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ABSTRACT

THE DISTRIBUTION OF THE RESIDUAL LIFETIME 
AND ITS APPLICATIONS

Mine Alp Çağlar 
M.S. in Industrial Engineering 

Supervisor: Prof. Moliammed M. Siddiqui 
March, 1991

Let T be a continuous positive random variable representing the lifetime of an en­
title This entity could be a human being, an animal or a plant, or a component of a 
mechanical or electrical system. For nonliving objects the lifetime is defined as the total 
amount of time for which the entitj'̂  carries out its function satisfactoriljc The concept 
of aging involves the adverse effects of age such as increased probability of failure due 
to wear. In this thesis, we consider certain characteristics of the residual lifetime dis­
tribution at age t, such as the mean, median, and variance, as descril)ing aging. The 
following families of statistical distributions are studied from this point of view:

1. Gamma with two parameters,

2. Weil^ull with two paxameters,

.3. Lognormal with two parameters,

4. Inverse Poljmomial with one parameter.
Gamma and Weil)ull distrilDutions are fitted to actual data.

K eyw ords: Reliability, residual life distribution, mean, variance and percentile of 
residual life. Gamma distribution, Weibull distribution.
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ÖZET

ARTAKALAN OMUR DAĞILIMI 
VE UYGULAMALARI

Mine Alp Çağlar
Endüstri Mühendisliği Bölümü Yüksek Lisans 
Tez Yöneticisi: Prof. Mohammed M. Siddiqui

Mart, 1991

T bir birimin ömrünü gösteren sürekli bir rassal cleği.şken olsun. Bu birim bir 
canlı olabileceği gibi, mekanik ya da elektronik bir sistemin bileşeni de olabilir. Cansız 
varlıklar için ömür, birimin istenen düzeyde işlevini sürdürebildiği toplam zaman mik­
tarı olarak tanımlanabilir. Yadlanma kavramı, a,şmmaya bağlı olarak artan bozulma, 
olasılığı gibi zamanın olumsuz etkilerini içerir. Bu çcdışmada, t zamanında artakalan 
ömrün ortalama, ortanca ve var}'a.ns gibi bazı özellikleri, yaşlanniciyı tanımlamak üzere 
ele alınmıştır. Aşağıdaki dağılımlar bu açıdan incelenıniştir:

1. İki parametreli Gamma,

2. iki parametreli Weibull,

3. iki parametreli Lognormal,

4. Bir parametreli Inverse Polynomial.
Gamıııa ve \\kil:)ull dağılımları, gerçek verilere uygulanmıştır.

Anahtar sözcükler: Güvenilirlik, artakalan ömür dağılımı, artakalan ömrün orta­
lama, va.ryans ve yüzdelikleri. Gamma dağılımı, Weibull dağılımı.
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Chapter 1

Introduction

1.1 The Concept of Reliability

Reliability may be defined as the capabilit}'  ̂ of a piece of equipment not to brecik down 
while in opei'ation, or quality over the long run. Relicibility and quality concepts are 
usually used together, but they are essentially different from each other. From the j r̂o- 
ducer’s point of view, the quality of a product is assessed against certain specifications 
or attributes, and, if the}'· are met, the product is classified as good and is then delivered 
to the customer. A good product is corrsidered to be reliable, i.e., capable of doing its 
job without failure. On the other hand, fx'om the customer’s i^oint of view, the product 
is good onl}' if it is reliable (i.e. does its job satisfactorily) over a period of time. We 
therefore must l:)ring a time-lDased concept of cpiality in addition to an inspection-based 
concept of quality. The inspector’s concept is not time dependent; the product either 
passes or fails a certain test. On the other hand, reliability is concerned with failures in 
time domain.

The relialiility of a piece of equipment in most cases has vital importance to the 
user and by this means to the manufacturer, in terms of competetion in the market 
and decreasing the warranty costs. Hence the price of unrcdialxility is ver}' high. Here, 
the term ‘equipment’ may l:>e applied to a simple device such as a switch, a diode or 
a connection, or it may be a very complex machine, such as a computer, a ra.clar, an 
aircraft or a missile.



Reliability is, then, concerned with failures of items. We therefore need to under­
stand why an item fails. Failures can be classified into three catagories [4]. First, the 
failures which occur early in the life of a component are called early failures and in 
most cases result from poor manufacturing and quality control techniques during the 
production process. Early failures can be eliminated by the so- called ‘debugging’ or 
‘burn-in’ process. The debugging process consists of operating a piece of equipment for 
a number of hours under conditions simulating actual use. When weak, substandard 
components fail in these early hours of the equipment’s operation, they are replaced by 
good components, and when assembly faults show up, they are corrected. Only then 
is the equipment released for service. The burn-in process consists of operating a large 
number of components under simulated conditions for a number of hours and then using 
the components which survive for the assembly of the equipment.

Secondly, there are failures which are caused b3'̂ wcarout of parts; wearout failures 
are a symptom of component aging. The age at which wearout occurs differs widely 
among components. In most cases wearout failures can be prevented. For instance, 
in repeatedlj'· operated ecpiipment, one method is to replace at regular intervals the 
accessible parts which are known to be sulDject to wearout, and to make the replacement 
intervals shorter than the mecin wearout life of the parts. Otherwise, when the parts are 
ina-ccessilsle, theĵ  arc designed for a longer life than the intended life of the equipment.

Thirdlj'·, there are so-called c/nmce failures which neither good debugging techniques 
nor the best maintanence practices can eliminate. These failures are caused by sudden 
stress accumulations bej''ond the strength of the component. Chance failures occur at 
random intervals, irregula.rlj'· and unexpectedly. It is not normally easj'· to eliminate 
chance failures. However, reliability techniques have iDeen developed which can reduce 
the incidence of their occurence and therefore reduce their number to a minimum within 
a given time interval, or even completely eliminate ecpiipment iDreakdowns resulting from 
component chance failures.

Reliabilitj'· theory and practice differentia.tes between earlj'·, wearout and chance fail­
ures for two main reasons. First, each of these types of failures follows a specific statis­
tical distribution and therefore recp.iires a different mathematical treatment. Secondl\·, 
different methods must be used for their elimination.

Defined rnathematicallj' ,̂ reliability is the probability that no failure will occur in a 
given time interval of operation. In notations, let T be the positive random varialsle 
denoting the lifetime (or time between failures) of an item and F  be its cumulati '̂e



distribution function. Then the reliability of the equipment (item) corresponding to a 
duration i > 0 is denoted by R(t) and defined as

R{t) =  P [ T > t ]  =  l -  F(t)

1.2 The Scope of the Thesis

There is a great amount of literature on the subject of reliability because of its depth 
and breath. As discussed in section 1.1, there are three types of failures. The math- 
ematiccd analysis varies with the type of the failure, and for each type we can define 
a number of functions, quantities, parameters, etc. In this thesis we confine ourselves 
to a consideration of the wearout failure of a piece of ecjuipment which consists of a 
single component and concentrate on the related variable: Residual Lifetime. It may 
be mentioned that the failure process itself may be cpiite complex and its mathematical 
description very difficult. Consequently, we only deal with a statistical summar}'· of the 
failure process in terms of a distribution function F. All concepts pertaining to failure 
process are, then, in terms of F. Among these are: reliability, conditional reliability, 
hazard rate, and mean residual lifetime. We have cdready defined the reliability function 
R(t) = 1 — F{t). We now introduce the other functions. The conditional reliability of 
a component of age t is

« ( .1 0  =  ^  .  > 0 .

when R(t) > 0, and the conditional probability of failure is

F ( t + x ) - F ( t )1 -  R{x\t) =
m

Then the hazard rate h{t) at time t is defined as follows [3]:

1 Fit + x) -  F{t)
h(t) =  lirn

 ̂ '  x-rO X R.(t)

If the probability density function f ( t )  exists, i.e., f ( t )  = F'(t) = —R'(t), then

mhit) =
Rit)

The hazard rate is widely used cincl studied in determining whether the item is 
wearing out, in other words, aging or not. If the hazard rate for a lifetime distribution 
is monotonically increasing, we can sa3̂ that the item whose lifetime is distril'juted with

3



that distribution wears out in time. In [5], a total seven criteria for aging were proposed. 
First let us define the related functions.

The specific aging factor A(i, s):

.4(i,s) = m m
R(̂ t T s)

The mean residual lifetime e(t):

; (t)  = m )
m

dx

The specific interval-a,verage hazard rate

j  h{x)dx

Then the hazard rate average can be defined as H(t, 0). The criteria are:

1. Increasing specific aging factor:

A(t 2 ,s) > Aii\,s) 'd s > O.t. 2  > ti > Q.

2. Increasing hazard rate (IHR):

hft2) > h{t\) 'd t2 > ti > Q.

3. Increasing interval average hazard rate:

H{t 2 ,s) > H{ti,s) VÍ2 > ti > 0,.s > 0.

4, Deereasing mean residual lifetime:

e(i-2) < 'd t2 > t i > 0 .

. Increasing hazard rate average:

H{t2,0) > H{u,0)  V /2 > t x > Q .

6. Positive aging:
A(t,s) > A(0,s) Vt,.s > 0.



7. Net decreasing mean residual lifetime:

e{t) <  e(0) V i > 0.

From probability theory, we know that there are several functions which completely 
specify the distribution of a random variable. Examples of these are probability density 
function, characteristic function, Mellin transform and cumulative distribution function. 
However, in reliability conte.xt, five mathematically ecpiivalent, popular representations 
have evolved: probability density function, reliability, hazard rate, cumulative hazard 
function and mean residual lifetime function. Each of these functions completely de­
scribes the distribution of a lifetime and any one of the functions determines the other 
four. The relationship between them can be summarized as follows [13]:

j , f )  = -R '( t )

H'.t) -- — log R(t)

h[t) = H\t)
R(x),.t) = I
m

h{t).e{t) =  1 + e'(t)

clx

( 1 . 1 )

The distributions then are classified in terms of those functions so that we can 
determine whether the item is wearing out or not. Since the aging criteria defined 
above are also in terms of them, they represent classes of distributions, too. The classes 
are defined exactly; first, new better than used (NBU) and new wor.se than used (NWU) 
distribution classes are defined in terms of R(t). A distribution is NBU (NWU) if and 
only if it is positively (negatively) aging, as defined in criterion 6.

Increasing hazard rate (IHR) was discussed above. Similarlj ,̂ decreasing hazard 
rate(DHR) can be defined in terms of h(t). Again, similar to IHRA, decreasing hazard 
rate average (DHR.'V) can be defined in terms of H(t,0). Moreover, increasing mean 
residual lifetime (IMRL) and decreasing mean residual lifetime (DMRL), new l^etter 
than used in exi^ectcition (NBUE · and new worse than used in expectation (NWUE) 
classes are defined in terms of e(r ); DMRL is criterion 4 and NBUE is ecpiivalent to 
criterion 7 above, and IMRL and NIVUE cire their analogues for a negative aging item.

In addition to the aging criteria defined up to now, some other criteria can also be 
defined [9j; a distribution is called new better than used in hazard rate (NBUHR) if and



only if
h(0) < h(t) V i > 0 ,

and is called new better than used in hazard rate average (NBUHRA) if and only if

h(0) < V i > 0.

In terms of e(t), a distribution is called decreasing mean residual life in harmonic 
average (DMRLHA) if [(1/i) /e(u))du] is decreasing in i; it is called harmonically
new better than used in expectation (HNBUE) if F{x) clx < e(0) exp(—i/e(0)) for 
t > 0.

Some implications exist among different classes of distrilDutions. and hence among 
different aging criteria. These can be found in the mentioned references; [5] and [9], 
but from the point of view of this thesis, it can be mentioned that Bryson and Siddiqui 
[5] have shown that IHR implies DMRL; and the reverse is not true. The class of 
IHR distributions therefore forms a proper subset of the class of DMRL distril^utions. 
What is more, an essential difference between the hazard function and e(i) is that the 
former accounts only for the immediate future in assessing the event component failure, 
whereas the hitter accounts for the complete future [14]. This is readily seen from 
the expressions of h(t) and e(i). It explains why a component can experience positive 
aging, in the sense that its corresponding MRL function is decreasing, and ĵ et have zero 
hazard, because its failure cannot occur in the immediate future. Such a situation is 
exemplified by the uniform distribution in [a, 6] for which the hazard function and the 
MRL function are shown in figure 1.1. In a reliability context, the component is clearly 
wearing out. On the other hand, the hcizard function is zero and gives no indication. 
Also the actual age t, cannot be deduced from the hazard function prior to time a. So 
the MRL function provides a more descriptive measure of an aging process than the 
hazard rate function. Furthermore, the MRL function is very useful in decision making 
for replcicernent policies and in solving burn-in pi'oblems [6].

In statistical practice, tlie median and other percentiles are used a.s well as the 
mean, for example, in situations where the underhnng distribution is skewed. So it 
should be of interest to stud}'· the median residual life function or more generally the 
a'-i:>ercentile residual lifetime function. In this case, classes of distributions analogous to 
the previously described ones can also be defined [10]; an example is ‘new better than 
used with respect to the a -iDercentile’ NBUP-cv. In comparison to ci-percentile residual 
lifetime, MRL has some theoretical and practical shortcomings. In an experiment it

6



a)

Figure 1.1: a) MRL function, and b) Hazard function of the uniform di.stribution with 
proljability mass in [a, h]

is often impossible or impractical to wait until all items have failed. Estimation of 
ernijirical IVIRL is not straight forward in this case. However, if we consider for example, 
the median residual lifetime, calculation of this statistic with censored data posseses no 
difficulty as long as at least half of those remaining have recorded failure times. Moreover 
in some instances, MRL may not even exist [18].

In this thesis, residual lifetime distribution is discusssed in terms of its mean, vari­
ance and percentiles, and behavior of those quantities as t tends to infinity, for certain 
distributions. Lawless [11] provides a relationship between the asjnnptotic value of e(t) 
and the probability density function f{t):

lim e(t) =  lim —i^co £  log[/(t)]

More(wer, CalalDi'ia and Pulcini [6] provide a relationship between the asjmiptotic be­
haviors of e(t) and h(t):

lim e(t) =  ----------(-►CO hm(_,^ h(t)
They then conclude that li:ni_,co e'(t) =  0, b}'· referring to equation 1.1 which is due to 
Park [17]. In our study of a-sjauptotic behavior of MRL, we have additionallj'· found the 
order of convergence to these limits.

Because of its simplicity. Exponential distribution is widely used. This distribution 
has memorrdess property which is eciuivalent to no aging in reliabilitj· context. Hower'er 
there are situations where the property of no memory (equivalentlj'· no aging or wearout) 
does not agree with the physical realities, as is the case when T represents a service 
time or a repair time, or when failure is due to wearout. Weibull and Gamma are

7



two typical distributions which describe the lifetime of an aging piece of equipment 
when the corresponding shape parameter is greater than 1. Hence they are investigated 
in Chapters 2 and 3. Lognormal distribution whose MRL function is not monotonie 
and the Inverse Polynomial Distribution whose MRL function is linearly increasing are 
studied in Chapter 4. Finallj ,̂ in the.last chapter, several sets of data are analyzed to 
illustrate the use of the properties of residual life distributions, such as the mean and 
the variance, for selecting one or more theoretical distributions which adequately fit the 
data.



Chapter 2

Gamma Family of Distributions 
with Integral Shape Parameter

In this chapter, random varicible T (the lifetime of an item) is considered to be dis­
tributed with Gamma Distribution which is defined by the following densit}'· function

M x ) r (a ) Vx > 0, a > 0, A > 0

In th.is expression A is the scale parameter and a is the shape parameter. In general, 
the}'· both take positive real values, but for simplicit}'· and gaining an insight into the 
problem in the first place, a is taken as an integer and is replaced bj' n in this case. In 
fact, there are applications of Gamma distribution with integer shape parameter. For 
example it is suitable in situations where shocks arrive bj' a Poisson process and failure 
of the ecpiipment occurs exactl}' at the shock; then the time between failures arc 
distributed with Gamma distribution with shape iDarameter k.

2.1 Hazard Rate and Hazard Rate Average Func­
tions

The hazard rate function for a > 0, A > 0 is

h(t) - _ J > )■/'(0 ^ 
R(t)

9



Then

Putting u=x-t

roo
[/í(í)]-i =  dx

/
00

(1 +  u/ty-^e-^^du .

So h(t) is decreasing for 0 < a- < 1 and h{t) is increasing for a > 1. That is, Gamma 
family of distributions are decreasing hazard rate (DHR) for 0 < a < 1 and increasing 
hazard rate (IHR) for ck > 1. We can conclude that the distribution is also DHRA for 
0 < a < 1 and IHRA for a- > 1.

The hazard rate average function is as follows:

H(t, 0) =  (1/t) f  h(x) dx =
Jo t

2.2 Residual Lifetime Distribution

The density for residual lifetime is:

/r-í(■г') =
fx(x  + t) 

Rr{t)

(for the rest of the text, the subscript T will be supressed).

2.2.1 The Properties

For the Gcuiirna Distribution with integer shape parameter n the densit}'· of the residual 
life time distribution is:

./t - íC-'í') =
A ” (.r +  t)" h  (̂ '̂+0

0 yt!

because (for n integer).

roo \n n-l -\x n-l
B.{t) =  /  ^  ^  h'G F

1« - 1)! A-=o

The density function simplifies to

\^{x +

k\

fT-t(x) =
(>» -1 )! ^

10



The moment generating function

M(s) = f
Jo

oo e*®A"(.T +  i)" dx

whicli by integration by parts, is simplified as follows:

f  X \n  \ ^ n —1 [(A—VA-s>* 2̂ k=0 A·!M ( .s )  = 1 (AQ̂  
2-̂ k=0 k\

So the expectation of residual lifetime e(i):

e(t) =  M' ( . s ) l =o =
трп-1 (n-A-)Â¿-̂ к=0 k\

Ŷ n—1 (A¿)̂
L·k=o k\

[ 2 . 1 )

The second moment:

M"{s)l=o
n —1 {n̂ jiditlzL̂ dillÂ ZZT.k\_____E n — lk=0

r̂ n— i (A¿)̂~ 
2̂ к=0 k\

As a result the variance of residual lifetime v(t):

E n —l k=0>{t) =
n-l (π-A0(n-̂ ' + l)Â -̂ <̂ · ^^n-1 (п-А-)А̂ -Ч̂ · 2̂■ - \2̂ k=0k\ k\

\̂ /г—1 (A¿)̂ ' 
^k=0 k\

(Y^n-l (AQ̂ \2 
\L·k=0 k\ J

( 2 .2)

The percentiles of the residual life distribution at age t can be found as follows. 
Since ГСО А’Чг+Р”-̂ е-М̂  + 0 г̂

P [ T - t >  x\T >t ]  = i :
'pn-1 (-̂ 0* p-Xt 2̂ k=0 k\ ^

the p'" percentile, is the solution of the following equation in x:

1 —p =  P [ T  — i >  a;|T >  t]
-̂Xx Ŷ n-1 (a-'+Ô ÂẐ k=0 k\

't̂ n —1 (A¿)̂ '¿-̂ k=0
(2.3)

A:!

This equation cannot be solved exactly for an arbitrary integer n. That is why the 
asymptotic behavior will be discussed in the next section.

11



2.2.2 Asymptotic Behavior of Mean, Variance and Percentiles 
of Residual Lifetime

Lifetime distribution with integer shape parameter

For n = l, the residual lifetime distribution is reduced to an exponential distribution, so 
e(i) - 1/A Vt > 0.

For n = 2, from equation 2.1, e(t) =  +  j .  Then, at t= 0,e(f) =  2/A
and as i ^  oo e(t) =  1/A +  0 ( l / i ) .

For n=3, from equation 2.1,
3/A +  2i + Xt^/2

<0 = Y
4 + 2Xt

++  Xt +  {Xty/2 X{2 +  2Xt +  (Xty) X 
Then, at t= 0,e(i) =  3/A and as i —> oo e(t) = 1/A + 0 (1/t).

For n G Z"··, from equation 2.1,
n/X +  (n — l ) t / l !  + (?г — 2)At^/2! +  · · · +  — 1)!e(i)

1 +  A i/1! + XĤ /2\ + · · · + /(n -  1)!
Then, at t= 0,e(<) =  n/X and as i —> oo e(t) = 1/A +  0 ( l / i ) .

Similarly, for the variance starting with n = l, 2 and 3:̂

For 11= 1, v(t) =  1/A Vt > 0.

For n=2, from equation 2.2, at t=0 v(t) =  2/A^ and as i —> co v(t) = 1/A  ̂+ 0(l/t).

For 11= 3, from equation 2.2, at t=0 v(t) =  3/A^ and as i —+ oo v(t) = l/A^ + 0{l/t).

For n 6 from equation 2.2, writing the smallest and highest orders of t with their 
coefficients in the summations:

( n {n+\ )  I I (A i) '·-’ , I ,\^ (n -2) p ( n - l ) ^
 ̂ -\2 f  · · · t -  ( ,,_ ! )!  } 1 A ■ ■ ■ T· [(>1-1)!12 )v(t) = (/1- 1)! ( ? i - l ) !

1 I
 ̂ [(n-l)!P

we obtain

>(t) = Y2+--- +
'̂ 2 n —4 y iu  —2

TiT-iTF"
1 + ··· + \7n-2y2n-2

[(n-l)!P

Then, at i = 0 v(i) — n/A^ and as t i oo v(t) = 1-/A  ̂+ 0 ( l / i ) ,  because

1  ̂ ^  ( n - l ) ! ( n -2)! r
■̂ (0 ~ 2̂ ^ ----- iV------- , ----- .fo'· ·̂1 4 -  . . .  I

^ +  +  [ ( n - l ) ! p

12



As stated in the previous section, the percentiles must also be studied for large t. 
For n =  1, ip =  — log(l — p)/A. Let us denote the percentile corresponding to the 
residual lifetime with shape parameter n as ip(n).

Then, for n =  2 from ec|uation 2.3,

+  ( { , (2) + t)A|
1 - p  =

simplification, the following is found;

1 +  Xt

But, for large t, the denominator of the second term in the logarithmic function also 
becomes large and the approximation log(l +  x) = x can be used. So for large t,

c :■
e,(2) = fp(l) + 0 ( l /( )

For n =  3, i^;/3) can l̂ e found in the Scune way as

<fp(3) =  +  2/Xt +  0 (l/i^)] .

For arbitrary n, taking logarithm of both sides of ecpiation 2.3,

, . . X 7 fi X(x +  t) (A(.r +  , Xt (Ai)"“  ̂ ,
Ic'g il -p ) = -X x  + Iog[l + ^^ ^  + ‘ ‘ ' +  (n -  1)!  ̂ 1! ^  (?7. -  1)!̂

By simplification and by writing the smallest and the highest orders of t in the summa­
tions, we get

\t 4- iAiEl! I \2™/ I IX.x+ , + +
X ^  log |l +  ,  iiUl (.'ll—

i -r A6 -r 2 T · · · r („_!)!

Then, using the approximation log(l +  x) = x as we did for n = 2 for large t, we have

^ .r + A.г̂ /̂2 +  .. .  + (Xtr-^x/{n -  2)!
l +  Ai +  . . .  +  ( A t ) - i / ( n - l ) !  ^

But for large t, the last terms in the numerator and denominator respectively dominate,
so that

^  (XtT-^x/{n -  2)! 
‘ “  iXt)-y (n-l)\

13



This gives

or finally,

 ̂ =  fp(i)[i +  ^  +  0 (V i")l
The last equation is written by the identity sufficiently small x > 0.
Now X stands for ^p{n), so for large t, i p̂(n) =  {p(l) +  0 ( l / i ) .

These are interesting results, because this means that if an item whose life distri­
bution is defined by a Gamma Distribution (with integer shape parameter) survives a 
long time, then it behaves asyrnptoticallj'· as if it has an exponential residual life time 
distribution, i.e., it behaves as if it does not age any more. Moreover, for n G {1 ,2 ,.. . }  
it can l:)e concluded that both e(t) and v{t) are decreasing functions of t. And for large 
t,the order of decrease is 0 (1 /t).

Generalization to real shape parameter 

The mean residual lifetime in general is

=  R ( t )  ■
(2.4)

The relationship between the hazard rate and e(t) is given in [16] for the Gamma 
distribution as one of its characteristic propert3c

By writing the density and the reliability functions explicitly in 2.4 and by simplifi­
cation. we get

<0 = ^
clx

t .

After this point, we applj  ̂ integration by parts to the integral in the numerator, and 
calling the integral in the denominator /i, the result in term.« of Ii onlje is:

1 (cv — l ) / i  -|- Oe — \tli
= A + --------------- at;---------------

Now, let //; = c/.x and apply integration by parts several times:

1 (a— , (q— 2) e ' ' ‘ r  - ( a — 1)(q- 2  l· r

c(() = {  + ---- ±-------a------ itz ---------h
,\t

X

Finalh·, for large t,

14



as in the case of integer shape parameter.

The variance for the general case is studied in the same manner. It is explicitly:

v(t) =  E[T^\T > t ] ~  E^[T\T > t ]
S r x ^ m d x  { ¡ r x f { x ) d x y

R(t) i?2(i)

Putting the expressions of R(t) and /(.T),and applying integration by parts several times,
we get

so that

J- , \ ■‘■‘I \2 -i;
,Ai

■̂(0 = 3̂  + A2
e 2At/2

1 1 ^ , 1,"W -  ^  -  335 + O(-)

Percentiles of the residual lifetime distribution can be obtained in the same way as 
the percentiles for integer shape parameter. Let ?r < o < +  1. Then the real shape
parameter version of 2.3 is

, fo= X°̂ (z +  , , ,, ,

Putting u = z 1, and simplifying the righthand side, we obtain

1 -  p =

B3'· integration by parts several times, it is found that

( a - l ) ( x + 0 °

1 -  p =
- 2  - A ( i + t )

A2 + · · · + ______
I I , ( q' - 1 ) . . . ( q' - 71+ 1 ) / 2“r ^ 2  "T · · ■ “T \n-l

where

h  = / du

/ 2  = du

Let’s call the numerator of last ecpiation as a and the denominator as b . Then taking 
the logarithm of both sides,

log(l -  p) =  - X ( x  +  i) + log(e '̂(-’''+‘)fi) + Xt -  log{e'^%)

By rearranging the logarithm terms on the righthand side and writing the smallest and 
highest orders of t in the summations,

15



l o p - n  — o') — — A r  4 -  l n p - r i  -4-  ^ / A + - + ( a - l ) . . . ( o : - n + l ) e ' ^ ( ^ + ‘) j i / A ' »logl^i P) — A X + 1 0 g l i +  i « - l / A + . . . + ( a - l ) . . . ( a - n + l ) e ^ ' / 2 / A " - i  J

Because, for large i, the algebraic term inside the logarithm function in the last eciuation 
becomes small; we can use the approximation log(l + x) =  x. As a result,

~  ^ ( o r - l ) x t ° ' ~ ^ / A + —+ ( o r - l ) . . . ( q - n + l 4e^(^+‘) / i / A ’‘ ~^ , C f-\\
~  \ t«-i/A+-+(a-l)...(c*-n+l)e^*/2/A"-i '

Moreover for large t, the highest orders of t are the dominating terms in both the 
numerator and the denomiiicxtor, so that

or

1 (a- — l).Ti" A , .

X = + i„(i)
Xt

and finally
a; — [1 +  h 0(l/t^)] î 7;(l) V a > 0

So, all results pertaining to integer shape parameter case are also valid for real shape 
pcirarneter. Moreover, these results suggest that, in model selection we ha.ve to studj  ̂
the MRL plots for relativelj'· small t, in order to discriminate between different shape 
parameters of Gamma distribution, because for large t they all converge to 1/A and thus 
discrimination becomes difficult. What is more, the results can be used in debugging 
or burn-in processes. For examiAle, some trade off can be found in terms of the testing 
period; the MRL of the items decreases when they are delDugged, but on the contrarj'  ̂
the residrud lifetime becomes more stable in terms of both its mean and the variance.

16



Chapter 3

Weibull Family of Distributions

In this chapter, T is considered to be distributed with Weibull distribution which is 
defined I33'· am'· of the following three functions:

F (i) = 1 -  , J?{() = e-f-'O" ,

and
f ( t )  =  a > 0,A > 0,f > 0

3.1 Hazard Rate and Hazard Rate Average Func­

tions

The hazard rate function,

/(i)h(t) =   ̂ cv > 0, A > 0 ,

and til':' hazard rate avertige function.

H(t,0) = (1/t) / h(x)clx = A“ t 
Jo

cv j. a  — 1

It can easil}'· be seen from the above ecptations that- Weil^ull Distriljution is increasing 
hcizard rate (average) for a > 1 and decreasing hazard rate (a.verage) for 0 < n < 1.

17



3.2 Residual Lifetime Distribution

3.2.1 The Properties

The residual lifetime density;

fr -t {x )
, _  f { x  + t) a\^(x +  t)° ’■e

R(t)

The moment generating function is

/o~ e^"[A(x + dx
M(s)  = e-(A0-

by using the identity ^ and by making a change of variable n =  [A(a: + i)]",
we get

. . - S t  OO ̂ ^  . b w-va “ da
e-( \'r·' 1=0 r(i + 1)

Let

r(a..r)= /

Then

and

. , - S t  OO

r(i + 1)

(̂f\ — -\\ r(l + 1/a-, (Ai)“)

The second moment is 

so the variance

2tr(l +  1/g·, (At)” ) ^  r(l +  2 /a, (At)*̂ )
Ae-('̂ 0'·' A2e-b̂ 0"

, , ^  r ( l + 2 / g , ( A t ) » )  _  r » ( H - l / a , ( A Q ° )
 ̂ A2e-(-'‘)“ A’ e-̂ l-'·)“ (3.1)

The percentile is the solution of the following equation in x:

p = P [ T - t <  x\T > Í] = ffav\[A(y + ¿r-^e-[-Hv+‘)l"dy
-(At)'·

18



Evaluating the integral in the last expression by putting u =  [A(y +  t)]^, we get

P =

and finallj'

= t[l - log(l - p )
{xty

/« _ i (3.2)

3.2.2 Asymptotic Behavior of Expectation, Variance and Per­
centiles of Residual Lifetime Distribution

At t =  0, e(t) =  ElhhiA}  ̂ whidi is the expected value of T. For t > 0,

and in open form, r ( l  +  1/n , (At)") =  chi. By integration by parts, this
can be reduced to

rco
r ( l  +  l/a ',(A i)") = dxJ\t (3.4)

Let Ii =  e dx. Ii cannot be evaluated but an approximation for large t can be 
found. By integration l)y parts, it can be shown that

__ r-| _  dz___ Li < r < —______
a(Xty (Xty a(Xty

Then, for large t.

h =
e - ( A t ) “

(3.5)

By putting this first in ecpiation 3.4, then in ecpiation 3.3, and by simplification,for large 
t, we obtain:

= a.A(V)—
This last expression is valid for large t onlĵ , but it is much more practical for computation 
than ecpiation 3.3.

So

lim e(t) =i—CO  ̂ '

And for a = 1, e(f) = 1/A.

0 for  O' > 1 
oo for  0 < a- < 1
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The variance (in equation 3.1) can be studied in a similar fashion, then in open form,
fO O

r ( l  +  2/a, (\ ty )  =  /  du

By change of variables as u =  A(.r + 1) and by integration by parts, we have
 ̂ /«CO

r ( l  +  2/a, (At)") =  + 2  dx (3.6)
J\t

Let I 2  =  xe~^° dx. For large t, /2 be api^roximated as

Cancellation occurs with F^(l +  l / a , ( X t ) ° ‘ ) in which there is Ji,which is also approxi­
mated as in eqruition 3.5. So, one more step is taken in approximation for both /1 and 
for L). The results are as follows:

e~(''‘*)”(cv(Ai)“ — a' + 1)/1 = Q',2(Ai)2«-l ■[l +  0(l/t^“)] ;

|l + 0(l/< )l

Putting those expressions in equation 3.4 and equation 3.6 respectively, then putting 
the results in equation 3.1, we obtain

and

lim v(t) =¿—>■00 '
0 for a > 1
00 for  0 < cv < 1

For a = 1, v(t) — 1/A^. The asymptotic behavior of the percentiles can be studied in 
relation to equation 3.2 as follows, using the fact that — log(l — p) < (Xty for large i, 
by the binomial expansion formula,

= ‘ 11 -  + ~(r -  -  1)(- -2 ) '°f.A\~.̂ ·  ̂+ ■ -I -  ia l!(Ai)^ cv a' >! cv cv a'
so that

3!(Ai)·̂ "

log^(l - p )
a: (At)“  ̂ V· ^  2! (At)“ a  ̂ 3!(At)2“
t log(l - p )

a (At)“ [1 + 0(1/01

So
, 0  for  a > 1

hill =
' 00 for 0 < a < l
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The above I'esult is valid for a ^  For a =  1, the distribution is reduced to the 
exponential distribution which has been discussed in the previous chapter.

Having found the expressions for large i, for e(i), v(t), and we can conclude that 
the greater the shape parameter the faster the convergence to 0 (when a > 1), and 
the same is valid for the variance and the percentiles of the residual lifetime. In other 
words, when the item’s lifetime is explained bj'· Weibull distribution, the aging process 
is much severe for larger shape parameters. Hence, this property can be considered in 
discrimination of different shai^e parameters of Weibull distribution or in discrimination 
between different tĵ ês of distributions.
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Chapter 4

Lognormal and Inverse Polynomial 
Distributions

4.1 Lognormal Distribution

In this section, the lifetime T of an item is considered to be distril:aited with Lognormal 
distribution, which is defined by the following density function:

/(·г■)
1 (log x - n )

■\̂ 7T
X ■ e Væ > 0, > 0, <7 > 0.

This famil}  ̂ of distributions is suitcible especially when the data are positively skewed.

4.1.1 Hazard Rate and Hazard Rate Average Functions

The ha.zard rate function is:

h(t)
_  (log t - / 0 ^

e 2<t'-2m = ______________
R(t)

and the lia.za.rd ra.te average function:

H(t,0) = (l/t) [ ‘ h (x ),h  =  {l/t) [ ‘
Jo Jo as/lir X d>(  ̂ )

_ (log -T-p)·̂
e

clx

(4.1)

(4.2)

In both equations 4.1 and 4.2, denotes the cumulative distribution function for 
Z ~  N(Q, 1). The hazard rate function is not monotonie for the lognormal distril^ution.
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Figure 4.1: Lognormal hazard functions.

The plots of the hazard functions [7] identified with the value of «3 where 0-3 =  -F[(-  ̂
are shown in figure 4.1.
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4.1.2 Residual Lifetime Distribution

The Properties

The density of the residual lifetime distribution is:

 ̂ R(t)

R{t) can be found in terms of 1>, having the definition of T as T =  where Y 
as follows:

R(t) = P[T > t ]  = P[logT > logi] = P[Y > logt] =

So,

fT-i(x) =
{x + 1) - 1

nog(x+0-u r2<t2

Accordinglj^, the moment generating function M{s) can he found bj'· the change of 
Vciriables u =  x + t, then z = ,  and then y =  z — sa.

M {s) =
+ _  loKlzzlL·̂

M(s) is not suitable for finding the moments, since it contains the function 1>. The 
moments are found directly b3'· their definition. The first moment, i.e., the mean residual 
life:

, , , 1 /"  ̂xe 2<r2
" ( ' ) "  ( I > ' ) " S ( i j i  a ^ ( - x  + t) ■

Equation 4.3 is simplified first bj'̂  change of varial l̂es as u = x + t then as 2; 
The result is:

(4.3)

1»K u-n
a

e(t )  =

Similarl)··. the second moment

zndos_t - 1 (4.4)

E[{T -  ty ¡T  > í| =  HÍn /„'1_ foc C " 2·̂^
m CT\/5̂ (r+í) dx (4.5)
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By making the change of variables, first u =  x +  i then z =   ̂ in equation 4.5, we
have:

E [ (T - t y \ T  > t ]  = +  t̂

Consequently,

v(t) =
g2(M+<r2)(j)̂ 2cr -

(4.6)

The p̂ '̂· percentile (p can be found in a similar fashion, and it is the solution of the 
following equation in x.

P

It can be found from the tables for Z ~  A'"(0,1), as follows: Let  ̂ =  Ii5i£±llz£ Then, 
bĵ  rearrangement:

<i>(n = p + ( i -p )< i> ( != ^ )

Thus, z can be found from the tallies, and

= a; =  -  t

Asymptotic Behavior of Expectation and Variance

At i =  0, by equation 4.4 linii_,o e(i) =  which is the expected value of T. For
i > 0, by milking the change of variable u — x + t in equation 4.3, we get

e(i)
a\/2nB.{t)

_  (log u - n Yp-O (\0gu-nP 600 £ 2<r2
I / e cm — t ------------- du\
Ji Jt u

(4.7;

Let I\ be the first and I 2  be the second integral, respectively in eciuation 4.7. Then 
Ii can be simplified l:>y ma.king the change of variables y = and x =  y — a/ \/2.

The result is,
h  = r  e-"'  ̂dx ,

Ja

where a =  But, as in section 3.3.2, I  = ff° dx can be approximated for
hii'ge t as:

C = - ^ ( l  + 0(l/i=)| (4.S)
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Consequently, for large t, by simplification
Qoc i-iir

 ̂ ate 0
h  = -----------Ioĝ -μ _ [l +  0(l/log=i)l (4.9)

Similarh'·, by the change of variables y =  /2 can be approximated for large t as
follows:

_  ( lo c  ^ - μ Γ

h  =
at

los i •[l +  0(l/log*i)l (4.10)

Then, may also be approximated for large t. It was shown in the previous
section that ii(i) =  i.e.:

By change of variables y - r/\/^ and appljdng approximation 4.8

_  ( lo r  : - a0 ^

Putting equations 4.9, 4.10, 4.11 in equation 4.7, we obtain

(1+O(l/log^()|

(4.11)

or

e(t) =

e(t) =

(logt -  μ -  '72)(logt -  μ) [1 + 0 (l/log^ i)] 

a-i [l +  0 (l/log^t)](logf -  y -  a '-){log t-  y)
As a result , as t —> 00, e(t) ^  00 wirh 0 (i/log^ i).

Now, the variance of the residual lifetime at i =  0, is found by taking the limit of 
both sides in equation 4.6 as i tends to 0. So, limt_̂ o ^̂ (0 ~ — 1). which is the
variance of T. For t > 0, by making the chcinge of variables u =  x +  t in equation 4.5, 
we obtain the second moment of the residual lifetime.

E [ { T - t f \ T  > f) = 1 (u —  í)  ̂ (log  u - n )1------- L · p  2^2 clu
uR{t]a\/^ Ji

Then by expanding {u — ty .  and comparing the result with /1 and / 2,we find the following 
expression

1 roo (ΊοίΓ ti —
E[{T -  tf\T > t ]  = u e - ^ ^  du -  2th + í /̂2 (4.12)

Moreover, comparing equations 4.11 and 4.10 , it can be seen that /2 =  a\/^B,{t). 
Before finding v(t), let us also approximate the first integrcil in equation 4.12 for large
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t. Let it be I 3 .  By the change of variables y =  ^, and then x =  y — y/'2a and by
use of equation 4.8, for large i, we get

L · =

(\0Kt-fi)aVe 2<t2 

— 2cr
■[l +  0 (l/log^t)]

Note that equation 4.7 can be rewritten as e(i) =  ( l / / 2)(Ji — ¿ /2). Now, rej^lacing the 
first integral by J3 and a\/%rR(t) by /2 bi equation 4.12, we find the variance v(t) as 
follows:

v(t) =  E[(T -  ty\T > t ] ~  e\t) =
l i

Then, for large i, by simplification:

f̂ cr'‘ (logi -  /í)^
v{t) = - [ l  +  0 (l/log^O ](log t — /.i)(log t — n — 2o■ )̂(log t — ¡.i — a'^y 

As a result, as t —> 00 v(t) —> 00 with 0{t'^/ log  ̂t).

4.2 Inverse Polynomial Distribution

In this section, the lifetime T of an item is considered to be distributed with a distri­
bution which is entitled as Inverse Polynomial Distribution in this thesis. The densit3'· 
is:

V.r > 0, /? > 0 .(1 +  xy+-^
The reliability function is = 1/(1 .t) .̂ This class of distributions are similar to
the Pareto Distribution ,except that it does not have a trunca.tion parameter.

4.2.1 Hazard Rate and Hazard Rate Average

The hazard rate function follow directlj'· from the definition of f( t )  and i?-(t) :

/3h{t) = 1 + i

The hazard rate average function,
/)log(l + i)

So h(t) decretises as t increases, and the inverse polynomial distribution is DHR. Thus, 
this farnilj'· of distributions can be a suitable model in situations where product or 
systems development results in improved performance as development proceeds.
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4.2.2 Residual Lifetime Distribution

The residual lifetime density is:

_  /(^’ +  i) _  ^(1 +
R{t) (1 +  a; +  i)^+^

The moments of I'esidual lifetime distribution can be found b}'· dii'ect calculation as 
shown below.The moment.

E l ( T - t y \ T > t ]  =  f
Jo

bĵ  integration by parts several times,

E [ ( T - t y  \T > i ]  =  -

~ + t y
(1 + .r +

(1 +  0 '·’·!

clx ,

(!) -  m  -  2) . . , {;} -  r)
for /3 > r

So the moment exist.s if and onl}̂  if ?' < /9 . First, eft) is found for > 1,

1 + i

as

yt) =
13-1

This implies that e(i) = (1 +  t i e(0), i.e., mean residual lifetime function is incretising 
linearl}'· with t . At t = 0, t{t) = l/(/3 — 1), which is the expectation of T . And as t 
tends to oo, obviously e(t) ^  cc with 0{t) .

Similarl}'·, the variance exists for /3 > 2-, it is:

v(t)
/3(1+ ty

At t = 0, v(t) - :_2) is the variance of T. And as t tends to oo, v(t) oo
with 0 ( r ) .  From the expression of e(t), we can conclude that the item is negatively 
aging, as it is implied by the decreasing hazard rate. However, it should also be noted 
that the variance of the residual lifetime also increases rapidlj  ̂ in time. Inverse Po!}'iio- 
mial distribution is thus, a suitable model when l)oth the performance tmd its variance 
increases (provided that it exists). MRL plot can be used in distinguishing these fea­
tures.

The anal3''sis of the mean and the variance depends on /3; however percentiles exist 
for cill /3. The percentile is the solution of the following equation in x:

r- /3(1 + t y
P = lo (1 + y + ty+^ 
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By the change of variables tt =  1 + y +  i, it is simplified as

P = 1 -  (:

that for fixed t,

1 X 1' 

( l + ( ) ( l - ( I - p ) W )
(1 - p ) i /0

As t tends to infinity, (p co with 0(t).
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Chapter 5

Data Analysis and Conclusion

In this chaptei', four different sets of data are studied for the purpose of illustrating the 
use of mean residual lifetime function as a criterion for aging. The first two sets are 
lifetimes of 75 Watt iDulbs produced in two different Turkish factories; the third one is 
the lifetime of Kevlar 49/Epox\'· Strands [2] (tested at 70% stress level), and the last 
one is the service time between failures of the air-conditioning ecpiipment in Boeing 
720 jet aircraft [8]. For this last set, the essential assumption is that after repair the 
ec|uipment becomes as good as new. The first three sets of data are examples of items 
with decreasing mean residual life, i.e., the items are a.ging in time. Converselj'·, the last 
data set is an example of exponentially distributed time between failures (lifetimes, in 
a sense). The reason for selecting decreasing mean resich,ial lifetime distributions is the 
greater importance of aging items in production environment than those with no aging, 
in terms of qualit}'·. The data are given in tables 5.1 and 5.2.

At this point it must be stated that data set 1 and data set 2 are ordered statistics 
taken from random samples, tested under .320 Volts and 286 Volts, respectivelj'·, voltages 
which are never encountered during normal usages of those bulbs. These high voltages 
are onl}'· for shortening the test period and observing a.ll of the bulbs’ lifetime, since 
under 220 Volts the lifetime of a bulb rna.}̂  be in 3Hiars. These two data sets are in fact, 
for the purpose of illustration rather tha.n making inferences on the lifetimes of l)ulbs 
in ordinarj^ uscige.
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Table 5.1: The Data Sets (description is given in the text)

Data Set 1 (min.) Data Set 2 (hr.) Data Set 3 (hr.) Data Set 4 (hr.)
295 750 1051 3
420 778 1337 5
420 865 1389 5
445 904 1921 13
450 956 1942 14
470 983 2322 15
470 988 3629 22
500 1000 4006 22
500 10.34 4012 23
502 1061 4063 30
525 1063 4921 36
540 1063 5445 39
550 1065 5620 44
550 1097 5817 46
555 1100 5905 50
555 1108 5956 72
560 1116 6068 79
570 1124 6121 88
580 1179 _ 6473 97
580 1210 ’ 7501 102
600 1214 7886 139
605 1222 8108 188
610 1285 8546 197
630 1297 8666 210
630 1308 8831
645 1308 9106
660 1380 9711
660 1399 9806
675 1415 10205
685 1466 10396
690 1494 10861
690 1533 11026
690 1533 11214
695 1580 11362
700 1612 11604
715 1698 11608
715 1698 11745
720 1765 „11762
720 1824 11895
725 1946 12044
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Table 5.2: The Data Sets Continued

Data Set 1 Data Set 2 Data Set 3
750 1946 13520
755 1968 13670
768 2005 14110
780 2005 14496
780 2005 15395
785 2264 16179
800 2314 17092
810 2319 17568
810 2332 17568
830 2458
840 

• 870 
870 
870 
885 
885 
890 
900
909
910 
915 
915 
915 
930 
950 
960 
960 
960 
960 
990 
990

1005
1005
1020
1050
1050
1080
1185
1200
1200
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The natural estimator for the mean residual lifetime function is:

e(i) =  -  t) ,
J=1

where S denotes the number of survivors at time t out of an initial population of size 
n, and {tj : j  =  1 , . . . ,  S} is the set of data points which are greater than t.

Since the first three data sets show decreasing mean residual lifetime, Gamma and 
Weibull distributions were fitted to them. Moreover they reveal the presence of a trun­
cation parameter, because the smallest value in the set is comparatively high. We fitted 
three parameter Weibull and Gamma distributions. In estimation procedure, we esti­
mated truncation parameter by the smallest data point (let it be .ri), then transferred 
the data to a new one by subtracting .ri from each data point. Then we fitted two 
parameter Weibull and Gamma distributions to the trcinsferred data set. We have used 
moment estimators.

For random variable X  distributed with Weibull distribution, let j  Ije the truncation 
parameter. Then the density function is:

/(.r; A, o;,7 ) = a'A"(.'c — /o?’ j  < x < oo, q > 0, A > 0 .

The interpretation of 7 can be some type of guarantee period, in our concern. Then 
we estimate it as 7 = a; 1. The first two moments of the distribution are:

T2 -£ ; ( X - .r i )  = y  I /( .Y -.rO  = A2

where F̂ . = F(1 -|- kfa).

On equating the first two sample moments to corresponding distribution moments 
as given cibove, the moment estimators become

H  = .I  _  ^  r ^ - F i  ^  ^2 (5.1)

In [7], the cv values versus the coefficient of variation (C.V.) are tabuhited; it is 
reproduced in table 5.3. So the estimation procedure is simplified by first finding an 
approximation for a from this table. This approxnnation is used i.o determine A from 
either of the equations in 5.1. It is then, improved by trial and error until laoth of them
gave the same result for A.
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Table 5.3; Values of Mode, Median and Coefficient of Variation for the Weibull Distri­
bution

o< C D " 3 “ 4
Mo Me C.V.

. 5 0 . 2 2 3 6 1 . 44 7 2 1 6 . 6 1 3 7 6 8 7 . 7 2 0 0 0 J -SHAPE - . 3 3 9 7 3 2 . 2 3 6 0 7

. 5 5 . 2 9 8 9 3 . 5 0 8 9 0 5 . 4 3 0 6 8 5 7 . 3 9 8 1 7 J-SHAPE - . 3 5 5 3 3 1 . 9 6 5 0 2

. 6 0 . 3 7 8 0 5 . 5 6 88 1 4 . 5 9 3 4 1 4 0 . 4 8 1 6 6 J -SHAPE - . 3 6 3 5 7 1 . 7 5 8 0 7

. 6 5 . 4 5 8 9 5 . 6 2 7 0 6 3 . 9 7 4 2 0 3 0 . 2 0 7 1 8 J -SHAPE - . 3 6 5 9 1 1 . 5 9 4 7 5

. 7 0 . 5 4 0 2 0 . 6 8 3 8 0 3 . 4 9 3 3 7 2 3 . 5 4 2 0 2 J-SHAPE - . 3 6 3 7 9 1 . 4 6 2 4 2

. 7 5 . 6 2 0 8 2 . 7 3 9 1 7 3 . 1 2 1 2 4 1 8 . 9 3 7 0 0 J -SHAPE - . 3 5 3 3 4 1 . 3 5 2 3 6

. 8 0 . 7 0 0 2 0 . 7 9 3 3 3 2 . 8 1 4 6 5 1 5 . 7 4 0 7 4 J -SHAPE - . 3 5 0 - 3 1 . 2 6 0 5 1

. 8 5 . 7 7 7 9 6 . 8 4 6 3 8 2 . 5 5 0 0 9 1 3 . 3 4 6 5 7 J-SHAPE - . 3 4 0 9 2 1 . 1 8 1 5 0

. 9 0 . 8 5 3 8 9 . 8 9 8 45 2 . 3 4 4 9 6 1 1 . 5 3 0 0 5 J-SHAPE - . 3 3 0 2 0 1 . 1 1 3 0 3

. 9 5 . 9 2 7 9 1 . 9 4 9 6 3 2 . 1 5 0 4 0 1 0 . 1 1 8 7 2 J-SHAPE - . 3 1 8 7 4 1 . 0 5 3 0 5

1 . 0 0 1 . 0 0 0 0 0 1 . 0 0 0 0 0 2 . 0 0 0 0 0 9 . 0 0 0 0 0 J -SHAPE - . 3 0 6 3 5 1 . 0 0 0 0 0
1 . 0 5 1 . 0 7 0 2 0 1 . 0 4 9 6 5 1 . 8 5 9 0 4 8 . 0 9 7 9 5 - . 9 9 0 7 4 - . 2 9 4 7 3 . 95 2 70
1 . 1 0 1 . 1 3 8 5 9 1 . 0 9 8 6 4 1 . 7 3 3 9 7 7 . 3 5 9 8 5 - . 9 6 9 9 2 - . 2 8 2 6 9 . 9 1 0 2 2
1 . 1 5 1 . 2 0 5 2 5 1 . 1 4 7 0 3 1 . 6 2 2 0 4 6 . 7 4 8 1 9 - . 9 4 1 9 9 - . 2 7 0 7 1 . 87181
1 . 2 0 1 . 2 7 0 2 7 1 . 1 9 4 8 8 1 . 5 2 1 1 3 6 . 2 3 5 7 1 - . 9 0 9 5 0 - . 2 5 8 9 4 . 8 3 6 9 0

1 . 2 5 1 . 3 3 3 7 5 1 . 2 4 2 2 3 1 . 4 2 9 5 5 5 . 8 0 2 1 5 - . 8 7 4 1 9 - . 2 4 7 4 4 . 8 0 5 0 0
1 . 3 0 1 . 3 9 5 8 0 1 . 2 8 9 1 3 1 . 3 4 5 9 3 5 . 4 3 2 2 6 - . 8 3 7 3 1 - . 2 3 6 2 4 . 77 5 72
1 . 3 5 1 . 4 5 6 5 1 1 . 3 3 5 6 0 1 . 2 6 9 2 0 5 . 1 1 4 3 2 - . 7 9 9 7 5 - . 2 2 5 3 9 . 7 4 8 7 3
1 . 4 0 1 . 5 1 5 9 7 1 . 3 8 1 6 9 1 . 1 9 8 4 4 4 . 8 3 9 2 3 - . 7 6 2 1 5 - . 2 1 4 9 9 . 7 2 3 7 5
1 . 4 5 1 . 5 7 4 2 7 1'. 42742 1 . 1 3 2 9 1 4 . 5 9 9 8 3 - . 7 2 4 9 5 - . 2 0 4 7 7 . 7 0 0 5 6

1 . 5 0 1 . 6 3 1 4 9 1 . 4 7 2 8 2 1 . 0 7 1 9 9 4 . 3 9 0 4 0 - . 6 8 8 4 8 - . 1 9 5 0 0 . 6 7 8 9 7
1 . 5 5 1 . 6 8 7 7 1 1 . 5 1 7 9 2 1 . 0 1 5 1 5 4 . 2 0 6 3 6 - . 6 5 2 9 6  ■ - . 1 3 5 5 1 . 6 5 8 8 0
1 . 6 0 1 . 7 4 3 0 0 1 . 5 6 2 7 3 . 9 6 1 9 6 4 . 0 4 3 9 6 - . 6 1 8 5 2 - . 1 7 6 5 7 . 6 3991
1 . 6 5 1 . 7 9 7 4 3 1 . 6 0 7 : 8 . 9 1 2 0 2 3 . 9 0 0 1 5 - . 5 8 5 2 7 - . 1 6 7 3 3 . 6 2 2 1 7
1 . 7 0 1 . 8 5 1 0 4 1 . 6 5 1 · · . 86 5 02 3 . 7 7 2 3 8 - . 5 5 3 2 4 - . 1 5 9 5 3 . 6 0 5 4 8

1 . 7 5 1 . 9 0 3 9 1 1 . 6 9 5 6 6 . 8 2 0 5 8 3 . 6 5 8 5 5 - . 5 2 2 4 5 - . 1 5 1 5 1 . 5 8 9 7 4
1 . 8 0 1 . 9 5 6 0 8 1 . 7 3 9 5 2 . 7 7 8 7 4 3 . 5 5 6 8 8 - . 4 9 2 9 1 - . 1 4 3 3 0 . 57 4 8 7
1 . 8 5 2 . 0 0 7 6 0 1 . 7 8 3 1 7 . 7 3 8 9 9 3 . 4 6 5 8 8 - . 4 6 4 5 9 - . 1 3 6 3 9 . 5 6 0 3 0
1 . 9 0 2 . 0 5 8 5 0 1 . 8 2 6 6 4 . 7 0 1 2 4 3 . 3 8 4 2 3 - . 4 3 7 4 7 - . 1 2 9 2 7 . 5 4 7 4 5
1 . 9 5 2 . 1 0 8 8 5 1 . 8 6 9 9 3 . 6 6 5 3 3 3 . 3 1 1 0 0 - . 4 1 1 5 0 - . 1 2 2 4 3 . 5 3 4 7 8

2 . 0 0 2 . 1 5 8 6 6 1 . 9 1 3 0 6 . 6 3111 3 . 2 4 5 0 9 - . 3 8 6 6 6 - . 1 1 5 8 6 . 5 2 2 7 2
2 . 2 5 2 . 4 0 0 8 4 2 . 1 2 6 5 0 . 4 3121 3 . 0 0 1 4 8 - . 2 7 7 6 2 - . 0 8 6 5 5 . 4 7 0 2 6
2 . 5 0 2 . 6 3 3 8 9 2 . 3 3 6 9 6 . 3 5 8 6 3 2 . 8 5 6 7 3 - . 1 8 9 8 3 - . 0 6 2 2 4 . 42791
2 . 7 5 2 . 3 6 0 1 3 2 . 5 4 5 1 1 . 25 5 3 9 2 . 7 7 3 3 2 - . 1 1 8 4 6 - . 0 4 1 3 6 . 3 9 2 9 1
3 . 0 0 3 . 0 8 1 1 9 2 . 7 5 1 4 4 . 1 6 8 1 0 2 . 7 2 9 4 6 - . 0 5 9 7 7 - . 0 2 4 5 0 . 3 6 3 4 5

3 . 2 5 3 . 2 9 8 2 2 2 . 9 5 6 3 0 . 0 9 1 9 6 2 . 7 1 2 0 7 - . 0 1 0 9 3 - . 0 0 9 3 3 . 3 3 8 2 6
3 . 5 0 3 . 5 1 2 0 6 3 . 1 5 9 9 7 . 02 5 1 1 2 . 7 1 2 7 3 . 0 3 0 1 3 . 0 0 2 9 2 . 3 1 6 4 6
3 . 7 5 3 . 7 2 3 3 6 3 . 3 6 2 6 5 - . 0 3 4 1 9 2 . 7 2 5 9 1 . 0 6 5 1 5 . 0 1 4 0 2 . 2 9 7 3 8
4 . 0 0 3 . 9 3 2 5 3 3 . 5 6 4 5 0 - . 0 3 7 2 4 2 . 7 4 7 3 3 . 0 9 5 1 8 . 0 2 3 7 6 . 2 8 0 5 4
4 . 2 5 4 . 1 4 0 0 8 3 . 7 6 5 6 4 - . 1 3 5 0 4 2 . 7 7 5 8 5 . 1 2 1 1 9 . 0 3 2 3 7 . 2 6 5 5 6

4 . 5 0 4 . 3 4 6 1 6 3 . 9 6 6 1 9 - . 1 7 3 3 8 2 . 8 0 8 1 1 . 1 4 3 9 0 . 04 0 02 . 2 5 2 1 3
5 . 0 0 4 . 7 5 4 9 0 4 . 3 6 5 8 0 - . 2 5 4 1 1 2 . 8 8 0 2 9 .1815.6 . 05 3 02 . 2 2 9 0 5
6 . 0 0 5 . 5 6 2 7 4 5 . 1 6 0 6 6 - . 3 7 3 2 6 3 . 0 3 5 4 6 . 2 3 5 5 9 . 0 7 2 4 5 . 1 9 3 7 7
7 . 0 0 6 . 3 6 2 3 7 5 . 9 5 1 6 0 - . 4 6 3 1 9 3 . 1 8 7 1 8 . 2 7 2 1 9 . 0 8 6 2 1 . 1 6 8 0 2
8 . 0 0 7 . 1 5 6 9 0 6 . 7 3 9 9 6 - . 5 3 3 7 3 3 . 3 2 7 6 8 . 29 8 47 . 0 9 6 4 5 . 1 4 8 3 7
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Table 5.4: Estimated values of parameters

Data Sets
1 2 3

Weibull Gamma Weibull Gamma Weibull Gamma
2.44 5.22 1.55 2.29 1.75 2.9

0.00193 0.0113 0.0013 0.0033 0.000115 0.000374
295 295 750 750 1051 1051

cx
A
7

For Gamma distribution, with truncation parameter 7 ,

\<=<(x -
f (x ;  X, a, 7 ) = -----^ ^ ------------ j  < X < 00, a- > 0, A > 0.

As explained before, 7 = ,Ti . The first two moments are:

E ( X - , i )  = j  V ( X - x , ) = §

On equating the first two sample moments to corresponding distribution moments, the 
moment estimators become

A =  ---- -—  end a =  \{x -  o;i) =  ------ ------

The results cire given in table 5A. As it can be observed from this table, the shape 
parameters are strictly greater than 1, so the items are aging in time.

First, to simplif}  ̂ the calculations, the shape parameter for Gamma distribution is 
rounded to the nearest integer and the results obtained in Chapter 2 are applied, for 
finding the mean residual lifetime function. The reliability and MRL functions are 
plotted in figures 5.1 to 5.2, 5.3 to 5.4, and 5.5 to 5.6 for the data sets 1,2 and 3, 
respective!}'·. The empirical reliability function is found from the following equation:

5”
n

where S and n are as defined before.

Moreover, in the graphs of e{t) versus i, the upper bound (UB) and lower bound 
(LB) are found to be the approximate 95 % confidence limits as follows:

UB =  +

LB = e ( t ) - 2

V s  
VO 
Vs ’
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R(f)_WeIbull R(f)_Gammo R''(l)

Figure 5.1: The fitted and empirical { R { t ) )  reliability functions for Data Set 1
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- -  UB - -  LB e - ( t ) e(t)_Garnma

e(t)_Weibull

Figure 0.2 : The fitted Gamma and Wohbull e(t) and the empirical e(i) for Data Set 1
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R(t)_Weibull R(t)„.Garnma ’~~~· R' (̂t)

Figure 5.3; The fitted and empirical ( R { t ) )  reliabilit}'· functions for Data Set 2
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-....... UB LB e"(t) e(i)_Gamma

e(t)_Weibull

Figure 5.4; The fitted Gamma and Weiljull e(t) and the empiriccil e(it)for Data Set 2
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(Thousands)

R(t)_Weibull R(t)_Gamma -----R"(t)

Figure 5.5: The fitted and empirical reliability functions for Data Set 3
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UB L.B e"(t) e(t)_Gamma

e(t)_WeibL·ill

Fi'nu'c 5.G: The fitted Gamma and Weibull e{t) and the empirical e{t) for Data Set 3
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where s(t) is the estimated standard deviation of the residual lifetime at t, i.e.

s(t) =  (S -  1)-· ¿1*,· -  e (t ) f

In figures 5.2 and 5.4, it can be seen that the theoretical values for Gamma distri­
bution underestimate the empirical mean residual lifetime (MRL) function because we 
underestimated the shape parameter for the data sets 1 and 2 bj'̂  rounding them off 
to the nearest integer. The corrected graphs of e(i) versus t for Gamma distribution 
are shown in figures 5.7 and 5.8 for data sets 1 and 2, respectively. In those graphs, 
theoretical and emprical values fit better.

The,last data set was fitted a Gamma Distribution using MLE’s in [8] without 
assuming a truncation parameter, and a and A were found to be 1.06 and 0.0156, 
respectively. So Ave can consider this set as a sample from an exponential distribution 
with parameter 0.0156. The reliabilitj'· and MRL functions are plotted in figures 5.9 
and 5.10. The reliability plot fits well and this is supported Iw MRL plot which remains 
quite constant in time.

Ill order to test the goodness of fit, Kolmogorov-Smirnov statistic D„ is used. It is 
defined as [12]

= ,sup |R„(i) -  J?,(t)| ,
t

where n is the sample size. The distribution of is independent of the cdf F{t) (=  
1 — R{t)) that defines Hq. Accordingljq the acceptance limits for the test of Goodness 
of Fit are tabulated in [12, page 580]. The critical region > Dn,a is used to test F(t) 
against the alternative that the cdf is riot F{t), where is the constant corresponding 
to the significance level a. The values of test statistic are given in table 5.5 for all the 
data sets, for a = .05. With those values both Weibull and Gamma distributions are 
accepted for the first three sets, and the one whose value is smaller, is regarded 
as the better fitting distribution and marked with a star. With this criterion, in all of 
them Weibull distribution came out to be better. But we can comment that for the 
second data set, considering the MRL plot (figure 5.8), Gamma distribution might be 
preferred, liiecause e(t) does not decrease, but rather fluctuates a.fter some time, and 
this obeys to our results for Gamma distribution in Chapter 2. In fact, for this set the 
Kohnogorov-Smirnov test statistics for the two disfributions are very close to eachother. 
Finallj'·, for the last set Exponential distribution is also a.ccepted.

Some data cuialysis is performed and the effect of truncating the range of random
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-- UB LB e -( t ) e(t)_Gamma

Figure 5.1: The fitted Gamma e(i) and the empirical e(t) for Data Set 1 (real shape 
parameter)
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tirne(hr.)

- UB LB e - ( 0 e(t)_.Gamma

Figure 5.8: The fitted Gamma e(f) and the empirical e.(t) for Data Set 2 (real .sliape 
parameter)



250
time

R'-(t) R(t)_Exp.

Figvire 5.9: The fitted and empirical reliability function.s for Data Set 4
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Figurci 5.10: The?, fitted Exponential e(i) and the empirical t { t) for Data Set 4
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Table 5.5: Kolmogorov-Smirnov Te.st Statistic Values

Data Sets
1 2 3 4

Weibull* Gamma Weibull* Gamma Weibull* Gamma Exponential*
Dn 0.0723 0.0973 0.081 0.091 0.0884 0.1098 0.0835

Dn,.Oó 0.15 0.19 0.192 0.27

variables on e(i) is demonstrated in [15].

We can then, conclude that for the first three data sets, items are aging in time, 
and exponential distribution cannot explain the behavior of the bulbs’ lifetimes. From 
the graphs of e(t) versus i, it can be seen that the theoretical curves fit the ernprical 
resuhs. C|uite well. In relevant situations such as this, MRL function being one of the 
distribution identities, can also be used as a diagnostic procedure to make a distinction 
among different distributions, together with the reliability function.
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