aguirre, G. K., & D'Esposito, M. (1997). Environmental knowledge
is subserved by separable dorsal/ventral neural areas. Journal
of Neuroscience, 17(7), 2512e2518. https://doi.org/10.1523/
JNEUROSCI.17-07-02512.1997

Andrews, T. J., Watson, D. M., Rice, G. E., & Hartley, T. (2015). Low-
level properties of natural images predict topographic
patterns of neural response in the ventral visual pathway.
Journal of Vision, 15(7). https://doi.org/10.1167/15.7.3, 3e3.

Arthur, D., & Vassilvitskii, S. (2007). k-meansþþ: The advantages
of careful seeding. In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms (pp. 1027e1035). Society
for Industrial and Applied Mathematics.

Barrett, H. C. (2012, June 26). A hierarchical model of the evolution
of human brain specializations. Proceedings of the National
Academy of Sciences of the United States of America. https://
doi.org/10.1073/pnas.1201898109

Benjamini, Y., & Yekutieli, D. (2001). The control of the false
discovery rate in multiple testing under dependency. The
Annals of Statistics, 29(4), 1165e1188. Retrieved from http://
www.jstor.org/stable/2674075.

Bilali�c, M. (2016). Revisiting the role of the fusiform face area in
expertise. Journal of Cognitive Neuroscience, 28(9), 1345e1357.
https://doi.org/10.1162/jocn_a_00974

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing
with Python: Analyzing text with the natural language toolkit.
O’Reilly Media, Inc.

Blei, D. M., Ng, A. Y., & Jordan, M. (2003). Latent dirichlet allocation.
Journal of Machine Learning Research, 3, 993e1022.

Cadieu, C. F., Hong, H., Yamins, D. L. K., Pinto, N., Ardila, D.,
Solomon, E. A., et al. (2014). Deep neural networks rival the
representation of primate IT cortex for core visual object
recognition. Plos Computational Biology, 10(12), Article e1003963.
https://doi.org/10.1371/journal.pcbi.1003963

Calvert, G., & Campbell, R. (2003). Reading speech from still and
moving faces: The neural substrates of visible speech. Journal
of Cognitive Neuroscience, 15(1), 57e70. https://doi.org/10.1162/
089892903321107828

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review
of its functional anatomy and behavioural correlates. Brain,
129(3), 564e583. https://doi.org/10.1093/brain/awl004
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