
NEW SOLUTION METHODS FOR SINGLE MACHINE

BICRITERIA SCHEDULING PROBLEM: MINIMIZATION OF

AVERAGE FLOWTIME AND NUMBER OF TARDY JOBS

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Fatih Safa Erenay

July, 2006

i

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Prof. İhsan Sabuncuoğlu (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Ayşegül Toptal

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Prof. Erdal Erel

Approved for the Institute of Engineering and Science:

 Prof. Mehmet Baray

 Director of Institute of Engineering and Science

 ii

Abstract

NEW SOLUTION METHODS FOR SINGLE MACHINE BICRITERIA
SCHEDULING PROBLEM: MINIMIZATION OF AVERAGE FLOWTIME AND

NUMBER OF TARDY JOBS

Fatih Safa Erenay

M.S. in Industrial Engineering

Supervisor: Prof. İhsan Sabuncuoğlu

July 2006

In this thesis, we consider the bicriteria scheduling problem of minimizing number

of tardy jobs and average flowtime on a single machine. This problem, which is

known to be NP-hard, is important in practice as the former criterion conveys the

customer’s position and the latter reflects the manufacturer’s perspective in the

supply chain. We propose two new heuristics to solve this multiobjective

scheduling problem. These two heuristics are constructive algorithms which are

based on beam search methodology. We compare these proposed algorithms with

three existing heuristics in the literature and two new meta-heuristics. Our

computational experiments illustrate that proposed heuristics find efficient

schedules optimally in most of the cases and perform better than the other

heuristics.

Keywords: Bicriteria Scheduling, Average Flowtime, Number of Tardy Jobs, Beam
Search.

 iii

Özet

TEK MAKİNEDA İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ İÇİN YENİ
ÇÖZÜM METODLARI: ORTALAMA AKIŞ SÜRESİ VE TOPLAM GEÇ KALMIŞ

İŞ SAYISINI ENKÜÇÜKLEME

Fatih Safa Erenay

Endüstri Mühendisliği Yüksek Lisans

Tez Yöneticisi: Prof. İhsan Sabuncuoğlu

Temmuz 2006

Bu tezde, ortalama iş akış süresini ve toplam geç kalmış iş sayısını enküçüklemeyi

hedefleyen iki ölçütlü tek makina çizelgeleme problemini ele aldık. NP-zor olduğu

bilinen bu problemın önemi ele aldığı ölçütlerden kaynaklanmaktadır. Zira, ele

alınan birinci ölçüt tedarik zinciri içerisindeki bir üreticinin, ikincisi ise bir

tüketicinin bakış açısını temsil eder. Bu çok ölçütlü problem için iki yapıcı

sezgisel yöntem öneriyoruz. Bu iki yöntem ışın taraması algoritması esas alınarak

geliştirilmiştir. Önerilen bu iki algoritma, üçü literatürde mevcut ikisi de yeni

geliştirilmiş olan, 5 farklı sezgisel yöntem ile karşılaştırılmıştır. Yaptığımız sayısal

testler sonucu, önerdiğimiz algoritmaların, çoğu zaman en iyi etkin çizelgelere

ulaştığı ve karşılaştırıldıkları sezgisel yöntemlerden daha iyi sonuçlar verdikleri

tesbit edilmiştir.

Anahtar Kelimeler: İki Ölçütlü Çizelgeleme, Ortalama İş Akış Süresi, Toplam

Geç Kalmış İş Sayısı, Işın Taraması.

 iv

To my family,

 v

Acknowledgement

I would like to express my sincere gratitude to Prof. İhsan Sabuncuoğlu and
Asst. Prof. Ayşegül Toptal for their instructive comments and encouragements in
this thesis work. I believe that their valuable suggestions in the supervision of the
thesis will guide me throughout all my academic life.

I am indebted to Prof. Erdal Erel for accepting to review this thesis, and his
useful comments and suggestions.

I would like to express my special thanks to Süleyman Kardaş and Mustafa
Aydoğdu for their computational aids, sharing their technical knowledge with me
and for their friendship.

I am also indebted to Prof. Selim Aktürk, Assoc. Prof. Oya Ekin Karaşan,

Asst. Prof. Emre Alper Yıldırım, and Asst. Prof. Mehmet Rüştü Taner for their
valuable time and feedbacks.

I would also like to thank to Selçuk Gören, Hakan Gültekin, Mehmet
Mustafa Tanrıkulu, Muzaffer Mısırcı, Fazıl Paç, Gülay Samatlı, Ahmet Camcı,
Cağdaş Büyükkaramıklı, Çagrı Latifoğlu, Sinan Gürel, Ayşegül Altın, Sıtkı Gülten
and my other friends for their helps and morale support during my graduate study.

Finally, I would like to express my deepest gratitude to my family for their
understanding and patience during my graduate life.

 vi

CONTENTS

CHAPTER 1 ..…………. …. 1

INTRODUCTION ...….….. …. . 1

CHAPTER 2 ...….….. ………... 3

LITERATURE REVIEW ...…… 3

CHAPTER 3 .. 6

PROBLEM FORMULATION…………………………………….......................... 6

CHAPTER 4 ... 10

OPTIMAL SOLUTION METHODOLOGY FOR MINIMIZING Tn AND F …. 10

CHAPTER 5 ... 13

PROPOSED BEAM SEARCH ALGORITHMS AND OTHER HEURISTICS 13

5.1. Independent Beam Search (BS-I) …………………................................... 14

5.2. Dependent Beam Search (BS-D) ..………………….................................. 15

5.3. Genetic and Tabu-search Algorithms (GA and TS) 15

CHAPTER 6 ... 16

COMPUTATIONAL EXPERIMENTS ... 16

6.1. Comparison with the Optimum Solution ….. 17

6.2. Experiments on Larger Problems…………….. 25

CHAPTER 7 ... 31

BIBLIOGRAPHY .. 33

APPENDIX ... 37

 vii

LIST OF FIGURES

FIGURE 1: AVERAGE PERCENTAGE DEVIATION VS BEAM WIDTH........ 18

FIGURE 2: B&B TREE FOR THE SAMPLE PROBLEM ……………………... 38

FIGURE 3: INDEPENDENT BEAM SEARCH TREE FOR THE SAMPLE

PROBLEM.. 41

FIGURE 4: DEPENDENT BEAM SEARCH TREE FOR THE SAMPLE

PROBLEM.. 43

 viii

LIST OF TABLES

Table 1: Sample problem parameters……………………………............................ 37

Table 2: Due date ranges for the test problem ………... 16

Table 3: Comparison of the heuristics with the optimum solution ……………... 21

Table 4: Average deviation from optimum in the problems with low processing

variability………………………………………………………………………… 23

Table 5: Average deviation from optimum in the problems with high processing

variability………………………………………………………………………… 24

Table 6: Number of efficient schedules for which no solution is found ……..... 25

Table 7: Comparison of the other heuristics with Nelson’s Heuristic .…..... …... 28

Table 8: Number of efficient schedules for which no solution is found …...….. 30

Table 9: Average CPU time in milliseconds ……..…………………………….. 30

Table 10: Comparison of heuristics with optimum solution on the test problems with

20 jobs and low processing time variability……….……………………………. 52

Table 11: Comparison of heuristics with optimum solution on the test problems

with 20 jobs and high processing time variability ….…………………………… 53

Table 12: Comparison of heuristics with optimum solution on the test problems

with 30 jobs and low processing time variability …..…………………………… 54

Table 13: Comparison of heuristics with optimum solution on the test problems

with 30 jobs and high processing time variability ….…………………………… 55

 ix

Table 14: Comparison of heuristics with optimum solution on the test problems

with 40 jobs and low processing time variability …..…………………………… 56

Table 15: Comparison of heuristics with optimum solution on the test problems

with 40 jobs and high processing time variability ….…………………………… 57

Table 16: Comparison of heuristics with optimum solution on the test problems

with 60 jobs and low processing time variability …..…………………………… 58

Table 17: Comparison of heuristics with optimum solution on the test problems

with 60 jobs and high processing time variability ….…………………………… 59

Table 18: Comparison of heuristics with Nelson’s Heuristic on the test problems

with 80 jobs and low processing time variability ………... ………………….. 61

Table 19: Comparison of heuristics with Nelson’s Heuristic on the test problems

with 80 jobs and high processing time variability ……….. ………………….. 62

Table 20: Comparison of heuristics with Nelson’s Heuristic on the test problems

with 100 jobs and low processing time variability ..……... ………………….. 63

Table 21: Comparison of heuristics with Nelson’s Heuristic on the test problems

with 100 jobs and high processing time variability ……….. ………………… 64

Table 22: Comparison of heuristics with Nelson’s Heuristic on the test problems

with 150 jobs and low processing time variability ……….…………….…….. 65

Table 23: Comparison of heuristics with Nelson’s Heuristic on the test problems

with 150 jobs and high processing time variability …………...….……….….. 66

 1

C h a p t e r 1

INTRODUCTION

In the literature most scheduling studies consider optimization of a single

objective function. However, in practice, decision makers evaluate schedules

according to more than one measure. Since using multiple criteria is more realistic,

several multicriteria scheduling papers have appeared in the scheduling literature.

Most of these papers are on single machine bicriteria scheduling problems. In the

vein of this literature, this thesis study considers minimization of mean flowtime

(F) and number of tardy jobs (nT) on a single machine. Our contribution lies in

developing new heuristics that outperform the current approximate solution

methodologies. Also, we characterize the effectiveness of these proposed

heuristics in terms of problem parameters.

 We propose two heuristics, which are constructive algorithms based on beam

search method. In addition, two heuristics iteratively utilizing genetic algorithm

and tabu-search are developed by Kardas and Sabuncuoglu (2006) and Aydogdu

and Sabuncuoglu (2006). These new heuristics are designed to find the

approximately efficient schedules. That is, they can estimate the pareto frontier

solutions for the problem of minimizing mean flowtime (F) and number of tardy

jobs (nT) on a single machine.

 Efficient schedules are the set of schedules that cannot be dominated by any

other feasible schedule according to the considered criteria. All other schedules,

which are not in this set, are dominated by at least one of these efficient schedules.

The reason for seeking efficient schedules instead of minimizing weighted sum of

 2

nT and F is that whatever the weights are, the optimum solution will be one of the

efficient schedules. Specifically, given the efficient schedules for the bicriteria

problem and the corresponding weights w1 and w2, the solution to the

minimization of w1 F + w2 nT can be found by evaluating all these finite number

of efficient schedules.

 Number of tardy jobs and average flowtime are quite significant criteria for

characterizing the behavior of a manufacturer who wants to meet the due dates of

his/her customers while minimizing own inventory holding costs. The solution to

the single machine problem which is known to be NP-hard (Bulfin and Chen,

1993) can be used as an aggregate schedule for the manufacturer, or for generating

a more detailed schedule for a factory based on a bottleneck resource. Thus,

having an effective approximate solution methodology for finding efficient

schedules to this problem is important both theoretically and in practical sense.

 The organization of this thesis is as follows. In Section 2, we present a

literature review on multicriteria scheduling. In Section 3, we formulate the

problem of minimizing number of tardy jobs and average flowtime on a single

machine. In Section 4, we describe Nelson et al. (1986)’s optimum solution

method for this problem. The proposed beam search algorithms are presented in

Section 5. Computational results are provided in Section 6. Finally, concluding

remarks and future research directions are given in Section 7.

 3

C h a p t e r 2

LITERATURE REVIEW

 In the scheduling literature, most of the studies consider bicriteria single

machine scheduling problems that minimize couples of criteria such as maximum

tardiness and flowtime (Smith, 1956; Heck and Robert, 1972; Sen and Gupta,

1983; Koksalan, 1999), maximum earliness and flowtime (Koksalan et al., 1998;

Koktener and Koksalan, 2000; Keha and Koksalan, 2003), maximum earliness and

number of tardy jobs (Erol et al., 1998; Kondakci et al., 2003). Extensive surveys

of several bicriteria single machine scheduling studies are provided by Dileepan

and Sen (1988), Fry et al. (1989) and Wan and Yen (2003). In addition to these

survey papers, Nagar et al. (1995), Billaut and T’kindt (1999) and Hoogeveen

(2005) review multicriteria scheduling literature including those papers that

consider more than two criteria and more complex settings.

 Bulfin and Chen (1993) analyze the complexity of the single machine

multicriteria scheduling problems which consider maximum tardiness, flowtime,

number of tardy jobs, tardiness and the weighted counterparts of the last three

criteria. A more recent publication that reviews the complexity of the multicriteria

scheduling problem is by T’kindt et al. (2005). The paper is mainly about the

enumeration complexity theory. Nevertheless, the survey also reviews the

complexity of several multicriteria scheduling problems as an application of the

theorems presented in the paper.

 Multicriteria scheduling studies can be grouped into three categories as:

hierarchical optimization, weighted sum optimization and pareto optimization

 4

(Wan and Yen, 2003). Hierarchical optimization approach tries to minimize some

of the criteria while keeping the others at their optimal value. In weighted sum

optimization approach, the decision makers assign weights to the criteria. Thus,

the multiple criteria are reduced to a single performance measure. The last

category, pareto optimization, minimizes corresponding criteria simultaneously by

finding efficient schedules. The current study belongs to the last category.

 For single machine case, the problem of minimizing nT, while F is optimum,

is solved in polynomial time (Chen and Bulfin, 1993) by an adjusted version of

SPT order which applies Moore’s Algorithm to break ties among the jobs with

equal processing time. In the rest of the thesis, SPT order will refer to this adjusted

version. In another study, Emmons (1975) develops an algorithm for minimizing

F while nT is optimum. Later, this problem is showed to be NP-Hard by Huo et

al. (2005). Finally, Chen and Bulfin (1993) prove that simultaneously minimizing

both criteria on a single machine via finding efficient schedules is NP-Hard.

 Then, Nelson et al. (1986) develop a branch and bound procedure to find

efficient schedules for minimizing nT and F optimally on single machine. In

addition, Nelson et al. (1986) develop a constructive heuristic for this problem. In

another study, Kiran and Unal (1991) define several theorems about the

characteristics of the efficient solutions. Kondakci and Bekiroglu (1997) present

some dominancy rules on the efficient solutions, which they use to develop more

effective optimal solution method. These dominancy rules are applied to the

Nelson et al.’s branch and bound procedure. Consequently, the paper reports that

the size of branch and bound tree is reduced considerably.

 Recent studies on the problem propose some general purpose procedures.

Koktener and Koksalan (2000), and Keha and Koksalan (2003) develop heuristic

methods based on simulated annealing and genetic algorithms, respectively. The

later study indicates that genetic algorithm generally performs better than the

 5

simulating annealing; however, simulating annealing approach is faster than the

genetic algorithm.

 After reviewing these studies we observe that there are many multicriteria

scheduling papers in the literature. However, only a few solution methodologies,

(one exact and three heuristics) are proposed for the problem that the current study

considers. Moreover, these solution methods are not compared with each other in

detail. Thus their relative strengths are unknown. Only simulated annealing

(Koktener and Koksalan, 2000) and genetic algorithm (Keha and Koksalan, 2003)

approaches are compared with each other. Nevertheless, these two iterative

methods are not properly compared with the optimum solution for problems with

more than 20 jobs. Therefore, the current study presents two constructive and two

iterative heuristic methods for this problem and compares these proposed

heuristics with each other as well as with the other exact and heuristic solution

methods available in the literature. Hence, the current study will illustrate the

relative strengths of each solution method.

 6

C h a p t e r 3

PROBLEM FORMULATION

 As discussed earlier, our approach aims at finding approximately efficient

schedules for minimizing F and nT. More formally, we are interested in finding a

set of schedules where, if S is an element of this set, then there exists no schedule

S ′ such that;

i))()(SnSn TT ≤′

ii))()(SFSF ≤′

iii) At least one of these constraints is strict.

 Furthermore, our approach builds on the fact that optimizing either one of the

objectives, nT or F , on a single machine is polynomially solvable. It is well known

in the scheduling literature that shortest processing time (SPT) rule minimizes the

average flowtime, and Moore’s Algorithm (Moore, 1968) minimizes the number

of tardy jobs. In the rest of the thesis, we will denote nT(SPT) and nT(Moore) as the

number of tardy jobs in the sequence formed for a problem instance using SPT

rule and Moore’s Algorithm, respectively.

 We assume that the processing times and due dates are constant and known at

the beginning of the planning horizon. We also assume that there is no preemption

or precedence relation between jobs. The delays that occur in machining process

due to maintenance and unexpected failures are ignored. We define N as the total

number of jobs and refer to a particular job by index j. Pj and dj denote the

 7

processing time and the due date of Job j, respectively. In single machine setting, a

schedule is the sequence in which the jobs will start to be processed. Denoting S as

a feasible schedule, F (S) represents the average flowtime of schedule S and nT(S)

refers to the number of tardy jobs resulting from schedule S.

 Kiran and Unal (1991) show that for each number of tardy jobs between

nT(SPT) and nT(Moore), there exists at least one corresponding efficient schedule.

Therefore, the range between nT(SPT) and nT(Moore) is referred to as efficient

range of number of tardy jobs. Since there exists at least one efficient schedule for

every nT value in this range, total number of efficient schedules for a given

problem is at least nT(SPT) - nT(Moore) + 1. Therefore, for a problem with N jobs,

we solve the following model for all n in the efficient range.

S
Min
∀

 F (S)

st

nT(S) = n where nT(SPT) ≥≥ n nT(Moore)

 For the purpose of presenting a more detailed formulation of the above

problem, let us define Xi j and Yj as follows.

 1, if i th position is held by Job j

Xi j =

 0, o.w.

 1, if Job j is tardy

Yj =

 0, o.w.

 8

 Also, let M and ξ denote a very large and a very small number, respectively.

The mathematical model is given below.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−∑∑

==

N

j
jij

N

i

PXiN
N

Min
11

)1(1

..ts

∑
=

=
N

j
ijX

1

1 for all i ∈{1, 2, ……N} (1)

∑
=

=
N

i
ijX

1

1 for all j ∈{1, 2, ……N} (2)

jkik

N

r

r

i

N

k
rjjj YMPXXPd ×−≥−− ∑∑∑

=

−

= =2

1

1 1

 for all j ∈{1, 2, ……N} (3)

() ξ−−×≤−− ∑∑∑
=

−

= =
jkik

N

r

r

i

N

k
rjjj YMPXXPd 1

2

1

1 1

 for all j ∈{1, 2, ……N} (4)

∑
=

=
N

j
j nY

1

 (5)

i, j, k, r },....1{ N∈ ;

 Equation (1) assures that only one job can be assigned on each position in the

schedule. Equation (2) makes sure that there is no unassigned job. Expressions (3)

and (4) jointly identify whether Job j is tardy or not, i.e. Yj = 0 or Yj = 1. Finally,

Equation (5) assures that only n jobs are tardy. In order to solve the problem of

minimizing nT and F on a single machine, this mathematical model should be

solved for every n s.t. nT(SPT) ≥≥ n nT(Moore). As seen in the model,

Inequalities (3) and (4) are nonlinear due to the multiplication of rjX and ikX .

However, since the both variables are binary, it is possible to linearise these

inequalities by replacing rjX ikX with rjikZ and adding the following expressions to

the model.

 9

i) rjikrj ZX ≥

ii) rjikik ZX ≥

iii) 1−+≥ ikrjrjik XXZ

for all i, j, k, r },....1{ N∈ ;

 In a given problem, the efficient schedule that has nT(SPT) tardy jobs is the

schedule that is formed according to SPT order. For a given problem, other

nT(SPT) - nT(Moore) efficient schedules need to be found. Nelson et al. (1984)

proposed an efficient branch and bound algorithm to find all these schedules

optimally. However, this algorithm works well only for small sized problems.

Since the computationally efficient heuristics that we propose will use some

insights from and will be compared with the optimum solution, let us present a

brief summary of this algorithm in the next chapter.

 10

C h a p t e r 4

OPTIMAL SOLUTION METHOD FOR

MINIMIZING Tn AND F

 In this section, we present a summary of the branch and bound method

proposed by Nelson et al. (1986). This method finds an efficient schedule for each

n in the efficient range for the problem of minimizing nT and F on a single

machine. Basically, it depends on two key points. The first one is the fact that,

given N jobs and a subset of these N jobs, the schedule that gives minimum F

while keeping the jobs in the given subset non-tardy is found using Smith’s

Algorithm (Smith, 1956; Kiran and Unal, 1991). The second one is presented in

the following theorem.

 Theorem 1: The jobs that are early in the SPT order are also early in at least

in one of the efficient schedules with nT = n for all n s.t. nT(SPT) ≥≥ n nT(Moore)

(Nelson et al., 1986).

 This theorem indicates that, in order to find an efficient schedule with NT = n,

it is necessary to determine which other nT(SPT) – n jobs will be early besides the

early jobs of SPT order. Therefore all subsets of SPT order’s tardy jobs with

cardinality nT(SPT) – n should be evaluated by using Smith’s Algorithm to find

the schedule with minimum F while having n tardy jobs. The schedule that is

obtained through this evaluation is the efficient schedule for nT = n.

 The branch and bound method (B&B) is designed to determine one efficient

schedule in every level of the branch and bound tree by finding which nT(SPT) – n

 11

jobs should be early. In the first level, the efficient schedule for nT = nT(SPT) is

found and in the kth level efficient schedule for nT = nT(SPT) – k +1 is found. The

tree continues in this manner such that at the lowest level an efficient schedule for

nT = nT(Moore) is found. In this tree, each node stores the set of jobs that need to

be kept nontardy. We refer to this set as set of early jobs in the remaining parts of

the thesis. A set of early job at level k is a subset of N jobs with cardinality N –

nT(SPT) + k – 1. The nodes in level k cover all of the possible subsets with the

specified cardinality. N – nT(SPT) of these jobs in each set of early jobs are the

early jobs of the SPT order and the remaining k – 1 are among the tardy jobs of the

SPT order. For each node in level k, Smith’s Algorithm is run, and the schedule

that has the minimum F while keeping corresponding N – nT(SPT) + k – 1 jobs

non-tardy is found. The schedule that gives the least F in level k is the efficient

schedule for nT = nT(SPT) – k +1. This procedure is repeated for each level of the

branch and bound tree. A sample question is presented in Appendix-A to show

how Nelson et al.’s (1986) branch and bound tree is built.

 Each node in level k of the branch and bound tree represents a set of early jobs.

As stated above, we use Smith’s Algorithm to evaluate the nodes of Nelson et al.’s

B&B tree. Indeed, Smith’s Algorithm minimizes F given that Tmax is zero where

Tmax is the maximum tardiness. Equivalently, this algorithm finds the schedule that

minimizes F given that nT = 0. This implies that, in finding the minimum

F corresponding to a node in the B&B tree, first, the due date of the jobs that are

not in the set of early jobs are set to infinity, and then Smith’s Algorithm are

applied. Therefore, for each node k, we solve following problem by using Smith’s

Algorithm.

S
Min
∀

 F (S)

st

Tmax(S) = 0;

dj = ∞ kEj∉∀ where Ek is the set of early jobs of node k.

 12

 The steps of Smith’s Algorithm are described in the following pseudo

algorithm. In this pseudo algorithm E is the set of jobs that are not scheduled yet

and PT is the sum of processing times of the unscheduled jobs. Moreover, k

denotes the position of the sequence to which a job will be assigned by the

algorithm.

 Step 0: E = {1,2,3,…….,N}, PT = ∑
=

N

j
jp

1

, k = N.

 Step 1: Record all the jobs j where Ej∈ and Tj Pd ≥ .

Step 2: Among the recorded jobs choose the one with the largest processing

time. Assign that job to the kth position in the schedule and record the

processing time of the job to the variable P.

 Step 3: Remove the assigned job from E. PT = PT – P, k = k – 1.

 Step 4: If E = φ , go to Step 5. Otherwise go to Step 1.

Step 5: The schedule is completed. Report the F value of the completed

schedule.

 Step 6: Terminate the algorithm.

 The time that Smith’s Algorithm requires to evaluate a node is increasing

polynomially with respect to the number of the jobs to be scheduled. However, the

number of the nodes that are needed to be evaluated increases exponentially as the

number of the jobs increases. Therefore, Nelson et al.’s B&B Algorithm requires

quite high CPU time to solve problems with more than 60 jobs.

 13

C h a p t e r 5

PROPOSED BEAM SEARCH

ALGORITHMS AND OTHER NEW

HEURISTICS

 Since minimizing average flowtime and number of tardy jobs on a single

machine is an NP-Hard problem, we develop two beam search based heuristic

algorithms to find the approximately efficient schedules. Beam search is

successfully applied to a variety of scheduling problems such as FMS scheduling

(Sabuncuoglu and Karabuk, 1998), job-shop scheduling (Sabuncuoglu and Bayiz,

1999; Duarte et al., 2004), open shop scheduling (Blum, 2005), mixed-model

assembly line scheduling (McMullen and Tarasewich, 2005), unrelated parallel

machine scheduling (Ghirardi and Potts, 2005).

 Beam search is a fast and approximate branch and bound algorithm. Instead of

expanding every node to the next level in the classical branch and bound tree,

beam search expands only a limited number of promising nodes to the next levels.

Thus, rather than making all exhausting branch and bound tree operations, beam

search efficiently operates only on a small portion of the tree and gets a quick and

approximate solution.

 Generally, at a level of beam search tree, the nodes are evaluated via a global

evaluation function. The nodes with the highest scores are selected to be expanded

to the next level. The number of these nodes is fixed and called beam width (b) in

 14

the literature. In some beam search applications, a portion of the nodes to be

expanded to the next level is chosen randomly in order to increase the quality of

the solution. Some of the beam search algorithms use local evaluation functions to

eliminate some of the nodes before evaluating them with global evaluation

function. This approach is called as filtered beam search. In fact, in the literature,

there are a number of other enhanced beam search algorithms.

 In the literature, there are two types of beam search implementation with

respect to the branching procedure; dependent and independent beam search. We

applied both of these branching procedures to the problem of minimizing NT and

F on a single machine.

5.1 Independent Beam Search (BS-I)

 As stated before, beam search is a quick and approximate branch and bound

algorithm. It operates on a small portion of the Nelson et al.’s (1986) search tree in

order to obtain a good solution quickly.

 The first two levels of our beam search tree are the same as Nelson et al.’s

search tree (see Figure 2 in Appendix-A and Figure 3 in Appendix-B). However,

at level 2, only b number of the nodes are expanded to the next level. These b

nodes are the ones with the b smallest F values obtained from applying Smith’s

Algorithm to the corresponding nodes. At the next levels, only one node among

the nodes that are expanded from the same parent can be expanded to the next

level. The schedule that is given by the node with minimum F among all the

nodes at a level is chosen as the approximately efficient schedule for the

corresponding level. The global evaluation function of BS-I is the average

flowtime obtained by running Smith’s Algorithm for the corresponding node. The

example presented in Appendix-B shows how the proposed algorithm finds

efficient schedules for each nT = n where nT(SPT) ≥≥ n nT(Moore). Since the

 15

solution tree has b independent branches (Figure 3 in Appendix-B) this algorithm

is called independent beam search.

5.2 Dependent Beam Search (BS-D)

 Dependent beam search algorithm is a slightly modified version of the

independent beam search algorithm. In the independent beam search tree, after the

second level only one node is expanded to the next level among the nodes that are

expanded from the same parent. However, in the dependent beam search case, all

the nodes at a level are evaluated together without considering their parent nodes

and b nodes with the smallest F values are expanded to the next level. This

implies that more than one node that have same parent node can be expanded to

the next level. An example is given in Appendix-C.

5.3 Genetic and Tabu-search Algorithms (GA and TS)

 As stated before, a genetic algorithm and a tabu-search algorithm are

developed Kardas and Sabuncuoglu (2006) and Aydogdu and Sabuncuoglu (2006).

GA and TS are explained in detail in Appendix D and E.

 16

C h a p t e r 6

COMPUTATIONAL EXPERIMENTS

 In order to evaluate the performances of the proposed heuristics, we conducted

experiments on several randomly generated problems with sizes of 20, 30, 40, 60,

80, 100, 150 jobs. The processing times are taken as uniformly distributed in the

range [0,25] and [0,100] representing low and high processing time variability,

respectively. The due dates are also distributed uniformly on the four different

ranges as shown in Table 2. Here, SP denotes the sum of processing times of the N

jobs. Note that, these due date and processing time distributions are used in Keha

and Koksalan (2003).

Table 2: Due Date Ranges

Due Date Type Due Date Range

I [0,0.4SP]

II [0.1SP, 0.3SP]

III [0.25SP,.45SP]

IV [0.3SP, 1.3SP]

 Before performing an extensive numerical study, we solved about 50 sample

problems with 20, 30, 40 and 60 jobs to gain some insights on the significant beam

width values to use in our experiments with BS-I and BS-D. For this purpose, we

consider the behavior of average percentage deviation of each heuristic from

optimum with respect to increasing beam widths. In this context, we define the

average percentage deviation of a heuristic from optimum as

 17

Average Percentage Deviation =
∑ ∑

∑ ∑

= =

= =

−
×

M

m

SPTmn

Mooremnn
nm

M

m

SPTmn

Mooremnn OPT

OPT

T

T

T

T
nmF

nmFnmF

1

),(

),(
,

1

),(

),(),(
),(),(100

ϕ
.

Here, M is the total number of problems, F (m,n) is the minimum mean

flowtime resulting from the heuristic solution of the mth problem for nT = n, and

F OPT(m,n) is the corresponding optimal solution. nT(m,Moore) and nT(m,SPT) are

the number of tardy jobs in sequences formed according to Moore’s Algorithm and

SPT order, respectively, for the mth problem. Finally, nm,ϕ is defined as

 1, if),(),(nmFnmF OPT>

nm,ϕ =

 0, o.w.

 Average percentage deviation illustrates the average gap between the heuristic

and the optimal solution over all efficient schedules and test problems where this

gap is positive. These cases will be referred to as deviation instances in the rest of

the thesis. Figure 1 illustrates average percentage deviation of BS-D with respect

to increasing beam width values in sample problems. As seen in Figure 1, the

average percentage deviation is stabilized after a beam width value of 10.

Therefore, in the rest of the experiments we use BS-I and BS-D with beam width

value 10.

6.1 Comparison with the Optimal Solution

 In this subsection, we report the results of our comparison of the proposed

heuristics with the optimal solution considering several measures. Since Nelson’s

B&B Algorithm can solve problems with size up to 60 jobs within reasonable

amount of time, comparing the heuristics with optimal solution on larger size

 18

Figure1: Average Percentage Deviation of BS-D
from Optimum vs Beam Width

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Beam Width

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n

problems is not possible. Therefore we decided to solve problems with sizes of 20,

30, 40, 60 jobs. The processing time and due date values for these problems have

been generated according to our discussion early in Chapter 6. For each job size,

due date and processing time distribution, we solved 5 randomly generated

problems.

 Considering all possible combinations, we have solved 40 (2x4x5) problems

for each job size which makes 160 in total. These 160 problems were solved with

Nelson’s B&B method, BS-I, BS-D, Keha and Koksalan (2003)’s genetic

algorithm (GA(K&K)), Koktener and Koksalan (2000)’s simulated annealing

(SA(K&K)), proposed tabu-search (TS) and proposed genetic algorithm (GA).

Keha and Koksalan (2003) use tournament selection method to choose two parent

schedules which are modified in order to build two new schedules. Tournament

selection is choosing the best schedules with respect to a fitness function as

parents among a number of randomly selected schedules. This number is referred

as tournament size. For our experiments we take tournament size as 5. In addition,

we also solved the test problems with a heuristic suggested by Nelson et al.

(1986). This heuristic is based on expanding the node with minimum flowtime at

 19

each level of a given B&B tree of Nelson et al.’s optimum solution. We recognize

that this heuristic is nothing but a special version of our proposed beam search

algorithms with beam width 1. In the rest of the thesis, we refer to this heuristic as

Nelson’s Heuristic.

 In addition to the average percentage deviation, the following three measures

were considered in our experiments.

i) Maximum Percentage Deviation:)
),(

),(),(
100(max

),(nmF
nmFnmF

OPT

OPT

nm

−
× .

ii) ND/ NTotal where

 Total Number of Deviation Instances (ND): ∑ ∑
= =

M

m

SPTmn

Mooremnn
nm

T

T1

),(

),(
,ϕ

 Total Number of Efficient Schedules (NTotal): ∑ ∑
= =

M

m

SPTmn

Mooremnn

T

T1

),(

),(

1

iii) Average CPU Time: The average computation time the heuristic spent in

solving a test problem.

 Table 3 illustrates the results of our experiments with 20, 30, 40, 60 jobs. The

results indicate that both beam search based heuristics and Nelson’s Heuristic

perform better than GA(K&K) and SA(K&K) according to all performance

measures. Only in the 60 jobs case, the average percentage deviation value of the

BS-I seems to be larger than the GA(K&K). The reason behind this is that BS-I’s

average percentage deviation is calculated according to only 3 deviation instances.

Since the deviation value in one of these few instances are high, average

percentage deviation value of BS-I is higher than the GA(K&K). However, we

conclude that both BS-I performs better than the GA(K&K) since the other

performance measures favor beam search based algorithm.

 Nelson’s Heuristic, BS-I and BS-D find nearly all efficient schedules

optimally. As expected, both algorithms perform a bit better than the Nelson’s

Heuristic since Nelson’s Heuristic is equivalent to BS-I or BS-D with beam width

 20

1. BS-D performs slightly better than BS-I for the problems with 60 jobs.

Although the performance of the GA(K&K), SA(K&K) and Nelson’s Heuristic

worsens as the size of the problem increases, the performance of our proposed

beam search based heuristics is quite stable with respect to problem size. Indeed,

all the problems with job sizes 20, 30 and 40 were solved optimally by the

proposed beam search algorithms. Only among the problems with 60 jobs, there

are some instances where the F value found by BS-I and BS-D for a test problem

deviate from optimum.

 Both GA and TS perform better than the GA(K&K) and SA(K&K) but not as

good as beam search based algorithms. GA performs a bit better than TS according

to the average percentage deviation criterion. However, TS finds more efficient

schedules optimally than the GA does, for the problems with 40 and 60 jobs. Their

average deviation values seem to be stable according to the job size. However, as

job sizes increases the rate ND/NTotal increases for both TS and GA algorithms.

Therefore, performances of these heuristics are negatively affected by the

increasing problem size.

 As Table 3 shows, Nelson’s Heuristic is the fastest of all 5 approximate

solution methods that we tested in this experiment. Although GA(K&K)’s solution

quality is better than SA(K&K)’s, GA(K&K) is much slower than SA(K&K). GA

and TS are the two slowest heuristics. Indeed, Nelson’s Heuristic performs much

better than these four methods resulting with less CPU time. Both of our proposed

beam search algorithms work slightly slower than the Nelson’s Heuristic but faster

than the others.

 Tables 4 and 5 illustrate the average percentage deviation from optimum

solution for each due date distribution type and for each problem size with low and

high processing time distributions, respectively. These tables illustrate that BS-I,

BS-D and Nelson’s Heuristic provide better solutions than GA, SA, SA(K&K) and

 21

 Table 3: Comparison of the Heuristics with the Optimum Solution

Problem Size Performance
Measure

Nelson's
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average
Deviation 0.2829% 0% 0% 0.9317% 5.2628% 0.1235% 0.7900%

ND/NTotal 1/96 0/96 0/96 25/96 95/96 3/96 15/96
Max. Deviation 0.2829% 0% 0% 7.1793% 35.6627% 0.1755% 4.5668

20 Jobs

CPU Time
(millisecond) 13.15 14.09 20.1 1439.38 1513 1785.22 1913.46

Average
Deviation 1.2646% 0% 0% 0.4358% 3.7633% 0.2425% 0.2154%

ND/NTotal 5/140 0/140 0/140 110/140 138/140 29/140 29/140
Max. Deviation 3.0060% 0% 0% 3.6200% 20.1754% 0.8960% 0.9692%

30 Jobs

CPU Time
(millisecond) 19.53 26.2 28.625 3222.3 4150.43 6641.41 6821.01

Average
Deviation 0.3135% 0% 0% 0.5675% 4.0801% 0.1753% 0.5190%

ND/NTotal 3/176 0/176 0/176 125/176 172/176 51/176 41/176
Max. Deviation 0.8793% 0% 0% 3.2100% 33.4914% 0.6431% 4.7802%

40 Jobs

CPU Time
(millisecond) 25.87 36.5 41.83 8722.6 6382.05 17765.3 18535.47

Average
Deviation 0.6744% 0.8321% 0.0616% 0.4681% 3.3483% 0.2450% 0.3112%

ND/NTotal 7/262 3/262 2/262 221/262 259/262 122/262 72/262
Max. Deviation 2.2213% 2.2213% 0.0695% 2.8814% 26.9683% 3.3462% 4.2062%

60 Jobs

CPU Time
(millisecond) 45.3 89.83 94.18 38748 12294.34 79296.9 83080.77

22

GA(K&K) with respect to each job size, processing time and due date

distribution type. In fact, BS-I and BS-D deviate from the optimal solution only

in the problems with 60 jobs, high processing times and Type 1 due dates.

 Tables 4 and 5 also indicate that the problems generated by using Type IV

due date distribution are solved quite effectively by the beam search based

heuristics and Nelson’s Heuristic. This distribution type represents problems

with loose due dates, which implies that beam search based algorithms work

well for the problems with loose due dates. Although these algorithms work also

well for the problems with tighter due date distribution types (I, II, III), the most

deviation instances occur in these problem types. Processing time distribution,

on the other hand, does not affect the solution quality of BS-I and BS-D.

 For Nelson’s Heuristic, deviation from optimality mostly occurs for the

problems with low processing times combined with Type 1 due dates and for

problems with high processing times combined with Type 2 due dates. It can

also be seen that BS-I and BS-D algorithms perform better in the problems with

high processing time variability. The same situation is also valid for the GA and

TS algorithms. In Appendix F, the performance measure given in Table 3 is

presented for each processing time and due date distribution in detail for 20, 30,

40 and 60 jobs cases.

 Although the quality of the solutions generated by beam search based

heuristics is quite stable with respect to problem sizes, we observe that as the

problem size increases Nelson’s Heuristic, BS-I, BS-D, SA(K&K) and TS

algorithms may fail to find a solution for some of the efficient schedules. As

stated before, for a given problem, there are nT(SPT) - nT(Moore) + 1 efficient

schedules and it is desired to find each of these schedules approximately.

However, in some of the 160 test problems, beam search based heuristics,

Nelson’s Heuristics, SA(K&K) and TS fail to find an approximate solution

23

Table 4: Average Deviation from Optimum in the Problems with Low Processing Time Variability

Problem
Size

Due Date
Type

Nelson’s
 Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

I 0.28% 0% 0% 0.49% 3.37% 0.14% 0.44%
II 0% 0% 0% 1.02% 5.04% 0% 0.94%
III 0% 0% 0% 1.57% 3.62% 0% 1.66%

20 Jobs

IV 0% 0% 0% 0.35% 7.25% 0% 0%

I 0% 0% 0% 0.60% 3.50% 0.37% 0.12%
II 0% 0% 0% 0.20% 5.23% 0.08% 0.13%
III 0% 0% 0% 0.39% 2.87% 0% 0.64%

30 Jobs

IV 1.95% 0% 0% 0.62% 4.94% 0.31% 0.24%

I 0.36% 0% 0% 1.00% 2.50% 0.29% 0.97%
II 0% 0% 0% 0.17% 2.48% 0.05% 0.06%
III 0.06% 0% 0% 0.19% 4.90% 0.06% 0.04%

40 Jobs

IV 0% 0% 0% 0.45% 7.67% 0% 0.52%

I 0.82% 0.83% 0.06% 0.87% 2.21% 0.45% 0.36%
II 0% 0% 0% 0.15% 2.59% 0.03% 0.04%
III 0% 0% 0% 0.12% 5.49% 0.03% 0.01%

60 Jobs

IV 0% 0% 0% 0.07% 4.67% 0.05% 0.17%

 24

Table 5: Average Deviation from Optimum in the Problems with High Processing Time Variability

Problem
Size

Due Date
Type

Nelson’s
 Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

I 0% 0% 0% 1.55% 3.61% 0.11% 0.88%
II 0% 0% 0% 0.12% 4.20% 0% 0%
III 0% 0% 0% 0.26% 5.52% 0% 0%

20 Jobs

IV 0% 0% 0% 0.74% 6.76% 0% 0.05%

I 0.19% 0% 0% 0.47% 2.29% 0.39% 0.08%
II 2.39% 0% 0% 0.09% 3.28% 0% 0.20%
III 0.005% 0% 0% 0.02% 4.80% 0% 0%

30 Jobs

IV 0% 0% 0% 0.40% 3.62% 0.14% 0.64%

I 0% 0% 0% 0.79% 1.74% 0.18% 0.41%
II 0.88% 0% 0% 0.23% 3.26% 0.13% 0%
III 0% 0% 0% 0.24% 4.89% 0.02% 0.01%

40 Jobs

IV 0% 0% 0% 0.25% 7.19% 0% 0%

I 0% 0% 0% 0.79% 2.16% 0.27% 1.05%
II 0.62% 0% 0% 0.20% 3.21% 0.04% 0.005%
III 0.001% 0% 0% 0.10% 3.76% 0.02% 0.005%

60 Jobs

IV 0% 0% 0% 0.37% 4.48% 0.11% 0.10%

25

specifically for the efficient schedule that have nT(Moore) tardy jobs (Table 6).

The number of the problems such a situation occurs is relatively small, and most

of the cases that can not be solved by Nelson’s Heuristic, are solved by BS-I and

BS-D. Nevertheless, the number of these instances seems to be increasing as the

problem size increases. In order to see whether this trend will continue for larger

problem sizes and to better observe the performance of our heuristics, we

performed some further experiments on problems with 80,100 and150 jobs.

Table 6: Number of Efficient Schedules for which No Solution is Found

Heuristic 20 Jobs 30 Jobs 40 Jobs 60 Jobs
Nelson’s Heuristic 0/96 0/140 2/176 3/262

BS-I 0/96 0/140 1/176 0/262
BS-D 0/96 0/140 0/176 0/262

GA(K&K) 0/96 0/140 0/176 0/262
SA(K&K) 1/96 1/141 1/176 3/262

GA 0/96 0/141 0/176 0/262
TS 2/96 6/141 5/176 18/262

6.2 Experiments on Larger Problems

 We generated larger size problems with 80, 100 and 150 jobs using the same

processing time and due date distributions stated before. For each job size,

processing time and due date distribution type, we generated 5 problems and

obtained 120 problems in total. We compared Nelson’s Heuristic with BS-I, BS-

D, GA, TS, SA(K&K) and GA(K&K) algorithms and measured their relative

performance. In our experiments with larger problems, we first consider average

percentage difference of each heuristic’s solution from Nelson’s Heuristic. The

average percentage difference is the arithmetic mean of the percentage differences

 26

over all the efficient solutions and all the problems with the same size. In

mathematical terms, it is defined as follows.

Average Percentage Difference =

∑ ∑

∑ ∑

= =

= =

−
×

M

m

SPTmn

Mooremnn
nm

M

m

SPTmn

Mooremnn Nelson

Nelson

T

T

T

T
nmF

nmFnmF

1

),(

).(
,

1

),(

),(),(
),(),(

100

ψ

where F (m,n) is the minimum flowtime provided by the considered heuristic for

the mth problem when nT = n. F Nelson(m,n) is the minimum flowtime resulting

from Nelson’s Heuristic. nT(m,Moore) and nT(m,SPT) are the number of tardy jobs

in the sequences formed according to Moore’s Algorithm and SPT order,

respectively, for the mth problem. Finally, nm,ψ is given below.

 1, if),(),(nmFnmF Nelson≠

nm,ψ =

 0, o.w.

The other measures we consider in the experiments with larger problems are as

follows.

N+: Number of cases where a specific heuristic performs better than the Nelson’s

Heuristic. N+ = ∑ ∑
= =

M

m

SPTmn

Mooremnn
nm

T

T1

),(

),(
,η where

 1, if),(),(nmFnmF Nelson>

nm,η =

 0, o.w.

N-: Number of cases a specific heuristic performs worse than the Nelson’s

Heuristic. N- = ∑ ∑
= =

M

m

SPTmn

Mooremnn
nm

T

T1

),(

),(
,μ where

 27

 1, if),(),(nmFnmF Nelson<

nm,μ =

 0, o.w.

Maximum Percentage Difference:)
),(

),(),(
100(max

),(nmF
nmFnmF

Nelson

Nelson

nm

−
× .

Minimum Percentage Difference:)
),(

),(),(
100(min

),(nmF
nmFnmF

Nelson

Nelson

nm

−
× .

 The corresponding results are presented in Table 7. As seen in the table,

proposed heuristics and Nelson’s Heuristic perform better than the SA(K&K),

GA(K&K), GA and TS, also in larger size problems with respect to all these

measures. As it can be understood from the N+/NTotal measure, in more than %90

of the cases Nelson’s Heuristic performs better than or equal to these iterative

algorithms.

 Proposed beam search algorithms perform slightly better than the Nelson’s

Heuristic. As the job size increases, number of instances in which proposed

heuristics perform better than the Nelson’s Heuristic increases. We also observe

that BS-D performs slightly better than the BS-I on the problems with larger job

sizes. In most of the cases, however, their solution qualities are almost the same.

As it can be seen in Table 7, BS-D outperforms Nelson’s Heuristic in a few more

instances than BS-I does.GA and TS perform better than the GA(K&K) and

SA(K&K) almost for all measures presented in Table 7. TS and GA’s

performance are nearly same for the cases in which they both find a solution. In

28

Table 7: Comparison of the other Heuristics with Nelson’s Heuristic

Problem
Size Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS

Average % Difference 0.143% 0.140% -0.487% -2.835% -0.213% -0.263%

N+ / NTotal 14/394 15/394 4/394 0/394 5/394 5/394
N- / NTotal 0/394 0/394 352/394 378/394 264/394 169/394

Max % Difference 0.526% 0.526% 0.526% -0.014% 0.526% 0.359%

80 Jobs

Min % Difference 0.000% 0.000% -3.693% -24.480% -1.874% -4.132%

Average % Difference 0.032% 0.029% -0.612% -3.150% -0.320% -0.275%
N+ / NTotal 15/484 17/484 8/484 0/484 12/484 7/484
N- / NTotal 0/484 0/484 423/484 451/484 345/484 245/484

Max % Difference 0.161% 0.161% 0.273% -0.031% 0.273% 0.116%

100 Jobs

Min % Difference 0.000% 0.000% -5.313% -29.500% -2.780% -4.642%

Average % Difference 0.085% 0.085% -0.537% -4.000% -0.287% -0.276%
N+ / NTotal 30/796 31/796 3/796 0/796 4/796 7/796
N- / NTotal 0/796 0/796 747/796 687/796 703/796 574/796

Max % Difference 1.225% 1.225% 1.458% -0.074% 1.450% 1.438%

150 Jobs

Min % Difference 0.000% 0.000% -3.340% -38.030% -3.342% -5.941%

29

these cases, overall average difference from Nelson’s Heuristic is nearly same.

GA’s maximum deviation values are less than TS’s, and number of instances that

TS performs as well as Nelson’s Heuristic is more than those that GA does.

However, the real handicap of TS is that there are considerable number of

instances in which it can not find an approximately efficient schedule for some NT

values (Table 8). GA, on the other hand, finds efficient schedules approximately

for every instance.

 In Appendix G, the performance measure given in Table 7 is presented for

each processing time and due date distribution in detail for the 80, 100 and 150

jobs cases. According to the tables in Appendix G, most of the instances in which

BS-I and BS-D perform better than the Nelson’s Heuristic occur among the test

problems with Type I due date. These problems also require much more CPU time

than the others. In addition, GA performs better than the TS in the problems with

Type I and IV due date distributions and TS performs better in the problems with

Type II and III due date distributions.

 We again observed the cases where compared heuristics fail to find

approximately efficient schedules for some of the NT values in the efficient range.

The number of such instances is given in Table 8. This table illustrates that as the

size of the problem increases such cases appear more frequently for Nelson’s

Heuristic. Problems, where feasible solutions cannot be found, frequently coincide

with Type I due date distribution, and less frequently with Type II and III. BS-D

and BS-I algorithms halved the number of these cases in the problems with 80 and

100 jobs. However, the experiments on the problems with 150 jobs demonstrate

that the performance of our proposed algorithms on this issue worsens as the size

of the problem increases.

 30

Table 8: Number of Efficient Schedules for which No Solution is Found

Heuristic 80 Jobs 100 Jobs 150 Jobs
Nelson 's Heuristic 8/394 16/484 22/797

BS-I 5/394 7/484 18/797
BS-D 5/394 7/484 17/797

GA(K&K) 0/394 0/484 0/797
SA(K&K) 12/394 30/484 107/797

GA 0/394 0/484 0/797
TS 36/394 75/484 70/797

 While the number of no solution cases is quite high for SA(K&K) and TS

algorithms, GA and GA(K&K) find an approximate solution for every NT value of

the problems considered in our experiments. Nevertheless, as it can be seen in

Table 9, the computation time requirements for GA and GA(K&K) are a lot more

than that of the beam search based algorithms. Therefore, for large size problems,

if the decision makers desire to find approximately efficient schedules for all NT

values in the efficient range, they should first use BS-D or BS-I algorithms in

order to minimize the number of instances where no solution is found. Then

genetic algorithm should be used to solve the remaining instances.

Table 9: Average CPU Time in Milliseconds

Heuristic 80 Jobs 100 Jobs 150 Jobs
Nelson's Heuristic 80.03 135.95 486.28

BS-I 276.13 570.7 2601.5
BS-D 258.15 565.25 2517.55

GA(K&K) 136836 26925.5 2057585.5
SA(K&K) 27836.76 48184.16 139499.3

GA 272333.6 681263.7 4094870.2
TS 272381.5 630742.8 3273617.3

31

C h a p t e r 7

CONCLUSION

 As a result of our experiments, we concluded that BS-D and BS-I perform

quite well for the multicriteria scheduling problem of minimizing average

flowtime and number of tardy jobs. In most of the cases, these two algorithms

find the efficient schedules optimally. Even in the cases where BS-D or BS-I

deviate from optimum, the deviation is quite small and the deviation is stable

with respect to problem size. In addition, both BS-D and BS-I perform better

than the other heuristics given in this thesis with respect to all problem types

that we test. The only disadvantage of our proposed beam search heuristics is

that, they, although rarely in some cases, fail to find approximately efficient

solutions for some of the nT values in the efficient ranges. For such cases, we

propose that GA or GA(K&K) be used.

 We believe that the good performance of our proposed approach is due to

the beam search mechanism. In fact, GA(K&K) and SA(K&K), which are two

existing heuristics in the literature, search among all possible sequences for the

efficient schedules. However, BS-I and BS-D limit the search space by utilizing

Theorem 1 and Smith’s Algorithm. Hence, they find better solutions by

searching a smaller space and more efficiently than GA(K&K) and SA(K&K)

do.

 Theorem 1 and Smith’s Algorithm are also utilized by GA and TS.

Therefore, GA and TS outperform GA(K&K) and SA(K&K). However, our

 32

experiments show that in general the proposed beam search algorithms perform

better than GA and TS. Since, this study shows that utilizing the characteristics

of the efficient solutions in the approximate or optimal solution methods to limit

the search space is quite effective; we believe that such a beam search

mechanism can be also quite beneficial to solve the other multicriteria

scheduling problems. Therefore, we strongly suggest using this technique in the

future multicriteria scheduling studies.

 As further studies, BS-I and BS-D can also be applied to the other bicriteria

single machine problems such as minimizing weighted flowtime and number of

tardy jobs, and minimizing weighted flowtime and weighted number of tardy

jobs. With the insights gained from this study, we already extended our current

research to consider the first problem. We consider the second problem which

seems to be more challenging, as a future work.

 We believe that beam search applications are quite promising to solve

multicriteria scheduling problems in general. Therefore, another line of research

may extend this work to more complex settings, such as parallel machine

environments. As a final open area of possible investigation, we note the

robustness of the solutions which is a fundamental application issue.

 33

BIBLIOGRAPHY

Aydogdu, M., Sabuncuoglu, I., 2006. “A Tabu-searh algorithm for the single

machine bicriteria scheduling problem: Minimization of average flowtime and

number of tardy jobs”. Technical Report, Bilkent University IE Department.

Billaut, J.-C., T_kindt, V., 1999. “Some guidelines to solvemulticriteria

scheduling problems”, IEEE International Conference on Systems, Man and

Cybernetics Proceeding. 6, 463–468.

Blum, C., 2002. “ACO applied to group shop scheduling: A case study on

intensification and diversification, in M. Dorigo, G. Di Caro and M. Sampels

(eds)”, Proceedings of ANTS 2002 – From Ant Colonies to Artificial Ants: Third

International Workshop on Ant Algorithms, Lecture Notes in Computer Science.

2463, 14–27.

Chen, C.L., Bulfin, R.L., 1993. “Complexity of single machine multi-criteria

scheduling problems”, European Journal of Operational Research. 70, 115–125.

Dileepan. P, Sen. T., 1988. “Bicriterion static scheduling research for a single

machine”, Omega. 16-1, 53-59.

Duarte, R., Rego, C., Gamboa, D., 2004. “A Filter and Fan Approach for the Job

Shop Scheduling Problem: A Preliminary Study”, Proceedings: International

Conference on Knowledge Engineering and Decision Support. 401-406.

Emmons, H., 1975. “One machine sequencing to minimize mean flowtime with

minimum tardy”, Naval Research Logistics Quarterly. 22-3, 585-592.

 34

Erol, S., Guner, E., Tani, K., 1998. “One machine scheduling to minimize

maximum earliness with minimum number of tardy jobs”, International Journal

of Production Economics. 55, 213-219.

Fry, T., Armstrong, R., Lewis H., 1989. “A framework for single machine

multiple objective scheduling research”, Omega. 17-6, 595 - 607.

Ghirardi, M., Potts, C. N., 2005. “Makespan minimization for scheduling

unrelated parallel machines: A recovering beam search approach”, European

Journal of Operational Research. 165-2, 457–467.

Heck, H., Roberts, S., 1992. “A note on the extension of a result on scheduling

with secondary criteria”, Naval Research Logistics Quarterly. 19, 403-405.

Hoogeveen, J.A., 2005. “Multicriteria Scheduling”, European Journal of

Operational Research. 167-3, 592-623.

Huo, Y., Leung, J. Y. T., Zhao, H., 2004. “Complexity of two-dual criteria

scheduling problems”, Submitted to Operations Research Letters.

Kardas, S., Sabuncuoglu, I., 2006. “A Genetic algorithm for the single machine

bicriteria scheduling problem: Minimization of average flowtime and number of

tardy jobs”. Technical Report, Bilkent University IE Department.

Keha, A. B., Koksalan, M., 2003. “Using genetic algorithms for single-machine

bicriteria scheduling problems”, European Journal of Operational Research. 145,

543–556.

Kiran, A. S., Unal A. T., 1991. “A single-Machine Problem with multiple

Criteria”, Naval Research Logistics. 38, 721-727.

Koksalan, M., 1999. “A Heuristic Approach to Bicriteria Scheduling”, Naval

Research Logistics. 46-7, 777 - 789.

 35

Koksalan, M., Azizoglu, M., Kondakci, S., 1998. “Minimizing flowtime and

maximum earliness on a single machine”, IIE Transactions. 30, 192–200.

Koktener, E.K., Koksalan, M., 2000. “A simulated annealing approach to

bicriteria scheduling problems on a single machine”, Journal of Heuristics. 6,

311–327.

Kondakci, S., Azizoglu, M., Köksalan, M., 2003. “Scheduling with

multiplecriteria”, Computers & Industrial Engineering. 45-2, 257-269.

Kondakci, S. K., Bekiroglu T., 2000. ”Scheduling with bicriteria: total flowtime

and number of tardy jobs”, International Journal of Production Economics. 53,

91- 99.

McMullen, P., Tarasewich, P., Frazier, G., 2000, “Using genetic algorithms to

solve the multi-product JIT sequencing problem with set-ups”, International

Journal of Production Research. 38-12, 2653-2670.

Moore, J. M., 1968. “An n job, one machine sequencing algorithm for minimizing

the number of late jobs”, Management Science. 15, 102-109.

Nagar, A., Haddock, J., Heragu, S., 1995. “Multiple and bicriteria scheduling: A

literature survey”, European Journal of Operations Research. 81, 88 –104.

Nelson, R. T., Sarin, R. K., Daniels, R. L., 1986. “Scheduling with multiple

performance measures: the one machine case”, Management. Science 32-4, 464-

479.

Sabuncuoglu, I. Bayiz. M., 1999. “Job shop scheduling with beam search”,

European Journal of Operational Research. 118-2, 390-412.

Sabuncuoglu, I., Karabuk, S., 1998. “A beam search algorithm and evaluation of

scheduling approaches for FMSs”, IIE Transactions. 30-2, 179-191.

 36

 Sen, T., Gupta, S. K., 1983. “A branch and bound procedure to with multiple

performance measures: the one machine case”, Management Science. 32, 464-

479.

 Smith, W. E., 1956. “Various Optimizers for Single Stage Production”, Naval

Research Logistics Quarterly 3, 1-2.

 T’kindt, V., Bouibede-Hocine, K., Esswein, C., 2005. “Counting and enumeration

complexity with application to multicriteria scheduling”. A quarterly Journal of

Operations Research. 3-1, 1-21.

Wan, G., Yen, B. P. C., 2003. “Single Machine Bicriteria Sceduling: A survey”,

International Journal of Industrial Engineering. 10 -3 ,222-231.

 37

APPENDIX

A. Example for Nelson et al.’s (1986) Branch and Bound
Algorithm

 The process times and the due dates of our example are given below.

Table 1: Sample Problem Parameters

Job(j) Processing
Time(Pj) Due Date (dj)

1 1 40
2 2 3
3 3 5
4 5 7
5 10 20
6 15 32

 For this problem nT(Moore) = 1, F (Moore) = 19.83 , nT(SPT) = 4 and

F (SPT) = 13. Therefore, in this problem we need to find 4 efficient schedules.

Note that, SPT order is the efficient schedule corresponding to nT = 4. In the

SPT order, Job 1 and Job 2 are early and the remaining jobs are tardy. The

corresponding Branch and Bound tree has four levels as seen in Figure 2. The

single starting node in level 1 represents the SPT order.

 As seen in the Figure 2, each node k has a set of early jobs denoted as Ek.

Since the starting node at level 1 represents SPT order, E1: {1, 2} is the set of

jobs that is early in the SPT order. In the efficient schedule for nT = 3, besides

Job 1 and Job 2 another job among 3,4,5 and 6 must be also early (See

Theorem 1). Thus, at the second level, these four jobs are tried one by one by

38

E1:{1,2}

E2:{1,2,3} E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}13.5, 3* 14.16, 3 13.83, 3 13.83, 3

E6:{1,2,3,
4}

E7:{1,2,3,
5}

E8:{1,2,3,
6}

Infeasible

14.3, 2 14.3, 2
E10:{1,2,4

,6}
E9:{1,2,4,

5} 15, 2

Infeasible

E11:{1,2,4,
6}15.5, 2

E12:{1,2,3,
5,6}16, 1

Level 1 nT= nT(SPT) = 4

Level 2 nT = 3

Level 3 nT= 2

Level 4 nT= 1

Figure 2: B&B Tree for the Sample Problem

* The first entry refers to the minimum flowtime when the jobs in set E2 are nontardy and the second entry is the number of tardy jobs.

 39

being added to the set of early jobs referred by 2nd, 3rd, 4th and 5th nodes. For

example, in the 2nd node, Job 3 is added to E3, and then, by using Smith’s

Algorithm, the schedule that gives minimum flowtime while keeping jobs 1, 2 and

3 non-tardy is found. The resulting flowtime is 13.5. In a similar fashion, other

three nodes at the second level are constructed, and the minimum flowtime values

are found as 14.16, 13.83 and 13.83. Since the smallest flowtime at this level is

given by the second node, the efficient schedule for nT = 3 corresponds to the

sequence at this node.

 At the third level, all possible subsets of {3,4,5,6} (tardy jobs in SPT order)

with cardinality two is added to the early jobs of SPT order to find efficient

schedule for nT = 2. For this reason, each node at level 2 is further expanded by

adding one more job. For example, node 2 (E2: {1,2,3}) is expanded to the next

level to form nodes 6, 7, and 8 by adding job 4, 5 and 6. Node 3 (E3: {1,2,4}) is

expanded to the next level to form nodes 9 and 10 by adding jobs 5 and 6.

However, Job 4 is not added to E3 to prevent repetition. After all nodes are

expanded to level three, for each node, Smith’s Algorithm is run. As a result, it

appears that efficient schedule for nT = 2 is the one that corresponds to E7 =

{1,2,3,5} with flowtime 14.3. The algorithm continues in this manner.

B. Example for Independent Beam Search Algorithm

 As an example, we consider the problem given in Appendix-A. Let us solve

the same problem also with independent beam search algorithm. As can be seen in

Figures 2 and 3, the first two levels of both the B&B and the BS-I tree are the

same. Both trees start with a node that represents SPT order. Then, four new nodes

are expanded from this initial node by adding jobs 3,4,5 and 6 to E2, E3, E4 and E5,

respectively. Using Smith’s Algorithm, the schedules that give minimum flowtime

while keeping the jobs in E2, E3, E4 and E5 nontardy are found. Since the schedules

 40

found for nodes 2 and 4 have the smallest flowtime, they are selected to be

expanded to the next level.

 At level 3, the new nodes are generated by adding one more job to E2 and E4.

Nodes 6, 7 and 8 are generated by adding jobs 4, 5 and 6 to E2. Similarly, nodes 9,

10 and 11 are generated by adding jobs 3, 4 and 6 to E4. As the schedules found

for nodes 7 and 9 have the smallest F values, they are expanded to the next level.

The algorithm continues in a similar way for the fourth level.

 41

E1:{1,2}

E2:{1,2,3} E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}13.5, 3 14.16, 3 13.83, 3 13.83, 3

E6:{1,2,3,
4}

E7:{1,2,3,
5}

E8:{1,2,3,
6}

Infeasible

14.3, 2 14.3, 2
E10:{1,2,5,

4}
E11:{1,2,5,

6}15.5, 2

E13:{1,2,3
5,6}16, 1

Level 1 nT= nT(SPT) = 4

Level 2 nT = 3

Level 3 nT= 2

Level 4 nT= 1

Figure 3: Independent Beam Search Tree for the Sample Problem where b = 2

E9:{1,2,5,
3}14.3, 2

E12:{1,2,3
5,4}

E15:{1,2,5
3,6}

E14:{1,2,5
3,4} 16, 1

Infeasible

InfeasibleInfeasible

 42

C. Example for Dependent Beam Search Algorithm

 Dependent beam search algorithm is also applied to the sample problem given

in Appendix-A. The results are presented in Figure 4. As can be seen in Figure 4,

at the third level, the two nodes with minimum F value are nodes 7 and 8. Without

considering the fact that both these nodes are expanded from the node 2, they are

expanded to the next level.

 43

E1:{1,2}

E2:{1,2,3} E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}13.5, 3 14.16, 3 13.83, 3 13.83, 3

E6:{1,2,3
4}

E7:{1,2,3
5}

E8:{1,2,3
6}

Infeasible

14.3, 2 14.3, 2
E10:{1,2,5

4}
E11:{1,2,5

6}15.5, 2

E13:{1,2,3
5,6}16, 1

Level 1 nT= nT(SPT) = 4

Level 2 nT = 3

Level 3 nT= 2

Level 4 nT= 1

Figure 4: Dependent Beam Search Tree for the Sample Problem where b = 2

E9:{1,2,5
3}14.3, 2

E12:{1,2,3
5,4}

E15:{1,2,3
6,5}

E14:{1,2,3,
6,4} 16, 1

Infeasible

InfeasibleInfeasible

 44

D. Tabu-search (TS)

 Tabu search is a mathematical optimization method, belonging to the class of

local search techniques. Tabu search (TS) is an iterative heuristic which avoids

local optima by using memory structures called tabu list. Tabu lists temporarily

record visited solutions and prevents algorithm to cycle around these solutions.

 The jobs that are early in the SPT order must be also early in at least one of the

efficient schedules with nT = n where nT(SPT) ≥≥ n nT(Moore) (Nelson et al.,

1986). This theorem indicates that to find the efficient schedule for nT = n, it is

necessary to determine which other nT(SPT) – n jobs will be early besides the

early jobs of SPT order. Therefore, subsets of SPT order’s tardy jobs with

cardinality nT(SPT) – n should be evaluated using Smith’s Algorithm to find the

schedule with minimum F while having n tardy jobs. The TS algorithm is based

on searching these subsets by evaluating them with Smith’s Algorithm to find

approximately efficient schedules with nT = n where nT(SPT) ≥≥ n nT(Moore).

 In other words, to find the efficient schedule with nT = n, the subsets of the

jobs that are tardy in the SPT order with cardinality nT(SPT) – n are searched.

First, randomly a subset with cardinality nT(SPT) – n is selected and taken as

current subset. Then, some neighbors of this current subset with cardinality

nT(SPT) – n is generated. Next, these neighbors are evaluated by using Smith’s

Algorithm. The neighbor for which Smith’s Algorithm gives the least F is

accepted as the new current subset. After 100 iterations or every neighbor is

appeared to be infeasible, the schedule that Smith’s Algorithm finds for the

current subset is accepted as approximately efficient schedule with nT = n. Then,

the same procedure is repeated for nT = n + 1.

 The procedure described above is a forward search starting from nT = nT(SPT)

– 1 and continuing towards nT = nT(Moore). However, our initial runs indicate that

 45

the forward search can not find an approximately efficient schedule for some nT =

n where nT(SPT) ≥≥ n nT(Moore) . Thus, a backward search is also performed by

starting from nT = nT(Moore). In this backward search, the jobs that are tardy in

Moore’s Algorithm are allowed to be tardy at the every iteration. For each nT = n,

which other n – nT(Moore) jobs will be also allowed to be tardy, is searched in the

same manner as in forward search. After backward and forward search is

completed, among the schedules that these searches find for nT = n, the one with

the smallest F is selected as the resulting approximately efficient schedule with

nT = n.

Neighborhood Selection

 The neighbors of the current subset are generated by selecting a specific job

from the current subset and replacing it with another job that is not an element of

the current subset. Indeed, the selected job is replaced with every possible job one

by one to generate all possible neighbors. A job is selected to be replaced with a

probability that is inversely proportional to the number of times the job is selected

before.

∑

∑

=

=

=

N

j
j

j
j

j

j
j

N

N
t

t
t

p

1

1 j∈{1, 2, ……, N}

pj = Probability of Selecting Job j

Nj = Number of Times That Job j is Selected

 46

Tabu List and Aspiration Criteria

 The jobs from the current subset that are selected to be replaced are added to

the tabu list. The jobs in the tabu list are not added to the current subset to

generate its neighbors. Once a job is added to the Tabu list, it stays in the list for 5

iterations, since, our pilot experiments indicate that 5 iterations give good results

for both small and large problem sizes. But if adding a specific job that is in the

Tabu list to the current subset will give better results than the best result ever

found, we use the job for that iteration, and then, we keep it in the Tabu list for the

next 5 iterations.

 Following pseudo algorithm is given to describe steps of forward and

backward search of TS.

Forward Search

Step 0: Find the tardy jobs in the SPT sequence and define E0 as the set of these

jobs. Set n = 1, Iteration = 0.

Step 1: Take subset of E0 with cardinality n randomly. Call this subset as Ecurrent

and evaluate Ecurrent with Smith’s Algorithm. Record the F value given by the

schedule that Smith’s Algorithm finds and refer to it as F current.

Step 2: Find the neighbors of Ecurrent. Evaluate them using Smith’s Algorithm and

record the corresponding F value for each neighbor.

Step 3: If all the neighbors are infeasible according to Smith’s Algorithm, then go

to Step 6, other wise go to Step 4.

Step 4: The neighbor of Ecurrent with minimum F value is selected as the new

Ecurrent and new Ecurrent’s F value is assigned as new F current . Iteration = Iteration

+ 1.

Step 5: If Iteration <100 go to Step 2. Otherwise go to Step 6.

 47

Step 6: The schedule that is found by evaluating Ecurrent with Smith’s Algorithm is

called as current approximately efficient schedule for nT = n.

Step 7: n = n+1. If nT(SPT) - n < nT(Moore) go to Step 8. Otherwise go to Step 1.

Step 8: Terminate the algorithm.

Backward Search

Step 0: Find the non-tardy jobs in the sequence ordered according to Moore’s

Algorithm and define E0 as the set of these jobs. Set n = 1, Iteration = 0.

Step 1: Take subset of E0 with cardinality n randomly. Call this subset as Ecurrent

and evaluate Ecurrent with Smith’s Algorithm. Record the F value given by the

schedule that Smith’s Algorithm finds and refer to it as F current.

Step 2: Find the neighbors of Ecurrent . Evaluate them with Smith’s Algorithm and

record the corresponding F value for each neighbor.

Step 3: If all the neighbors are infeasible according to Smith’s Algorithm, then go

to Step 6, other wise go to Step 4.

Step 4: The neighbor of Ecurrent with the minimum F value is selected as the new

Ecurrent and new Ecurrent’s F value is assigned as new F current . Iteration = Iteration

+ 1.

Step 5: If Iteration <100 go to Step 2. Otherwise go to Step 6.

Step 6: The schedule that is found by evaluating Ecurrent with Smith’s Algorithm is

called as current approximately efficient schedule for nT = n.

Step 7: n = n+1. If nT(Moore) + n >nT(Moore) go to Step 8. Otherwise go to Step

1.

Step 8: Terminate the algorithm.

 It is important to note that the Ecurrent in the forward search represents the jobs

to be non-tardy with the early jobs of the SPT order. However, in backward search

 48

Ecurrent represents the jobs to be tardy with the tardy jobs of sequence built by

Moore’s Algorithm.

E. Genetic Algorithm (GA)

 Genetic algorithm finds which jobs should be tardy in the efficient schedule

with nT = n, for each n where nT(SPT) ≥≥ n nT(Moore). GA searches on the

subset of the N jobs with cardinality n. GA algorithm uses binary representation,

that is, each of these subsets is represented with chromosomes with N genes which

have a value 1 or 0. Each gene represents the tardiness state of the corresponding

job. For example, if the jth gene has value 1, then the jth job is allowed to be tardy,

otherwise the jth job should be non-tardy.

 As known, the schedule which gives minimum F and keeps the jobs with

gene value zero non-tardy, can be found using Smith’s Algorithm. Therefore,

finding the right chromosome is equivalent to finding the efficient schedule. GA

searches on the chromosomes for efficient schedules in the following manner.

Step 0: Initialization of the parameters; n = nT(SPT) – 1, w = 0.

Step 1: Establish the initial chromosome population for the efficient schedule with

nT = n.

Step 2: Select two chromosomes from the current chromosome population. One of

the chromosomes will be chosen randomly while the other one will be determined

according to a tournament.

Step 3: Apply crossing-over to the selected chromosomes and generate two new

chromosomes. The new chromosomes are added to the population while the worst

two existed chromosomes according to fitness function will be removed from the

population.

 49

Step 4: Apply mutation to the current population. Then evaluate the population

with Smith’s Algorithm and record the schedule with least fitness function value

as the best schedule.

Step 5: If the best chromosome of the population does not change for 20

consecutive crossovers or after 100 mutations, go to Step 6. Otherwise repeat

Steps 2, 3 and 4.

Step 6: State last best schedule that is recorded in Step 4 as the approximately

efficient schedule for nT = n.

Step 7: Compare the new best schedule’s F value with the previous one. If new

F value is higher than or equal to the old one, w = w + 1/9. Otherwise, calculate

the percentage improvement and refer to it as α . Set w = w + factor/9 where

factor = 0.85α . If w 1≥ , go to Step 8. Otherwise, initialize the statistics

considered in Step 5 and go to Step 2.

Step 8: If n = nT(Moore) go to Step 9. Otherwise set n = n -1, w = 0 and go to Step

1.

Step 9: Terminate the algorithm.

The Fitness Function

Fitness Function =
)()(

)()()1(
)()(

)(
SPTFMooreF

SPTFCFw
MoorenSPTn
nCn

w
TT

T

−
−

−+
−

−

 This fitness function is quite similar to the one used in Keha and Koksalan

(2003). Only difference is that NT(C) and F(C) are NT and F obtained by

evaluating the chromosome C with Smith’s Algorithm. This fitness function is

used to determine the worst two chromosomes in the current population and to

determine the second parent chromosome for crossing over operations via

tournaments.

 50

Initial Population

 Keha and Koksalan (2003) presents an algorithm to find initial schedule with

nT = n. Their GA starts the search for the efficient schedule with nT = n at this

initial schedule. They refer to this algorithm as initial heuristic. We also propose

another initial heuristic. For a given problem having nT ≤ n constraint, we assign a

job to each position starting from the first position. Job j is eligible to be assigned

to the current position if scheduling the remaining unassigned jobs according to

Moore’s Algorithm yields at most n tardy jobs in total. Among the eligible jobs,

the one having shortest processing time will be placed to the current location in

the schedule.

 For creating the initial population of chromosomes, one schedule for each NT

value n, n -1, n +1, and n +2 are generated by using Köksalan and Keha(2003)’s

initial heuristic and one schedule is generated by using our proposed initial

heuristic for each of these nT values. Eight chromosomes are created to represent

tardy jobs of these schedules. Three other chromosomes are created to represent

the tardy jobs of the schedules that are generated according to EDD order, SPT

order, and Moore’s Algorithms.

 Five neighbor chromosomes are generated from the chromosome that

represents SPT order. Five other neighbor chromosomes are also generated from

Moore’s Algorithm’s representative chromosome. Neighbors are created by

changing the values of some genes from 1 to 0 in SPT order case and from 0 to 1

in Moore’s Algorithm case. In both cases the total gene values of the neighbor

chromosomes will be equal to n. Lastly, nine solutions are generated randomly.

The initial population consists of all these listed chromosomes.

Crossing Over Operation

 Two points crossing over is used in the algorithm. Two genes on the parent

chromosomes are selected randomly and the parts of the chromosomes between

 51

these genes are interchanged. As a result of this operation, two new chromosomes

are generated. After the crossing over, new offsprings’ gene values are randomly

increased to 1 or decreased to 0 in order to make the total gene value equal to n.

This crossing over mechanism is quite similar to the one presented by Keha and

Koksalan (2003).

Mutation

 Mutation is applied to a randomly selected chromosome in the current

population. The selected chromosome’s two genes, one with value 1 and the other

with value 0 is selected randomly and their gene values are interchanged.

F. Detailed Comparison Tables with Optimum Solution
 Table 10-17 present the result of a detailed comparison of each heuristic with

the optimum solutions on the test problems. The measures presented in these

tables are the same measures that are presented in Table 3 in Chapter 6. The

results are presented with respect to each problem size, processing distribution and

due date distribution type.

 52

Table 10: Comparison of Heuristics with Optimum Solution on the Test Problems with 20 Jobs and Low Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson's
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0.28% 0% 0% 0.49% 3.37% 0.14% 0.44%

ND/NTotal 1/13 0/13 0/13 3/13 13/13 1/13 5/13
Max. Deviation 0.2829% 0% 0% 0.61% 10.59% 0.14% 1.13%

I

Average CPU
Time(millisecond) 19 23.75 37.4 915.4 1342.18 1718.6 1825.36

Average Deviation 0% 0% 0% 1.02% 5.04% 0% 0.94%

ND/NTotal 0/9 0/9 0/9 2/9 9/9 0/9 3/9
Max. Deviation 0% 0% 0% 1.55% 7.95% 0% 2.44%

II

Average CPU
Time(millisecond) 9.6 10 15.8 740.6 1395.86 1415.6 ms 1449.55

Average Deviation 0% 0% 0% 1.58% 3.62% 0% 1.66%

ND/NTotal 0/6 0/6 0/6 1/6 6/6 0/6 3/6
Max. Deviation 0% 0% 0% 1.58% 7.47% 0% 4.57%

III

Average CPU
Time(millisecond) 4 4.5 12.6 609.2 1449.55 1050 1127.43

Average Deviation 0% 0% 0% 0.35% 7.25% 0% 0%

ND/NTotal 0/21 0/21 0/21 5/21 21/21 0/21 0/21
Max. Deviation 0% 0% 0% 0.76% 22.38% 0% 0%

IV

Average CPU
Time(millisecond) 28 21.8 24.8 971.6 1664.29 1515.4 3328.6

 53

Tablo 11: Comparison of Heuristics with Optimum Solution on the Test Problems with 20 Jobs and High Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson's
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0% 0% 0% 1.56% 3.61% 0.11% 0.88%

ND/NTotal 0/16 0/16 0/16 8/16 16/16 2/16 2/16
Max. Deviation 0% 0% 0% 2.44% 14.26% 0.18% 1.12%

I

Average CPU
Time(millisecond) 15.6 19 28.2 1203 1181.11 1934.4 2147.48

Average Deviation 0% 0% 0% 0% 4.02% 0% 0%

ND/NTotal 0/7 0/7 0/7 0/7 7/7 0/7 0/7
Max. Deviation 0% 0% 0% 0% 15.24% 0% 0%

II

Average CPU
Time(millisecond) 4 4.75 6.8 653 1476.39 1237.4 1127.43

Average Deviation 0% 0% 0% 0.26% 5.52% 0% 0%

ND/NTotal 0/7 0/7 0/7 1/7 6/7 0/7 0/7
Max. Deviation 0% 0% 0% 0.26% 13.11% 0% 0%

III

Average CPU
Time(millisecond) 4.5 6 13 723 3310.70 1296.5 1275.06

Average Deviation 0% 0% 0% 0.74% 6.75% 0% 0.05%

ND/NTotal 0/18 0/18 0/18 5/18 18/18 0/18 2/18
Max. Deviation 0% 0% 0% 2.51% 35.66% 0% 0.07%

IV

Average CPU
Time(millisecond) 18.8 15.4 22.2 709.4 253374.59 1318.6 2899.1

 54

Table 12: Comparison of Heuristics with Optimum Solution on the Test Problems with 30 Jobs and Low Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson’s
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0% 0% 0% 0.60% 3.50% 0.37% 0.12%

ND/NTotal 0/17 0/17 0/17 13/17 16/17 5/17 6/17
Max. Deviation 0% 0% 0% 1.20% 11.60% 0.84% 0.2817

I

Average CPU
Time(millisecond) 31.4 38 46.8 3528 4509.71 7262.6 6281.38

Average Deviation 0% 0% 0% 0.21% 5.24% 0.08% 0.13%

ND/NTotal 0/10 0/10 0/10 8/10 9/10 2/10 2/10
Max. Deviation 0% 0% 0% 0.35% 19.64% 0.11% 0.13%

II

Average CPU
Time(millisecond) 8.25 19.5 22 2996 3597.03 7675.5 4898.94

Average Deviation 0% 0% 0% 0.39% 2.87% 0% 0.64%

ND/NTotal 0/9 0/9 0/9 2/9 8/9 0/9 1/9
Max. Deviation 0% 0% 0% 0.52% 9.49% 0% 0.64%

III

Average CPU
Time(millisecond) 7 9.6 9.8 2368.8 4093.64 4722 3704.41

Average Deviation 1.95% 0% 0% 0.65% 4.94% 0.31% 0.24%

ND/NTotal 2/28 0/28 0/28 22/28 28/28 6/28 11/28
Max. Deviation 3.01% 0% 0% 2.14% 15.19% 0.90% 0.60%

IV

Average CPU
Time(millisecond) 34.2 34.4 40.6 3390.4 4509.71 6668.4 10468.98

 55

Table 13: Comparison of Heuristics with Optimum Solution on the Test Problems with 30 Jobs and High Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson’s
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0.02% 0% 0% 0.67% 2.29% 0.39% 0.08%

ND/NTotal 1/24 0/24 0/24 17/24 24/24 4/24 6/24
Max. Deviation 0.02% 0% 0% 3.63% 15.46% 0.76% 0.38%

I

Average CPU
Time(millisecond) 19 34.6 37.2 4175 3972.84 8215.6 8589.93

Average Deviation 2.39% 0% 0% 0.09% 3.28% 0% 0.20%

ND/NTotal 1/11 0/11 0/11 7/11 11/11 0/11 1/11
Max. Deviation 2.39% 0% 0% 0.22% 9.27% 0% 0.20%

II

Average CPU
Time(millisecond) 10 12.8 12.8 2778.4 4026.53 5484.6 4402.34

Average Deviation 0.006% 0% 0% 0.017% 4.80% 0% 0%

ND/NTotal 1/10 0/10 0/10 4/10 10/10 0/10 0/10
Max. Deviation 0.006% 0% 0% 0.049% 18.38% 0% 0%

III

Average CPU
Time(millisecond) 12.6 12.6 12.8 2556 2791.73 5056.2 4133.9

Average Deviation 0% 0% 0% 0.65% 4.94% 0.31% 0.64%

ND/NTotal 0/31 0/31 0/31 27/31 31/31 12/31 2/31
Max. Deviation 0% 0% 0% 2.14% 15.19% 0.90% 0.97%

IV

Average CPU
Time(millisecond) 31.6 46.75 47 3940.6 5690.83 8253.2 11703.79

 56

Table 14: Comparison of Heuristics with Optimum Solution on the Test Problems with 40 Jobs and Low Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson's
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0.36% 0% 0% 1.00% 2.50% 0.29% 0.97%

ND/NTotal 1/32 0/32 0/32 31/32 31/32 16/32 14/32
Max. Deviation 0.36% 0% 0% 3.09% 9.49% 0.64% 4.78%

I

Average CPU
Time(millisecond) 59.4 75 87.2 12690.4 8965.74 29469 24051.82

Average Deviation 0% 0% 0% 0.18% 2.48% 0.05% 0.06%

ND/NTotal 0/18 0/18 0/18 16/18 17/18 7/18 7/18
Max. Deviation 0% 0% 0% 0.96% 13.59% 0.17% 0.20%

II

Average CPU
Time(millisecond) 21.8 28.6 34.8 9225 6871.94 17956.2 14388.14

Average Deviation 0.06% 0% 0% 0.19% 4.90% 0.06% 0.04%

ND/NTotal 1/17 0/17 0/17 10/17 16/17 2/17 2/17
Max. Deviation 0.06% 0% 0% 0.34% 15.22% 0.06% 0.06%

III

Average CPU
Time(millisecond) 12.8 22 37.4 8715.8 6871.94 16419 14173.39

Average Deviation 0% 0% 0% 0.45% 7.69% 0% 0.52%

ND/NTotal l 0/21 0/21 0/21 5/21 21/21 0/21 6/21
Max. Deviation 0% 0% 0% 1.24% 27.12% 0% 1.48%

IV

Average CPU
Time(millisecond) 19.2 22.2 28 4947 4133.90 9931.2 20401.09

 57

Table 15: Comparison of Heuristics with Optimum Solution on the Test Problems with 40 Jobs and High Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson's
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0% 0% 0% 0.79% 1.74% 0.18% 0.41%

ND/NTotal 0/35 0/35 0/35 32/35 35/35 21/35 10/35
Max. Deviation 0% 0% 0% 3.21% 9.59% 0.64% 1.49%

I

Average CPU
Time(millisecond) 40.8 71.8 68.8 14012.6 7301.44 27344 27219.36

Average Deviation 0.88% 0% 0% 0.23% 3.26% 0.13% 0%

ND/NTotal 1/16 0/16 0/16 8/16 16/16 4/16 0/16
Max. Deviation 0.88% 0% 0% 0.50% 12.59% 0.37% 0%

II

Average CPU
Time(millisecond) 15.6 25.4 28.2 8065.4 7408.81 16203.2 13421.77

Average Deviation 0% 0% 0% 0.24% 4.90% 0.02% 0.01%

ND/NTotal 0/14 0/14 0/14 14/14 13/14 1/14 2/14
Max. Deviation 0% 0% 0% 0.96% 17.69% 0.02% 0.22%

III

Average CPU
Time(millisecond) 15.6 21.8 22 7181.4 5798.20 14312.4 12079.6

Average Deviation 0% 0% 0% 0.25% 7.19% 0% 0%

ND/NTotal 0/23 0/23 0/23 9/23 23/23 0/23 0/23
Max. Deviation 0% 0% 0% 0.74% 33.49% 0% 0%

IV

Average CPU
Time(millisecond) 21.8 25.2 28.2 4943.6 ms 3704.40 ms 10487.4 ms 22548.5 ms

 58

Table 16: Comparison of Heuristics with Optimum Solution on the Test Problems with 60 Jobs and Low Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson's
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0.82% 0.83% 0.06% 0.87% 2.21% 0.45% 0.36%

ND/NTotal 5/49 3/49 2/49 46/49 47/49 38/49 26/49
Max. Deviation 2.22% 2.22% 0.07% 2.88% 11.09% 3.35% 4.20%

I

Average CPU
Time(millisecond) 87.6 187.4 193.8 61093.6 17609.37 123700.2 112098.65

Average Deviation 0% 0% 0% 0.16% 2.60% 0.05% 0.04%

ND/NTotal 0/23 0/23 0/23 21/23 23/23 8/23 7/23
Max. Deviation 0% 0% 0% 0.65% 10.23% 0.11% 0.19%

II

Average CPU
Time(millisecond) 28 65.4 78.2 37503.4 12938.59 75890.6 55727.2

Average Deviation 0% 0% 0% 0.14% 5.49% 0.03% 0.01%

ND/NTotal 0/14 0/14 0/14 13/14 13/14 5/14 2/14
Max. Deviation 0% 0% 0% 0.52% 13.89% 0.05% 0.01%

III

Average CPU
Time(millisecond) 18.8 34.4 31.2 25625 6925.63 51675 36453.54

Average Deviation 0% 0% 0% 0.07% 4.67% 0.05% 0.17%

ND/NTotal 0/39 0/39 0/39 20/39 39/39 6/39 14/39
Max. Deviation 0% 0% 0% 0.31% 26.39% 0.08% 1.00%

IV

Average CPU
Time(millisecond) 56.2 53 52.8 23878.4 9771.05 49984.4 108770.05

 59

Table 17: Comparison of Heuristics with Optimum Solution on the Test Problems with 60 Jobs and High Processing Time Variability

Due Date
Distribution Type

Performance
Measure

Nelson's
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

Average Deviation 0.36% 0% 0% 0.79% 2.16% 0.27% 1.05%

ND/NTotal 0/52 0/52 0/52 50/52 52/52 40/52 9/52
Max. Deviation 0.36% 0% 0% 2.52% 13.23% 1.16% 4.09%

I

Average CPU
Time(millisecond) 78.2 181.2 181.6 64871.8 19703.16 132490.6 119936.96

Average Deviation 0.62% 0% 0% 0.20% 3.21% 0.04% 0.005%

ND/NTotal 1/21 0/21 0/21 18/21 21/21 9/21 2/21
Max. Deviation 0.62% 0% 0% 0.65% 13.28% 0.09% 0.005%

II

Average CPU
Time(millisecond) 21.8 65.8 58.75 34934.2 10898.48 73297 52613.34

Average Deviation 0.002% 0% 0% 0.10% 3.76% 0.02% 0.005%

ND/NTotal 1/23 0/23 0/23 20/23 23/23 9/23 1/23
Max. Deviation 0.002% 0% 0% 0.48% 16.88% 0.05% 0.005%

III

Average CPU
Time(millisecond) 25 65.8 71.8 37443.6 11005.85 74503 60720.10

Average Deviation 0% 0% 0% 0.37% 4.48% 0.11% 0.10%

ND/NTotal 0/41 0/41 0/41 32/41 41/41 7/41 10/41
Max. Deviation 0% 0% 0% 1.23% 26.97% 0.17% 0.48%

IV

Average CPU
Time(millisecond) 46.8 65.6 75 24634.6 9502.61 52834.6 118326.34

 60

G. Detailed Comparison Tables with Nelson’s Heuristics
 Table 18-23 present the result of a detailed comparison of each heuristic with the

Nelson’s Heuristic on the test problems with 80, 100 and 150 jobs. The measures that are

presented in these tables are the same measures presented in Table 7 in Chapter 6. The

results are given with respect to each problem size, processing distribution and due date

distribution type.

 61

Table 18: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 80 Jobs and Low Processing Time Variability

Due Date
Distribution

Type

Performance
Measure BS-I BS-D GA(K&K) SA(K&K) GA TS

Average % Difference 0.336% 0.342% -0.858% -2.197% -0.372% -0.592%
N+ / NTotal 3/64 3/64 1/64 0/64 1/64 2/64
N- / NTotal 0/64 0/64 60/64 59/64 57/64 31/64

Max % Difference 0.526% 0.526% 0.526% -0.217% 0.526% 0.359%
Min % Difference 0% 0% -2.595% -10.174% -1.874% -4.134%

I

Avg. CPU Time(ms) 418.6 450 194484.4 33769.18 382415.8 814379.5
Average % Difference 0.006% 0.006% -0.273% -1.905% -0.118% -0.052%

N+ / NTotal 1/46 1/46 0/46 0/46 0/46 0/46
N- / NTotal 0/46 0/46 44/46 44/46 36/46 31/46

Max % Difference 0.006% 0.006% 0% -0.032% 0% 0%
Min % Difference 0% 0% -0.693% -7.815% -0.460% -0.467%

II

Avg. CPU Time(ms) 290.6 293.6 159650 29474.21 314424.8 427134.5
Average % Difference 0.161% 0.161% -0.225% -2.041% -0.795% 0.008%

N+ / NTotal 2/33 2/33 1/33 0/33 2/33 2/33
N- / NTotal 0/33 0/33 29/33 32/33 22/33 15/33

Max % Difference 0.197% 0.197% 0.151% -0.055% 0.197% 0.197%
Min % Difference 0% 0% -0.777% -8.513% -0.540% -0.065%

III

Avg. CPU Time(ms) 215.6 222 127509.6 24964.49 252050.2 273159.9
Average % Difference 0% 0.072% -0.316% -5.219% -0.104% -0.149%

N+ / NTotal 0/59 1/59 0/59 0/59 0/59 0/59
N- / NTotal 0/59 0/59 46/59 59/59 32/59 36/59

Max % Difference 0% 0.072% 0.004% -0.147% 0% 0%
Min % Difference 0% 0% -1.013% -24.485% -0.276% -0.881%

IV

Avg. CPU Time(ms) 134.4 147 77465.4 23407.57 161034.4 706253.6

 62

Table 19: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 80 Jobs and High Processing Time Variability

Due Date
Distribution

Type
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS

Average % Difference 0.08% 0.08% -0.983% -1.731% -0.371% -0.753%
N+ / NTotal 5/77 5/77 0/77 0/77 0/77 0/77
N- / NTotal 0/77 0/77 71/77 71/77 65/77 25/77

Max % Difference 0.24% 0.24% -0.002% -0.032% 0% 0%
Min % Difference 0% 0% -3.694% -7.978% -1.735% -3.400%

I

Avg. CPU Time(ms) 524.8 562.4 226759.4 49392.12 449968.8 1036858.8
Average % Difference 0.320% 0.320% -0.171% -1.947% -0.053% -0.047%

N+ / NTotal 2/35 2/35 1/35 0/35 1/35 0/35
N- / NTotal 0/35 0/35 33/35 33/35 20/35 7/35

Max % Difference 0.062% 0.062% 0.062% 0% 0.062% 0%
Min % Difference 0% 0% -0.510% -10.282% -0.232% -0.124%

II

Avg. CPU Time(ms) 231.2 240.4 132050.2 24642.37 261750 688966.4
Average % Difference 0.216% 0.216% -0.087% -3.089% 0.002% 0.009%

N+ / NTotal 1/27 1/27 1/27 1/27 1/27 1/27
N- / NTotal 0/27 0/27 29/33 26/27 11/27 8/27

Max % Difference 0.216% 0.216% 0.207% -0.014% 0.216% 0.216%
Min % Difference 0% 0% -0.470% -12.655% -0.050% -0.045%

III

Avg. CPU Time(ms) 131.2 153.2 106853 19166.29 212168.8 362012.06
Average % Difference 0% 0% -0.231% -4.049% -0.049% -0.100%

N+ / NTotal 0/53 0/53 0/53 0/53 0/53 0/53
N- / NTotal 0/53 0/53 44/53 53/53 22/53 18/53

Max % Difference 0% 0% -0.002% -0.067% 0% 0%
Min % Difference 0% 0% -0.887% -23.523% -0.136% -0.323%

IV

Avg. CPU Time(ms) 118.8 140.4 69922 17877.8 144856.2 737177.4

 63

Table 20: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 100 Jobs and Low Processing Time Variability

Due Date
Distribution

Type
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS

Average % Difference 0.032% 0.032% -1.068% -2.468% -0.555% -0.647%
N+ / NTotal 6/84 6/84 0/84 0/84 0/84 1/84
N- / NTotal 0/84 0/84 75/84 74/84 73/84 48/84

Max % Difference 0.070% 0.070% 0% -0.042% -0.002% 0.025%
Min % Difference 0% 0% -3.163% -11.341% -2.377% -4.456%

I

Avg. CPU Time(ms) 906.2 990.4 518509.2 69524.78 1008134.4 814379.4
Average % Difference 0.016% 0.016% -0.305% -2.151% -0.091% -0.055%

N+ / NTotal 2/43 2/43 0/43 0/43 0/43 1/43
N- / NTotal 0/43 0/43 40/43 42/43 35/43 13/45

Max % Difference 0.025% 0.006% 0% -11.541% -0.002% 0.007%
Min % Difference 0% 0% -0.002% -0.071% -0.341% -0.313%

II

Avg. CPU Time(ms) 471.8 543.8 327906.2 40641.13 640590.6 427134.5
Average % Difference 0.014% 0.014% -0.122% -2.783% 0.007% -0.024%

N+ / NTotal 1/26 1/26 1/26 0/26 1/26 0/26
N- / NTotal 0/26 0/26 22/26 25/26 12/26 7/26

Max % Difference 1.039% 1.039% 0% -0.047% 0.274% 0%
Min % Difference 0% 0% -0.496% -13.771% 0% -0.097%

III

Avg. CPU Time(ms) 203.2 228 227290.8 18146.23 441028.2 273160
Average % Difference 0.002% 0.002% -0.143% -4.268% -0.033% -0.089%

N+ / NTotal 1/62 1/62 6/62 0/62 9/62 4/62
N- / NTotal 0/62 0/62 42/62 62/62 25/62 37/62

Max % Difference 0.002% 0.002% 0.094% -0.233% 0.149% 0.052%
Min % Difference 0% 0% -0.823% -24.317% -0.221% -0.370%

IV

Avg. CPU Time(ms) 175.2 187.4 161859.4 32641.75 318774.8 706253.6

 64

Table 21: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 100 Jobs and High Processing Time Variability

Due Date
Distribution

Type
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS

Average % Difference 0.021% 0.017% -1.164% -2.659% -0.580% -0.519%
N+ / NTotal 4/105 5/105 0/105 0/105 0/105 0/105
N- / NTotal 0/105 0/105 100/105 92/105 96/105 57/105

Max % Difference 0.053% 0.053% -0.006% -0.031% 0% 0%
Min % Difference 0% 0% -5.313% -14.100% -2.780% -4.642%

I

Avg. CPU Time(ms) 1381.2 1303.2 651368.6 98462.13 1254365.8 1036858.8
Average % Difference 0.161% 0.087% -0.449% -2.574% -0.202% -0.047%

N+ / NTotal 1/69 2/69 1/69 0/69 2/69 1/69
N- / NTotal 0/69 0/69 63/69 62/69 57/69 39/57

Max % Difference 0.161% 0.161% 0.062% -0.059% 0.012% 0.116%
Min % Difference 0% 0% -1.287% -10.064% -0.976% -0.207%

II

Avg. CPU Time(ms) 803.4 772 471637.6 56908.31 906313 688966.4
Average % Difference 0% 0% -0.148% -3.152% -0.009% -0.029%

N+ / NTotal 0/34 0/34 0/34 0/34 0/34 0/34
N- / NTotal 0/34 0/34 33/34 33/34 16/34 14/34

Max % Difference 0% 0% -0.005% -0.069% 0% 0.000%
Min % Difference 0% 0% -0.552% -14.437% -0.031% -0.074%

III

Avg. CPU Time(ms) 375 321.8 280056.4 32749.13 590328.25 362012
Average % Difference 0% 0% -0.247% -4.970% -0.060% -0.107%

N+ / NTotal 0/62 0/62 0/62 0/62 0/62 0/62
N- / NTotal 0/62 0/62 48/62 62/62 32/62 35/62

Max % Difference 0% 0% 0% -0.076% 0% 0.000%
Min % Difference 0% 0% -0.247% -29.496% -0.179% 0.458%

IV

Avg. CPU Time(ms) 206 219 160556.2 36399.85 342664 737177.4

 65

Table 22: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 150 Jobs and Low Processing Time Variability

Due Date
Distribution

Type
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS

Average % Difference 0.023% 0.023% -0.129% -2.968% -0.621% -1.084%
N+ / NTotal 2/132 2/132 0/64 0/64 0/132 0/132
N- / NTotal 0/132 0/132 123/132 109/132 125/132 95/132

Max % Difference 0.023% 0.023% 0% -0.137% 0% 0%
Min % Difference 0% 0% -3.342% -10.783% -2.450% -5.941%

I

Avg. CPU Time(ms) 4056.2 4296.8 2978565.4 200199.1 5871646.8 4016009.18
Average % Difference 0.013% 0.003% -0.199% -2.568% -0.080% -0.060%

N+ / NTotal 3/64 3/64 0/64 0/64 0/64 0/64
N- / NTotal 0/64 0/64 63/64 60/64 54/64 43/64

Max % Difference 0.020% 0.006% 0% -0.074% 0% 0%
Min % Difference 0% 0% -0.497% -13.894% -0.485% -0.346%

II

Avg. CPU Time(ms) 2096.8 2234.6 1874315.6 96905.2 3716753 2015413.4
Average % Difference 0.335% 0.335% 0.210% -2.620% -0.069% -0.016%

N+ / NTotal 2/59 2/59 1/59 0/59 1/59 1/59
N- / NTotal 0/33 0/33 54/59 57/59 49/59 43/59

Max % Difference 0.664% 0.664% 0.449% -0.149% 0.566% 0.614%
Min % Difference 0% 0% -0.558% -12.804% -0.481% -0.143%

III

Avg. CPU Time(ms) 1531.4 1618.6 1775550 81067.5 3524253.2 1900415.63
Average % Difference 0% 0% -0.171% -6.620% -0.112% 0.126%

N+ / NTotal 1/98 1/98 0/98 0/98 0/98 0/98
N- / NTotal 0/98 0/98 89/98 95/98 81/98 92/98

Max % Difference 0% 0% 0.000% -0.322% 0% 0%
Min % Difference 0% 0% -0.631% -34.808% -0.339% -0.504%

IV

Avg. CPU Time(ms) 593.8 712.4 775106 101146.4 1609331.2 3481929.98

 66

Table 23 Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 150 Jobs and High Processing Time Variability

Due Date
Distribution

Type
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS

Average % Difference 0.02% 0.01% -0.914% -2.765% -0.498% -0.317%
N+ / NTotal 11/149 0/149 0/149 0/149 0/149 3/149
N- / NTotal 11/149 0/149 141/149 104/149 138/149 73/139

Max % Difference 0.07% 0.03% 0.000% -0.109% 0% 0.015%
Min % Difference 0% 0% -2.749% -10.508% -2.811% -4.249%

I

Avg. CPU Time(ms) 5218.6 5187.4 3381065.6 239229.6 6633975.2 4692090.72
Average % Difference 0.141% 0.131% -0.473% -2.878% -0.231% -0.051%

N+ / NTotal 9/106 10/106 1/106 0/106 2/106 2/106
N- / NTotal 0/106 0/106 101/106 89/106 98/106 82/106

Max % Difference 1.225% 1.225% 1.458% 0% 1.458% 1.438%
Min % Difference 0% 0% -1.304% -11.393% -0.985% -0.455%

II

Avg. CPU Time(ms) 3487.6 3512.4 2742934.2 173141 5444396.6 3430658.84
Average % Difference 0.099% 0.116% -0.270% -2.542% -0.093% -0.031%

N+ / NTotal 4/74 4/74 1/74 0/74 1/74 1/74
N- / NTotal 0/74 0/74 71/74 69/74 66/74 53/74

Max % Difference 0.388% 0.455% 0.442% -0.080% 0.442% 0.232%
Min % Difference 0% 0% -0.788% -12.832% -0.585% -0.204%

III

Avg. CPU Time(ms) 2071.8 2103 2041987.4 106890.9 4079712.4 2445661.79
Average % Difference 0% 0% -0.231% -7.111% -0.110% 0.130%

N+ / NTotal 0/53 0/53 0/115 0/115 0/115 0/115
N- / NTotal 0/53 0/53 106/115 113/115 92/115 93/115

Max % Difference 0% 0% 0.000% -0.146% 0% 0%
Min % Difference 0% 0% -0.916% -38.034% -0.726% -0.607%

IV

Avg. CPU Time(ms) 1084.2 1146.8 891159.4 109414.3 1878893.8 4206759.32

	tson.pdf
	tezsonuncu.pdf
	Abstract
	Özet
	Acknowledgement
	5.2 Dependent Beam Search (BS-D)
	5.3 Genetic and Tabu-search Algorithms (GA and TS)
	6.1 Comparison with the Optimal Solution
	6.2 Experiments on Larger Problems
	D. Tabu-search (TS)
	E. Genetic Algorithm (GA)

