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ABSTRACT

THE DISTRIBUTION OF THE RESIDUAL LIFETIME
AND ITS APPLICATIONS

Mine Alp Caglar
M.S. in Industrial Engineering
Supervisor: Prof. Mohammed M. Siddiqui
March, 1991

Let T be a continuous positive random variable representing the lifetime of an en-
tity. This entity could be a human being, an animal or a plant, or a component of a
mechanical or electrical system. For nonliving objects the lifetime is defined as the total
amount of time for which the entity carries out its function satisfactorily. The concept
of aging involves the adverse effects of age such as increased probability of failure due
to wear. In this thesis, we consider certain characteristics of the residual lifetime dis-
tribution at age t, such as the mean, median, and variance, as describing aging. The

following families of statistical distributions are studied from this point of view:
1. Gamma with two parameters,
2. Weibull with two parameters,
3. Lognormal with two parameters,

4. Inverse Polynomial with one parameter.

Gamma and Weibull distributions are fitted to actual data.

Keywords: Reliability, residual life distribution, mean, variance and percentile of

residual life, Gamma distribution, Weibull distribution.
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OZET

ARTAKALAN OMUR DAGILINI
VE UYGULAMALARI

Mine Alp Caglar
Endustri Mithendisligi Bolumu Yuksek Lisans
Tez Yoneticisi: Prof. Mohammed M. Siddiqui
Mart, 1991

T bir birimin 6mruni gosteren strekli bir rassal degisken olsun. Bu birim bir
canli olabilecegi gibi, mekanik va da elektronik bir sistemin bilegeni de olabilir. Cansiz
varhklar i¢in omur, birimin istenen dizeyde iglevini strdirebildigi toplam zaman mik-
tar1 olarak tammlanabilir. Yeglanma kavrami, aginmaya bagh olarak artan bozulma
olasiligr gibi zamanin olumsuz etkilerini igerir. Bu ¢aligmada. ¢t zamaminda artakalan
émriin ortalama, ortanca ve varyans gibi bazi ozellikleri, yaslanmayr tammlamak tizere

cle alinmistir. AgaZidaki dagilimlar bu agidan incelenmistir:

1. Iki parametreli Gamma,

o

. Iki parametreli Weibull,

oo

. Iki parametreli Lognormal,

4. Bir parametreli Inverse Polynomial.

Gamma ve Weibull dagilimlari, gergek verilere uygularmusgtir.

Anahtar sézclikler: Guvenilirlik, artakalan 6miir dagihmi, artakalan émrin orta-

lama, varyans ve ytzdelikleri, Gamma dagilimi, Weibull dagilimu.
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Chapter 1

Introduction

1.1 The Concept of Reliability

Reliability may be defined as the capability of a piece of equipment not to break down
while in operation, or quality over the long run. Reliability and quality concepts are
usually used together, but they are essentially different from each other. From the pro-
ducer’s point of view, the quality of a product is assessed against certain specifications
or attributes, and, if they are met, the product is classified as good and is then delivered
to the customer. A good product is considered to be reliable, i.e., capable of doing its
job without failure. On the other hand, from the customer’s point of view, the product
is good only if it is reliable (i.e. does its job satisfactorily) over a period of time. We
therefore must bring a time-based concept of quality in addition to an inspection-based
concept of quality. The inspector’s concept is not time dependent; the product either
passes or fails a certain test. On the other hand, reliability is concerned with failures in

time domain.

The reliability of a piece of equipment in most cases has vital importance to the
user and by this means to the manufacturer, in terms of competetion in the market
and decreasing the warranty costs. Hence the price of unreliability is very high. Here,
the term ‘equipment’ may be applied to a simple device such as a switch, a diode or
a connection, or it may be a very complex machine, such as a computer, a radar, an

aircraft or a missile.



Reliability is, then, concerned with failures of items. We therefore need to under-
stand why an item fails. Failures can be classified into three catagories [4]. First, the
failures which occur early in the life of a component are called early failures and in
most cases result from poor manufacturing and quality control techniques during the
production process. Early failures can be eliminated by the so- called ‘debugging’ or
‘burn-in’ process. The debugging process consists of operating a piece of equipment for
a number of hours under conditions simulating actual use. When weak, substandard
components fail in these early hours of the equipment’s operation, they are replaced by
good components, and when assembly faults show up, they are corrected. Only then
is the equipment released for service. The burn-in process consists of operating a large
number of components under simulated conditions for a number of hours and then using

the components which survive for the assembly of the equipment.

Secondly, there are failures which are caused by wearout of parts; wearout failures
are a symptom of component aging. The age at which wearout occurs differs widely
among components. In most cases wearout failures can be prevented. For instance,
in repeatedly operated equipment, one method is to replace at regular intervals the
accessible parts which are known to be subject to wearout, and to make the replacement
intervals shorter than the mean wearout life of the parts. Otherwise, when the parts are

inaccessible, they are designed for a longer life than the intended life of the equipment.

Thirdly, there are so-called chance failures which neither good debugging techniques
nor the best maintanence practices can eliminate. These failures are caused by sudden
stress accumulations beyond the strength of the component. Chance failures occur at
random intervals, irregularly and unexpectedly. It is not normally easy to eliminate
chance failures. However, reliability techniques have been developed which can reduce
the incidence of their occurence and therefore reduce their number to a minimum within
a given time interval, or even completely eliminate equipment breakdowns resulting from

component chance failures.

Relability theory and practice differentiates between early, wearout and chance fail-
ures for two main reasons. First, each of these types of failures follows a specific statis-
tical distribution and therefore requires a different mathematical treatment. Secondly,

different methods must be used for their elimination.

Defined mathematically, reliability is the probability that no failure will occur in a
given time interval of operation. In notations, let T be the positive random variable

denoting the lifetime (or time between failures) of an item and F be its cumulative
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distribution function. Then the reliability of the equipment (item) corresponding to a
duration t > 0 is denoted by R(t) and defined as

R(t)=P[T > =1 F()

1.2 The Scope of the Thesis

There is a great amount of literature on the subject of reliability because of its depth
and breath. As discussed in section 1.1, there are three types of failures. The math-
ematical analysis varies with the type of the failure, and for each type we can define
a number of functions, quantities, paraineters, etc. In this thesis we confine ourselves
to a consideration of the wearout failure of a piece of equipment which consists of a
single component and concentrate on the related variable: Residual Lifetime. It may
be mentioned that the failure process itself may be quite complex and its mathematical
description very difficult. Consequently, we only deal with a statistical summary of the
failure process in terms of a distribution function F'. All concepts pertaining to failure
process are, then. in terms of F. Among these are: reliability, conditional reliability,
hazard rate, and mean residual lifetime. We have already defined the reliability function
R(t) =1 - F(t). We now introduce the other functions. The conditional reliability of

a component of age ¢ is
R(t+ 2)
R(t)

when R(t) > 0, and the conditional probability of failure is

R(z|t) = >0 ,

F(t+=2) - F(t)
R(t)

1— R(zt) =

Then the hazard rate 1(t) at time t is defined as follows [3]:

1 F(t+2)—F(t)
h(t) = limg — R(t)

If the probability density function f(¢) exists, i.e., f(t) = F'(t) = —IR/(t), then

h(t) = jf?%%

The hazard rate is widely used and studied in determining whether the item is
wearing out, in other words, aging or not. If the hazard rate for a lifetime distribution

is monotonically increasing, we can say that the item whose lifctime is distributed with

3



that distribution wears out in time. In [3], a total seven criteria for aging were proposed.

First let us define the related functions.

The specific aging factor A(¢, s):

The specific interval-average hazard rate H(t,s):
s+t )
H(t,s)=1t"" / h(z) dx

Then the hazard rate average can be defined as H(t,0). The criteria are:

1. Increasing specific aging factor:

A(tQ,S) Z .4(7.‘1,5) Vs 2 O;tg 2 tl Z 0.

o

Increasing hazard rate (IHR):

]'L(tg) Z Il(tl) vtg 2 tl 2 0.

3. Increasing interval average hazard rate:

H(tz,s) > H(t1,8) Via >t >0,s > 0.

4. Decreasing mean residual lifetime:

C(tg) S C(fl) Vtz :/_ tl 2 0.

Increasing hazard rate average:

t

H(t2,0) Z H(tl,O) V'l‘g Z tl Z 0.

6. Positive aging:
A(t,s) > A(0,s) Vi, s > 0.



7. Net decreasing mean residual lifetime:

e(t) <e(0) Vt>0.

From probability theory, we know that there are several functions which completely
specify the distribution of a random variable. Examples of these are probability density
function, characteristic function, Mellin transform and cumulative distribution function.
However, in reliability context, five mathematically equivalent, popular representations
have evolved: probability density function, reliability, hazard rate, cumulative hazard
function and mean residual lifetizne function. Each of these functions completely de-
scribes the distribution of a lifetirme and any one of the functions determines the other

four. The relationship between them can be summarized as follows [13]:

Jit) = —R(t)
Hit) = —logR(t)

kit) = H'(t)

i ® R(2) 4.

£0t) . R dz

q(t).e(t) = 1+ €'(¢) (1.1)

The distributions then are classified in terms of those functions so that we can
determine whether the item is wearing out or not. Since the aging criteria defined
above are also in terms of them, they represent classes of distributions, too. The classes
are defined exactly; first, new better than used (NBU) and new worse than used (NWU)
distribution classes are defined in terms of R(¢). A distribution is NBU (NWU) if and

only if it is positively (negatively) aging, as defined in criterion 6.

Increasing hazard rate (IHR) was discussed above. Similarly, decreasing hazard
rate(DHR) can be defined in terms of h(t). Again, similar to IHRA, decreasing hazard
rate average (DHRA) can be defined in terms of H(t,0). Moreover, increasing mean
residual lifetime (IMRL) and decreasing mean residual lifetime (DMRL), new better
than used in expectation (NBUE i and new worse than used in expectation (NWUE)
classes are defined in terms of e(:); DMRL is criterion 4 and NBUE is equivalent to

criterion 7 above, and IMRL and NWUE are their analogues for a negative aging item.

In addition to the aging criteria defined up to now, some other criteria can also be

defined [9]; a distribution is called new better than used in hazard rate (NBUHR) if and
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only if
h(0) < h(t) Vt>0 ,

and is called new better than used in hazard rate average (NBUHRA) if and only if

Rh(0) < H(t,0) V> 0.

In terms of e(t), a distribution is called decreasing mean residual life in harmonic
average (DMRLHA) if [(1/t) [g(1/e(u))du] is decreasing in ¢; it is called harmonically
new better than used in expectation (HNBUE) if [° F(z)dx < e(0)exp(—t/e(0)) for
t > 0.

Some implications exist among different classes of distributions, and hence among
different aging criteria. These can be found in the mentioned references; [5] and [9],
but from the point of view of this thesis, it can be mentioned that Bryson and Siddiqui
(5] have shown that IHR implies DMRL; and the reverse is not true. The class of
IHR distributions therefore forms a proper subset of the class of DNRL distributions.
What is more, an essential difference between the hazard function and e(t) is that the
former accounts only for the immediate future in assessing the event component failure,
whereas the latter accounts for the complete future {14]. This is readily seen from
the expressions of h(t) and e(t). It explains why a component can experience positive
aging, in the sense that its corresponding MRL function is decreasing, and yet have zero
hazard, because its failure cannot occur in the immediate future. Such a situation is
exemplified by the uniform distribution in [«, b] for which the hazard function and the
MRL function are shown in figure 1.1. In a reliability context, the component is clearly
wearing out. On the other hand, the hazard function is zero and gives no indication.
Also the actual age t, cannot be deduced from the hazard function prior to time a. So
the MRL function provides a more descriptive measure of an aging process than the
hazard rate function. Furthermore, the MRL function is very useful in decision making

for replacement policies and in solving burn-in problems [6].

In statistical practice, the median and other percentiles are used as well as the
mean, for example, in situations where the underlying distribution is skewed. So it
should be of interest to study the median residual life function or more generally the
a-percentile residual lifetime function. In this case, classes of distributions analogous to
the previously described ones can also be defined [10]; an example is ‘new better than
used with respect to the a -percentile’ NBUP-«. In cﬂ(’)mparison to a-percentile residual

lifetime, MRL has some theoretical and practical shortcomings. In an experiment it

6
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a) b)

Figure 1.1: a) MRL function, and b) Hazard function of the uniform distribution with
probability mass in [a, D)

is often impossible or impractical to wait until all items have failed. Estimation of
empirical MRL 1s not straight forward in this case. However, if we consider for example,
the median residual lifetime. calculation of this statistic with censored data posseses no
difficulty as long as at least nalf of those remaining have recorded failure times. Moreover

in some instances, MRL may not even exist [18].

In this thesis. residual :fetime distribution is discusssed in terms of its mean, vari-
ance and percentiles, and behavior of those quantities as ¢ tends to infinity, for certain
distributions. Lawless [11] provides a relationship between the asymptotic value of e(t)

and the probability density function f(t):

1
lim e(t) = lim ——4————
(= oo log[£(2)]
Moreover, Calabria and Pulcini [6] provide a relationship between the asymptotic be-
haviors of e(t) and h(t):

1
lim e(t) = T
tl}g 6( ) ].il'l’l[—'_\o h(t)

They then conclude that lim,_, €'(t) = 0, by referring to equation 1.1 which is due to
Park [17). In our study of asymptotic behavior of MRL, we have additionally found the

order of convergence to these limits.

Because of its simplicity. Exponential distribution is widely used. This distribution
has memoryless property which is equivalent to no aging in reliability context. However
there are situations where the property of no memory (equivalently no aging or wearout)
does not agree with the physical realities, as is the case when T represents a service

time or a repair time, or when fallure is due to wearout. Weibull and Gamma are

7



two typical distributions which describe the lifetime of an aging piece of equipment
when the corresponding shape parameter is greater than 1. Hence they are investigated
in Chapters 2 and 3. Lognormal distribution whose MRL function is not monotonic
and the Inverse Polynomial Distribution whose MRL function is linearly increasing are
studied in Chapter 4. Finally, in the last chapter, several sets of data are analyzed to
illustrate the use of the properties of residual life distributions, such as the mean and
the variance, for selecting one or more theoretical distributions which adequately fit the

data.



Chapter 2

Gamma Family of Distributions

with Integral Shape Parameter

In this chapter, random variable T (the lifetime of an item) is considered to be dis-

tributed with Gamma Distribution which is defined by the following density function

/\(_\",CY—I -z
fr(z) = ﬁ— Vo >0, >0,A>0

In this expression A is the scale parameter and « is the shape parameter. In general.
they both take positive real values, but for simplicity and gaining an insight into the
problem in the first place, « is taken as an integer and is replaced by n in this case. In
fact, there are applications of Gamma distribution with integer shape parameter. For
example it 1s suitable in situations where shocks arrive by a Poisson process and failure
of the equipment occurs exactly at the k" shock; then the time between failures are

distributed with Gamma distribution with shape parameter k.
2.1 Hazard Rate and Hazard Rate Average Func-
tions

The hazard rate function for o > 0, A > 0 is

Aagx—1,—At

f(t) NE)
h(t) = 3 =
= Ry T e

9



Then
[h(2)]™ = / (z/t)* e~ @1 dy
t
Putting u=x-t
[h()] = / (14 u/t) e du
t

So h(t) is decreasing for 0 < o < 1 and h(t) is increasing for o > 1. That is, Gamma
family of distributions are decreasing hazard rate (DHR) for 0 < « < 1 and increasing
hazard rate (IHR) for o > 1. We can conclude that the distribution is also DHR A for
0 < a<1andIHRA for a > 1.

The hazard rate average function is as follows:

H(t,0) = (1/15)/; h(z)de = _@Q

2.2 Residual Lifetime Distribution

The density for residual lifetime is:

fr(z +1)

f’l‘—t(fb‘) = RT(t)

(for the rest of the text, the subscript T will be supressed).

2.2.1 The Properties

For the Gamma Distribution with integer shape parameter n the density of the residual
life time distribution is:

/\n(x + t)n—lc—/\(a;+t)
(n—1)! Thod Qe

froi(z) =

because (for n integer),

O )\":7:"‘16”’\‘” n-1 (/\t)kc—,\t

R(t):/ AT e

Ji (n—1)! her S 5
The density function simplifies to
/\n(,L + t)n—-‘le—,\:u

(n— 1)l ypod G

f.’l‘—t(fb‘) =

10



The moment generating function

_ o es:z:/\n(,v + t)n—l —-Az dz
MO S D O

which by integration by parts, is simplified as follows:

-1 [(A= )]k
(,T/}—s)n ;::é ki :

son—1 (A4)°

k=0 k!

M(s) =

So the expectation of residual lifetime e(?):

Zn 1 (n— L)\" 1k

e(t) = M'(5)|s0 = — L_L (2.1)
The second moment:
n—-1 (n=k)(n— k+l)\" 24k
k=0
M ()] o = Yo
As a result the variance of residual lifetime v(t):
n— l(n E)(n—k+1)\k=2¢F ri— 1 (n— A)\k 14k
o(t) = = Ve (Z x ! (2.2)
vise G i uL)Z

The percentiles of the residual life distribution at age ¢ can be found as follows.

Since
co /\"(z+t)”_le_’\(z+t)dz
. _* (n-1)!
P[T—t>z|T >t = L :
k=0 |1

€,. the p* percentile, is the solution of the following equation in a:

1—-p = P[T—-t>c|T >t

e—Ne yon-1 (zt)k Nk
= = (2.3)
n—-1 ()% T
Zk:()

k!

This equation cannot be solved exactly for an arbitrary integer n. That is why the

asymptotic behavior will be discussed in the next section.
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2.2.2 Asymptotic Behavior of Mean, Variance and Percentiles

of Residual Lifetime
Lifetime distribution with integer shape parameter

For n=1, the residual lifetime distribution is reduced to an exponential distribution, so

e(t)y=1/A Vt>0.

For n=2, from equation 2.1, ¢(t) = (21/;:;” = A(1i/\i) + 3. Then, at t=0,e(t) = 2/A
and as t — coe(t) = 1/A + O(1/t).

For n=3, from equation 2.1,

C 2t /2. 4 2/\
e(t)_3/A+t+\t/2_ + 2\t 1

+
Then, at t=0,e(t) = 3/ and as t — coe(t) =1/A + O(1/¢).

T+ MA(A)Z/2 T M2+ 20+ (A)?) A

For n € Z*, from equation 2.1,
n/A+(n =t/ 4+ (n —2)A2/2+ - + X271 (- 1)!
e(t) = 14+ At/ 4 A282/20 f -  n=Lgn=1/(n — 1)]
Then, at t=0,e(t) =n/Aand ast — oo e(t) = 1/A 4+ O(1/t).

Similarly, for the variance starting with n=1, 2 and 3:

For n=1, v(t) = 1/AVt > 0.

For n=2, from equation 2.2, at t=0 v(¢) = 2/\? and as t — co v(t) = 1/A\? + O(1/t).
For n=3, from equation 2.2, at t=0 v(t) = 3/\? and as t — co v(t) = 1/A\2 + O(1/t).

Forn € Z* from equation 2.2, writing the smallest and highest orders of t with their
coefficients in the summations:

(71(7‘{-{-1) SR + (/\t)n—l 2,\”"‘3t”~1) . (n\z + + (\’2(11—2)1"2(11—1))

) _ A2 {(n=1)!  (n-1) w o ((n=1)1)2
U(t) o l (Ae)2(n=1) - )
SR (TS
we obtain et
A2 n-1)12
v(t) = ,\Q[yf-m?:]-z

L (YT
Th(ﬁll, at t = 0 U(t) = 'I'L//\2 and ast — oo U(t) = 1/)\2 + O(]_/t)) ])CC'dUSC
1 (=14 B
v(t) — 5 = 2,1(_”21,,)'_(2 DL O(1/t) for large t.

7 R T
A LA+ Teor

12
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As stated in the previous section, the percentiles must also be studied for large ¢.
Forn=1, & = —log(l —p)/X. Let us denote the p** percentile corresponding to the

residual lifetime with shape parameter n as £,(n).

Then, for n = 2 from equation 2.3,

e 01+ (6(2) + 1))
14 At

l—-p=

3y simplification, the following is found:

ép( ))

/\€P(0> log(1 + + A&p(1)

But, for large ¢, the denominator of the second term in the logarithmic function also

kecomes large and the approximation log(1l + @) = @ can be used. So for large t,

&2 -

(1)

&(2) = &(1) + O(1/1)
For n = 3, £,(3) can be found in the same way as

&(3) = &(1)[1 + 2/t + O(1/¢%)]

For arbitrary n, taking logarithm of both sides of equation 2.3,

Ma +t (A t At At
Mott) | O+ o) el

1! (n—1)! |- loglL+ 3+

1! (n — 1)!]

leg(l—p) = —da+log[l+

Ev simplification and by writing the smallest and the highest orders of t in the summa-

r:ons, we get

! A$+(L§E+A2wt+...+%ﬁ
v = < log[l + oF M_—l L4 e1)
' ALt /2 oot (n—-1)!

T hen, using the approximation log(1l 4+ ) = @ as we did for n = 2 for large ¢, we have

x4+ A2t 24+ ()T 21:/(17 - 7)'
1+ M+ +(/\t)n L/(n

R

67) )

Bt for large t, the last terms in the numerator and denominator respectively dominate,

= that

(f:

(M) %z /(n - 2)!
o1y T &

IIZ

T

13



This gives

m[l—n

-1,

e ETAC

or finally, .
n —

1/¢?

—1yoa/m)

The last equation is written by the identity 2= = 72, z* for sufficiently small z > 0.
Now 2 stands for £,(n), so for large t, £,(n) = €,(1) + O(1/¢).

=&+

These are interesting results, because this means that if an item whose life distri-
bution is defined by a Gamma Distribution (with integer shape parameter) survives a
long time, then it behaves asymptotically as if it has an exponential residual life time
distribution, i.e., it behaves as if it does not age any more. Maoreover, for n € {1,2,...}
it can be concluded that both ¢(t) and v(t) are decreasing functions of t. And for large

t,the order of decrease is O(1/1).

Generalization to real shape parameter

The mean residual lifetime in general is

o(t) = V—';zf—(%)—fll _t . (2.4)

The relationship between the hazard rate and e(t) is given in [16] for the Gamma

distribution as one of its characteristic property.

By writing the density and the reliability functions expliciziy in 2.4 and by simplifi-

cation, we get
ooa:ae—,\a: 1z
e(t) = ft—m
' ftw xa_le—,\m

After this point, we apply integration by parts to the integral in the numerator, and

—t

calling the integral in the denominator I;, the result in terms of I only, is:

1 v — )| + t¥e M — \t]
e(,t)zx-i-(ﬂ )‘J’/\Ile 1

(o5

Now, let I = [7" 2% %™ da and apply integration by parts several times:

1) x— P - S AL IO RYO S At
€(t) = l + (0;1\); : + ; ])2&? He I3 - (o=l e e I
TN toa=1 f (a — 1)eM,
Finally, for large t, . ) ) )
ar pu—
t - = O = - O —

14



as in the case of integer shape parameter.

The variance for the general case is studied in the same manner. It is explicitly:

v(t) = E[T*T >t]— E*T|T >t
[t f(z)dz (ft v f(z) dz)?

R(t) R2(t)
Putting the expressions of R(t) and f(z),and applying integration by parts several times,
we get
(a—l)(a—?)(a—S)t°+16'\tI _ g(a_z)(a-l)atﬂe"‘f
v(t) = = + A - A 2
: \2 e2M ]2
so that

1 O(t* %) 1
T2 O(t2e-2) Y

Porcentiles of the residual lifetime distribution can be obtained in the same way as
the percentiles for integer shape parameter. Let n < o« < n 4+ 1. Then the real shape

parameter version of 2.3 1s

- /\a( _l_t)or -1 -\z+t N\ za—lg—cz )
L-p= (/x I'a) dz) /(/ I(w) dz)

Putting u = z + t, and simplifying the righthand side, we obtain

o a—-1,-\u
Jeriu® e " du

[2 zele=2 d:

l—p=

By integration by parts several times, it is found that

(:L:-i-t)’-"—i\e"»\(::-%t) + (a—l)(:t+t)/\<;-2e—>‘(z+t) Fod (e=1).. (:v ln+JI]
tn—l\e—z\t + (a—l)t:‘;?e—'\‘ 4+t (a=1)..(a=—n+1)]h !

An—1

l—p=

where

= \

L, = / uS e du
r+1
= \

I, = / u e du
{

Let’s call the numerator of last equation as ¢ and the denominator as b . Then taking

the logarithm of both sides,
log(1 —p) = —A(z +t) + log(e*®+a) + At — log(e*'h)

By rearranging the logarithm terms on the righthand side and writing the smallest and

highest orders of ¢ in the summations,



_ . . a—~1)wt® 2/ A4+ (a—1)...(c— Mz+t) 1, /An—1
log(1 - p) = =Xz + log[1 + )t"‘t—l//\/+T-+-(*-c£—l)l..).(a(-—nij)le)'\iIg/,\"‘ll/ )

Because, for large t, the algebraic term inside the logarithm function in the last equation

becomes small; we can use the approximation log(l + ) = z. As a result,

1%

(a=1)zt* =2 /A4 (a=1)...(a=nt1)eMz+ [, /An-1 +§p(1) .

1
T= t5=1 [\t (—1)...(—nt 1) e I JAn—1

Moreover for large ¢, the highest orders of ¢ are the dominating terms in both the

numerator and the denominator, so that

o (e =1ate?/)
TEN T ey el
or ( )
a—1)
e s ven &(1)
and finally X
=1+ 52+ 0(1/1)]6(1) YVa >0

At

So, all results pertaining to integer shape parameter case are also valid for real shape
parameter. Moreover, these results suggest that, in model selection we have to study
the MRL plots for relatively small ¢, in order to discriminate between different shape
parameters of Gamma distribution, because for large ¢ they all converge to 1/A and thus
discrimination becomes difficult. What is more, the results can be used in debugging
or burn-in processes. For example, some trade off can be found in terms of the testing
period; the MRL of the items decreases when they are debugged, but on the contrary

the residual lifetime becomes more stable in terms of both its mean and the variance.
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Chapter 3

Weibull Family of Distributions

In this chapter, T 1s considered to be distributed with Weibull distribution which is

defined by any of the following three functions:
F(t)y=1—¢" 0" | R(t)=e " |

ancd

() = ad(At)* e @ > 0,0 >0,¢t >0

3.1 Hazard Rate and Hazard Rate Average Func-

tions

The hazard rate function,

()

=L = d(A) a> 0,0 >0
70 aA(At) a>0,A>0 ,

h(t) =
and the hazard rate average function,
1
H(t,0) = (1/t)/ ha) de = A"
0

It can easily be scen from the above equations that Weibull Distribution is increasing

hazard rate (average) for o > 1 and decreasing hazard rate (average) for 0 < « < 1.



3.2 Residual Lifetime Distribution

3.2.1 The Properties

The residual lifetime density:

fa+1) _ adi(z +)mle P+l

froz) = R(t) e— (20>

The moment generating function is

[ et [ Mz 4 1))o e PE+II" N o da:
e—(A)?

M(s) =

. . . . ) . .
by using the identity e* = 322, & and by making a change of variable u = [A(z + t)]%,

we get
LU Tev (dy

M(s) = S >/ Ay

I'(i+1)
Let
I(a.2) =/' u* e du
Then i/ (1))
Ie/a+ 1, (At
M(s )_ (A)= Z( /) Ft+1)
and

D(1 + 1/a, (A))
/\6_(\t)

e(t) = M'(8)]s=0 = —t

The second moment is

AUT(1+ 1/a, (\)*)  T(1 + 2/a, (M))
Ae—(A)* /\26—(,\t)° ?

M(8)] o = 1 —

so the variance

D(14+2/a,(At)*)  TH141/a,(At)*)
\2e-(Ao)= - \2e—2(M)=

v(t) = (3.1)

The pt* percentile £, is the solution of the following equation in 2:

Ji ey + )bl dy

p=P[T-t<z|T > pGnE
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Evaluating the integral in the last expression by putting v = [A(y + t)]*, we get

e~ (A% _ o—[A(z+))*

p=

e(=At)= ’
and finally
log(1l —p).1/0 ‘
@:ﬂl——%gplr/—t (3.2)

3.2.2 Asymptotic Behavior of Expectation, Variance and Per-

centiles of Residual Lifetime Distribution

Att=0, e(t)= Efl—"f\]bj, which is the expected value of T. For £ > 0,

oo DO+ Ve, 8

C(') - /\e—(/\i)c‘ ) (3.3)

and in open form, I'(1 + 1/«, (A)*) = [Tys w'/*e* du. By integration by parts, this

can be reduced to

(e ]
T(1+ 1/a, (A\)™) = Ae=00" 4 / =" da (3.4)
At '
Let I} = [0 e ™" da. I cannot be evaluated but an approximation for large ¢ can be

found. By integration by parts, it can be shown that

—( )™ -1 —(Ae)»
& Qv (&

1-— <L £ ————
a(/\t)“"l[ a(,\t)‘*] == a(At)ent

Then, for large ¢,
-(A)®

B a(At)e-1

By putting this first in equation 3.4, then in equation 3.3, and by simplification,for large

L [1+0(1/t%)] (3.5)

t, we obtain:

1
(t) = o

This last expression is valid for large t only, but it is much more practical for computation

[1+0(1/¢%)]

than equation 3.3.

So
0 for a>1

oo for 0<axl

tlinf( e(t) = {

Andfor a =1, e(t)=1/A
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The variance (in equation 3.1) can be studied in a similar fashion, then in open form,

I'(1 4+ 2/a, (At)*) =/(:°) ue du
t =3

By change of variables as u = A(z + ¢) and by integration by parts, we have
o0

T(1 + 2/a, (At)¥) = \22e~ (0% 4 2/\ ze ™" da (3.6)
t

Let I, = [? xze~*" dz. For large t, I, can be approximated as
@_(’\t)o

L= ———
27 a(At)?

[1+0(1/t%)]

Cancellation occurs with I'%(1 + 1/«, (At)*) in which there is I;,which is also approxi-

mated as in equation 3.5. So, one more step is taken in approximation for both /; and

for I,. The results are as follows:

e (a( M) — o + 1)
a?(t)2e-1

e~ QO™ (q( M) — a + 2)
a2(At)2a-2

I 1+ 00/

I

(14 0(1/t)]

Putting those expressions in equation 3.4 and equation 3.6 respectively, then putting
the results in equation 3.1, we obtain

(A (M) +2(a —1)] — (1 — )
A2act (At )te-2

o(t) = ‘1t 0/

and

lim v(t) = { 0 for a>1

t=00 oo for 0<a<l
For o = 1, w(t) = 1/A% The asymptotic behavior of the percentiles can be studied in
relation to equation 3.2 as follows, using the fact that —log(l — p) < (At)? for large t,

by the binomial expansion formula,

log?(1=p) 1.1 1 log*(1 — p)

TS B -SSR A _ (o) (= -2 L=t
& =1l a U(At)  a'a ) 21 (At)% o« 1)0' ) 3! (At)3e ol
so that
t log(l —p) 1 log(1 - p) 1 1 log?(1 —p)
_oJrosbmp)y o Lopyesllmp) 0 2oyt op)
& o (At)e | (‘a' )2!()\15)“ @ )(a )3!(_/\t)2“ ]
log(1 —
= -—El—(—)i-——p)[l-l-O(l/t“')]

a (At)e

So
0 for a>1

lim &, = _
b o for 0<ac<l
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The above result is valid for & # 1. For o = 1, the distribution is reduced to the

-exponential distribution which has been discussed in the previous chapter.

Having found the expressions for large ¢, for e(t), v(t), and €, we can conclude that
the greater the shape parameter the faster the convergence to 0 (when « > 1), and
the same is valid for the variance and the percentiles of the residual lifetime. In other
words, when the item’s lifetime is explained by Weibull distribution, the aging process
is much severe for larger shape parameters. Hence, this property can be considered in
discrimination of different shape parameters of Weibull distribution or in discrimination

between different types of distributions.



Chapter 4

Lognormal and Inverse Polynomial

Distributions

4.1 Lognormal Distribution

In this section, the lifetime T of an item is considered to be distributed with Lognormal
distribution, which is defined by the following density function:

1 1 - (log 2—1)° 2
e 202

fla) =

T Va20,u>00>0.
oV 2n

This family of distributions is suitable especially when the data are positively skewed.

4.1.1 Hazard Rate and Hazard Rate Average Functions

The hazard rate function is:

(log t=10?
ny = L8 e (4.1)
OR(t) oV2mt e(eps
and the hazard rate average function:
. . e_(logg.t;;y)?
H(t,0) = (l/t)/o h(z)dx = (l/t)/o o B(EEE) dz (4.2)

In both equations 4.1 and 4.2, ®(z) denotes the cumulative distribution function for

Z ~ N(0,1). The hazard rate function is not monotonic for the lognormal distribution.

22



Hazard Function h(z)

Figure 4.1: Lognormal hazard functions.

The plots of the hazard functions [7] identified with the value of ag where ay = E[(X —

EX)?] are shown in figure 4.1.



4.1.2 Residual Lifetime Distribution
The Properties

The density of the residual lifetime distribution is:

AR L)
fr-z) = R(1)
R(t) can be found in terms of ®, having the definition of T as T' = e where ¥ ~

N(p,o?). as follows:
R(t) = P[T > t] = PllogT > logt] = P[Y" > logt] = §(u=loat)

So, .
(z+1t)te” R
o /27 H(L=tent)

ag

fT—t(_l') =

Accordingly, the moment generating function M(s) can be found by the change of

variables u = z + ¢, then z :h%—“li, and then y = z — so.

2 -
Cs(u—t-i-srf /2)(1)(50_ _ ]_ogat_g)

1\/[(3) = (I)( o t)

M(s) is not suitable for finding the moments, since it contains the function ®. The
moments are found directly by their definition. The first moment, i.e., the mean residual

life:

) _ (log(x4+)=4)?
e 202
e(t) = E[T —t|T > t] = R(t)/c el (4.3)

Equation 4.3 is simplified first by change of variables as w = @ + ¢ then as z = ]35;‘—“1—‘

The result 1s: y |
nto 2(1) _logit—u '
e(t) = & (U] B ) _ (4.4)
(I)(I%E_‘) JEE

Similarly. the second moment

- a2 _"('E 12+t'2__‘)_2_
E(T-t)?}T >t = Ftﬁ e (;\/‘7—7r(z~+z) da (4.5)




By making the change of variables, first u = x + ¢ then z = lﬁg—g—'ﬂ in equation 4.5, we

have: 2 logt 2 logt
e2(#+0%)p (oo RBITH,y +0% (23 (y . RBLTL
E((T - 1)’IT > 1] = e
g

Consequently,
N L e S 6
'U( ) - (I)(y—laogt) - (Dg(y—};)gt) ( : )
The p** percentile £, can be found in a similar fashion, and it is the solution of the

following equation in .

o( lgslea;r__tl—_u) ~ & l_crg;_—;_z)

pP= 1— (I)(]og;—y)

It can be found from the tables for Z ~ N(0,1), as follows: Let z = log(wtt)=pt ‘”;H = Then.
by rearrangement:

B(z) = p+ (1 - p)B(E=~)

Thus, z can be found from the tables, and
Ly =a=e*tH —¢
Asymptotic Behavior of Expectation and Variance

At t =0, by equation 4.4 limy_e(t) = e+o/2 which is the expected value of T. For

t > 0, by making the change of variable u = & + t in equation 4.3, we get

1 ) _(l_ox_"_;uﬁ

= (log n—pt X e 2¢
) = ———— Y= | —t/ {u 4.7
e(t) ~ P—ZFR(t)[/t e~ 2 du t - du| (4.7)

Let I, be the first and I, be the second integral, respectively in equation 4.7. Then
I, can be simplified by making the change of variables y = ]‘—“D\/';—;ﬁ and & =y — o /2.

The result 1s,

2 o 2
I = V20 ehtte /2/ e de
a

2 . . .
where a = ]—OEL”—}‘—;:”— But, as in section 3.3.2, I = f° ¢~ dx can be approximated for
large t as:
—¢2
€
I = 5Ty 1+ O(l/tQ)] (4.8)



Consequently, for large ¢, by simplification

_(loz r—p)2

ote 2
logt—p o [1 + O(l/ ].Og? t)] (49)

o

I1=

Similarly, by the change of variables y = ]3%?&, I, can be approximated for large ¢ as

follows:
2

(14 O(1/log?t)] (4.10)

_(lo: --4
oe
logt—u
g

I =

Then, R(t) may also be approximated for large t. It was shown in the previous
section that R(t) = G(4=18L) je.:

_ .2
e~ 12 dz

. 1
t) = /l-:.zt— ]
—aL /271'

By change of variables y = =/ V2 and applying approximation 4.8
_Qor:i—p 2
¢ 252 9

Putting equations 4.9, 4.10, 4.11 in ecuation 4.7, we obtain

ot [1+0(1/log?t)]
(logt — p — o?)(logt — w) [1 + O(1/ log? t)]

e(t) =

or .
ot

(logt — = o?)(logt — p)

e(t) = 14+ O(1/log?t))

As aresult , as t — 0o, e(t) — oo with O(t/log?¢).

Now, the variance of the residual lifetime at ¢ = 0, is found by taking the limit of

. . . : . 2 2 . .
both sides in equation 4.6 as t tends to 0. So, limg_gv(t) = e2#*°"(¢?” — 1), which is the
variance of T'. For ¢ > 0, by making the change of variables v = @ 4+ ¢ in equation 4.5,

we obtain the second moment of the residual lifetime,

u — t)g (log u—pt 2
207 u

E[(T -t)*|T > t] =

(f)g\/ﬁ/

Then by expanding (u—1)?, and comparing the result with I; and I,we find the following

EXPression
. 1 oo (lo, u—_y_)_g_
(T = tPIT > 1) = ————= [ ue™"5F du - 2t5 + 1, 4.12
(=P > 1) = o 4L (4.12)
Moreover, comparing equations 4.11 and 4.10 , it can be seen that [, = o+/2m12(t).
Before finding v(t), let us also approximate the first integral in equation 4.12 for large
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t. Let it be Is. By the change of variables y = 13%?‘—‘, and then z = y — v/20 and by
use of equation 4.8, for large ¢, we get

9 — (log t—y!z
ot’e

=2 14 0(1)1ogt)]
— 20

I3 logt—p
o

Note that equation 4.7 can be rewritten as e(t) = (1/L)(I; — tI;). Now, replacing the
first integral by I3 and o+/27R(t) by I, in equation 4.12, we find the variance v(t) as

follows: Lo
o(t) = Bl(T = t)*|T > t] — €*(t) = ”T;l
2

Then. for large t, by simplification:

t*oi(logt — p)?
(logt — p)(logt — p — 20%)(logt — p — 0?)

v(t) = S[1+0(1/log’ t)]

As a result, as t — co v(t) — 20 with O(t?/log?t).

4.2 Inverse Polynomaial Distribution

In this section, the lifetime T of an item is considered to be distributed with a distri-
bution which is entitled as Inverse Polynomial Distribution in this thesis. The density
18:

f(l‘)=m Ve >0,8>0.

The reliability function is R(#) = 1/(1 4+ 2)P. This class of distributions are similar to

the Pareto Distribution ,except that it does not have a truncation parameter.

4.2.1 Hazard Rate and Hazard Rate Average

The hazard rate function follow directly from the definition of f(t) and R(t) :

h(t) = %

The hazard rate average function,
flog(l +t)
t -

So h(t) decreases as t increases, and the inverse polynomial distribution is DHR. Thus,

H(t,0) =

this family of distributions can be a suitable model in situations where product or

systems development results in improved performance as development proceeds.

27



4.2.2 Residual Lifetime Distribution

The residual lifetime density is:

fla+t) __ BA+)
R(t) — (1+az41)8+

fr-u(z) =

The moments of residual lifetime distribution can be found by direct calculation as

th

shown below.The r** moment,

© a’B(1+1t)
(14 24 t)s+1

E(T —¢)|T > {] =/0 dr |

by integration by parts several times,

(1+¢) !
B-1DF-2)...(F-r)

E(T )T >t = for B>r

So the r** moment exists if and only if » < . First, e(¢) is found for f > 1, as

1+1¢
o(t) = 2
f-1
This implies that e(t) = (1 + ¢1¢(0), i.e., mean residual lifetime function is increasing
linearly with ¢ . At ¢t =0, e(t) =1/(f — 1), which is the expectation of T . And as ¢

tends to oo, obviously e(t) — oc with O(t) .

Similarly, the variance exists for f > 2; it is:

B(1+1)?

(B —1)2(8-2)
Att=0, v(t) = (ﬁTl)?(_-?)- which is the variance of T. And as ¢ tends to oo, v(t) — o

with O(t?). From the expression of e(t), we can conclude that the item is negatively

v(t) =

aging, as 1t is implied by the decreasing hazard rate. However, it should also be noted
that the variance of the residual lifetime also increases rapidly in time. Inverse Polvuo-
mial distribution is thus, a suitable model when both the performance and its variance
increases (provided that it exists). MRL plot can be used in distinguishing these fea-

tures.

The analysis of the mean and the variance depends on f; however percentiles exist
for all . The p** percentile &, is the solution of the following equation in :

ZJ:/I pa+ 1) dr
o (1+y41t)s+! i
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By the change of variables u = 1 + y + t, it is simplified as

1+t

_____)ﬁ
142+t ’

p=1-(

that for fixed ¢,
o _(+0n-(-p
’ 1-p/*

As t tends to infinity, £, — co with O(t).




Chapter 5
Data Analysis and Conclusion

In this chapter, four different sets of data are studied for the purpose of illustrating the
use of mean residual lifetime function as a criterion for aging. The first two sets are
lifetimes of 75 Watt bulbs produced in two different Turkish factories; the third one is
the lifetime of Kevlar 49/Epoxy Strands [2] (tested at 70% stress level),-and the last
one is the service time between failures of the air-conditioning equipment in Boeing
720 jet airvcraft [8]. For this last set, the essential assumption is that after repair the
equipment becomes as good as new. The first three sets of data are examples of items
with decreasing mean residual life. i.e., the items are aging in time. Conversely, the last
data set is an example of exponentially distributed time between failures (lifetimes. in
a sense). The reason for selecting decreasing mean residual lifetime distributions is the
greater importance of aging items in production environment than those with no aging,

in terms of quality. The data are given in tables 5.1 and 5.2.

At this point it must be stated that data set 1 and data set 2 are ordered statistics
taken from random samples, tested under 320 Volts and 286 Volts, respectively, voltages
which are never encountered during normal usages of those bulbs. These high voltages
arc only for shortening the test period and observing all of the bulbs’ lifetime, since
under 220 Volts the lifetime of a bulb may be in years. These two data sets are in fact,
for the purpose of illustration rather than making inferences on the lifetimes of bulbs

m ordinary usage.
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Table 5.1: The Data Sets (description is given in the text)

Data Set 1 (min.) | Data Set 2 (hr.) | Data Set 3 (hr.) | Data Set 4 (hr.)
295 750 1051 3
420 778 1337 )
420 865 1389 5
445 904 1921 13
450 956 1942 14
470 983 2322 15
470 988 3629 22
500 1000 4006 22
500 1034 4012 23
502 1061 4063 30
525 1063 4921 36
540 1063 0445 39
550 1065 5620 44
550 1097 9817 46
555 1100 5905 50
555 1108 5956 72
560 1116 60GS 79
570 1124 6121 88
580 1179 6473 97
580 1210 7501 102
600 1214 7886 139
605 1222 8108 188
610 1285 8546 197
630 1297 8666 210
630 1308 8831
645 1308 9106
660 1380 9711
660 1399 9806
675 1415 10205
685 1466 10396
690 1494 10861
690 1533 11026
690 1533 11214
695 1580 11362
700 1612 11604
715 1698 11608
715 1698 11745
720 1765 (11762
720 1824 11895
725 1946 12044
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Table 5.2: The Data Sets Continued

Data Set 1 | Data Set 2 | Data Set 3

750 1946 13520
755 1968 13670
768 2005 14110
780 2005 14496
780 2005 15395
785 2264 16179
800 2314 17092
810 2319 17568
810 2332 17568
830 2458
840
- 870
870
870
885
885
890
900
909
910
915
915
915
930
950
960
960
960
960
990
990
1005
1005
1020
1050
1050
1080
1185
1200
1200




The natural estimator for the mean residual lifetime function is:
s
ét) =571 (¢ —t)
=1

where S denotes the number of survivors at time t out of an initial population of size

n,and {t; : 7 =1,...,5} is the set of data points which are greater than ¢.

Since the first three data sets show decreasing mean residual lifetime, Gamma and
Weibull distributions were fitted to them. Moreover they reveal the presence of a trun-
cation parameter, because the smallest value in the set is comparatively high. We fitted
three parameter Weibull and Gamma distributions. In estimation procedure, we esti-
mated truncation parameter by the smallest data point (let it be z;), then transferred
the data to a new one by subtracting z; from each data point. Then we fitted two
parameter Weibull and Gamma distributions to the transferred daza set. We have used

inoment estimators.

For random variable X distributed with Weibull distribution, let 7 be the truncation

parameter. Then the density function is:
Flz N o) = ad¥(x — 4)* e e for vy <2 < 00,a >0,A>0.
The interpretation of v can be some type of guarantee period, in our concern. Then

we estimate it as ¥ = 2;. The first two moments of the distribution are:

B(X —2) = % V(X - 1)

_ DTy
=T

where I'y, = T'(1 4 &/ a).

On equating the first two sample moments to corresponding distribution moments
as given above, the moment estimators become
“ ~2
—-T, 2

=T — 2 =S8 (51)
) 32

L,

A

In [7], the o values versus the coefficient of variation (C.V.) are tabulated; it is
reproduced in table 5.3. So the estimation procedure 1s simplified by first finding an
approximation for & from this table. This approximation is used o determine \ from
either of the equations in 5.1. It is then, improved by trial and error until both of them

gave the same result for A.

33



Table 5.3: Values of Mode, Median and Coefficient of Variation for the Weibull Distri-
bution

x c D &g 2y Mo Me C.v.
.50 .22361 .44721  6.61376  87.72000  J-SHAPE  -.33973  2.23607
.55 .29893 .50890  5.43068 57.39817 J-SHAPE  -.35533  1.,96502
.60 .37805 .56881  4.53341  40.48166 J-SHAPE  -.36357 1.75807
.65 .45895 .62706  3.97420 30.20718 J-SHAPE  -.36591 1.59475
.70 .54020 .68380  3.48837  23.54202 J-SHAPE  -.36373 1.46242
.75 .62082 .73917  3.12124  18.98700  J-SHAPE - .35334  1.35236
.80 .70020 79333 2.81465 15.74074  J-SHAPE  -.350:3  1.26051
.85 77796 .84638  2.35009  13.34657  J-SHAPE  -.340%2 1.13130
.80 .85389 .89845  2.33496  11.53005  J-SHAPE  -.33020 1.11303
.95 .92791 .94963  2.15040 10.11872  J-SHAPE  -.31874 1.05305
1.00 {1.00000 1.00000 2.00000 9.00000 J-SHAPE  -.30655 1.00000
1.05 [1.07020 1.04965 1.85904 8.09795 -.99074  -.29478 .95270
1.10 {1.13859 1.09864 1.73397 7.35985  -.96992  -.282%9 .91022
1.15 ]1.20525 1.14703 1.62204 6.74819  -.94199  -,27071 .87181
1.20 |1.27027 1.19488 1.52113 6.23571  -.90950  -.258%4 .83690
1.25 [1.33375 1.24223 1.42955 5.80215 -.87419  -.247:% .80500
1.30 {1.39580 1.28913 1.24593 5.43226 -.83731  -.23624 .71572
1.35 {1.45651 1.33560 1.25920 5.11432 -.79975  -.22539 .74873
1.40 |1.51597  1.38169  1.19844 4.83923 -.76215  -.,21439 .72375
1.45 [1.57427 1.42742 1.13291 4.59983  -.72495  -.20477 .70036
1.50 ([1.63149 1.47282 1.0719% 4.39040 -.68848  -.195%0 .67897
1.55 (1.68771 1.51792 1.01515 4.20636 -.65296  -,18551 .65880
1.60 |1.74300 1.56273 96196 4.04396 -.61852  -.17637 .63991
1.65 [1.79743 1.6077¢ .91202 3.90015  -.58527  -.167:3 .62217
1.70 |1.85104  1.651i: .86302 3.77238  -.55324  -.159%3 .60548
1.75 {1.90391  1.6956% .82058 3.65855  -.52245  -,15131 .58974
1.80 [1.95608 1.73952 .77874 3.55688  -.49291  -.14330 .57487
1.85 (2.00760 1.78317 .73899 3.46588  -.46459  -.13633 .56030
1.90 ]2.05850 1.82664 .70124 3.38428  -.43747  -.12927 .54745
1.95 12.10885 1.86993 .66533 3.31100  -.41150 -,122:3 .53478
2.00 |2.15866  1.91306 .63111 3.24509  -.38666  -.11586 .52272
2.25 |2.40084  2,12650 48121 3.00148  -.27762  ~.086%5 .47026
2.50 12.63389  2.33696 .35863 2.85678  -.18983  -.0622% .42791
2.75 |2.86013  2.54511 .25589 2.77332  -.11846  -.0418 .39231
3.00 |3.08119 2.75144 .16810 2.72946  -.05977  -.024:0 .36345
3.25 (3.29822  2.95630 .09196 2.71207  -.01093  -.00¢:3 .33826
3.50  |3.51206  3.15997 .€2511 2.71273 .03018 00272 31646
3.75 [3.72336  3.36265  -.03419 2.72531 .06515 01452 .29738
4.00 {3.93258  3.56450 -.03724 2.74783 .09518 02376 .28054
4.25 |4.14008  3.76564 -.13504 2.77585 12119 .03237 .26556
4.50 |4.34616  3.96619 -.17338 2.80811 .14390 .04002 .25213
5.00 |4.75490  4.36580  -.25411 2.88029 18156 .05302 .22905
6.00 [5.56274  5.16066 -.37326 3.03546 .23559 07235 19377
7.00 |6.36237 5.95160 -.46319 3.18718 .27219 .08621 .16802
8.00 |7.156%0 6.73996 -.53373 3.32768 .29847 .09645 .14837




Table 5.4: Estimated values of parameters

Data Sets
1 2 3
Weibull | Gamma | Weibull | Gamma | Weibull | Gamma
o 2.44 5.22 1.55 I 2.29 1.75 2.9
A 0.00193 | 0.0113 ] 0.0013 ‘ 0.0033 | 0.000115 | 0.000374
~ 295 295 750 | 750 1051 1051

For Gamma distribution, with truncation parameter -,

A — ~)e-1 -\z-7)
flz; A, a,v) = (x ?(a)e y<a<oo,a>0,A>0.

As explained before, ¥ = @;. The first two moments are:

V(X —2)) = —=

E(X —) = 7

>0

On equating the first two sample moments to corresponding distribution moments, the

moment estirmators become

- — 12
¢ T-x N (T — 1)
A= cnd &= \NZT —ay) = ———
52 ( 1) 52
The results are given in table 5.4. As it can be observed from this table, the shape

parameters are strictly greater than 1, so the items are aging in time.

First, to simplify the calculations, the shape parameter for Gamma distribution is
rounded to the nearest integer and the results obtained in Chapter 2 are applied, for
finding the mean residual lifetime function. The reliability and MRL functions are
plotted in figures 5.1 to 5.2, 5.3 to 5.4, and 5.5 to 5.6 for the data sets 1,2 and 3,

respectively. The empirical reliability function is found from the following equation:

Ry =2

n

where S and n are as defined before.

Moreover, in the graphs of e(t) versus ¢, the upper bound (UB) and lower bound

(LB) are found to be the approximate 95 % confidence limits as follows:
UB = é&(t)+2

15 = ét)—25W
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Figure 5.1: The fitted and empirical (13(¢)) reliability functions for Data Set 1
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Figure 5.3: The fitted and empirical (12(t)) reliability functions for Data Set 2
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where s(t) is the estimated standard deviation of the residual lifetime at ¢, i.e.

S
() = (S = 17 3lts - e(0)

In figures 5.2 and 5.4, it can be seen that the theoretical values for Gamma distri-
bution underestimate the empirical mean residual lifetime (MRL) function because we
underestimated the shape parameter for the data sets 1 and 2 by rounding them off
to the nearest integer. The corrected graphs of e(t) versus ¢t for Gamma distribution
are shown in figures 5.7 and 5.8 for data sets 1 and 2, respectively. In those graphs,

theoretical and emprical values fit better.

The last data set was fitted a Gamma Distribution using MLE’s in [8] without
assuming a truncation parameter, and & and \ were found to be 1.06 and 0.0156,
respectively. So we can consider this set as a sample from an exponential distribution
with parameter 0.0156. The reliability and MRL functions are plotted in figures 5.9
and 5.10. The reliability plot fits well and this 1s supported by MRL plot which remains

quite constant in time.

In order to test the goodness of fit, Kolmogorov-Smirnov statistic D, 1s used. It is
defined as [12]

Dn =sup 'Rn(t) - R(t)l )
t

where n is the sample size. The distribution of D, is independent of the cdf F(t) (=
1 — R(t)) that defines Hy. Accordingly, the acceptance limits for the test of Goodness
of Fit are tabulated in [12, page 580]. The critical region D, > D, is used to test F(t)
against the alternative that the cdf is not F(t), where D, , is the constant corresponding
to the significance level a. The values of test statistic are given in table 5.5 for all the
data sets, for o = .05. With those values both Weibull and Gamma distributions are
accepted for the first three sets, and the one whose D, value is smaller, is regarded
as the better fitting distribution and marked with a star. With this criterion, in all of
them Weibull distribution camme out to be better. But we can comment that for the
second data set, considering the MRL plot (figure 5.8), Gamma distribution might be
preferred, because €(t) does not decrease, but rather fluctuates after some time, and
this obeys to our results for Gamma distribution in Chapter 2. In fact, for this set the
Kolmogorov-Smirnov test statistics for the two distributions are very close to eachother.

Finally, for the last set Exponential distribution is also accepted.

Some data analysis is performed and the effect of truncating the range of random
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Figure 5.9: The fitted and empirical (]:{(t)) reliability functions for Data Set 4
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Table 5.5: Kolmogorov-Smirnov Test Statistic Values

Data Sets

1 2 3 4
Weibull* | Gamma | Weibull* | Gamma | Weibull* | Gamma | Exponential*
D, | 0.0723| 0.0973 0.081 0.091 0.0884 0.1098 0.0835
0.15 0.19 0.192 0.27

Dn..05 r

variables on e(t) is demonstrated in [15).

We can then, conclude that for the first three data sets, items are aging in time,

and exponential distribution cannot explain the behavior of the bulbs’ lifetimes. From

the eraphs of e(t) versus t, it can be scen that the theoretical curves fit the emprical

results. quite well. In relevant situations such as this, MRL function being one of the

distribution identities, can also be used as a diagnostic procedure to make a distinction

among different distributions, together with the reliability function.
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