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We study the contribution of confined and interface phonons to the polaron energy in quantum-well wires.
We use a dispersionless, macroscopic continuum model to describe the phonon confinement in quantum wires
of circular cross section. Surface phonon modes of a free-standing wire and interface phonon modes of a wire
embedded in a dielectric material are also considered. Polaron energy is calculated by variationally incorpo-
rating the dynamic screening effects. We find that the confined and interface phonon contribution to the
polaron energy is comparable to that of bulk phonons in the density rangeN5105–107 cm21. Screening
effects within the random-phase approximation significantly reduce the electron-confined phonon interaction,
whereas the exchange-correlation contribution tends to oppose this trend at lower densities.

I. INTRODUCTION

The study of quasi-one-dimensional~Q1D! semiconduc-
tor structures has been an intense field of study in recent
years. As the carrier motion is quantized in the transverse
directions, these systems exhibit one-dimensional character-
istics along the free direction. Their restricted phase space
gives rise to many interesting physical phenomena and opens
up possibilities for high-speed device applications. Progress
and developments in the fabrication techniques such as
molecular-beam epitaxy and lithographic deposition have
made possible the realization of such Q1D systems.1

In low-dimensional semiconducting structures, the inter-
action strength of electrons with LO phonons is strongly af-
fected by phonon confinement, as well as by the changes in
the electronic wave function brought about by the confining
potential. Phonon confinement causes changes in the
electron-phonon interaction, modifying properties such as
scattering and relaxation rates compared with the bulk pho-
non case. Similarly, phonon modes such as those that occur
in the interfaces of heterostructures are also found to exhibit
properties different from those of the bulk. Stroscio and
co-workers2 have applied the dielectric continuum model to
describe the confined LO phonons in rectangular quantum
wires. The application of the dielectric continuum model to
rectangular wires is, however, rather more involved leading
to ‘‘edge’’ modes, which are important in electron-phonon
interactions~see Ref. 3 for a more detailed discussion!. For
wires with circular and elliptical cross sections Laplace’s
equation is separable and standard techniques can then be
employed to discuss both interface and confined modes
within the dielectric continuum model.3,4 Confined and inter-
face phonon modes in cylindrical quantum wires were
treated by Constantinou and Ridley5 and Wang and Lei6 with
various continuum models. Confined and interface phonon
scattering rates taking the finite potential barrier into account
and multisubband nature in quantum wires were presented
by Jiang and Leburton.7 Microscopic calculation for rectan-
gular wires are reported by Rossiet al.,8 Fasolet al.,9 and

Watt et al.1 have found experimental evidence of phonon
confinement in semiconductor structures.

The energy and the effective mass of an electron in a
quantum wire including the subband effects was calculated
in the presence of electron–LO-phonon interaction by De-
gani and Hipo´lito.10 The ground-state energy of the Q1D
polaron gas in a rectangular quantum-well wire has been
calculated by Campos, Degani, and Hipo´lito11 and very re-
cently by Haiet al.12 The latter group has investigated the
polaron energy in different quantum-well wire models and
the effects of screening. In most previous works, LO
phonons were treated in the bulk, neglecting the phonon-
confinement effects. Effects of phonon confinement in a
quantum-well wire were considered by Zhu and Gu,13 De-
gani and Farias,14 Li et al.,15 and most recently by Klimin,
Pokatilov,and Fomin16 using various models and approxima-
tions. We have reported17 the influence of screening and con-
fined phonons on the polaron energy in a quantum wire with
a rectangular cross section. In the present calculation, the
electrons are coupled to the confined and interface phonon
modes of a cylindrical quantum wire and we are interested in
the combined effect of phonon confinement and carrier
screening. We note that the polaron energy is not a directly
observable quantity in itself, but the results of our calculation
will provide insight about the relative contribution of the
various LO-phonon modes in quantum wires. Inelastic light
scattering measurements of Klein18 and Tsenet al.19 suggest
the importance of confined phonon and interface modes.
Hot-electron energy-loss studies20 offer a possibility to dis-
tinguish the phonon modes involved in polar semiconductors
of reduced dimensionality. The experimentally more relevant
problem of magnetopolarons, especially in connection with
the cyclotron resonance measurements, were explored by
several groups.21

The main purpose of this paper is to investigate the con-
tribution of confined and interface phonon modes to the
ground-state energy of an electron-phonon system in Q1D
structures and in particular to assess the role played by
screening effects. It has been known22 that screening plays a

PHYSICAL REVIEW B 15 APRIL 1996-IIVOLUME 53, NUMBER 16

530163-1829/96/53~16!/10866~5!/$10.00 10 866 © 1996 The American Physical Society



very important role in the polaronic properties of low-
dimensional semiconductor structures. In Q1D systems, ef-
fects of screening on the bulk electron-phonon interaction
were considered by Haiet al.12 Phonon confinement and
screening in rectangular quantum wires were studied by
Tanatar and Gu¨ven.17 In this paper we present a comparative
study of screening effects on the Q1D confined and interface
polarons. Many-body effects in the form of exchange and
correlation are included in our description of the interacting
electron system. Many-polaron effects in the bulk LO-
phonon approximation were also calculated by Campos, De-
gani, and Hipo´lito 11 using the self-consistent field approxi-
mation of Singwi and Tosi23 ~STLS!.

We treat the confined and interface optical phonons of a
cylindrical wire within the dielectric continuum model.24 The
actual spectrum for phonon modes in confined structures is
more complicated than those described by the macroscopic
models. In fact, comparisons between the microscopic
calculations25 and the dielectric continuum model in layered
structures show that for calculating the electron-phonon scat-
tering strengths, the dielectric continuum model gives very
good results. The reason the dielectric continuum model
works so well in describing the electron-phonon interaction
is due to a sum rule first discussed by Mori and Ando26 for
undoped 2D systems. In the electrostatic model, the standard
boundary conditions are applied to the electrostatic potential.
This gives rise, for the LO phonons, to traveling waves in the
direction of the wire and standing waves in the confined,
transverse directions. We employ a variational approach to
estimate the confined and interface phonon contribution and
investigate the effects of screening, which includes exchange
and correlation.

For the Q1D system of electrons we consider a cylindrical
quantum wire of radiusR with infinite barriers. It may be
built, for instance, by embedding a thin wire of GaAs in a
barrier material of AlAs. We restrict our attention to the
extreme quantum limit, where only the first subband is oc-
cupied. This approximation will hold as long as the subband
separation remains much larger than the phonon energy in
quantum wires. Furthermore, we assume for simplicity a
complete, confined phonon picture.

II. THEORY

We study the Q1D polaron gas using the Lee-Low-Pines
unitary transformation approach as introduced by Lemmens,
Devreese, and Bosens27 and Wu, Peeters, and Devreese28 in
application to 3D and Q2D systems. Since the treatment of
dynamical screening within the perturbation theory22 is
rather intractable we employ the variational method. We fol-
low the usual procedure11,12,17,27,28of assuming that the
ground state may be written as a product of the phonon
vacuum state and the ground-state wave function of elec-
trons, and minimizing the energy with respect to the varia-
tional parameter, we arrive at the ground-state energy of the
polaron gas

Ep52(
q

(
n

uMn~q!u2S2~q!

v~q!S~q!1q2/2m
, ~1!

where the sum over the discrete label is due to confined or
interface phonon modes,v(q) is the confined or interface

phonon dispersion, and the wave vectorq is along the wire
direction. In the above expression,S(q) is the static structure
factor determining the screening properties of the electron-
phonon system. SettingS(q)51, in the unscreened limit, we
recover the perturbation theory result for the polaron energy.

In the extreme quantum limit, when the electrons are in
the lowest subband, the Q1D electron-phonon interaction
matrix element, for bulk phonons of an infinite potential,
circular cross-section quantum-well wire, is11,12

uM ~q!u25
2avLO

2

A2m*v LO

F~q!, ~2!

whereF(q) is the form factor of the Q1D system describing
the Coulomb potential.a is the Fröhlich coupling constant
andm* is the effective mass for electrons. We use the ex-
pression obtained by Gold and Ghazali29 appropriate for cy-
lindrical wires. The matrix elements for the confined
phonons are evaluated in the dielectric continuum model by
matching the appropriate boundary conditions, yielding

uMn~q!u25
2avLO

2

A2m*v LO

2uPnu2

J1
2~x0n!R

2~q21q0n
2 !

, ~3!

where the form factor evaluated in the Gold-Ghazali29 ap-
proximation to the wave functions is given by5,6,24

Pn(q)5(48/x0n
3 )J3(x0n). The matrix element for the inter-

face phonon modes is described by4

uM ~q!u25
2e2uP~q!u2

qRI0~qR!I 1~qR!U e2

e2
]e1
]v

2e1
]e2
]v
U

v I

, ~4!

whereP(q)548I 3(qR)/(qR)
3. The subscripts 1 and 2 refer

to the wire~GaAs! and embedding material~AlAs!, respec-
tively. If the AlAs-like interface phonon modes are sought,
we need to interchange the indices. Finally, the surface
modes of a free-standing, circular, quantum wire are ob-
tained by lettinge251 in the above expression, and in this
case we only have GaAs-like surface phonons. We have used
dispersionless LO phonons in the description of confined
phonon modes for simplicity, but retained the full wave-
vector dependence in the case of lowest-order interface and
surface modes24

v I~q!5
1

2~11kh!
„v LO~1!

2 1vTO~2!
2 1kh~v LO~2!

2 1vTO~1!
2 !

6$@v LO~1!
2 2vTO~2!

2 1kh~v LO~2!
2 2vTO~1!

2 !#2

14kh~vLO~2!
2 2v LO~1!

2 !~vTO~2!
2 2vTO~1!

2 !%1/2… ~5!

in which we have definedk5e2` /e1` and h(q)
5I 0(qR)K1(qR)/@K0(qR)I 1(qR)#. The upper and lower
signs in the above formula refer to the AlAs-like and GaAs-
like interface modes, respectively. In general, there is an in-
finite number of interface modes, as in the case of confined
phonon modes as discussed by Enderlein24 and Knipp and
Reinecke.30

The static structure factorS(q), which enters the polaron
energy, is obtained from the full frequency-dependent dielec-
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tric function«(q,v) by integrating over all frequencies; thus
it inherently carries dynamic information. For Q1D electron
systems the collective excitations~plasmons! have a strong
wave-vector dependence without damping. Thus, along with
the single-particle excitations, contributions due to plasmons
have to be taken into account explicitly in the calculation of
S(q). We use the computationally efficient expression

S~q!5
r s
qp2E

0

`

dv

lnUv21v1
2

v21v2
2 U

11
2F~q!

pq
@12G~q!# lnUv21v1

2

v21v2
2 U ,

~6!

where r s5p/(4kFaB) is the 1D electron gas parameter,
v65q262qkF , and we have expressed in Eq.~6! wave
vectors in units of the effective Bohr radiusaB5(e2m* )21

and energies in units of Rydbergs@1 Ry51/(2m* aB
2)#.

G(q) is the local-field factor describing the exchange-
correlation effects to be discussed later.

III. RESULTS AND DISCUSSION

We illustrate our calculations of confined and interface
phonon contributions to the ground-state energy of a quan-
tum wire by choosing a GaAs system embedded in an AlAs
medium for which the relevant material parameters may be
found in the literature.31 In the following we consider two
cases. The first one is GaAs wire surrounded by AlAs mate-
rial, for which one gets confined phonon modes and GaAs-
like and AlAs-like interface modes. In the second case we
have a free-standing wire made up of GaAs and only con-
fined and GaAs surface modes exist.

In Fig. 1~a! we show the polaron energy of a quantum
wire with radiusR550 Å. The contributions of the electron-
phonon interaction to the ground-state energy of a polaron
gas is plotted as a function of the 1D carrier densityN. The
solid, dashed, dot-dashed, and dotted lines denote the bulk
mode, the confined mode, the AlAs-like interface mode, and
the surface mode of the free-standing GaAs wire, respec-
tively. The random-phase approximation~RPA! static struc-
ture function is used in the calculations. It is seen that both
the AlAs-like interface mode~for the embedded case! and
the surface mode of the GaAs wire~free-standing case! con-
tribution are quite significant, especially at low densities. In
general, screening reduces the electron-phonon interaction as
the carrier density increases. As the wire radius is increased,

the relative contributions of various phonon modes to the
polaron energy change. Figure 1~b! shows a quantum-well
wire of radiusR5200 Å. In this case, the contribution of the
confined phonon modes is comparable to that of bulk
phonons, whereas the AlAs-like interface phonons become
less important. The polaron energy due to the surface phonon
modes of a free-standing GaAs wire is similar to that of
AlAs-like interface modes. We also note that for the range of
radii of interest the contribution of GaAs-like interface
phonons is negligible for an embedded wire.

We plot in Fig. 2 the polaron energy~in the RPA! as a
function of the quantum wire radius, for an electron density
of N553105 cm21. We observe that the AlAs-like inter-
face phonons and surface modes of free-standing wire domi-
nate for small wire radii. AsR increases, the bulk and con-
fined phonon modes give the most contribution. Shown also
is the result of bulk polarons in the no-screening limit~thin
solid line!.

In Fig. 3 we show the bulk GaAs~solid! and the bulk
AlAs ~dotted! polaron energy as a function of wire radius, at
a fixed carrier density. For ready comparison, the bulk AlAs
calculation is performed assuming the GaAs effective elec-
tron mass ~the Fröhlich coupling constant for AlAs is
a AlAs50.084). The dashed curve represents the sum of con-
fined GaAs, AlAs-like, and GaAs-like interface phonon
modes. We observe that for large wire radii this sum ap-
proaches the bulk GaAs polaron result. In the limit of small
R, on the other hand, the sum of confined and interface
modes approaches the AlAs polaron energy~with GaAs ef-

FIG. 1. Polaron energy due to bulk~solid!,
confined~dashed!, and AlAs-like interface~dot-
dashed! phonon modes, as a function of electron
density N for ~a! R550 Å and ~b!
R5200 Å within the RPA. The dotted line indi-
cates the interface phonon mode for a free-
standing GaAs quantum wire.

FIG. 2. Polaron energy due to bulk~thick solid!, confined
phonons ~dashed!, and AlAs-like interface~dot-dashed! phonon
modes as a function of the quantum wire radiusR, for an electron
densityN553105 cm21 within the RPA. The dotted line indicates
the interface phonon modes of a free-standing GaAs quantum wire,
whereas the thin solid line shows the unscreened limit.
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fective mass!. This result illustrates that the Mori and Ando26

sum rule holds even in doped semiconducting systems.
The static structure factorS(q), as set out in Sec. II,

describes the screening properties of the electron-phonon
system. It has been known that the RPA, although exact in
the high-density limit, fails to take into account properly the
short-range electron correlations in the lower-density regime.
We improve the RPA by introducing the vertex corrections
~to the dynamic susceptibility! in the mean field sense using
the local-field correctionsG(q). Among the various approxi-
mation schemes to calculateG(q), we use the equivalent of
the Hubbard approximation in one dimension29 and the gen-
eralized approximation of Gold and Calmels.32 The Hubbard
approximation takes only the exchange into account,
whereas the generalized approximation includes both ex-

change and correlation effects. Recently, the screening ef-
fects in Q1D electronic systems were studied utilizing the
STLS self-consistent scheme.23 The local-field correction in
the Hubbard approximation is given by

GH~q!'
1

2

V~Aq21kF
2 !

V~q!
. ~7!

The physical nature of the Hubbard approximation is such
that it takes exchange into account and corresponds to using
the Pauli hole in the calculation of the local-field correction
between the particles. In the generalized approximation of
Gold and Calmels,32 on the other hand, we have

GGA~q!5
1

2pNR

1

C21

V~Aq21q0
2/C11

2 !

V~q!
, ~8!

whereC11 andC21 are tabulated parameters
32 that depend on

the electron densityN and wire radiusR andq052/aBAr s.
Correlation and exchange effects are included inGGA(q).
The local-field effects are implemented in the calculation
with the replacement of the effective Coulomb interaction
V(q) by V(q)@12G(q)# in the expressions forS(q).

The dependence of the bulk phonon energy on various
approximations of screening is illustrated in Fig. 4~a!. Dot-
ted, dashed, and solid lines are for the random-phase, Hub-
bard, and generalized approximations, respectively. Confined
phonon and AlAs-like interface phonon energies are shown
in Figs. 4~b! and 4~c!. For all phonon modes considered, the
electron-phonon interaction is reduced significantly. The dif-
ference between the approximations describing the correla-
tion effects becomes negligible forN.106 cm21. Correla-
tion effects are more evident at lower densities. It also
appears that AlAs-like interface modes are affected slightly
more than the confined phonons by electron correlations.

FIG. 4. Polaron energy as a function of carrier
density N for ~a! bulk, ~b! confined, and~c!
AlAs-like interface phonons. The wire radius is
R5aB ~'100 Å!. The dotted, dashed, and solid
lines represent random-phase, Hubbard, and gen-
eralized approximations, respectively.

FIG. 3. Polaron energy for GaAs~solid! and AlAs ~dotted! bulk
phonons as a function of the wire radius atN553105 cm21. The
dashed line is the sum of confined and GaAs-like and AlAs-like
interface phonon modes in quantum wire.

53 10 869SCREENING EFFECTS ON THE CONFINED AND INTERFACE . . .



Qualitatively similar results were found by Campos, Degani,
and Hipólito11 for bulk phonons in quantum-well wires,
where they have used the self-consistent field approximation
in S(q).

It has been noted22 that the static screening has a stronger
effect in the renormalization~of polaron energy and mass!
than the dynamic screening because in the static approxima-
tion only the long-time response of the system is taken into
account. Similar conclusions were reached by Haiet al.12 in
their calculation that takes into account the dynamic screen-
ing effects~only in the RPA! for Q1D systems. We have not
attempted a perturbative calculation that includes dynamical
screening, but expect the polaron energyEp to increase in
magnitude if such an approach is considered.

For the Q1D electron system we have used the infinite
barrier, cylindrical wire model. There are various other mod-
els of the quantum-well wire structures making use of para-
bolic confining potentials and geometrical reduction of
dimensionality.12 The general trends obtained here for the
carrier density and screening dependence should be valid ir-
respective of the details of the model chosen. Interactions of
electrons in a Q2D structure with interface and bulk LO
phonons were considered by Degani and Hipo´lito.33 They
found that interface phonons give a significant contribution

to the polaron energy and effective mass. Our results indicate
the importance of interface modes in Q1D structures.

IV. CONCLUSION

In summary, we have calculated the polaron energy in a
Q1D GaAs quantum-well wire, using the bulk, confined, and
interface phonons. We have included the screening effects
within the RPA. Corrections to the RPA using model local-
field corrections are also employed to investigate the impor-
tance of electron correlations on the polaron energy. We find
that the local-field effects, which include electron correla-
tions, tend to change the magnitude of the polaronic correc-
tions significantly at low densities.
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