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A B S T R A C T

Retinally incident light is an ambiguous product of spectral distributions of light in the environment and their
interactions with reflecting, absorbing, and transmitting materials. An ideal color constant observer would
unravel these confounded sources of information and account for changes in each factor. Scene statistics have
been proposed as a way to compensate for changes in the illumination, but few theories consider changes of 3-
dimensional surfaces. Here, we investigated the visual system’s capacity to deal with simultaneous changes in
illumination and surfaces. Spheres were imaged with a hyperspectral camera in a white box and their colors, as
well as that of the illumination were varied along “red-green” and “blue-yellow” axes. Both the original hy-
perspectral images and replica scenes rendered with Mitsuba were used as stimuli, including rendered scenes
with Glavens (Acta Psychologica, 2009, 132, 259–266). Observers viewed sequential, random pairs of our
images, with either the whole scene, only the object, or only a part of the background being present. They judged
how much the illuminant and object color changed on a scale of 0–100%. Observers could extract simultaneous
illumination and reflectance changes when provided with a view of the whole scene, but global scene statistics
did not fully account for their behavior, while local scene statistics improved the situation. There was no effect of
color axis, shape, or simulated vs. original hyperspectral images. Observers appear to be making use of various
sources of local information to complete the task.

1. Introduction

In most natural viewing circumstances, our visual system is only
provided with a distribution of light across the retina, from which it
must deduce a number of objects and events, resulting in the perception
of an illuminated scene. The proximal stimulation itself can be the re-
sult of a potentially infinite amount of physical interactions, with many
combinations of surfaces and illuminants resulting in the same dis-
tribution of light on the retina. Since our natural environments are
often composed of objects with relatively stable surface properties and
we are able to perceive this even in the face of changing illumination
conditions, then our visual system must have some reliable method for
extracting the relative contributions of surfaces and illuminants to the
proximal stimulus. Typically, color vision investigators have been in-
terested in the ability with which the visual system can assign a stable
color to surfaces in spite of changing illumination conditions. This
process, and its output, is often known as color constancy, and it is one
of a class of constancy phenomena, including processes such as shape
constancy and material constancy.

The topic of color constancy has been the subject of a long line of
research and techniques (Foster, 2011; Hurlbert, 2007; Smithson, 2005;
Werner, 2014), including the likes of Helmholtz (1867) and Hering
(1878), and a variety of mechanisms to achieve constancy have been
proposed. Most of these mechanisms involve the computation of a scene
statistic (Brainard, Kraft, & Longere, 2003), which is then used to infer,
and correct for, illumination changes. For example, the mean color
statistic (Buchsbaum, 1980) states that the average color for a given
scene should be roughly equal to the color of the light source illumi-
nating that scene. It is often accompanied by the Gray World hypoth-
esis, which states that the average color of surfaces across scenes is
constant (Brainard et al., 2003; Hurlbert, 1998). Removing the average
color from the scene would result in a new scene whose colors should
correspond to the stable surface properties of the objects in the scene. In
other words, any change of the illuminant would be accounted for,
resulting in a constant and stable perception of surface colors. Over
time, this scheme has been given some different formulations and
neural adaptation has been proposed as a potential mediating substrate
(Burnham, Evans, & Newhall, 1957; Jameson & Hurvich, 1989; Kaiser &
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Boynton, 1996; Webster & Mollon, 1995). However, such a mechanism
will run into trouble, since there are potentially many scenes with the
same average color produced by several different combinations of
surfaces and illuminants. Consider a white room under a red illuminant
and a red room under a white illuminant, similar to a scenario initially
proposed by Gilchrist et al. (1984). In such a case, the scenes can be
constructed such that the average color is the same in both circum-
stances. Removing that shared component from these scenes would not
get you any closer to the truth. Rather, local information in the shadows
and interreflections would assist in determining the properties of the
environment (Ruppertsberg & Bloj, 2007). The relationship between
shadows and interreflections, as well as their effect on color signals, has
been quantified for a few Lambertian and mirrored scenes, illuminated
by uniform diffuse light sources (Koenderink & van Doorn, 1983;
Langer, 1999; Langer, 2001; Moon, 1940).

To deal with these complications, it has been proposed that the
visual system might extract more statistics than just the average color.
For example, one could compute correlations along the axes defining
the color space of choice. Golz and MacLeod (2002) have proposed that
the visual system computes the correlation between the logarithm of
the luminance values and the logarithm of the “red-green” values in a
given scene (as defined in a LMS space (Stockman & Sharpe, 2000;
Stockman, Sharpe, & Fach, 1999)), as a means for extracting the illu-
minant color (i.e., “the brighter the illuminant, the redder it is”). Other
proposed mechanisms include using the brightest point in the scene as a
measure of the illumination (Gilchrist et al., 1999; Land & McCann,
1971) or calculating the variance of hues in a scene (i.e., a lower var-
iance in hues tends to correspond to an illuminant that is further from
equal energy white in chromaticity space, since the spectral distribution
of the illuminant is forced to collapse further and further around a
single wavelength (Schanda, 2014)). The visual system could also po-
tentially use a combination of these. However, all of these mechanisms
have been primarily designed under the assumption that in most scenes,
only the illumination changes and surfaces remain constant.

In fact, surface properties of objects can (and do) change rapidly.
For example, adding milk to coffee, lighting something on fire (which
also induces a concomitant change in the illumination), spilling liquids
across clothing, painting a canvas, etc. In most of these cases, one
would want to be able to recognize that the surface has changed and the
illumination has remained constant. In the case of setting fire to
something, one would also want to be capable of disentangling the si-
multaneous change of surface and illumination properties.

There have been studies in the color constancy literature that have
investigated the capacity of observers to detect simultaneous changes
in surface reflectance and the illumination. Craven and Foster (1992),
Linnell and Foster (1996), Foster, Amano, and Nascimento (2000),
and Foster et al. (2001) have investigated the behavior of observers
when they were requested to detect if either the illumination on a
number of simulated 2-dimensional colored patches had changed or if
the patches themselves had changed. Through their investigations,
they have found that observers can distinguish between reflectance
changes and illumination changes in this task and that the process is
fast (Craven & Foster, 1992) and observers improve with quicker
changes of reflectance (Linnell & Foster, 1996). The transient signals
involved have also been investigated (Foster et al., 2000) and the
process acts as a global and pre-attentive mechanism (Foster et al.,
2001). In addition, this group of researchers has proposed that cone
excitation ratios are a physical characteristic of scenes that the visual
system could use to achieve color constancy while distinguishing il-
luminant from reflectance changes (Foster & Nascimento, 1994). Cone
excitation ratios measure how much the ratio of excitation between a
pair of points changes over time. If the change in mean cone excitation
ratios over a region is small, over a short period of time, then this is
likely due to a similarly small, natural, illumination change or no
change at all. If the change in mean cone excitation ratios over a re-
gion is large enough ( relative deviation in cone-excitation ratios),

then this is likely due to a reflectance change over a short period of
time, a change in the spatial distribution of the illuminant, or a lo-
calized change in the color of the illuminant Foster, Amano, and
Nascimento (2016) and Nascimento and Foster (2001). Naturally,
shadows and borders between objects of different reflectances pose
problems, but one can alter the algorithm to avoid comparing points
across these boundaries (Foster et al., 2016). The cone excitation ratio
statistic has been tested for both 2-dimensional scenes (Foster &
Nascimento, 1994; Nascimento & Foster, 2000) and 3-dimensional
natural images (Foster, Amano, & Nascimento, 2006; Foster et al.,
2016), for example. In the case of Foster et al. (2006), which used 3-
dimensional natural scenes, simultaneous changes of both the illu-
mination and the test surface were investigated.

While the studies discussed above investigated potential scene sta-
tistics that an observer might use to achieve color constancy, there are
potentially other sources of information, many of which could be cor-
related. To gain a better handle on this, work that manipulated the
reliability of various cues has been done with real stimuli in natural
lighting conditions (i.e., actual objects in the real world; nothing was
produced on a monitor). For instance, Kraft and Brainard (1999) placed
observers before a small room with a MacBeth color checker and a
target patch. The apparent color of the test patch could be altered by
the observer, via controls that altered the light coming from a projec-
tion system focused on the target. The conditions were controlled to
minimize the chances that the observers noticed the emitted light, so
that they saw the target patch as a flat piece of paper, whose color could
change. The authors tested the possibility that observers either used the
mean color of the scene, the color of the local surround around the
target patch, or the most intense region of the scene to achieve color
constancy. They did this by manipulating surface reflectances, as well
as the illumination on the scene, to keep the scene statistic of interest
constant, while manipulating others, effectively neutralizing its utility.
For instance, in the mean color condition, a change of scene reflectance
was counter-balanced by a change in the illuminant to keep the mean
color the same, while many other statistics could naturally vary. In all
of their conditions, the authors found that observers could maintain
some degree of color constancy, although observers were best in a
control condition that tested the traditional color setup, where all cues
were present and only the illumination changed. An overview of this
study is also provided in Hurlbert (1999) and an account in the context
of theory is found in Brainard et al. (2003).

In the field of lightness constancy, Gerhard and Maloney (2010)
have shown that observers were capable of discriminating lighting
changes from surface changes on a 3-dimensional articulated checker-
board-like display, where a lighting change was a shift in the position of
the light and a surface change was a permutation of the albedos as-
signed to the checks in the display. In addition, they tested the capacity
of observers to detect a change in surface albedo for a given check,
when either the lighting changed or the remaining checks were per-
muted. In that case, observers were best at detecting isolated albedo
changes when the lighting also changed. A similar task has been in-
vestigated for 2-dimensional colored Mondrians by Amano and Foster
(2004), finding that observers performed almost as well with simulta-
neous changes in surface (i.e., permutations of patch positions) and
illumination as they did for illumination changes only. The authors
found that combining cone-excitation ratios with a spatial average
across the whole scene could be a reliable cue for the task.

Considering the previous research, we have tested the capacity of
observers to separate the relative contributions of simultaneous surface
and illumination changes for simple 3-dimensional scenes. It is im-
portant to note that we have not considered whether observers can
detect these changes or not, since that has already been determined.
Rather, we want to see if observers can report the magnitude by which
the illuminant has changed and by which the reflectance has changed,
especially when both change simultaneously. We then evaluated this
for restricted views of the scene, in order to manipulate the information

R. Ennis and K. Doerschner Vision Research 158 (2019) 173–188

174



observers could use to perform the task, similar to the work of Boyaci,
Doerschner, and Maloney (2006) and Boyaci, Doerschner, Snyder, and
Maloney (2006), and compared “real” images vs. simulated (i.e., ren-
dered) versions of those images. We also investigated if observers were
better for “red-green” changes vs. “blue-yellow” changes and if there
was any effect of shape complexity. Lastly, we have tested if any of the
previously mentioned chromatic scene statistics can account for ob-
server behavior in our task.

In particular, we have shown observers images of a scene containing
either a tennis-table ball or a Glaven (Phillips, Egan, & Perry, 2009) in a
diffusely illuminated white chamber. During our experiment, an ob-
server would view the scene for 1 s and then a new version of the scene
would be displayed for 1 s, in which both the color of the object and the
color of the illumination could simultaneously change to different de-
grees along different axes in color space. Observers were requested to
state the degree of change in both the object and the illumination, using
a memorized scale as reference points for 0% change to 100% change.
Observers performed this task for a view of the whole scene, a view of
the object only, and a view of a patch of the background only. In ad-
dition, for the spheres, we tested observer behavior for images of the
original scene and physically-based rendered versions, which were
designed to be roughly equivalent to the original scenes.

Our investigations have led to the following findings: (1) observers
are capable of judging the relative contribution of simultaneous
changes in surface and illumination color to the overall change in a
scene and (2) in our task, observer behavior on average is the same for
red-green vs blue-yellow changes, real vs simulated changes, and
spheres vs Glavens. In all cases, the global chromatic scene statistics
that we tested were insufficient to account for observer behavior.
Rather, local chromatic scene statistics accounted better for their be-
haviour, but more work needs to be done to see how to generalize this
to other situations. Lastly, we have provided here a new paradigm for
testing color vision, as well as an overall benchmark of different
chromatic scene statistics on the same task, something which can be
expanded upon in the future.

2. Materials and methods

2.1. Image acquisition and scene rendering

We wanted to test observer behavior for images of physical scenes
and images of physically-based renderings of those scenes, in order to
see what kinds of information about a physical environment might still
be lacking in renderings. To produce such images, we first took hy-
perspectral images of four colored spheres under four diffuse broad-
band illuminants in a white chamber. The illuminants were generated
by a JUST NormLicht LED box (JUST Normlicht GmbH; Weilheim/
Teck, Germany) and they were constrained to be at an average intensity
of 48.43 ± 1.52 cd/m2. The spheres were standard tennis-table balls
that had a diameter of 40mm and the chamber was
25 cm×25 cm×27 cm.

We produced a diffuse illumination of the scene by placing two
layers of photographer’s Walimex Pro Diffusor diffusing paper (Walser,
GmbH; Burgheim, Germany) over the surfaces of the LEDs in the LED
box. An additional two layers were placed over the opening of the white
chamber. This was enough to produce the percept of a “hazy, cloudy
sky” illuminating the chamber (when viewed via a reflecting mirror).
We confirmed the uniformity of the incident illumination by placing a
Photo Research PR650 RS3 PTFE white reflectance standard (Photo
Research, Inc.; Syracuse, NY, USA) at different points in the chamber
and taking measurements with a Konica-Minolta CS-2000A spectro-
photometer (Konica Minolta, Inc.; Tokyo, Japan). The coordinates of
the spheres and the illuminants in the CIE1931 xyY chromaticity dia-
gram can be seen in Fig. 1. Please note that the “chromaticity co-
ordinates” of the spheres are computed from their spectral reflectance
distributions and, as such, they are not proper chromaticity

coordinates. The spectral reflectance distributions were obtained by
measuring the spheres under a diffuse illuminant that was metameric to
D65, using the white chamber already mentioned, taking the average
spectral distribution and dividing that by the distribution for the illu-
minant. Plotting the spectral reflectances as they are in Fig. 1 is ap-
proximately the same as plotting the chromaticity coordinates for the
average light reflected from the spheres if they were placed under an
equal energy white. It is only meant to help visualize that the surface
colors were also aligned along “red-green” and “blue-yellow” axes.

Our images were taken with a Specim VNIR HS-CL30-V8E-OEM
mirror-scanning hyperspectral camera (Specim, Spectral Imaging, Ltd.;
Oulu, Finland) at a spatial resolution of 57px/deg by 800px and a
wavelength resolution of 1.12 nm in the range of 376.20 nm to
821.62 nm. The device has already been described in more detail
elsewhere Ennis, Schiller, Toscani, and Gegenfurtner (2018). It was
confirmed that our camera could produce spectral measurements that
were comparable to the CS2000-A. The raw data from our camera were
calibrated and converted to radiance units ( W

str m2 ) using factory mea-
surements provided by Specim. The radiance data were then converted
to CIE1931 XYZ coordinates. This calibration and conversion procedure
was done by a program written in the Rust programming language
(Matsakis & Klock, 2014; The Rust Programming Language, 2017).

To create a usable set of stimuli, that contained all possible varia-
tions of our illuminant colors and our sphere colors, we took images of
each sphere under each of the illuminants (see Fig. 2). Linear combi-
nations of the chromaticity coordinates of these images were used to
produce variations of reflectance and illumination changes.

In the experiment, we showed observers the original hyperspectral
images, as well as rendered versions of those scenes. To produce our

Fig. 1. Average illuminant (diamonds) chromaticity coordinates and sphere
(filled circles) “chromaticity coordinates” (see text for description of their
computation). Here we show the CIE1931 xyY coordinates of our physical sti-
muli to give an idea of the space in which we could work. The spectral locus,
the daylight locus, and the gamut of our Eizo ColorEdge CG23W monitor are
depicted for reference. Two of our illuminants were along the daylight locus,
giving essentially blue-yellow variations, and the other two were on an axis
orthogonal to this, giving red-green variations. The colors of the spheres were
specified by the manufacturer, but it can be seen that two were close to being
aligned with the daylight locus, giving blue-yellow variations, and the other
two were essentially orthogonal to that, giving red-green variations. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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physically-based renderings, we made use of the open-source Mitsuba
renderer (v0.5.0) (Jakob, 2017). When built from its source code, one
can configure this rendering system to accept spectral data of arbitrary
resolution and wavelength range. We built and ran Mitsuba on an
Ubuntu 15.04 LTS system (Canonical Ltd.; London, United Kingdom).
We configured ours to work in the range of 360 nm to 830 nm at 47
equally spaced wavelength bands. We then built 3-D scenes in Blender
(v2.76) that were equivalent in scale to the physical scenes that we took
images of. These scenes were used as the base models for rendering, and
the colors and positioning of the objects were set to mimic the original
physical scenes. For example, a large plane was placed above a simu-
lated chamber to act as a light emitting source, and a diffusive plane
was placed just above the chamber. In addition, the walls of the scene
were set to have the average spectral reflectance distributions of the
walls in the original, physical scenes, as extracted from hyperspectral
images taken under a diffuse illuminant metameric to D65. We also
computed the average surface reflectances of our four spheres from
hyperspectral images taken under the D65 illuminant, as well as the
average illumination spectra. In all types of scenes, the object was
rendered with the same BRDF: Mitsuba’s default rough plastic BRDF,
since the tennis-table balls were made of a slightly rough plastic and
had a slight specular component, as judged by eye. The walls were
rendered with Mitsuba’s default diffuse (i.e., Lambertian) BRDF.

We made two types of rendered scenes: those with spheres (Fig. 3)
and those with Glavens (Fig. 4). A Glaven is a three-dimensional de-
formation of a sphere formed by applying a smoothly varying noise
signal to the radius at each point on the sphere’s surface. One can
characterize the noise signal in terms of frequency components and/or
“complexity”. Glavens are useful, since they have been previously stu-
died in cross-modal vision-haptics experiments. It is known what 1 JND
means for these shapes in both the visual and haptic dimensions and the
digital files are freely available online (Phillips, Casella, & Egan, 2016).
There were no “real” or “original” scenes for the Glavens, only simu-
lated versions. Regardless, the spectral measurements mentioned above
were applied to the rendered sphere/Glaven, as well as the rendered
illumination source, to produce 16 rendered images of each sphere/
Glaven under each illuminant, just as we had for the original, physical
scene. A comparison of an original physical scene and a rendered scene

based on the extracted measurements is provided in Fig. 3.
All of our final images were down-sampled to 892 px by 520 px

during the actual experiment. Also, all of the images were retained in a
CIE1931 XYZ representation at each pixel, rather than a linear RGB
representation, to allow for accurate reproduction of the stimuli across
different monitors (see “Monitors and experimental software” below).

2.2. Monitors and experimental software

For the spheres experiment, stimuli were displayed on a 10-bit EIZO
ColorEdge CG23W monitor (EIZO Corporation; Hakusan, Japan) via
OpenGL v3.3 using custom made software written in the Rust pro-
gramming environment (Matsakis & Klock, 2014; The Rust
Programming Language, 2017). Our custom made software was written
to mimic the popular Processing creative programming environment
(Processing Foundation). The computer that was connected to the EIZO
was a Dell Precision T3610, running Microsoft Windows 7 SP1 (64-bit)
(Microsoft Corporation; Redmond, Wash., USA) with an Nvidia Quadro
K620 graphics card (Nvidia Corporation; Santa Clara, Cali., USA). For
the Glavens experiment, stimuli were displayed on a SONY PVM2541-A
OLED (Sony Corporation; Tokyo, Japan) via Psychtoolbox (v3.0.12)
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) using the
MATLAB environment, v2015a (Mathworks, Inc.; Natick, Mass., USA).
The computer that was connected to the SONY OLED was a Dell Pre-
cision T3610 (Dell, Inc.; Round Rock, Texas, USA), running Microsoft
Windows 7 SP1 (64-bit) with an AMD FirePro V4900 graphics card
(Advanced Micro Devices, Inc.; Santa Clara, Cali., USA). Both monitors
were calibrated using a Konica-Minolta CS2000-A via standard proce-
dures documented elsewhere (Hansen & Gegenfurtner, 2013; Zaidi &
Halevy, 1993). In particular, the calibrations were used to ensure that
our stimuli could be accurately reproduced by the gamuts of the
monitors and to calculate LMS cone excitations (Stockman & Sharpe,
2000; Stockman et al., 1999) and MacLeod-Boynton-Derrington-
Krauskopf-Lennie (MB-DKL) (Derrington, Krauskopf, & Lennie, 1984;
MacLeod & Boynton, 1979) representations of our stimuli, which are

Fig. 2. Original hyperspectral images (not original size; resized to fit in the grid
here). Shown here are the 16 base images used to construct variations of surface
reflectance and illumination color for the sphere images. Reflectance varies
across rows (blue, green, red, yellow) and illumination varies across columns
(blue, green, red, yellow). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison of the original hyperspectral image and the physically-
based rendering imitation for a given sphere and illuminant color combination.
While there are some discrepancies due to the process of extracting reflectance
distributions from the hyperspectral image, as well as the inherent approx-
imations of the rendering software, one notices a striking similarity between the
two images. In fact, some naive observers thought that the rendering was the
“real” image.

Fig. 4. An example of a rendered Glaven under the same conditions as those
shown in Fig. 3. The shape is more complex than the sphere and there is a
different pattern of shadows and interreflections on its surface.
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detailed further in “Image statistics” below. The properties of the SONY
OLED monitor in the CIE1931 xyY colorspace were as follows: red
phosphor (x: 0.6751, y: 0.3224, Y: 44.51), green phosphor (x: 0.1941, y:
0.7253, Y: 102.99), and blue phosphor (x: 0.1415, y: 0.0511, Y: 11.1).
The properties of the Eizo monitor in the CIE1931 xyY colorspace were
as follows: red phosphor (x: 0.6588, y: 0.3277, Y: 35.98), green phos-
phor (x: 0.2123, y: 0.6856, Y: 66.13), and blue phosphor (x: 0.149, y:
0.0678, Y: 7.93).

Because all of our base images were stored in a CIE1931 XYZ re-
presentation and because our images were within the gamuts of both
monitors, we could produce the same colors on both monitors without
loss of accuracy by using the calibration data. For any given monitor, an
XYZ (linear) RGB matrix can be created through the following pro-
cedure, where X Y Z X Y Z( , , ), ( , , )R R R G G G , and X Y Z( , , )B B B are the
CIE1931 XYZ coordinates for each of the R, G, and B primaries for the
monitor:

=XYZ RGB
X X X
Y Y Y
Z Z Z

2
R G B

R G B

R G B

1

(1)

2.3. Experimental procedure

In total, we ran two experiments. One experiment was finished in a
single session and sessions lasted approximately one hour. In the first
experiment, observers saw the scene containing a sphere and in the
second, observers saw the scene containing the Glaven. Aside from the
change of object, all other aspects of the scene remained the same be-
tween the two experiments. The first experiment tested real and si-
mulated scenes, while the second experiment considered simulated
scenes only. At the beginning of any experiment, observers were told
that they would be “viewing images of an object in a small, white room
lit by a light source from above.” It was explained that they would be
shown views of either the whole scene, only the object, or only a patch
of the background (see Fig. 5) and that during each trial, “either the
object would change, the light would change, or both would change.” It
was made clear to them that they were supposed “to state the degree of
change in reflectance and illumination on scales of 0% to 100%.” After
these instructions were given, observers were first shown the 16 base
images on the monitor to acquaint them with the scenes and to explain
to them what a reflectance change was, what an illumination change
was, and what a 100% change was (i.e., since the base images were the
extreme possibilities, they were the 100% changes). They were then
shown a few example trials to make the instructions clear and after-
wards, the actual experiment began. Each experimental session started
with 2min of adaptation to the average color of the 16 base scenes used
to generate the scenes on each trial. After the initial adaptation period,

a beep indicated the beginning of the experiment and observers were
again shown the 16 base images to refresh their memory of 100%
changes. They could press the space bar when they felt comfortable and
the first trial would start with a beep, followed by one image of a scene
for 1 s and then an image of the changed scene for another 1 s. The
images were randomly generated using the process described in “Sti-
mulus generation” below. Briefly, each stimulus image was some linear
combination of the 16 base images with random weights used in the
linear combination. The change in these random weights across each
image corresponded to the changes of illumination/surface across the
two stimulus images.

While a presentation time of 1s does not allow for complete adap-
tation to the stimulus, this is fortunately not a problem here. While it is
true that adaptation has a slow and fast component, our experiment was
more about appearance than threshold level discrimination, and for
appearance, most of adaptation is complete in the first 25ms (Fairchild
& Reniff, 1995; Rinner & Gegenfurtner, 2000). Due to this, we would
not expect any pronounced changes in observer behavior after 10-30s,
aside from perhaps a reduction in noise, since, as is detailed later in the
Results, observers are already doing reasonably well. In addition, some
earlier studies on color constancy have been successfully performed
with presentation times as short as ours (Foster et al., 2001; Nascimento
& Foster, 2000; Nascimento & Foster, 2001).

It is worth taking a moment to notice that we specifically told ob-
servers that the room was white. It could be argued that we had given
the observers too much information about the stimulus and they could
easily preform the task by cognitively inferring the illumination color
and then using that to cognitively infer the object color, sidestepping
any perceptual processes that contribute to color constancy. We argue
that this is not the case. First, unfortunately, it is not really possible to
have observers do the task and not tell them that the walls are white.
Given our paradigm, observers must be shown examples of 100% color
changes and be told, “this is a 100% change from a blue illuminant to a
yellow illuminant’, for example. From this alone, one can easily infer
that the room is white, or at least, that it is close to neutral and doesn’t
change color throughout the experiment. Also, some observers asked if
the walls could change color during the experiment. It had to be made
clear to them that the walls do not change color. If the walls did change
color or if an observer at least thought that the walls could change
color, then the task would probably be too difficult (although that
would need to be tested). Considering this, we decided to reduce con-
fusion from the start by just telling observers that the walls were white.
Aside from all of this, while our task and results could potentially derive
from “cognitive color constancy”, we think it would be valuable to
further distinguish between perceptual and cognitive color constancy
and even to see if observers use statistics classically ascribed to one
domain to solve a task in a very similar domain. Lastly, when one looks
at the stimulus, especially for more perceptible magnitudes of color
change, it is clearly seen as a perceptual illumination change and a
perceptual reflectance change and responses can be given quite rapidly,
without slower cognitive processes.

After the stimulus presentation finished, two response sliders were
shown: one with an “L” (for “Light”) above it for the observer to in-
dicate their judgment of the illumination change and the other with a
small sphere above it for their judgment of the object’s reflectance
change. Observers used the left mouse button to set the sliders and
pressed the right mouse button to proceed to the next trial. Before the
start of the next trial, there was another 1 s of adaptation to the mean
color of the 16 base images. For the scene with the spheres, the ex-
periment continued this way until 25 trials were performed for each
pair of surface/illuminant color change directions (e.g., red-green
change for surface and blue-yellow change for illuminant) and for each
of the 3 viewing conditions. In total, this resulted in 300 trials per
condition (real/simulated). For the Glavens, the number of trials for
each pair of surface/illuminant color change directions was reduced to
20, resulting in 240 trails for the simulated Glaven scenes. Every 30

Fig. 5. The three possible views of the scene that an observer could see on any
given trial. The object and the background were segmented from the whole
scene view, so they were generated by the same exact process that created the
whole scene view. In other words, a change in the object view could be due to a
change in the object, a change in the illumination, or both. A change in the
background view could also be accompanied by a change in the object, but
since the object could not be seen, this had no influence. It was made clear to
observers that the background view was a patch from the wall, so the response
slider for the object should be set to 0% on those trials. This was done to reduce
any potential confusion on the part of the observers.
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trials, the 16 base images were displayed again to refresh the memory
of observers about 100% changes in surface and illumination. When
they felt that their memory was sufficiently refreshed, they could press
the space bar and the experimental trials proceeded.

In addition, before each image for a trial was cleared from the
screen, we saved a screenshot using OpenGL’s glReadPixels() command
in order to analyze the actual images that were shown to observers,
after the graphics card had carried out all of its automatic processing.

2.4. Stimulus generation

The stimuli presented on each trial were pairs of scenes, between
which either the surface, the illuminant, or both changed. For a given
trial, one of the four color directions was chosen for the surface and one
was chosen for the illuminant and the corresponding pairs of base
images were linearly combined with random weights to produce two
stimulus images. For example, if a red-green surface change and a blue-
yellow illumination change were chosen, then the base images of the
red object under the yellow illuminant (IRY ), the red object under the
blue illuminant (IRB), the green object under the yellow illuminant
(IGY ), and the green object under the blue illuminant (IGB) would be
taken. Next, a random weight for the illumination change (WI) and a
random weight for the surface change (WS) would be produced and used
to linearly combine the CIE1931 XYZ values of these images at each
pixel in the following manner:

+ + +W W I W I W W I W I·( · (1 )· ) (1 )·( · (1 )· )I S GB S RB I S GY S RY (2)

This formula produces one image that is equivalent to linearly
combining the illuminants and linearly combining the surface re-
flectances in the scene and can be applied to any representation of the
image that is a linear transformation of the XYZ values (e.g., the spectra
or linear RGB values). It is important to note that the process is in-
tended for scenes composed solely of matte-like objects and across
which only the properties of objects change, not their positions or
shapes. In our case, the tennis table balls were made of slightly rough
plastic with a slight specular component and the spheres and Glavens in
the simulated scenes were rendered with the default rough plastic BRDF
from Mitsuba. However, the amount of specular reflection was con-
sidered negligible, especially when compared to the amount that is
typically found on glossy surfaces, and we used the image-based sti-
mulus generation that was just discussed for our experiment.
Regardless, even if the specularity is strong enough to preclude our
image generation procedure, this actually still serves as a sufficient test
of the statistics, since as shown below, observers can still reliably per-
form the task. The point is not to find the stimuli that best satisfy the
statistics, but to find statistics that best match observers in all condi-
tions.

2.5. Observers

5 observers participated in the experiment with the sphere and a
separate 5 observers participated in the experiment with the Glavens.
All observers were in the age range of 20–30 years old, so yellowing of
the macular pigment cannot be considered a significant contribution to
our results. They were naïve to the purpose of the experiment. All ob-
servers had normal or corrected to normal visual acuity. Observers were
paid for their participation in the experiments. All observers gave
written informed consent in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki) for experiments
involving humans. The experiments were approved by the local ethics
committee LEK 2015-0021.

2.6. Analysis

2.6.1. Observer performance
To assess whether observers were even capable of performing the

task, we first focused on responses for views of the whole scene and
compared the illumination judgments that each observer made with the
physical illumination change that happened on each trial, as measured
by the change in the weight,WI . The same was done for surface change
judgments and the change in WS across both images. Essentially, if
observers can perform the task to some degree or another, then one
should see a monotonically increasing trend: as the illumination change
becomes larger, the observer’s response in the illumination slider
should increase, and the same for a surface change. If observers can
perform the task reasonably well, then they should also at least register
a 0% physical illumination change as much lower than a 100% change.
If observers perform the task perfectly, then we should see a perfect
linear trend. The same applies for the surface changes. We have con-
sidered the following comparisons: real vs. simulated scenes, scenes
with spheres vs. those with Glavens, and “red-green” vs. “blue-yellow”
changes. In particular, the deformed shape of the Glavens introduces
additional shadows and lighting on its body, known as interreflections
or mutual illumination, which could potentially assist observers in
judging the illuminant when given a view of the object only (Bloj,
Kersten, & Hurlbert, 1999; Funt & Drew, 1993; Funt, Drew, & Ho, 1991;
Gilchrist et al., 1984; Ruppertsberg & Bloj, 2007). We always con-
sidered the three views of the scene separately (see Fig. 5). All data
analysis was done in R (v3.4.2). Without getting too far ahead of our-
selves, it was found that observers can perform the task, even though
they say that they find it difficult at first.

At the end of each session, some trials had to be rejected.
Essentially, if a slider was not changed during the response stage of a
trial, then no data was saved for that slider. On some trials, the random
position of one or the other slider was presumably satisfactory to ob-
servers, so they had not changed it, but this rendered the trial essen-
tially useless, since the data for both sliders was necessary to make
complete sense of it. We discarded these trails, but this did not seriously
impact data analysis, since this only occurred for 3.87% of trials on
average for the hyperspectral images of the spheres, for 4.5% of trials on
average for the rendered images of the spheres, and for 6.3% of trials on
average for the Glavens.

2.7. Image statistics

Aside from seeing if observers can perform the task, we wanted to
determine if any of the commonly used chromatic scene statistics found
in the color constancy literature could explain observer behavior. We
performed analysis on the randomly produced images that were saved
from each trial (see “Experimental procedure” above). The image
analysis software was written in the Rust programming language
(Matsakis & Klock, 2014; The Rust Programming Language, 2017). For
each pair of test images, we examined the change in the following
chromatic scene statistics, where LMS and DKL are images in the re-
spective colorspaces (i.e., the LMS cone activation space and the
second-stage cone opponent MB-DKL space), LD RG YV{ , , } are the
cardinal axes of the MB-DKL space, n is the number of pixels per image,
and p is a given pixel. In our case, the implementations of the statistics
are inspired by previous reports and our formulations were as follows:

Luminance-redness (Pearson) correlation (Golz & MacLeod, 2002):

= +
+

LRC LMS r L M S
L M

( ) (log ( ), log ( )).10 10 (3)

Mean cone excitation ratios (implicitly compares both images)
(Nascimento & Foster, 2001):

= +
r rCER LMS( ) ,r r

2 (4)

where r and r are L M S[ , , ] excitation ratios for the same two randomly
chosen points in the first and second LMS image, respectively. The
sampling procedure was the same as that in Foster et al. (2016). Note
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that the denominator in our formulation of the mean cone excitation
ratios is slightly different from that in Foster et al. (2016) in order to
keep the final value of the mean cone excitation ratio a scalar quantity.

White patch (Land & McCann, 1971):

=WP DKL DKL p( ) [ ],LD RG YV m[ , , ] (5)

where pm satisfies DKL pmax [ ]
p DKL

LD .

Average color (Buchsbaum, 1980):

=AC DKL DKL DKL DKL( ) [ , , ].LD RG YV (6)

Hue variance (Inspired by Brown & MacLeod, 1997, but not the
same as their concept. Our version is based on the idea that the variance
of hues should decrease as the illuminant becomes more saturated.):

=
=

HV DKL
n
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p

n

1

i·atan2(DKL [p],DKL [p])YV RG

(7)

Note that our version of the White patch statistic is essentially a
variant of the “brightest region is most helpful for extraction of albedo/
surface color” rule (Giesel & Gegenfurtner, 2010; Gilchrist et al., 1999;
Toscani, Valsecchi, & Gegenfurtner, 2013).

The LMS and DKL images were formed using the calibration data of
the monitors. Briefly, an L M S{ , , } triplet can be computed from an
R G B{ , , } triplet in the range of [0, 1] with knowledge of the spectral
distributions emitted from the three primaries when they are at their
maximum intensity. Once these were obtained, we used °2 LMS cone
spectral sensitivity functions Stockman et al. (1999) and Stockman and
Sharpe (2000) to calculate the L M S{ , , } excitations for the three pri-
maries. Then, provided that the primaries do not change in their
properties as their intensity changes, one can take a given R G B{ , , }
triplet and scale and sum the maximum L M S{ , , } excitations accord-
ingly to get the total L M S{ , , } excitation. For example, if the R G B{ , , }
triplet = {0.5, 0.2, 0.5}, then the total L M S{ , , } excitation
= + + + + + +L L L M M M S S S{0.5·( ), 0.2·( ), 0.5·( )}R G B R G B R G B . The
conversion from an R G B{ , , } triplet to the DKL space is covered in Zaidi
and Halevy (1993) and Hansen and Gegenfurtner (2013) and involves
finding the combinations of R G B{ , , } values that independently activate
the cone-opponent retinal ganglion cells (Derrington et al., 1984).

Once the image statistics were computed, we computed the change
in them between the pairs of images shown on each trial. We evaluated
whether the changes in the statistic values correlated with the surface
or the illumination responses of observers. This was first computed
globally for each of the three views of the scene.

Global chromatic scene statistics have been previously proposed as a
source of information for achieving color constancy. Since our experi-
ment is related to color constancy, in that observers must extract in-
formation about the illumination and surfaces to perform the task, we
wanted to see if any of the more common chromatic scene statistics
correlate with observer behavior. In particular, we took each pair of
images that an observer saw on each trial and computed our statistics
for the whole image at once. We then simply took the difference be-
tween the values computed for each pair of images from each trial,
except for the mean cone excitation ratios, which already implicitly
compare the difference between two images. Also, since both the White
patch and Average color statistics return vectors, the vector response
for the second image (i.e., the color estimate) was subtracted from that
for the first image and then the length of this vector was saved as the
final value for the statistic. This process of correlating the outputs of the
statistics with the observers’ responses is a simple first approximation to
see how informative each statistic is for performing our task.

We also computed the statistics locally. This was only done for the
images with a view of the whole scene. First, the object and a 101 px by
101 px patch from the background were segmented from each image. The
background patch was from the lower right corner of the room, so that
interreflections at the junction would be included. Next, computations of
the statistics on the object were taken as measurements of the surface

change and computations of the statistics on the background patch were
taken as measurements of the illumination change. In cases where it was
possible, the estimated color of the illuminant given by a statistic was
factored out of the image before applying said statistic to the segmented
object. The color was factored out by taking each pixel in the segmented
object image, going through each color channel at that pixel, and dividing
the value in the channel by the illumination estimate for that channel. This
was done so that local computations of the object’s color more closely
matched what is to be expected in a color constancy process. This was
done for the White patch and Average color statistics. Please note that
both of these statistics are computed in the DKL color space, where the
axes are typically scaled to span the range of [−1, 1]. However, estimates
of illuminant power and surface reflectance typically work on normalised
scales of [0, 1], so one must first normalise the image and the illumination
estimate to be in this range before simulating the color constancy proce-
dure. This is done by dividing each DKL coordinate by 2 and adding 0.5.
This can be done before or after the estimate of the illuminant color, but it
must also be done for the illuminant color. Regardless, in all cases, the
final values were then individually correlated with the surface and illu-
mination judgments of the observers, respectively.

The comparison between global and local measures of our chro-
matic scene statistics was deliberate. In our case, both the illumination
and the surface can change, which can lead the global scene statistics
astray. If global scene statistics fail to explain observer behavior, then
we can at least assume that observers parse the scene in some manner
during our task, computing the statistics locally to obtain different
sources of information about different features of a scene.

3. Results

3.1. Observers can disentangle simultaneous changes in illumination/
reflectance

3.1.1. Sphere scene
We have found that observers can mostly disentangle the effects of

simultaneous changes in illumination and reflectance. Fig. 6A shows
the responses of observers. Physical changes in both surface color and
illumination color are plotted against the responses that observers
placed in the response sliders after each trial. One should keep in mind
three things when viewing Fig. 6A. First, the values along the x-axis are
the absolute magnitude of the change in the weights used to linearly
combine our base images when generating stimuli.

Also, we randomly sampled from the space of possible illumination
and surface color changes, so the points in the figure are binned at
intervals of 10% (so, the first bin includes the range [0, 10), for ex-
ample). In addition, during the experiment, for any given illumination
change (let’s say 50% for example), many possible surface color re-
flectance changes could have simultaneously occurred. The same is true
for any surface reflectance change: there can be many trials with the
same surface reflectance change, but many different illumination color
changes. So, for any point in Fig. 6A, say one which shows observer
responses for illumination color change, we are averaging observer il-
lumination responses across all of the surface reflectance changes that
occurred for trials containing the illumination color changes within the
respective bin. Essentially, plotting the results as they are in Fig. 6A
allows one to see the degree to which simultaneous changes in surface
color interfere with judgments about the illumination and vice versa.

If we first consider the blue points, which are observer responses for
a view of the whole scene, and only look at the first row of Fig. 6A,
which contains responses to the surface reflectance change, we see that
observer responses show a roughly linearly increasing trend with in-
creases in the magnitude of surface color change. This is what one
would expect if observers are capable of disentangling simultaneous
changes in surface/illumination color. What is most important is that it
mainly monotonically increases. It is important to keep in mind that the
curves do not necessarily need to be linear to indicate that observers are
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performing the task “well”. The reason is that an observer’s measure of
illumination/surface color change cannot be said to be a direct measure
of either the physics involved or of activation at some level of the visual
system. While it is related to these processes, the connection is not di-
rect and is not necessarily linear, so we only require that the trends
increase monotonically. In addition, the results show that observers’
memory for the space of possibilities is not interfering with the task. If
we see a perfect linear trend, then this indicates that observers are
doing excellent, but even some deviation from linearity would show
that they are capable of accepting and memorizing arbitrary scales of
color change for our scenes.

One should also notice that observers do have some variability in
their responses. This variability could be due to potentially different
reasons, such as criterion effects or the inability to precisely locate the
desired position on the response sliders, among other potential influ-
ences, such as the shape of psychometric functions for detecting changes
in the regions of color space that we tested. However, the point still
stands that in spite of all of this and in the face of simultaneous changes
in illumination/reflectance, observers still have the ability to determine
the relative contribution of both sources to changes in a scene.

In panel B of Fig. 6, one will find the correlations of the various
scene statistics with observer responses, split up according to “real”
hyperspectral images, simulated renderings, and global vs. local sta-
tistics, and plotted according to whether the statistic was correlated
with the reflectance or illumination responses. Focusing first on the top
row, with the global scene statistics, we find that they are not fully
capable of explaining observer behavior. Sometimes one statistic is able
to account well for illumination responses, such as the AC or WP sta-
tistics, and sometimes for the reflectance responses, such as the CER or
LRC statistics, but when computed globally, none can account for re-
sponses to both quantities. In fact, one should not find the high corre-
lation of the AC statistic with illumination responses to be particularly
interesting. It is already known that the AC statistic does not account for
a few color constancy results and there are situations where it can be
misleading if one depended on it alone (Maloney, 1999). Rather, the AC
statistic is doing well at predicting observers’ illumination responses,
because for our stimuli, it essentially reproduces the actual physical

manipulation that we did. The AC statistic, for example, computes the
average color of whatever it is looking at, so when it is applied to our
whole image, it essentially extracts the illuminant color, since our
images are dominated by the background and our background was a
box composed of white surfaces. Because of this, any change in the AC
statistic is essentially equivalent to the change in the illuminant color,
but this is just reproducing the stimulus, which we already know cor-
relates well with observer responses, as we have seen in panel A. Si-
milarly, the WP statistic gives the color of the most luminant part of the
scene, which in our stimuli, will always be on the white reflecting
background. Its estimate of the illuminant color will be highly corre-
lated with the AC statistic in our case, so it is also essentially re-
producing the stimulus. While reproducing the stimulus has more or
less been the holy grail of color constancy, the AC statistic at least al-
ready has some known deficiencies that make it an unlikely candidate
for a good color constancy scene statistic (Gilchrist et al., 1984; Golz &
MacLeod, 2002; Maloney, 1999). The WP statistic on the other hand is
known to be diagnostic of the illuminant color in a variety of circum-
stances and has been linked to observer behaviour through eye move-
ment experiments (Toscani et al., 2013).

We also find that the globally computed LRC statistic correlates
decently with observers’ reflectance change responses, but poorly with
their illumination change responses. The LRC statistic makes use of the
correlation between luminance and “redness” (i.e., excursion in the
“red” direction of the DKL “red-green” axis) that has been found in a
few natural scenes (Golz & MacLeod, 2002). This is to be expected,
since even though the intensity of our illuminants was kept essentially
constant, the spheres were not matched in this respect. In other words,
for the same illumiant, the green sphere could reflect a distribution with
greater luminance than the red sphere, introducing a correlation be-
tween luminance and “redness” in that region of the scene. In spite of
this, the LRC is unable to explain observers’ judgments of the illumi-
nant, since the change in our illuminant does not exhibit the correlation
that it seeks, so observers must be using some other source of in-
formation to complete our task. Lastly, hue variance is always doing
poorly and we ignore it for the remainder of this paper.

As it stands, the global scene statistics that we tested, do not fully

Fig. 6. Observer responses and average correlation with scene statistics for the scene with the sphere. (A) Observers responses have been partitioned into “real” &
“simulated” images and “illumination” & “reflectance” judgments. On the x-axis is the physical change of either the illumination or the reflectance (as defined in the
Methods) and on the y-axis is the response that the observer left in the sliders shown after each trial. In each graph, three colored sets of points are shown for the three
viewing conditions: whole scene (blue), object only (black), and background patch (red). The points show the centers for the sampling distribution of the mean (i.e.,
the average taken over each observers average response), binned at intervals of 10% along the x-axis. The points themselves have been slightly displaced horizontally
to improve visibility. Error bars show the standard error of the mean (SEM). When provided with a view of the whole scene, observers’ reflectance and illumination
judgments followed the magnitude of the physical reflectance and illumination changes. When viewing the sphere only, the reflectance change that contributed to the
stimulus was estimated roughly correctly by observers, but any accompanying illumination change that also influenced the stimulus was inconsistently and weakly
detected. When viewing the background patch only, all changes were correctly registered as illumination changes (i.e., observers essentially always set the re-
flectance slider to 0) and observers’ illumination responses followed the actual physical change. (B) Average correlation between changes in scene statistics with
observer responses. The scene statistics were computed for a view of the whole scene only. The correlations have been partitioned into “real” & “simulated” images
and “global” & “local” computation of statistics. Blue symbols are for illumination responses and yellow symbols are for reflectance responses. The points are the
average correlation (as computed via Fisher’s z-transform) between the statistics and observer responses. The errorbars show the standard deviation. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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account for observer behavior. Rather, the statistics generally show a
poor or moderately decent correlation with observer responses (see
Fig. 6B). It could also be argued that these statistics do not fully account
for observer behavior because they are being computed for simple
scenes with little variation in surface reflectance or complex shape.
However, we would rather find a new formulation of chromatic scene
statistics that explains observer behavior in our task, instead of finding
a scene that is ideal for each statistic. There is also an argument against
global chromatic scene statistics ever being able to account for observer
behavior in our task. Since global statistics reduce the whole scene to
one number, a good deal of information is lost and many scenes will
produce the same value for the given statistic. The point is that because
global scene statistics have historically been considered mainly for the
case in which only a mostly uniform illuminant changes color, they
have done fairly well at explaining observer color constancy behavior in
those tasks. In our case, they fail, and it will be important to revise them
to account for our task, since there are situations in the natural world
that can lead to simultaneous changes of illumination and reflectance,
such as when something is burning. In our case, we have considered if
computing the statistics locally allows them to better parse the effects of
simultaneous illumination/reflectance changes. For example, com-
puting a change in a given statistic for a background patch could pro-
vide a clue to the illumination change and computing the same statistic
for the object separately could provide a clue to the reflectance change.

In addition, one may claim that a non-linear relationship is needed
to account for the leap from a statistic’s output to an observer’s final
judgment of magnitude change. First, we tested other correlation
coefficients, such as Spearman’s and Kendall’s tau, both of which better
handle non-linear relationships, and they made no qualitative differ-
ence (i.e., the pattern of results remained the same, for both the global
and local scene statistics). However, the distinction between the per-
ceptual statistic and the link to the output of the cognitive process that
becomes an observer’s response is not always immediately clear,
especially when the information that is most relevant to the task has not
been fully clarified, as is the case here, and is outside the scope of this
paper. Regardless, if we would need to include an additional non-linear
process to account for observer behavior in our task, then this only
provides extra support to our method of analysis, since it would make
clear that the frameworks for the currently tested statistics are in-
sufficient and more work needs to be done.

We computed the local versions of our scene statistics for a view of
the whole scene by segmenting the object and a patch of the back-
ground and computing the statistics on them. These can be seen in the
second row of Fig. 6B. Please remember that for the AC and WP sta-
tistics, we also used their estimate of the illuminant color to perform a
rudimentary color constancy operation for obtaining the surface color
by factoring it out of the image. Each of these measures were then
correlated with the surface and illumination judgments of observers,
respectively. We found that the performance of the CER statistic in-
creased for estimates of the illumination change and the AC and WP
statistics increased for estimates of the reflectance change. Please see
above for why the AC statistic, at least, is not to be relied upon for
illuminant estimation, at least in our task. However, the AC statistic is
doing well at predicting observers’ responses for reflectance changes.
This is considered in more detail in the Discussion. The remaining
statistics estimates are not improved enough by a local computation to
be considered relevant for our task.

3.1.2. Glaven scene
We have found a similar pattern of results for the scene with the

Glavens as we found for the spheres. In particular, observers can dis-
ambiguate simultaneous changes of illumination and reflectance
changes, while global scene statistics cannot. Local scene statistics im-
prove the situation similarly to before and in the Discussion we consider
the relevance of this to previous results and the strategy that observers
could be using in our task. See Fig. 7 for further details.

3.2. Differences between conditions

3.2.1. No preference for color direction
It has been hypothesized in the past that observers might be more

color constant for lights along the daylight locus, since this was the
major locus of illuminant color change during most of our evolution
(Delahunt & Brainard, 2004; Pearce, Crichton, Mackiewicz, Finlayson,
& Hurlbert, 2014). The data on this are at odds with each other, though,
with (Delahunt & Brainard, 2004) finding no preference for colors along
the daylight locus, while (Pearce et al., 2014) found that observers are
more color constant for lights along the daylight locus. Considering this,
we have checked whether our observers were better for blue-yellow
changes vs. red-green changes, both for the illuminants, as well as the
surfaces. In particular, to make the comparisons in this and later sec-
tions, we fit Generalized Additive Models (GAMs) to the data and tested
if fitting them separately for red-green vs. blue-yellow changes pro-
vided a better fit than just fitting them for the pooled data. If fitting
them separately is better, then this is evidence that observers act dif-
ferently for red-green changes as compared to blue-yellow changes.
Briefly, GAMs are an extension of Generalized Linear Models that can
be used for this type of comparison, since we only wish to compare
trends and do not have a predefined function that we wish to fit to our
data Knoblauch and Maloney (2012). They can also handle the non-
linearities in some of the data, while essentially reducing to lines when
the data show a clear linear trend. Essentially, GAMs fit smooth func-
tions, such as splines, to the data and reduce the chances of over-fitting
by using a optimization penalty that is based on the curvature of the fit.
One can specify that the smooth functions be fit separately for each
level of a given factor (e.g., color axis) or that one smooth function be
fit for all of the data.

Fig. 7. Observer responses for scenes containing a Glaven. Plotting conventions
follow those in Fig. 6. The difference is that now data are only shown for si-
mulated renderings, since we did not make “real” images of scenes with Gla-
vens.
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Let us first consider Fig. 8. For the sphere scenes, one can see that
regardless of whether we consider surface or illumination, performance
was basically the same for red-green as it was for blue-yellow changes.
The same can be seen in Fig. 9, where data for the Glaven scenes is
shown. At least for our task, it seems there is no preferred color axis.
More specifically, there were no significant differences between nested
GAMs fit separately to the data from the red-green and the blue-yellow
conditions for each combination of response type (Illumination vs.
Reflectance) and scene type (Whole Scene, Object, Background), as
shown in Tables 1 for the sphere and 2 for the Glaven. Please note that
in these tables, sometimes the probability of the null hypothesis (i.e.,
that a single smooth function fits both sets of data simultaneously)
being true was so high that R’s ANOVA routines do not produce a p-
value or F ratio, so we list them as NA, i.e., as essentially blank and
irrelevant. We have also included the Bayes Factor (BF), computed
according to the Schwarz criterion (Kass & Raftery, 1995), that mea-
sures the weight of evidence towards one or the other model, since a
lack of significant difference between the two models can sometimes be
misleading (Wagenmakers, 2007). In our case, if it is greater than 1,
then the simpler model is preferred and if it is less than 1, then the more
complicated model is preferred. It can be seen that in all cases, the
simpler model that does not fit a separate smooth function for each
color axis is preferred.

3.2.2. No difference between “real” and simulated images
Physically accurate rendering of 3-dimensional scenes is still rapidly

developing, so it can still be the case that a final render will have dif-
ferences from the original scene that it is based on. However, for sim-
pler scenes and simpler materials, whose optical properties are well
known, the final render usually only shows small differences, if any,
from the original scene, as evidenced by the frequent use of physically-
based rendering systems in architectural prototyping (Ward, 1989).
Here, we have tested if the renders produced by the Mitsuba rendering
system produced any measurable psychophysical differences from the
hyperspectral images of the original scene. If differences exist, then the
renders probably lack a key feature that assists observers in performing
our task, but the data do not support this, as can been seen in Fig. 10.
There was only one significant difference between nested GAMs fit
separately to the data from the hyperspectral image and the simulated
image conditions for each combination of response type (Illumination
vs. Reflectance) and scene type (Whole Scene, Object, Background), as
shown in Table 3. Again, in all but one case, the BFs prefer the simpler
model.

3.2.3. Glavens do not appreciably influence observer performance
Based on the work of Ruppertsberg and Bloj (2007), we tested

whether using Glavens as a test object improves observer performance
relative to a sphere, since the deformed bodies of the Glavens will have
more interreflections on their surfaces, as well as more shadows. This

Fig. 8. Sphere scene: Observer responses for the two response types (illumination/reflectance) and the three views (whole scene, object only, or background only)
parceled according to the axis along which a color change took place. Blue-yellow changes in blue and red-green changes in red. It can be seen that observers were
not acting differently for one color direction over the other. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 9. Glaven scene: Observer responses for the two response types (illumination/reflectance) and the three views (whole scene, object only, or background only)
parceled according to the axis along which a color change took place. Blue-yellow changes in blue and red-green changes in red. It can be seen that observers were
not acting differently for one color direction over the other. The one missing point for responses to a Blue-Yellow reflectance change in the 90–100% bin of the Object
only condition is due to our method for randomly selecting stimuli never having sampled in this region. It fortunately has no effect on our conclusions. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Results from an ANOVA analysis comparing GAMs fit to the data shown in the six panels of Fig. 8. The models were nested, with the first fitting one
smooth function to perceived magnitude of stimulus change for both color axes and the second fitting a separate smooth function for each color axis.
No significant differences were found between the two models at a p < .05 level, indicating, in general, no differences based on the axis along which a
color change took place. In addition, the BFs consistently prefer the simpler model that does not fit a separate smooth function for each color axis.

Illumination Surface

Whole Scene F(81.60,2.69)= 0.108, p= .943, BF= 108.66 F(87.05,1.34)=NA, p=NA, BF= 15.93
Object F(90.00,1.00)= 0.039, p= .844, BF= 9.50 F(90.00,1.00)= 2.910, p= .091, BF=2.17
Background F(78.77,2.77)=NA, p=NA, BF=147.28 F(88.46,1.54)= 1.397, p= .251, BF=6.24

Table 2
Results from an ANOVA analysis comparing GAMs fit to the data shown in the six panels of Fig. 9. The models were nested, with the first fitting one
smooth function to physical magnitude of stimulus change for both color axes and the second fitting a separate smooth function for each color axis. No
significant differences were found between the two models at a p < .05 level, indicating no differences based on the axis along which a color change
took place. In addition, the BFs consistently prefer the simpler model which does not fit a separate smooth function for each color axis.

Illumination Surface

Whole Scene F(77.27,2.79)= 0.511, p= .663, BF= 66.16 F(77.22,1.97)= 1.502, p= .229, BF= 7.26
Object F(81.00,1.00)= 0.467, p= .496, BF= 7.22 F(83.00,1.00)= 0.245, p= .622, BF= 8.20
Background F(82.15,2.46)= 0.569, p= .604, BF= 39.22 F(77.22,1.97)= 1.502, p= .229, BF= 7.26
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could provide additional information for observers during the task.
However, Fig. 11 shows that observers were already doing well with the
spheres and that the Glavens did not appreciably improve performance.
If anything, there seems to be a tendency for observers to overestimate
the magnitude of changes when viewing the Glavens. However, there
were no significant differences between GAMs fit separately to the data
from the Glaven and the sphere conditions for each combination of
response type (Illumination vs. Reflectance) and scene type (Whole
Scene, Object, Background), as shown in Table 4. For the one case
where p= 0.05 (top left panel of Fig. 11: perceived magnitude of il-
lumination changes for the whole scene viewing condition), the BF still
favors the simpler model of no strong difference between the two
curves. Regardless, part of the apparent differences between the two

conditions are likely due to noise and the few larger differences could
be due to three alternative sources: (1) different observers did the
spheres and Glavens experiments, (2) we reduced the overall number of
trials for the Glavens experiments to save some time, and (3) the sphere
data averages over the real and simulated scenes, whereas the Glavens
were only tested with simulated scenes, so much more data contributes
to the points for the sphere data.

4. Discussion

We deal with changes of illumination more frequently than we deal
with changes of surface color, but both do occur in the natural world.
Here, we have shown that observers are capable of perceptually

Fig. 10. Sphere scene: Observer responses for the two response types (illumination/reflectance) and the three views (whole scene, object only, or background only)
parceled according to whether the image was a “real” hyperspectral image (blue) or a simulated image produced by the Mitsuba rendering system (black). It can be
seen that observers performed similarly for both types of images, indicating that the rendering system includes the information that observers need to perform the
task. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Results from an ANOVA analysis comparing GAMs fit to the data shown in the six panels of Fig. 10. The models were nested, with the first fitting one
smooth function to physical magnitude of stimulus change for both color axes and the second fitting a separate smooth function for each image
condition (“real” vs. simulated). No significant differences were found between the two models at a p< .05 level, indicating, in general, no differences
based on whether the image was simulated or not. The BFs consistently prefer the simpler model that does not fit a separate smooth function for each
image condition.

Illumination Surface

Whole Scene F(86.35,2.84)=NA, p=NA, BF=188.51 F(91.80,1.69)=NA, p=NA, BF=34.45
Object F(95.00,1.00)= 0.516, p= .474, BF= 7.61 F(94.82,1.18)=0.232, p= .670, BF= 10.63
Background F(86.40,2.44)= 0.177, p= .877, BF= 66.24 F(91.64,1.36)=1.256, p= .279, BF= 6.28
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disentangling simultaneous changes in surface and illumination. In
particular, our task has been a new test of the robustness of various
chromatic scene statistics commonly found in the color constancy lit-
erature. Localized versions of the statistics generally performed better
than global versions of the statistics. One could argue that perhaps with
a more complex scene, the current statistics would perform better, but

we suggest that this is not the approach to take if one wants to better
understand human behavior in our task. Regardless, we take our results
as suggesting that observers are parsing scenes into a layered re-
presentation and performing color constancy computations on a local
basis. While local color constancy computations are not a novel idea,
the notion of global scene statistics seems to be more pervasive in the

Fig. 11. Observer responses for the two response types (illumination/reflectance) and the three views (whole scene, object only, or background only) parceled
according to whether the test object was a Glaven (blue) or a sphere (black). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 4
Results from an ANOVA analysis comparing GAMs fit to the data shown in the six panels of Fig. 11. The models were nested, with the first fitting one
smooth function to physical magnitude of stimulus change for both color axes and the second fitting a separate smooth function for each object type
(Glaven vs. sphere). No significant differences were found between the two models at a p < .05 level, indicating, in general, no differences based on
whether the object was a Glaven or a sphere. In the case of responses to illumination changes in the whole scene viewing condition, p= .05, which
suggests a trend for Glavens and Spheres to be treated differently in that case, but the BF still favors the simpler model. For all other conditions, the BFs
also consistently prefer the simpler model which does not fit a separate smooth function for each object type.

Illumination Surface

Whole Scene F(86.50,2.87)= 2.750, p= .05, BF= 3.13 F(88.03,2.14)=0.223, p= .815, BF= 38.41
Object F(92.00,1.00)= 0.206, p= .651, BF= 8.80 F(91.00,1.00)=0.072, p= .788, BF= 9.39
Background F(86.98,2.77)= 1.146, p= .333, BF= 29.09 F(92.00,1.00)=0.696, p= .406, BF= 6.82
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field, if only implicitly. In fact, many of the mechanisms thought to be
involved in color constancy are computed in a local manner at the level
of neural implementations, which can assist in dealing with sudden
changes in the pattern of the illumination when walking around
(Werner, 2014).

In particular, our results contribute to the notion that the brain uses
more than image-based measures to achieve color constancy. It is po-
tentially parsing the scene into different layers, such as object, back-
ground, shadow, etc., and then using information in these layers.
However, this is not a new idea (Anderson & Kim, 2009; Beck, 1972;
Gilchrist et al., 1984). New avenues of investigation should continue to
consider the information contained in different semantic regions of the
scene (background, foreground, and shadows).

Another question that our results probe is whether or not observers
need complicated shapes and articulated backgrounds to achieve color
constancy in more natural settings. A matte sphere in a white box is
about as simple a 3-D stimulus as one can get, being almost the 3-D
analog of the classical center-surround stimulus, and yet, observers can
handle the task. Giving them a more complex object, such as the
Glavens, which have interreflections on their surface, did not produce
marked changes in their behavior. To be clear, this is not to discredit
previous studies which found that observers need more varied scenes to
perform better at color constancy; it is already known that performance
in a color constancy experiment is dependent on stimulus, task, and
instructions (Foster, 2011; Hurlbert, 2007; Smithson, 2005; Werner,
2014). In fact, our observers are not at 100% performance in our task.
We merely want to highlight that they are doing fairly well under rather
reduced conditions. It will be interesting to investigate whether or not
observers find the task more or less difficult with more complex scenes
and objects.

Also of interest is the failure of the luminance-redness correlation
and the relative success of the mean cone excitation ratios. The lumi-
nance-redness correlation has been previously proposed as a viable
source of information about the illumination. It is found in some natural
scenes and observers seem to use it to perform some tasks (Golz, 2008;
Golz & MacLeod, 2002). However, it has been unable to fully explain
observer judgments of the illumination change in our task. It is possible
that our scenes may have been too simple for this statistic, but they also
violated one of its principal expectations: that as the illuminant be-
comes brighter, it becomes redder, and vice versa. In our case, the il-
luminants were all fixed at roughly the same luminance and only
changed in hue and saturation. As such, any change in the illuminant
color towards or away from red was not accompanied by a concomitant
change in luminance. In addition, a luminance-redness statistic will not
be of assistance for color changes along an orthogonal ‘blue-yellow’
axis. Observers were using alternate information to perform the task
and the luminance-redness correlation does not consider this.

The mean cone excitation ratios are also an interesting story. It is a
statistic that was studied for the case where the illumination and the
surface can change in color. As a result, it does better with accounting
for observer behavior for both surface and illuminant changes than
most statistics, but not perfectly (although, to be fair, no statistic was
proposed as a perfect solution). In the work of Foster, Nascimento,
Amano, and colleagues (Craven & Foster, 1992; Foster & Nascimento,
1994; Foster et al., 2000; Foster et al., 2006; Foster et al., 2001; Linnell
& Foster, 1996), it has been consistently found that cone excitation
ratios could serve as a physical invariant for color constancy, especially
in tasks where the surface and illumination change simultaneously.
However, the majority of the experiments with simultaneous changes
have been done with 2-dimensional stimuli, while ours was 3-dimen-
sional. While the work in Foster et al. (2006) used a 3-dimensional
stimulus, observers were not asked to estimate the magnitude of change
in either the illuminant or the test surface. Regardless, it seems that
once these properties change simultaneously in a 3-dimensional scene
and an observer must estimate their magnitude, cone excitation ratios
can explain part of the variance, but not all. However, this is not to the

detriment of cone excitation ratios. In Foster et al. (2006), it was found
that cone excitation ratios explained ±43.2% 14.5% of the variance on
average and combinations with other statistics were necessary to ac-
count for more of the data, so it may only be part of the story.

This brings us to a theme that we have not dealt with in this paper:
cue combination (Boyaci et al., 2006; Kraft, Maloney, & Brainard, 2002;
Maloney, 2002; Yang & Maloney, 2001; Yang & Shevell, 2002). Cue
combination suggests that observers use various sources of information
to complete a task, giving these sources different weights as necessary
to complete the task in an optimal fashion. One can represent this in a
linear model framework and incorporate Bayesian priors for additional
explanatory power. While work on color constancy has shown that
observers are sensitive to manipulations of different information
sources, it is still not clear when and how observers use each of these
information sources. While our experiment does not probe this (further
investigation is necessary), it is necessary to talk about the relevance of
cue combination, since we only tested each statistic in isolation. We did
this for two reasons: (1) many of the studies on these statistics con-
sidered them in isolation, so we wanted a fair comparison, and (2)
finding the right combination of statistics to explain more than just the
task at hand is a tricky matter and requires more conditions than we
have tested in this study. It is also not clear if one ends up overfitting
with respect to the stimulus. Aside from this, some of the chromatic
scene statistics correlate with each other, and simply putting them into
a linear regression and finding the best combination is not straight-
forward. In other forms of color constancy tasks, this is when one does
want to use more complicated scenes because they make it possible to
circumvent these correlations to a certain degree, but this does not fully
solve the problem for our paradigm. For example, a scene with white
walls and a black floor could reduce the correlation between the White
patch and Average color statistics for a single image, because one can
change the contrast between the walls and the floor, which would
change the result of the White patch statistic, but leave the Average
color statistic unchanged. However, our task would probably become
too difficult if the walls also changed color. In addition, our task is
about estimating magnitude of color change, and even if the estimates
of the White patch and Average color statistics were de-correlated for
each pair of images on a trial, their estimates of magnitude change
would still highly correlate. Please note that we wish to make it clear
that we do think that observers combine cues, but the question of how
observers make use of different statistics in different color constancy
tasks is still open.

It is also worthwhile to consider that a statistic which is good for
estimating the illuminant may not be what one wants to use to estimate
surface color changes and vice versa. For example, the Average color
statistic is known to not be a viable statistic to depend on for illuminant
estimation, as mentioned in the Results section. However, it does do
well at predicting observer behaviour for perceived magnitude of sur-
face color changes in our task. It is possible that an observer might use a
different statistic to estimate the illumination in most circumstances,
but then use the Average color statistic to estimate surface color. This
would parallel previous work showing that observers seem to use the
mean color to categorize images of leaves into ‘red’ and ‘green’ color
categories (Milojevic, Ennis, Toscani, & Gegenfurtner, 2018), although
categorization and estimation of color change magnitudes are two
different kinds of tasks which might use different types of information.
On the other hand, the White patch statistic has been linked to observer
behaviour in other tasks (Giesel & Gegenfurtner, 2010; Gilchrist et al.,
1999; Toscani et al., 2013) and is also doing well at predicting ob-
servers’ illumination magnitude change responses in our task. It could
be that observers use the White patch statistic to estimate the illumi-
nation, then use that to do a color constancy correction, and then use
the Average color statistic to estimate the surface color. This strategy
would also be useful in the presence of specular highlights on glossy
objects, since highlights are typically composed of the illuminant color
and are typically very bright, while the object’s more diffuse reflections
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would be diagnostic of the body color and are darker than the high-
lights (Shafer, 1985). However, more work should be done to test these
concepts more fully, including testing objects with more complex gra-
dations of color across their surfaces, especially with respect to esti-
mations of the magnitude of surface color changes. It will also be of
interest to determine how to incorporate cone excitation ratios as part
of the process.

Lastly, we wish to bring our readers’ attention to the object-only
viewing condition for both the spheres and the Glavens. For this con-
dition, observers were essentially correct on average about the change
in surface reflectance, but not about the change in the illuminant. To us,
this seems counter-intuitive, since the classical idea of color constancy
is that one first determines the color of the illuminant, then “subtracts”
this from the scene, thereby “discounting” it (Helmholtz, 1867) and
obtaining stable estimates of surface properties. Reasoning from this
condition only, it would seem then that “discounting” the illuminant
really does mean to completely discard all of the information about the
illuminant and forget about it, but this does not hold, since we see il-
luminant colors in our daily lives and observers were able to extract the
illuminant color in both the whole scene and background only viewing
conditions. One could alternatively explain the data by suggesting that
when observers see the object only condition, they will perceive any
color change as a reflectance only change, so any contribution of the
illuminant change would contaminate their judgment and cause them
to under- or over-estimate the actual reflectance change. If this were the
case, then they should be roughly correct on average, as we find, but
the variability of their responses should be larger in the object only
condition. We find this basically to be the case; see Table 5, where the
average change in the standard deviation between the two conditions is
shown. At least for the objects that we tested here, it seems to be the
case that an observer needs a background for accurate and reliable il-
luminant estimation.

5. Conclusions

In conclusion, we have found that observers can deal with si-
multaneous changes in surface reflectance and illumination. We pro-
pose that further investigation be done to tackle the following three
items: (1) determine how the visual system uses information from a
potential layer decomposition of the scene, (2) determine which sta-
tistic(s) are extracted from each of these layers, and (3) determine how
they are synthesized to produce a final estimate of illumination/surface
color change. While none of these are new objectives in the field of
color constancy research, we merely wish to reiterate their simulta-
neous importance. Lastly, it will be interesting to see what happens
when other materials are tested.
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