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a b s t r a c t

Dynamics of acoustically driven bubbles’ radial oscillations in viscoelastic fluids are known

as complex and uncontrollable phenomenon indicative of highly active nonlinear as well as

chaotic behavior. In the present paper, the effect of magnetic fields on the non-linear behavior

of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid

domain has been investigated. The constitutive equation [Upper-Convective Maxwell (UCM)]

was used for modeling the rheological behaviors of the fluid. Due to the importance of the

bubble in the medical applications such as drug, protein or gene delivery, blood is assumed

to be the reference fluid. It was found that the magnetic field parameter (B) can be used for

controlling the nonlinear radial oscillations of a spherical, acoustically forced gas bubble in

nonlinear viscoelastic media. The relevance and importance of this control method to biomed-

ical ultrasound applications were highlighted. We have studied the dynamic behavior of the

radial response of the bubble before and after applying the magnetic field using Lyapunov ex-

ponent spectra, bifurcation diagrams and time series. A period-doubling bifurcation structure

was predicted to occur for certain values of the parameters effects. Results indicated its strong

impact on reducing the chaotic radial oscillations to regular ones.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of bubble formation and collapse have been

studied using a number of publications, including the stud-

ies of radial oscillating bubbles by Rayleigh [1], Plesset [2,3],

Crum et al. [4], Flynn [5], Lauterborn [6], Plesset et al. [7],

Prosperetti [8–10] and so on. Therefore, it is important to

develop a technique in order to study the bubble radial sta-

bility in distinctive situations. In view of the escalating use

of the bubbles in new applications, particularly medical and
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industrial, the number of studies on the growth and collapse

of the bubbles in different structures and environments has

increased [11]. In more important medical applications, bub-

bles are used for the delivery of drugs [12–14], cancer treat-

ment [15–17], and the barrier opening of clogged veins and

arteries [18,19]. In all cases, bubbles should move and grow

in the blood stream and collapse in the intended location. So

it is important to take the bubbles radius motion stable and

not permit to collapse until the required region. The research

conducted on blood indicates that approximation blood rhe-

ology by non-Newtonian models, correlates well with the ex-

perimental results [20,21].

Therefore, the study of bubble growth and its stabil-

ity in non-Newtonian fluid will be of the most important

concern [22]. The chaotic behavior of bubbles moving in a
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non-Newtonian fluid has been investigated experimentally

by Jiang et al. [23]. In addition to experimental studies

[24–27], there have also been many theoretical investiga-

tions on bubble growth [28–32]. In the article presented by

Wang et al. [33], the nonlinear vibration of a protein bub-

ble submerged in bingham liquid has been mathematically

modeled, and the bubble’s reaction to pressure pulses has

been studied. By presenting an analytical model for bubble

growth in linear viscoelastic fluids and solving it through the

perturbation method, Allen et al. [34] showed that the in-

crease in the Deborah number leads to an increase in bub-

ble radial oscillation amplitude. Deborah number is a non-

dimensional elastic parameter which is defined as the ratio of

the relaxation time and characteristic timescale for the bub-

ble radius oscillation [34]. In another article, Allen et al. [35]

extended his analytical model to nonlinear, non-Newtonian

fluid (UCM fluid) and used numerical methods to solve the

integro-differential equations. They have also demonstrated

the increase in bubble radial oscillation amplitude with the

increase in the Deborah number. In the work of Jimenez-

Fernandez [36], through the development of analytical re-

lations for bubble growth in non-Newtonian fluid fields af-

fected by the external pulses, the growth of bubbles under

the influence of factors like pulse intensity, the Reynolds

number and the amount of elasticity has been investigated.

In this study, it has been emphasized that with the increase

in the Deborah number, bubble growth will become chaotic,

and the bubble will approach the state of collapse.

Furthermore, in different theoretical studies, the subject

of bubble growth in non-Newtonian fluid showed that in

cases where the Reynolds number is of the order 1, the

growth and collapse of bubbles can be controlled via Newto-

nian viscosity. Lind and Phillips [37] have demonstrated the

growth of bubbles in non-Newtonian fluids through differ-

ent constitutive equations. According to their results, at large

Deborah numbers, a bubble displays a completely elastic be-

havior, and its energy diagram indicates a rebound in bubble

growth. Brujan et al. [38] used the perturbation method to

study the growth of bubbles in non-Newtonian compressible

fluids. They showed that at larger Reynolds numbers, sound

emission plays the major role in the damping of bubble ra-

dial oscillations. Also because of the importance of bubble

dynamics, several studies have been conducted on the sub-

ject of bubble stability. That is, when the bubble motion gets

chaotic, its behavior becomes unpredictable and difficult to

deal with [39,40]. In this case, the chaotic nature of the equa-

tion requires particular tools for resolution because of the

inadequacy of the analytical and linear solutions. By using

the primary theory of dynamic systems, Bloom [32] has pre-

sented the stable and unstable behaviors of bubbles in non-

Newtonian fluids. Aliabadi et al. [41] examined the growth

of bubbles in a non-Newtonian fluid field. They have demon-

strated that the bubble radial oscillation amplitude decreases

under the influence of a magnetic field. Building upon Bloom

and Aliabadi’s work, the enhanced understanding of the be-

havior of bubbles in non-Newtonian fluids as well as the abil-

ity to reduce the chaotic radial oscillations could be the first

step in controlling the bubble dynamics.

The main argument of this study focuses on various as-

pects of the dynamics of bubbles in non-Newtonian fluids

with the presence of magnetic fields. In addition, the effects
of substantial parameters that influence the bubble dynam-

ics are studied in a large domain using chaos theory and

considering the measure of the non-Newtonian state of the

fluid (Deborah number). Bifurcation and Lyapunov exponent

diagrams [42–44] are presented for special cases to deter-

mine the chaotic regions. Comprehensive information is pre-

sented about extremely nonlinear pulsations of bubbles in

non-Newtonian fluids at high amplitudes of acoustic pres-

sure where deterministic chaos manifests itself in order to

determine the stable and chaotic regions of the system, par-

ticularly for drug and gene delivery applications where the

applied acoustic pressure is considerably greater than the

pressure employed in the ultrasound imaging.

It has been shown that by imposing a radial magnetic

field, the rate of growth and collapse of the bubbles damp-

ens considerably. Increasing the magnitude of the magnetic

field will cause an increase in the damping effect and, as a

result, the growth and collapse of the bubbles can be con-

trolled. The effects of magnetic fields, acoustic field proper-

ties and the Deborah number on stability of non-Newtonian

fluids are discussed in the following sections.

2. Dynamics of spherical bubble in viscoelastic fluids

The governing equation of bubble growth in non-

Newtonian fluid follows the general Rayleigh–Plesset (GRP)

equation, and with regards to the viscoelastic effects of the

fluid, the following integro-differential equation is obtained

[35]:

RR̈ + 3

2
Ṙ2 = 1

ρ

[
pg − p∞ − 2σ

R
+ 2

∫ ∞

R

(
τrr − τθθ

r

)
dr

]
(1)

In the above equations, τ rr and τ θθ are components of the

shear stress tensor, which have a non-uniform field distribu-

tion because of the deformation that exists in the fluid field.

Eq. (1) has been written for a bubble with radius R which is

affected by a pressure field far away from the bubble, p∞, in

the form of p0 + Pa sin (ωt), where p0 is the ambient pres-

sure. The pressure pulse enters the fluid field with angular

frequency ω and pressure amplitude Pa. Also pg and σ de-

note the uniform pressure inside the bubble and surface ten-

sion of the fluid, respectively. For simplicity, we assume that

the internal gas follows a polytropic relationship with expo-

nent k, and we have pg = pg0
( R0

R )3k, where pg0
and R0 are

the gas bubble pressure and the bubble radius at the initial

equilibrium state respectively. By considering the UCM time

derivative method [34,35], the radial and theta stress tensor

terms will be obtained through the following simplified dif-

ferential equations:⎧⎨
⎩

τrr + λ1

(
∂τrr

∂t
+ R2Ṙ

r2
∂τrr

∂r
+ 4R2Ṙ

r3 τrr

)
= 4η0

R2Ṙ
r3 ,

τθθ + λ1

(
∂τθθ

∂t
+ R2Ṙ

r2

∂τθθ

∂r
− 2R2Ṙ

r3 τθθ

)
= −2η0

R2Ṙ
r3 .

(2)

where η0 is the zero shear-rate viscosity, λ1 is the relaxation

time, and r is the distance of each element from the coordi-

nate system’s origin. By applying the perturbation method,

Allen et al. [34,35] solved the above coupled equations and

then, in 2001, they introduced the transformation y = r3 −
R3(t) to immobilize the coordinate by using the Lagrangian
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perspective where y= 0 indicates the bubble boundary [35].

The upper limit of the integral in Eq. (1) should be selected in

such a way that both terms of the shear stress tensor (radial

and theta) become zero. Eq. (1) shows the growth of a bub-

ble immersed in a non-Newtonian fluid, which oscillates at

its dimensionless radius R under the influence of an external

pressure pulse. Considering the magnetic field (B) in the cal-

culations (See Appendix A), if the following definitions of the

non-dimensional time, radius, radial spatial variable, stress

and Reynolds number [35]

t̄ = ωt; R̄ = R/R0; r̄ = r/R0;

τ̄ = τ
R0

η0

√
ρ/ρ0; Re = ρωR2

0

η0

(3)

are used, the Rayleigh–Plesset Eq. (1) is written in non-

dimensional form as

RR̈ + 3Ṙ2

2
+ σB2

ρ
RṘ = p0

ρω2R2
0

[(
1 + 2σs

p0R0

)(
1

R

)3k

−
(

2σs

p0R0

)(
1

R

)
− (1 + α sin (t))

]

+ 1

Re

1

ωR0

√
p0

ρ
×

∫ r1

r

(
τrr − τθθ

r

)
dr (4)

where α is the ratio of the acoustic forcing pressure ampli-

tude to the ambient pressure, σ s is the surface tension and

σ is the liquid electrical conductivity. In dimensionless form,

the stress tensor components Eq. (2) could be rewritten as⎧⎨
⎩

τrr + De

(
∂τrr

∂t
+ R2Ṙ

r2
∂τrr

∂r
+ 4R2Ṙ

r3 τrr

)
= 4(ωR0

√
ρ
p0

) R2Ṙ
r3 ,

τθθ +De

(
∂τθθ

∂t
+ R2Ṙ

r2

∂τθθ

∂r
− 2R2Ṙ

r3 τθθ

)
= −2

(
ωR0

√
ρ
p0

)
R2Ṙ
r3 .

(5)

The Deborah number (De = λ1ω) is a dimensionless number

which designates the time required for the fluid response di-

vided by the flow pulse time, and in fact, it measures the

non-Newtonian state of the fluid [35]. Since the constitutive

equations used are based on the assumption that the fluid

is incompressable, radiation damping is not considered (see

Table 2 for parameter ranges).

3. Analysis tools

There are several mathematical tools available for quanti-

fying bubble stability rang. The reasons for using maximum

Lyapunov exponents and bifurcation structure in the absence

of direct mathematical methods are:

• The maximum Lyapunov exponents, approximated com-

putationally for a wide range of various values, clearly in-

dicate the chaotic behavior of bubble dynamics.
• The computationally based bifurcation analysis illustrates

that the bubble dynamics transit among different re-

gions such as periodic, chaotic attractors and intermittent

behavior.

3.1. Computation of Lyapunov exponents

The Lyapunov exponent is a quantitative measure of

chaotic dynamics of a system by examining its very sensi-
tive dependence on initial conditions. The Lyapunov expo-

nents are defined as follows: consider two nearest neighbor-

ing points in phase space at time 0 and t, with distances of

the points in the i-th direction ‖δxi(0)‖ and ‖δxi(t)‖, respec-

tively. The Lyapunov exponent is then defined through the

average growth rate λi of the initial distance,

‖δxi(t)‖
‖δxi(0)‖ = 2λit (t → ∞)

or λi = lim
t→∞

1

t
log2

‖δxi(t)‖
‖δxi(0)‖ (6)

Using the estimation of local Jacobi matrices method, the

Lyapunov exponent is calculated for a number of given con-

trol parameters. The value of each of the control parameters

is then slightly increased, and the Lyapunov exponent is re-

calculated for each of them after the value increase. By do-

ing this repeatedly, the Lyapunov exponent spectrum of the

bubble dynamics system is plotted versus the control param-

eters. Recently, dynamic system theory has been applied in a

comprehensive analysis of the nonlinear response of bubble

[45,46].

3.2. Bifurcation diagrams

Period doubling, quasi-periodicity, and intermittency [47]

are well known routes of transition from periodic to chaotic

behaviors with their origins in local bifurcations. In this pa-

per, the dynamic behavior of the bubble radial oscillations is

studied by plotting the bifurcation diagrams of the normal-

ized radius of the bubble after altering each of the different

control parameters. The analysis of the bifurcation diagrams

was carried out in the Poincaré section (P). To choose the

appropriate Poincaré section, we used the general technique

of setting one of the phase space coordinates to zero. In our

analysis, we used the following condition

P ≡ maxR{(R, Ṙ) : Ṙ = 0}
which gives the maximal radius from each acoustic period.

In addition, this condition was used to plot the bifurcation

diagram of a cavitation bubble in [45,48]. This method con-

tinued through increasing the control parameter and the new

resulting discrete points were plotted in the bifurcation dia-

grams versus the altered control parameters. For a full dis-

cussion on the bifurcation diagram, the Lyapunov exponent

spectrum and their utilization in order to study the bubble

dynamics, one can refer to [49–53].

4. Results and discussion

The organization of the article’s results is as follows: first,

the dynamics of bubbles in non-Newtonian fluids were ex-

plained using the standard methods of nonlinear dynamics,

then the theory of deterministic chaos as well as the stabil-

ity of bubbles under the influence of the viscoelasticity term,

Deborah number, amplitude, and frequency of the acoustic

pulse were mentioned. Next, our method for controlling the

chaotic behavior of bubbles by applying a magnetic field is

explained. Finally, an evaluation of our method in compari-

son to other similar chaos control methods is given.

The UCM method has been used in this study, since it is

the most appropriate technique for the modeling of bubbles
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Table 1

Constant parameters used in the general Rayleigh–Plesset equa-

tion [34,35].

Symbol Description Units Value

σ Fluid static surface tension dyn/cm 55.89

ρ Fluid density kg/m3 1060

p0 Ambient pressure atm 1

R0 Equilibrium bubble radius μm 1

Re Reynolds number 2.5

k Polytropic exponent 1.4

Table 2

Parameter ranges that used in this paper.

Parameter Units Range

De 2–7

Pa Pa 1–10 ( × 105)

f Hz 2.5–8 ( × 106)
in medical applications [34,35]. At t = 0, no pressure pulse is

applied to the field and, thus, there is no shear stress distri-

bution, and assuming R(0) = 1, equations will be solved in

the coupled form (see Appendix B).

4.1. Presenting the dynamics of gas bubbles in viscoelastic

fluids

Considering the general Rayleigh–Plesset equation, the

stability of a bubble in a non-Newtonian fluid with respect

to the Deborah number, pressure pulse amplitude, and pres-

sure pulse frequency of the bubble has been studied. The

result outlines a critical role of the control parameters in bub-

ble dynamics and represents an outlook for the bubble dy-

namics complexity (All other physical parameters were kept

constant at values given in Table 1).

4.1.1. The impact of the Deborah number

We examined the stability of a bubble in a non-Newtonian

fluid by considering the Deborah number (De) of the bub-

ble. Bubble growth to the initial radius of 1 μm, Re = 2.5 and

f = 3 MHz, with various acoustic pressure amplitudes and

frequencies, models the growth of bubbles in blood [35]. It

can be stated that with the increase of the De number, bub-

ble growth inside the blood fluid becomes chaotic, and due
Fig. 1. Bifurcation diagrams and the corresponding Lyapuonov spectrum of bubble ra

frequency and the pressure amplitude are (a) and (c) 5 MHz and 200 kPa, (b) and (e)
to instability, its control becomes impossible, so an elastic-

ity threshold should be determined for the fluid. In addition,

other researchers have reported the instability of time series

with the increase of De [35,36,54], and a threshold of De for

bubble stability could not be determined. The Radial motion

of single bubble dynamics is investigated versus a prominent

domain of De number from 2 to 7. In Fig 1. (a and d) the Deb-

orah number interval is from 2 to 10 to illustrate the chaotic

region clearly. Fig. 1 shows the bifurcation diagrams and the

corresponding Lyapuonov spectrum, respectively, of the bub-

ble radius when De number of the bubble is taken as the

control parameter with the pressure amplitude of 200 and

400 kPa for several values of frequency of the external acous-

tic pressure (5 and 6 MHz) where stable and chaotic pulsa-

tions can be observed in each. There are windows of complex

behavior with periods 4 oscillations in Fig. 1(a). This figure

introduces intermittent chaotic and stable behaviors. After

the first transition to chaos the bubble begins its stable oscil-

lation with period four before its motion becomes chaotic for

the another time. The maximum Lyapunov exponent is also

an important indicator for a dynamic system for detecting

potentially chaotic behavior. The maximum Lyapunov expo-

nents are presented in Fig. 1(d–f) to verify the corresponding

characteristics. In Fig. 1, we can detect a stable region, where

the maximum Lyapunov exponent is always negative, and a

chaotic region, where the Lyapunov exponent is mostly posi-

tive. These figures show that the chaotic radial oscillations of

a bubble appeared by increasing the values of the De number,

and the bubble demonstrates more chaotic radial oscillations

as the frequency decreases.

4.1.2. The impact of the pressure pulse amplitude

In order to get more information about a bubble in a non-

Newtonian fluid (for the purpose of finding periodic orbits

and their stability), we plotted numerous bifurcation and

maximum Lyapunov exponents diagrams of bubble radial os-

cillations considering several values for driving the pressure

pulse amplitude Pa. Pressure pulse amplitude is a measure

of the intensity of pulses applied to a bubble in a period.

Due to the importance of pulse intensity in medical practices

and the fact that these pulses should be applied to bubbles

in order to collapse them in the blood stream [11], a proper

value for the pulse intensity is used for determining and con-

trolling the range of bubble stability. Here, these thresholds

will be evaluated with respect to various frequencies and De
dius with 1 μm initial radius with versus Deborah number while the driving

6 MHz and 400 kPa, (c) and (f) 5 MHz and 400 kPa, respectively.
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Fig. 2. Bifurcation diagrams and the corresponding Lyapuonov spectrum of bubble radius with 1 μm initial radius and Deborah number of 3 with versus pressure

(10 kPa–1 MPa) while the driving frequency is (a) and (c) 7 MHz, (b) and (e) 5 MHz, (c) and (f) 3 MHz.
numbers, by plotting the bifurcation and Lyapunov expo-

nents diagrams.

In Fig. 2, Pa has been considered as the control parameter

while plotting the bifurcation and Lyapunov exponents dia-

grams, respectively. The chaotic effect of the pressure pulse

amplitude on bubble dynamics is very clear. Considering

Fig. 2(c) and (f), it can be concluded that at Pa = 200 kPa, the

bubble’s behavior becomes totally unstable. The effects of Pa

as normal stresses at high frequencies lead to bubble stabil-

ity and, thus, bubble radius reduction (see Fig. 2(a), (b), (d),

and (e)). In addition, with the increase of Pa, bubble stabil-

ity decreases. Fig. 2(c) also illustrates the transition through

the instability threshold. However, due to the applied high

frequency, this transition occurs at a larger Pa (see Fig. 2(a)

and (b)). Comparing the Lyapunov exponents diagrams in

Fig. 2(d–f) presented above, some limits of stable behavior

could be determined for the bubble.

The results of Fig. 2 properly illustrate the effect of Pa on

the degree of chaos in the system. Increasing Pa means ap-

plying greater normal stresses to the surface of the bubble

which would simulate bubble growth. As Fig. 2 shows that,

by increasing Pa, the stable range of the bubble decreases

drastically, and the windows in the bifurcation diagrams are

reduced. These results have also been verified in previous

works [34–36]. As Pa is increased more, the possibility of

a bubble collapse increases. Therefore, Pa control should be

considered in medical applications. By comparing these fig-

ures, it can be found that the radial oscillation amplitude of

bubble radius decreases considerably at high frequencies and

low Deborah numbers, which could be due to the application

of large pressure pulses on bubble surface at a shorter time.

To carry drugs or genes to the goal sites, it is important to pre-

vent the bubble from collapsing [11]. It can be concluded that

the pressure pulse amplitude causes instabilities in the bub-

ble’s behavior, and this confirms the findings of other studies

[34,35].

4.1.3. The impact of the pressure pulse frequency (f)

By considering the pressure pulse frequency as a con-

trol parameter, the application of a variety of pressure pulse

frequencies on bubble dynamics has been studied (Fig. 3).
In Fig. 3, bifurcation diagrams for the conditions of bubble

growth in blood (conditions cited above) have been shown

for various pressure pulse amplitudes and De numbers. The

effects of frequency on bubble stability at various pressure

pulse amplitudes and De numbers were evaluated. From

these figures, it can be concluded that, with any increase in

the pressure pulse frequency, the bubble becomes more sta-

ble and the bubble radius amplitude decreases considerably.

According to the bubble growth equation, the frequency of

the acoustic pulse is the main parameter in the fluctuations

over the bubble interface. Most recently, dual forcing fre-

quency methods of control (through applying a periodic per-

turbation [55]) have been proven to be successful in control-

ling the chaotic radial oscillations of bubbles. This method

usually presents a technique based on using periodic pertur-

bations to suppress the chaotic radial oscillations of spherical

cavitation bubbles.

It can be understood from the results that the motions

of bubbles can be chaotic or stable in particular ranges. The

results are in agreement with the prior studies and clearly

highlight that bubbles are dependent on the driving fre-

quency variations [35,55–57]. Most of the results demon-

strate the uncontrollable and chaotic motions in a bubble’s

dynamics. In dissimilar situations and values for controlling

parameters (such as pressure, frequency and the Deborah

number), a bubble shows various motions and radial oscil-

lations and changes its motion from one type to another. This

involves the transformation of a simple ‘period one’ by period

doubling bifurcation to a ‘period two’ and then by successive

period doublings to higher periods after which chaos occurs

and the symmetry breaks.

4.2. Dynamics of gas bubbles in viscoelastic fluids in the

presence of magnetic fields

In recent years, the explanation of the modern methods

of nonlinear dynamic systems has been developed in rec-

ognizing the nonlinear behaviors of bubbles and encapsu-

lated microbubbles [56–60]. Lately, researchers have been

giving more attention to the investigation of these behaviors.

It is believed that this phenomenon exhibits highly complex
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Fig. 3. Bifurcation diagrams of bubble radius with 1 μm initial radius with versus driving frequency (2.5 MHz–8 MHz) while: (a) Deborah number is 3 and

Pa = 300 kPa, (b) Deborah number is 4 and Pa = 400 kPa, (c) Deborah number is 3 and Pa = 600 kPa.
and chaotic dynamics both numerically [56,57,61] and exper-

imentally [62–64]. It is important to recognize the values of

physical parameters determining chaotic radial oscillations,

as this would be useful in defining the isolating field to en-

able the use of controlled bubbles in clinical applications.

Most recently, the following methods of control have been

proven to be successful in controlling chaotic radial oscilla-

tions of bubbles:

• Dual forcing frequency (through applying a periodic per-

turbation [55]).
• Varying bubble cluster size (the effects of coupling and

bubble size [58]).

The first method uses periodic perturbation to suppress

chaotic radial oscillations of a spherical cavitation bubble.

The second method has theoretically focused on the suppres-

sion of chaos in the dynamics behavior of a small cluster of

bubbles.

However, despite the extensive employment of the mag-

netic field in applications involving cavitation bubble phe-

nomenon in viscoelastic fluids, there are no studies which

estimate the proficiency of such control methods (which use

magnetic fields) on a cavitation bubble system. In this paper,

we intended to use proper control parameters to control the

instability of the bubble system.

Our numerical simulation explicated that the radial os-

cillations of a bubble can have chaotic behavior. These re-

sults reveal that the chaotic radial oscillations of the bubble
under the action of substantial parameters that influence the

bubble dynamics can be used to distinguish stable and un-

stable regions of bubble pulsations and the expansion ratio

of the bubble. In order to streamline the manifestation of

the technique efficiency in suppressing chaos, a few chaotic

zones have been chosen as samples to be subjected to the ef-

fects of the magnetic field. For the correlated zones, the dy-

namic behavior of the bubble was analyzed before and after

the control process. This is done through computing its bifur-

cation diagram and the corresponding Lyapunov spectrum.

Our goal is to seek Lyapunov exponents and bifurcation anal-

ysis to help us predict the dynamics of a bubble. The results

are depicted in Figs. 4–7.

4.2.1. The effect of the Deborah number through applying a

magnetic field

The first sample (Deborah number-bifurcation diagram of

bubble when B = 0) is presented in Fig. 1(a). It belongs to a

bubble with initial radius of 1 μm exposed to a frequency of

the acoustic force of 5 MHz and with the pressure amplitude

of 200 kHz when the control parameter is a Deborah num-

ber in the range of 2–7 (a condition used typically during the

growth of bubble in blood [35]). It is easily understood that

by increasing the Deborah number, the bubble stability is re-

duced and the obvious chaotic radial oscillations has been

proven by previous studies [28,30,34–36,54].

In order to study the possibility of reducing chaos in bub-

ble radial oscillation, a magnetic field is applied. Fig. 4(a–c)
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Fig. 4. Bifurcation diagrams and the corresponding Lyapuonov spectrum of bubble radius with 1 μm initial radius, 200 kPa pressure and frequency of 5 MHz

with versus Deborah number (2–7) while the magnetic field is (a) and (c) 0.00013, (b) and (e) 0.00015, (c) and (f) 0.0002.

Fig. 5. Time series and trajectory in state space projection of bubble radius driven by 4.5 Deborah number, 200 kPa of pressure and frequency of 5 MHz: (a,b)

chaotic oscillations (Without applying the magnetic field), (c,d) regular oscillations (after applying the magnetic field B = 0.0002).
give us some information about controlling dynamics af-

ter applying the magnetic field (B = 0.00013, 0.00015 and

0.0002). After the employment of these methods, it was ob-

served that the chaotic zone is reduced (see Fig. 4(a and

b)). The maximum Lyapunov exponent is also an important
indicator for a dynamic system for detecting potentially

chaotic behavior. Accordingly, the maximum Lyapunov ex-

ponents is outlined in Fig. 4(d–f). Fig. 1(d) introduces the

original system, while Fig. 4(d–f) introduces the controlled

system, where the Lyapunov exponent is mostly positive
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Fig. 6. Bifurcation diagrams and the corresponding Lyapuonov spectrum of bubble radius with 1 μm initial radius, frequency of 5 MHz and Deborah number of

3 with versus pressure (10 kPa–1 MPa) while the magnetic field is (a) and (c) 0.0003, (b) and (e) 0.0005, (c) and (f) 0.0006.

Fig. 7. (a–c) Bifurcation diagrams of bubble radius with 1 μm initial radius, frequency of 3 MHz and Deborah number of 3 with versus pressure (10 kPa–1 MPa)

while the magnetic field is (a) 0.0001, (b) 0.0003, (c) 0.0004. (d–f) Bifurcation diagrams of bubble radius with 1 μm initial radius, pressure of 600 kPa and

Deborah number of 3 with versus frequency (2.5 MHz–8 MHz) while the magnetic field is (d) 0.0002, (e) 0.0003 and (f) 0.0006.
showing a chaotic behavior. The negative Lyapunov exponent

demonstrates the stable behavior. In order to better under-

stand the magnetic field control method, Fig. 5 shows a plot

of the bubble radial oscillations versus time in a certain pres-

sure value before and after the control. Figs. 4 and 5 show

how the application of the magnetic field leads to the reduc-

tion of the chaotic radial oscillations to periodic oscillations

under various Deborah numbers.

4.2.2. The effect of the acoustic pressure through applying a

magnetic field

By considering the acoustic pressure as a control param-

eter (a condition typically used during the growth of bub-

ble in blood [35]), the effect of varying the acoustic pres-

sure through applying the magnetic field on bubble dynamics

has been studied. Fig. 2(b) shows the second chaotic sample

zone (pressure bifurcation diagram of bubble) before apply-

ing the magnetic field (B = 0). It is related to a bubble sub-

jected to a driving frequency source of 3 MHz and a Deborah
number 3 versus its acoustic pressure as the control pa-

rameter. When the acoustic pressure (Pa) is used as the

control parameter, a period doubling sequence is followed

by a transition to chaos. Fig. 6(a–c) demonstrates the con-

trolled dynamics through applying the magnetic field (B =
0.0003, 0.0005 and 0.0006). As seen, the magnetic field had

an impact on the dynamics and has regulated the undula-

tions in Fig. 6(a–c). Although the patterns of the radial oscil-

lations and their maximum amplitudes are slightly different,

applying the stated magnetic field provides a suitable con-

trol over the chaotic radial oscillations of Fig. 2(b). The ef-

fects of the magnetic field are also tested through the max-

imum Lyapunov exponents diagrams (see Fig. 6(d–f)). This

figure illustrates a significant decrease in the maximum Lya-

punov exponents from positive values to negative ones indi-

cating that stable behaviors were achieved when the applied

magnetic field was engaged. Fig. 2(f) corresponds to the orig-

inal bubble dynamics system (B = 0), and Fig. 7 corresponds

to the controlled system after applying the magnetic field
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(B = 0.0001, 0.0003 and 0.0004). The obtained results indi-

cate that stable dynamics can be achieved after applying the

proposed technique.

4.2.3. The effect of the pressure pulse frequency through

applying a magnetic field

In order to study the dynamic response of the system to

the perturbation induced by the magnetic field, not only the

effect of the Deborah number and acoustic pressure, but also

its frequency should be considered. The effect of the mag-

netic field on bubble radial oscillation was studied for differ-

ent models. In order to streamline the manifestation of the

magnetic field efficiency in suppressing chaos, third chaotic

zones have been chosen as samples to be subjected to the

effect of the pressure pulse frequency through applying the

magnetic field. For the associated zone, the dynamic behav-

ior of the bubble was analyzed before and after applying the

magnetic field, and this was done by computing its bifurca-

tion diagrams versus the value of the magnetic field. Fig. 3

shows the bifurcation diagrams of the bubble radius when

the frequency of the bubble is taken as the control param-

eter for B = 0 with several values of the Deborah number

and acoustic pressure of the bubble where stable and chaotic

pulsations can be observed in each. The third sample zone

(frequency bifurcation diagram of bubble when B = 0) is pre-

sented in Fig. 3(c). It belongs to a bubble with initial radius of

1 μm exposed to an acoustic pressure of 600 kPa when the

control parameter is a frequency in the range of 2.5 MHz–

8 MHz. In order to study the possibility of reducing chaos,

various magnetic fields are applied. Fig. 7(d–f) presents the

controlled dynamics after applying the magnetic field. It is

shown that applying the magnetic field reduces the chaotic

zone (see Fig. 7(f)).

It is necessary to have a good understanding of the bub-

ble dynamics to provide reliable control mechanisms for the

wide range of applications in industry. A better understand-

ing of bubbles’ behavior is the first step towards controlling

chaotic behavior of the bubble and using cavitation. Reduc-

ing chaos using magnetic fields can be practically advanta-

geous, particularly in applications involving bubbles for med-

ical purposes. For instance, chaotic radial oscillations of the

bubbles decrease the treatment efficacy and make it difficult

to control. Reducing chaotic dynamics can be the first step in

increasing the predictability and safety of the treatment.

5. Conclusion and outlook

In this paper, bubble stability dynamics in non-

Newtonian fluids have been illustrated using techniques

of chaos physics. In the presence of a magnetic field, ranges

in which a bubble assumes a stable behavior have been

shown by diagrams. The results indicate that applying a

magnetic field to the bubble eliminates typical instabilities.

Furthermore, the results also indicate that the Deborah

number, a measure of the non-Newtonian state of the fluid,

severely affects the bubble stability; with the increase in

Deborah number, the bubble experiences irregular radial

oscillations. These findings confirm the results reported in

[28,30,34–36,54]. In view of this fact, the injection and con-

veyance of bubbles in the blood stream should be performed
very carefully, and the non-Newtonian state of blood should

be tested and measured.

In addition, according to the presented diagrams, the in-

crease of the acoustic pressure amplitude causes instability

in the bubble boundary and may lead to bubble collapse. This

finding has also been pointed out in the articles of Allen and

Roy and Jimenez-Fernandez and Crespo [34–36]. Moreover,

by increasing the acoustic wave frequency, which indicates

the number of pressure pulses in a time unit, the surface of

the bubble could be subjected to pressure force, and its irreg-

ular radial oscillations could be avoided. In this article, it has

been demonstrated that the increase in the pressure pulse

frequency causes the radial oscillation amplitude to decrease

and leads to bubble stability.

In this paper, our main contribution is the development

of the effect of the magnetic field on nonlinear pulsations of

a spherical bubble to control the chaotic behavior of bubble

dynamics. It is shown that the magnetic field has the abil-

ity to control the behavior of the bubble. Parameter B allows

us to control the chaotic region and modify the lengths of

the unstable region. Therefore, we can select a corresponding

control process to match our physical conditions. Focusing on

the mechanisms governing the transition from the chaotic ra-

dial oscillations to the stable region, this study opens a new

view in studying the chaotic control behavior of the nonlin-

ear dynamics of the bubble in non-Newtonian fluids. Once

more, it should be mentioned that controlling the chaotic ra-

dial oscillations of bubbles is studied through applying the

magnetic field. This method is simple and easy to implement

experimentally. It is essential to consider the bubble–bubble

interaction in choosing the control parameter since the bub-

ble pulsation is affected by interacting with the surround-

ing bubbles [65,66]. In general, the introduced method can

be used for studying the behavior of the cluster with a large

number of bubbles.

Appendix A. Governing equations with magnetic field

The mass conservation equation in the liquid can be ex-

pressed as

∂ρ

∂t
+ ∇̄ · (ρū) = 0 (A.1)

where ū is the liquid particle velocity. Furthermore, the mo-

mentum conservation equation in liquid is defined as

ρ
Dū

Dt
= ρ

(
∂ ū

∂t
+ (ū · ∇̄)ū

)

= ρ
∑

F̄ext − ∇̄p + τ̄rr − τ̄θθ

r
− σB2ū (A.2)

If assumed that the bubble always will remain in spheri-

cal shape, then because of the symmetry in the infinite sur-

rounding liquid domain, the liquid particle velocity will be

u(r, t) which is always in radial direction and the conserva-

tion equations will reduce to

∂ρ

∂t
+ 1

r2

∂(r2ρu)

∂r
= 0 (A.3)

and

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

∂ p

∂r
+ σB2u

ρ
− τrr − τθθ

ρr
= 0 (A.4)
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W

U

where τ rr and τ θθ terms can be found from Eq. (2). Follow-

ing the derivation of modified Rayleigh–Plesset equation and

by using Eq. (A.3) with wave equation for velocity potential

�, the mass conservation equation in an incompressible flow

will reduce to:

∇2� = 0 (A.5)

which yields into:

�(r, t) = −R2Ṙ

r
(A.6)

After simplifying, the momentum conservation equation can

be rewritten as

∂�(r, t)

∂r
+ 1

2

(
∂�(r, t)

∂r

)2

= − p(r, t) − p0 − P(t)

ρ
− σB2�(r, t)

ρ

+
∫ r1

r

τrr − τθθ

ρr′ dr′ = 0 (A.7)

Also, by simplifying at r = R (Bubble wall), the momentum

equation will reduces to:

RR̈ + 3Ṙ2

2
= PL(t)−p0−P(t)

ρ
− σB2

ρ
RṘ +

∫ r1

r

τrr − τθθ

ρr′ dr′

(A.8)

Using the assumptions made by Rayleigh, the GRP equation

with acoustic forced oscillation can be rewritten as

RR̈ + 3Ṙ2

2
+ σB2

ρ
RṘ = 1

ρ

[
ρg0

(
R0

R

)3k

− (p0 + pA sin ωt)

− 2σs

R
+

∫ r1

r

τrr − τθθ

r′ dr′
]

(A.9)

Appendix B. Algebric calculations

Eqs. (4) and (5) can thus be expressed as a system of first-

order ordinary differential equations in which the zero point

is located on the wall of the spherical bubble:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR
dt

= U,

dU
dt

=
[
− 3

2
U2 + p0

ρω2R2
0

(
(1 + We)

(
1
R

)3k − We
(

1
R

)
−(1 + α sin (t)))

]
1
R

+ 1
R

2
3Re

(
1

ωR0

√
p0

ρ

)
× ∫ ∞

0

(
τrr(y,t)−τθθ (y,t)

yi+R3

)
dy − σB2

ρ U,

dτrr(y,t)
dt

=
((

−4R2Ṙ
yi+R3

)
− 1

De

)
τrr + 4

De
(ωR0

√
p0

ρ )
(

R2Ṙ
yi+R3

)
,

dτθθ (y,t)
dt

=
((

2R2Ṙ
yi+R3

)
− 1

De

)
τrr − 2

De
(ωR0

√
p0

ρ )
(

R2Ṙ
yi+R3

)
.

(B.1)

We is the Weber number, defined as

e = 2σ

pcR0

(B.2)

Also, in above equation the initial conditions are taken as

R(0) = 1, (B.3)
τθθ (0) = τrr(0) = 0 (B.4)

(0) = 0. (B.5)

This study is conducted for De ∼ O(1) to avoid numerical

difficulties that arise from the division by this quantity in

Eq. (B.1). The following assumptions have been adopted:

1. The material outside the gas bubble wall is incompress-

ible.

2. The bubble remains spherical.

3. The spatially uniform conditions are assumed to exist

within the bubble.

4. The convective term of material derivative of particle ve-

locity is zero.

5. The magnetic field is constant.
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