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Abstract 
 
 

NEW SOLUTION METHODS FOR SINGLE MACHINE BICRITERIA 
SCHEDULING PROBLEM: MINIMIZATION OF AVERAGE FLOWTIME AND 

NUMBER OF TARDY JOBS 
 

 

Fatih Safa Erenay 

M.S. in Industrial Engineering 

Supervisor: Prof. İhsan Sabuncuoğlu 

July 2006 

 
In this thesis, we consider the bicriteria scheduling problem of minimizing number 

of tardy jobs and average flowtime on a single machine. This problem, which is 

known to be NP-hard, is important in practice as the former criterion conveys the 

customer’s position and the latter reflects the manufacturer’s perspective in the 

supply chain. We propose two new heuristics to solve this multiobjective 

scheduling problem. These two heuristics are constructive algorithms which are 

based on beam search methodology. We compare these proposed algorithms with 

three existing heuristics in the literature and two new meta-heuristics. Our 

computational experiments illustrate that proposed heuristics find efficient 

schedules optimally in most of the cases and perform better than the other 

heuristics.   

 

Keywords: Bicriteria Scheduling, Average Flowtime, Number of Tardy Jobs, Beam 
Search.  
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Özet 
 
 

TEK MAKİNEDA İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ İÇİN YENİ 
ÇÖZÜM METODLARI: ORTALAMA AKIŞ SÜRESİ VE TOPLAM GEÇ KALMIŞ 

İŞ SAYISINI ENKÜÇÜKLEME   
 

 

Fatih Safa Erenay 

Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticisi: Prof. İhsan Sabuncuoğlu 

Temmuz 2006 

 

Bu tezde, ortalama iş akış süresini ve toplam geç kalmış iş sayısını enküçüklemeyi 

hedefleyen iki ölçütlü tek makina çizelgeleme problemini ele aldık. NP-zor olduğu 

bilinen bu problemın önemi ele aldığı ölçütlerden kaynaklanmaktadır. Zira, ele 

alınan birinci ölçüt tedarik zinciri içerisindeki bir üreticinin, ikincisi ise bir 

tüketicinin bakış açısını temsil eder. Bu çok ölçütlü problem için iki yapıcı 

sezgisel yöntem öneriyoruz. Bu iki yöntem ışın taraması algoritması esas alınarak 

geliştirilmiştir. Önerilen bu iki algoritma, üçü literatürde mevcut ikisi de yeni 

geliştirilmiş olan, 5 farklı sezgisel yöntem ile karşılaştırılmıştır. Yaptığımız sayısal 

testler sonucu, önerdiğimiz algoritmaların, çoğu zaman en iyi etkin çizelgelere 

ulaştığı ve karşılaştırıldıkları sezgisel yöntemlerden daha iyi sonuçlar verdikleri  

tesbit edilmiştir. 

     

Anahtar Kelimeler: İki Ölçütlü Çizelgeleme, Ortalama İş Akış Süresi, Toplam 

Geç Kalmış İş Sayısı, Işın Taraması. 
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C h a p t e r  1  

 
INTRODUCTION 
 
  

In the literature most scheduling studies consider optimization of a single 

objective function. However, in practice, decision makers evaluate schedules 

according to more than one measure. Since using multiple criteria is more realistic, 

several multicriteria scheduling papers have appeared in the scheduling literature. 

Most of these papers are on single machine bicriteria scheduling problems. In the 

vein of this literature, this thesis study considers minimization of mean flowtime 

( F ) and number of tardy jobs (nT) on a single machine. Our contribution lies in 

developing new heuristics that outperform the current approximate solution 

methodologies. Also, we characterize the effectiveness of these proposed 

heuristics in terms of problem parameters.   

 We propose two heuristics, which are constructive algorithms based on beam 

search method. In addition, two heuristics iteratively utilizing genetic algorithm 

and tabu-search are developed by Kardas and Sabuncuoglu (2006) and Aydogdu 

and Sabuncuoglu (2006). These new heuristics are designed to find the 

approximately efficient schedules. That is, they can estimate the pareto frontier 

solutions for the problem of minimizing mean flowtime ( F ) and number of tardy 

jobs (nT) on a single machine. 

 Efficient schedules are the set of schedules that cannot be dominated by any 

other feasible schedule according to the considered criteria. All other schedules, 

which are not in this set, are dominated by at least one of these efficient schedules. 

The reason for seeking efficient schedules instead of minimizing weighted sum of 
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nT and F  is that whatever the weights are, the optimum solution will be one of the 

efficient schedules. Specifically, given the efficient schedules for the bicriteria 

problem and the corresponding weights w1 and  w2, the solution to the 

minimization of w1 F  + w2 nT can be found by evaluating all these finite number 

of efficient schedules.  

 Number of tardy jobs and average flowtime are quite significant criteria for 

characterizing the behavior of a manufacturer who wants to meet the due dates of 

his/her customers while minimizing own inventory holding costs. The solution to 

the single machine problem which is known to be NP-hard (Bulfin and Chen, 

1993) can be used as an aggregate schedule for the manufacturer, or for generating 

a more detailed schedule for a factory based on a bottleneck resource.  Thus, 

having an effective approximate solution methodology for finding efficient 

schedules to this problem is important both theoretically and in practical sense.           

 The organization of this thesis is as follows. In Section 2, we present a 

literature review on multicriteria scheduling. In Section 3, we formulate the 

problem of minimizing number of tardy jobs and average flowtime on a single 

machine. In Section 4, we describe Nelson et al. (1986)’s optimum solution 

method for this problem. The proposed beam search algorithms are presented in 

Section 5. Computational results are provided in Section 6. Finally, concluding 

remarks and future research directions are given in Section 7. 
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C h a p t e r  2  

 
LITERATURE REVIEW 
 

 
 In the scheduling literature, most of the studies consider bicriteria single 

machine scheduling problems that minimize couples of criteria such as maximum 

tardiness and flowtime (Smith, 1956; Heck and Robert, 1972; Sen and Gupta, 

1983; Koksalan, 1999), maximum earliness and flowtime (Koksalan et al., 1998; 

Koktener and Koksalan, 2000; Keha and Koksalan, 2003), maximum earliness and 

number of tardy jobs (Erol et al., 1998; Kondakci et al., 2003). Extensive surveys 

of several bicriteria single machine scheduling studies are provided by Dileepan 

and Sen (1988), Fry et al. (1989) and Wan and Yen (2003). In addition to these 

survey papers, Nagar et al. (1995), Billaut and T’kindt (1999) and Hoogeveen 

(2005) review multicriteria scheduling literature including those papers that 

consider more than two criteria and more complex settings. 

 Bulfin and Chen (1993) analyze the complexity of the single machine 

multicriteria scheduling problems which consider maximum tardiness, flowtime, 

number of tardy jobs, tardiness and the weighted counterparts of the last three 

criteria. A more recent publication that reviews the complexity of the multicriteria 

scheduling problem is by T’kindt et al. (2005). The paper is mainly about the 

enumeration complexity theory. Nevertheless, the survey also reviews the 

complexity of several multicriteria scheduling problems as an application of the 

theorems presented in the paper. 

 Multicriteria scheduling studies can be grouped into three categories as: 

hierarchical optimization, weighted sum optimization and pareto optimization 
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(Wan and Yen, 2003). Hierarchical optimization approach tries to minimize some 

of the criteria while keeping the others at their optimal value. In weighted sum 

optimization approach, the decision makers assign weights to the criteria. Thus, 

the multiple criteria are reduced to a single performance measure. The last 

category, pareto optimization, minimizes corresponding criteria simultaneously by 

finding efficient schedules. The current study belongs to the last category. 

 For single machine case, the problem of minimizing nT, while F  is optimum, 

is solved in polynomial time (Chen and Bulfin, 1993) by an adjusted version of 

SPT order which applies Moore’s Algorithm to break ties among the jobs with 

equal processing time. In the rest of the thesis, SPT order will refer to this adjusted 

version. In another study, Emmons (1975) develops an algorithm for minimizing 

F  while nT is optimum. Later, this problem is showed to be NP-Hard by Huo et 

al. (2005). Finally, Chen and Bulfin (1993) prove that simultaneously minimizing 

both criteria on a single machine via finding efficient schedules is NP-Hard. 

 Then, Nelson et al. (1986) develop a branch and bound procedure to find 

efficient schedules for minimizing nT and F  optimally on single machine. In 

addition, Nelson et al. (1986) develop a constructive heuristic for this problem.   In 

another study, Kiran and Unal (1991) define several theorems about the 

characteristics of the efficient solutions. Kondakci and Bekiroglu (1997) present 

some dominancy rules on the efficient solutions, which they use to develop more 

effective optimal solution method. These dominancy rules are applied to the 

Nelson et al.’s branch and bound procedure. Consequently, the paper reports that 

the size of branch and bound tree is reduced considerably.  

 Recent studies on the problem propose some general purpose procedures. 

Koktener and Koksalan (2000), and Keha and Koksalan (2003) develop heuristic 

methods based on simulated annealing and genetic algorithms, respectively. The 

later study indicates that genetic algorithm generally performs better than the 
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simulating annealing; however, simulating annealing approach is faster than the 

genetic algorithm.         

 After reviewing these studies we observe that there are many multicriteria 

scheduling papers in the literature. However, only a few solution methodologies, 

(one exact and three heuristics) are proposed for the problem that the current study 

considers. Moreover, these solution methods are not compared with each other in 

detail. Thus their relative strengths are unknown. Only simulated annealing 

(Koktener and Koksalan, 2000) and genetic algorithm (Keha and Koksalan, 2003) 

approaches are compared with each other. Nevertheless, these two iterative 

methods are not properly compared with the optimum solution for problems with 

more than 20 jobs.  Therefore, the current study presents two constructive and two 

iterative heuristic methods for this problem and compares these proposed 

heuristics with each other as well as with the other exact and heuristic solution 

methods available in the literature. Hence, the current study will illustrate the 

relative strengths of each solution method.  
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C h a p t e r  3  

 
PROBLEM FORMULATION  
 

 

 As discussed earlier, our approach aims at finding approximately efficient 

schedules for minimizing F  and nT. More formally, we are interested in finding a 

set of schedules where, if S is an element of this set, then there exists no schedule 

S ′ such that; 

i) )()( SnSn TT ≤′  

ii) )()( SFSF ≤′  

iii) At least one of these constraints is strict.  

 Furthermore, our approach builds on the fact that optimizing either one of the 

objectives, nT or F , on a single machine is polynomially solvable. It is well known 

in the scheduling literature that shortest processing time (SPT) rule minimizes the 

average flowtime, and Moore’s Algorithm (Moore, 1968) minimizes the number 

of tardy jobs. In the rest of the thesis, we will denote nT(SPT) and nT(Moore) as the 

number of tardy jobs in the sequence formed for a problem instance using SPT 

rule and Moore’s Algorithm, respectively.                  

 We assume that the processing times and due dates are constant and known at 

the beginning of the planning horizon. We also assume that there is no preemption 

or precedence relation between jobs. The delays that occur in machining process 

due to maintenance and unexpected failures are ignored. We define N as the total 

number of jobs and refer to a particular job by index j.  Pj and dj denote the 
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processing time and the due date of Job j, respectively. In single machine setting, a 

schedule is the sequence in which the jobs will start to be processed. Denoting S as 

a feasible schedule, F (S) represents the average flowtime of schedule S and nT(S) 

refers to the number of  tardy jobs resulting from schedule S.   

 Kiran and Unal (1991) show that for each number of tardy jobs between 

nT(SPT) and nT(Moore), there exists at least one corresponding efficient schedule. 

Therefore, the range between nT(SPT) and nT(Moore) is referred to as efficient 

range of number of tardy jobs. Since there exists at least one efficient schedule for 

every nT value in this range, total number of efficient schedules for a given 

problem is at least nT(SPT) - nT(Moore) + 1. Therefore, for a problem with N jobs, 

we solve the following model for all n in the efficient range.  

 

S
Min
∀

 F (S)                                                                                                                                                      

st 

nT(S)  = n      where nT(SPT) ≥≥ n  nT(Moore) 

 

 For the purpose of presenting a more detailed formulation of the above 

problem, let us define Xi j and Yj as follows.    

 

                    1,     if i th position is held by Job j 

Xi j =                        

                    0,     o.w. 

 

                    1,     if Job j is tardy  

Yj =                        

                    0,     o.w. 
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 Also, let M and ξ  denote a very large and a very small number, respectively. 

The mathematical model is given below. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−∑∑

==

N

j
jij

N

i

PXiN
N

Min
11

)1(1
 

..ts  

∑
=

=
N

j
ijX

1

1  for all i ∈{1, 2, ……N}                                                 (1) 

∑
=

=
N

i
ijX

1

1  for all j ∈{1, 2, ……N}                                                           (2) 

jkik

N

r

r

i

N

k
rjjj YMPXXPd ×−≥−− ∑∑∑

=

−

= =2

1

1 1

 for all j ∈{1, 2, ……N} (3)         

( ) ξ−−×≤−− ∑∑∑
=

−

= =
jkik

N

r

r

i

N

k
rjjj YMPXXPd 1

2

1

1 1

 for all j ∈{1, 2, ……N} (4) 

∑
=

=
N

j
j nY

1

 (5) 

i, j, k, r },....1{ N∈ ; 

 Equation (1) assures that only one job can be assigned on each position in the 

schedule. Equation (2) makes sure that there is no unassigned job. Expressions (3) 

and (4) jointly identify whether Job j is tardy or not, i.e. Yj = 0 or Yj = 1. Finally, 

Equation (5) assures that only n jobs are tardy. In order to solve the problem of 

minimizing nT and F  on a single machine, this mathematical model should be 

solved for every n s.t. nT(SPT) ≥≥ n  nT(Moore). As seen in the model, 

Inequalities (3) and (4) are nonlinear due to the multiplication of rjX  and ikX . 

However, since the both variables are binary, it is possible to linearise these 

inequalities by replacing rjX ikX with rjikZ and adding the following expressions to 

the model.    
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i)   rjikrj ZX ≥   

ii)  rjikik ZX ≥    

iii) 1−+≥ ikrjrjik XXZ    

for all i, j, k, r },....1{ N∈ ;              

 In a given problem, the efficient schedule that has nT(SPT) tardy jobs is the  

schedule that is formed according to SPT order. For a given problem, other 

nT(SPT) - nT(Moore) efficient schedules need to be found. Nelson et al. (1984) 

proposed an efficient branch and bound algorithm to find all these schedules 

optimally. However, this algorithm works well only for small sized problems. 

Since the computationally efficient heuristics that we propose will use some 

insights from and will be compared with the optimum solution, let us present a 

brief summary of this algorithm in the next chapter.  
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C h a p t e r  4  

 
OPTIMAL SOLUTION METHOD FOR 

MINIMIZING Tn AND F  
 

 In this section, we present a summary of the branch and bound method 

proposed by Nelson et al. (1986). This method finds an efficient schedule for each 

n in the efficient range for the problem of minimizing nT and F on a single 

machine. Basically, it depends on two key points. The first one is the fact that, 

given N jobs and a subset of these N jobs, the schedule that gives minimum F  

while keeping the jobs in the given subset non-tardy is found using Smith’s 

Algorithm (Smith, 1956; Kiran and Unal, 1991). The second one is presented in 

the following theorem.   

 Theorem 1: The jobs that are early in the SPT order are also early in at least 

in one of the efficient schedules with nT  = n for all n s.t. nT(SPT) ≥≥ n  nT(Moore) 

(Nelson et al., 1986). 

 This theorem indicates that, in order to find an efficient schedule with NT = n, 

it is necessary to determine which other nT(SPT) – n  jobs will be early besides the 

early jobs of SPT order. Therefore all subsets of SPT order’s tardy jobs with 

cardinality nT(SPT) – n should be evaluated by using Smith’s Algorithm to find 

the schedule with minimum F while having n tardy jobs. The schedule that is 

obtained through this evaluation is the efficient schedule for nT  = n.   

 The branch and bound method (B&B) is designed to determine one efficient 

schedule in every level of the branch and bound tree by finding which nT(SPT) – n 
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jobs should be early. In the first level, the efficient schedule for nT = nT(SPT) is 

found and in the kth  level efficient schedule for nT = nT(SPT) – k +1 is found. The 

tree continues in this manner such that at the lowest level an efficient schedule for 

nT = nT(Moore) is found. In this tree, each node stores the set of jobs that need to 

be kept nontardy.  We refer to this set as set of early jobs in the remaining parts of 

the thesis. A set of early job at level k is a subset of N jobs with cardinality N – 

nT(SPT) + k – 1. The nodes in level k cover all of the possible subsets with the 

specified cardinality.  N – nT(SPT) of these jobs in each set of early jobs are the 

early jobs of the SPT order and the remaining k – 1 are among the tardy jobs of the 

SPT order. For each node in level k, Smith’s Algorithm is run, and the schedule 

that has the minimum F while keeping corresponding N – nT(SPT) + k – 1 jobs  

non-tardy is found. The schedule that gives the least F  in level k is the efficient 

schedule for nT = nT(SPT) – k +1. This procedure is repeated for each level of the 

branch and bound tree. A sample question is presented in Appendix-A to show 

how Nelson et al.’s (1986) branch and bound tree is built.       

 Each node in level k of the branch and bound tree represents a set of early jobs. 

As stated above, we use Smith’s Algorithm to evaluate the nodes of Nelson et al.’s 

B&B tree.  Indeed, Smith’s Algorithm minimizes F  given that Tmax is zero where 

Tmax is the maximum tardiness.  Equivalently, this algorithm finds the schedule that 

minimizes F  given that nT = 0. This implies that, in finding the minimum 

F corresponding to a node in the B&B tree, first, the due date of the jobs that are 

not in the set of early jobs are set to infinity, and then Smith’s Algorithm are 

applied. Therefore, for each node k, we solve following problem by using Smith’s 

Algorithm.  

S
Min
∀

 F (S)                                                                                                                                                      

st 

Tmax(S)  = 0; 

dj = ∞  kEj∉∀   where Ek is the set of early jobs of node k. 
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 The steps of Smith’s Algorithm are described in the following pseudo 

algorithm. In this pseudo algorithm E is the set of jobs that are not scheduled yet 

and PT is the sum of processing times of the unscheduled jobs. Moreover, k 

denotes the position of the sequence to which a job will be assigned by the 

algorithm.      

 Step 0: E = {1,2,3,…….,N}, PT = ∑
=

N

j
jp

1

, k = N. 

 Step 1: Record all the jobs j where Ej∈  and Tj Pd ≥ . 

Step 2: Among the recorded jobs choose the one with the largest processing 

time. Assign that job to the kth position in the schedule and record the 

processing time of the job to the variable P.  

 Step 3: Remove the assigned job from E. PT = PT – P, k = k – 1. 

 Step 4: If E = φ , go to Step 5. Otherwise go to Step 1. 

Step 5: The schedule is completed. Report the F  value of the completed 

schedule. 

 Step 6: Terminate the algorithm.     

  

 The time that Smith’s Algorithm requires to evaluate a node is increasing 

polynomially with respect to the number of the jobs to be scheduled. However, the 

number of the nodes that are needed to be evaluated increases exponentially as the 

number of the jobs increases. Therefore, Nelson et al.’s B&B Algorithm requires 

quite high CPU time to solve problems with more than 60 jobs.  
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C h a p t e r  5  

 
PROPOSED BEAM SEARCH 

ALGORITHMS AND OTHER NEW 

HEURISTICS  
 

 Since minimizing average flowtime and number of tardy jobs on a single 

machine is an NP-Hard problem, we develop two beam search based heuristic 

algorithms to find the approximately efficient schedules. Beam search is 

successfully applied to a variety of scheduling problems such as FMS scheduling 

(Sabuncuoglu and Karabuk, 1998), job-shop scheduling (Sabuncuoglu and Bayiz, 

1999; Duarte et al., 2004), open shop scheduling (Blum, 2005), mixed-model 

assembly line scheduling (McMullen and Tarasewich, 2005), unrelated parallel 

machine scheduling (Ghirardi and Potts,  2005). 

 Beam search is a fast and approximate branch and bound algorithm. Instead of 

expanding every node to the next level in the classical branch and bound tree, 

beam search expands only a limited number of promising nodes to the next levels. 

Thus, rather than making all exhausting branch and bound tree operations, beam 

search efficiently operates only on a small portion of the tree and gets a quick and 

approximate solution.  

 Generally, at a level of beam search tree, the nodes are evaluated via a global 

evaluation function. The nodes with the highest scores are selected to be expanded 

to the next level. The number of these nodes is fixed and called beam width (b) in 
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the literature. In some beam search applications, a portion of the nodes to be 

expanded to the next level is chosen randomly in order to increase the quality of 

the solution. Some of the beam search algorithms use local evaluation functions to 

eliminate some of the nodes before evaluating them with global evaluation 

function. This approach is called as filtered beam search. In fact, in the literature, 

there are a number of other enhanced beam search algorithms. 

 In the literature, there are two types of beam search implementation with 

respect to the branching procedure; dependent and independent beam search. We 

applied both of these branching procedures to the problem of minimizing NT and 

F  on a single machine.  

5.1 Independent Beam Search (BS-I) 
 
 As stated before, beam search is a quick and approximate branch and bound 

algorithm. It operates on a small portion of the Nelson et al.’s (1986) search tree in 

order to obtain a good solution quickly.  

 The first two levels of our beam search tree are the same as Nelson et al.’s 

search tree (see Figure 2 in Appendix-A and Figure 3 in Appendix-B). However, 

at level 2, only b number of the nodes are expanded to the next level. These b 

nodes are the ones with the b smallest F  values obtained from applying Smith’s 

Algorithm to the corresponding nodes. At the next levels, only one node among 

the nodes that are expanded from the same parent can be expanded to the next 

level.   The schedule that is given by the node with minimum F  among all the 

nodes at a level is chosen as the approximately efficient schedule for the 

corresponding level. The global evaluation function of BS-I is the average 

flowtime obtained by running Smith’s Algorithm for the corresponding node. The 

example presented in Appendix-B shows how the proposed algorithm finds 

efficient schedules for each nT = n where nT(SPT) ≥≥ n  nT(Moore). Since the 
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solution tree has b independent branches (Figure 3 in Appendix-B) this algorithm 

is called independent beam search.  

5.2 Dependent Beam Search (BS-D) 
 
 Dependent beam search algorithm is a slightly modified version of the 

independent beam search algorithm. In the independent beam search tree, after the 

second level only one node is expanded to the next level among the nodes that are 

expanded from the same parent. However, in the dependent beam search case, all 

the nodes at a level are evaluated together without considering their parent nodes 

and b nodes with the smallest F  values are expanded to the next level. This 

implies that more than one node that have same parent node can be expanded to 

the next level. An example is given in Appendix-C. 

5.3 Genetic and Tabu-search Algorithms (GA and TS)  
 
 As stated before, a genetic algorithm and a tabu-search algorithm are 

developed Kardas and Sabuncuoglu (2006) and Aydogdu and Sabuncuoglu (2006). 

GA and TS are explained in detail in Appendix D and E.        
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C h a p t e r  6  

 
COMPUTATIONAL EXPERIMENTS 
 

 

 In order to evaluate the performances of the proposed heuristics, we conducted 

experiments on several randomly generated problems with sizes of 20, 30, 40, 60, 

80, 100, 150 jobs. The processing times are taken as uniformly distributed in the 

range [0,25] and [0,100] representing low and high processing time variability, 

respectively. The due dates are also distributed uniformly on the four different 

ranges as shown in Table 2. Here, SP denotes the sum of processing times of the N 

jobs. Note that, these due date and processing time distributions are used in Keha 

and Koksalan (2003).  

Table 2: Due Date Ranges   

Due Date Type  Due Date Range 

I [0,0.4SP] 

II [0.1SP, 0.3SP] 

III [0.25SP,.45SP] 

IV [0.3SP, 1.3SP] 
 

 Before performing an extensive numerical study, we solved about 50 sample 

problems with 20, 30, 40 and 60 jobs to gain some insights on the significant beam 

width values to use in our experiments with BS-I and BS-D. For this purpose, we 

consider the behavior of average percentage deviation of each heuristic from 

optimum with respect to increasing beam widths. In this context, we define the 

average percentage deviation of a heuristic from optimum as 
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Here, M is the total number of problems, F (m,n) is the minimum mean 

flowtime resulting from the heuristic solution of the mth problem for nT = n, and 

F OPT(m,n) is the corresponding optimal solution. nT(m,Moore) and nT(m,SPT) are 

the number of tardy jobs in sequences formed according to Moore’s Algorithm and 

SPT order, respectively, for the mth problem. Finally, nm,ϕ  is defined as  

                  1,     if  ),(),( nmFnmF OPT>  

nm,ϕ  =                        

                  0,     o.w. 

 Average percentage deviation illustrates the average gap between the heuristic 

and the optimal solution over all efficient schedules and test problems where this 

gap is positive. These cases will be referred to as deviation instances in the rest of 

the thesis. Figure 1 illustrates average percentage deviation of BS-D with respect 

to increasing beam width values in sample problems. As seen in Figure 1, the 

average percentage deviation is stabilized after a beam width value of 10. 

Therefore, in the rest of the experiments we use BS-I and BS-D with beam width 

value 10.    

  

6.1 Comparison with the Optimal Solution 
 
 In this subsection, we report the results of our comparison of the proposed 

heuristics with the optimal solution considering several measures.  Since Nelson’s 

B&B Algorithm can solve problems with size up to 60 jobs within reasonable 

amount of time, comparing the heuristics with optimal solution on larger size  
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Figure1: Average Percentage Deviation of BS-D 
from Optimum vs Beam Width 
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problems is not possible. Therefore we decided to solve problems with sizes of 20, 

30, 40, 60 jobs. The processing time and due date values for these problems have 

been generated according to our discussion early in Chapter 6. For each job size, 

due date and processing time distribution, we solved 5 randomly generated 

problems.          

 Considering all possible combinations, we have solved 40 (2x4x5) problems 

for each job size which makes 160 in total. These 160 problems were solved with 

Nelson’s B&B method, BS-I, BS-D, Keha and Koksalan (2003)’s genetic 

algorithm (GA(K&K)), Koktener and Koksalan (2000)’s simulated annealing 

(SA(K&K)), proposed tabu-search (TS) and proposed genetic algorithm (GA). 

Keha and Koksalan (2003) use tournament selection method to choose two parent 

schedules which are modified in order to build two new schedules. Tournament 

selection is choosing the best schedules with respect to a fitness function as 

parents among a number of randomly selected schedules. This number is referred 

as tournament size. For our experiments we take tournament size as 5. In addition, 

we also solved the test problems with a heuristic suggested by Nelson et al. 

(1986). This heuristic is based on expanding the node with minimum flowtime at 
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each level of a given B&B tree of Nelson et al.’s optimum solution. We recognize 

that this heuristic is nothing but a special version of our proposed beam search 

algorithms with beam width 1. In the rest of the thesis, we refer to this heuristic as 

Nelson’s Heuristic.  

 In addition to the average percentage deviation, the following three measures 

were considered in our experiments.   

i) Maximum Percentage Deviation: )
),(

),(),(
100(max

),( nmF
nmFnmF

OPT

OPT

nm

−
× . 

ii) ND/ NTotal where   
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iii) Average CPU Time: The average computation time the heuristic spent in 

solving a test problem.             

 Table 3 illustrates the results of our experiments with 20, 30, 40, 60 jobs. The 

results indicate that both beam search based heuristics and Nelson’s Heuristic 

perform better than GA(K&K) and SA(K&K) according to all performance 

measures. Only in the 60 jobs case, the average percentage deviation value of the 

BS-I seems to be larger than the GA(K&K). The reason behind this is that BS-I’s 

average percentage deviation is calculated according to only 3 deviation instances. 

Since the deviation value in one of these few instances are high, average 

percentage deviation value of BS-I is higher than the GA(K&K). However, we 

conclude that both BS-I performs better than the GA(K&K) since the other 

performance measures favor beam search based algorithm.        

 Nelson’s Heuristic, BS-I and BS-D find nearly all efficient schedules 

optimally. As expected, both algorithms perform a bit better than the Nelson’s 

Heuristic since Nelson’s Heuristic is equivalent to BS-I or BS-D with beam width 



 20

1. BS-D performs slightly better than BS-I for the problems with 60 jobs. 

Although the performance of the GA(K&K), SA(K&K) and Nelson’s Heuristic 

worsens as the size of the problem increases, the performance of our proposed 

beam search based heuristics is quite stable with respect to problem size. Indeed, 

all the problems with job sizes 20, 30 and 40 were solved optimally by the 

proposed beam search algorithms. Only among the problems with 60 jobs, there 

are some instances where the F  value found by BS-I and BS-D for a test problem 

deviate from optimum.  

 Both GA and TS perform better than the GA(K&K) and SA(K&K)  but not as 

good as beam search based algorithms. GA performs a bit better than TS according 

to the average percentage deviation criterion. However, TS finds more efficient 

schedules optimally than the GA does, for the problems with 40 and 60 jobs. Their 

average deviation values seem to be stable according to the job size. However, as 

job sizes increases the rate ND/NTotal increases for both TS and GA algorithms. 

Therefore, performances of these heuristics are negatively affected by the 

increasing problem size.  

 As Table 3 shows, Nelson’s Heuristic is the fastest of all 5 approximate 

solution methods that we tested in this experiment. Although GA(K&K)’s solution 

quality is better than SA(K&K)’s, GA(K&K)  is much slower than SA(K&K). GA 

and TS are the two slowest heuristics. Indeed, Nelson’s Heuristic performs much 

better than these four methods resulting with less CPU time. Both of our proposed 

beam search algorithms work slightly slower than the Nelson’s Heuristic but faster 

than the others. 

 Tables 4 and 5 illustrate the average percentage deviation from optimum 

solution for each due date distribution type and for each problem size with low and 

high processing time distributions, respectively. These tables illustrate that BS-I, 

BS-D and Nelson’s Heuristic provide better solutions than GA, SA, SA(K&K) and 
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 Table 3: Comparison of the Heuristics with the Optimum Solution   

Problem Size Performance 
Measure 

Nelson's 
Heuristic  BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average 
Deviation 0.2829% 0% 0% 0.9317% 5.2628% 0.1235% 0.7900% 

ND/NTotal 1/96 0/96 0/96 25/96 95/96 3/96 15/96 
Max. Deviation 0.2829% 0% 0% 7.1793% 35.6627% 0.1755% 4.5668 

20 Jobs 

CPU  Time 
(millisecond) 13.15 14.09 20.1 1439.38 1513 1785.22 1913.46 

  
Average 
Deviation 1.2646% 0% 0% 0.4358% 3.7633% 0.2425% 0.2154% 

ND/NTotal 5/140 0/140 0/140 110/140 138/140 29/140 29/140 
Max. Deviation 3.0060% 0% 0% 3.6200% 20.1754% 0.8960% 0.9692% 

30 Jobs 

CPU Time 
(millisecond) 19.53 26.2 28.625  3222.3 4150.43 6641.41 6821.01 

  
Average 
Deviation 0.3135% 0% 0% 0.5675% 4.0801% 0.1753% 0.5190% 

ND/NTotal 3/176 0/176 0/176 125/176 172/176 51/176 41/176 
Max. Deviation 0.8793% 0% 0% 3.2100% 33.4914% 0.6431% 4.7802% 

40 Jobs 

CPU Time 
(millisecond) 25.87 36.5 41.83  8722.6 6382.05 17765.3 18535.47 

  
Average 
Deviation 0.6744% 0.8321% 0.0616% 0.4681% 3.3483% 0.2450% 0.3112% 

ND/NTotal 7/262 3/262 2/262 221/262 259/262 122/262 72/262 
Max. Deviation 2.2213% 2.2213% 0.0695% 2.8814% 26.9683% 3.3462% 4.2062% 

60 Jobs 

CPU Time 
(millisecond) 45.3 89.83 94.18 38748 12294.34 79296.9 83080.77 
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GA(K&K)  with respect to each job size, processing time and due date 

distribution type. In fact, BS-I and BS-D deviate from the optimal solution only 

in the problems with 60 jobs, high processing times and Type 1 due dates.  

 Tables 4 and 5 also indicate that the problems generated by using Type IV 

due date distribution are solved quite effectively by the beam search based 

heuristics and Nelson’s Heuristic. This distribution type represents problems 

with loose due dates, which implies that beam search based algorithms work 

well for the problems with loose due dates. Although these algorithms work also 

well for the problems with tighter due date distribution types (I, II, III), the most 

deviation instances occur in these problem types. Processing time distribution, 

on the other hand, does not affect the solution quality of BS-I and BS-D.          

 For Nelson’s Heuristic, deviation from optimality mostly occurs for the 

problems with low processing times combined with Type 1 due dates and for 

problems with high processing times combined with Type 2 due dates. It can 

also be seen that BS-I and BS-D algorithms perform better in the problems with 

high processing time variability. The same situation is also valid for the GA and 

TS algorithms. In Appendix F, the performance measure given in Table 3 is 

presented for each processing time and due date distribution in detail for 20, 30, 

40 and 60 jobs cases.  

 Although the quality of the solutions generated by beam search based 

heuristics is quite stable with respect to problem sizes, we observe that as the 

problem size increases Nelson’s Heuristic, BS-I, BS-D, SA(K&K) and TS 

algorithms may fail to find a solution for some of the efficient schedules. As 

stated before, for a given problem, there are nT(SPT) - nT(Moore) + 1 efficient 

schedules and it is desired to find each of these  schedules approximately. 

However, in some of the 160 test problems, beam search based heuristics, 

Nelson’s Heuristics, SA(K&K) and TS fail to find an approximate solution 
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Table 4: Average Deviation from Optimum in the Problems with Low Processing Time Variability  

Problem 
Size 

Due Date 
Type 

Nelson’s 
 Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
I 0.28% 0% 0% 0.49% 3.37% 0.14% 0.44% 
II 0% 0% 0% 1.02% 5.04% 0% 0.94% 
III 0% 0% 0% 1.57% 3.62% 0% 1.66% 

20 Jobs 

IV 0% 0% 0% 0.35% 7.25% 0% 0% 
  

I 0% 0% 0% 0.60% 3.50% 0.37% 0.12% 
II 0% 0% 0% 0.20% 5.23% 0.08% 0.13% 
III 0% 0% 0% 0.39% 2.87% 0% 0.64% 

30 Jobs 

IV 1.95% 0% 0% 0.62% 4.94% 0.31% 0.24% 
  

I 0.36% 0% 0% 1.00% 2.50% 0.29% 0.97% 
II 0% 0% 0% 0.17% 2.48% 0.05% 0.06% 
III 0.06% 0% 0% 0.19% 4.90% 0.06% 0.04% 

40 Jobs 

IV 0% 0% 0% 0.45% 7.67% 0% 0.52% 
  

I 0.82% 0.83% 0.06% 0.87% 2.21% 0.45% 0.36% 
II 0% 0% 0% 0.15% 2.59% 0.03% 0.04% 
III 0% 0% 0% 0.12% 5.49% 0.03% 0.01% 

60 Jobs 

IV 0% 0% 0% 0.07% 4.67% 0.05% 0.17% 
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Table 5: Average Deviation from Optimum in the Problems with High Processing Time Variability 

Problem 
Size 

Due Date 
Type 

Nelson’s 
 Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
I 0% 0% 0% 1.55% 3.61% 0.11% 0.88% 
II 0% 0% 0% 0.12% 4.20% 0% 0% 
III 0% 0% 0% 0.26% 5.52% 0% 0% 

20 Jobs 

IV 0% 0% 0% 0.74% 6.76% 0% 0.05% 
  

I 0.19% 0% 0% 0.47% 2.29% 0.39% 0.08% 
II 2.39% 0% 0% 0.09% 3.28% 0% 0.20% 
III 0.005% 0% 0% 0.02% 4.80% 0% 0% 

30 Jobs 

IV 0% 0% 0% 0.40% 3.62% 0.14% 0.64% 
  

I 0% 0% 0% 0.79% 1.74% 0.18% 0.41% 
II 0.88% 0% 0% 0.23% 3.26% 0.13% 0% 
III 0% 0% 0% 0.24% 4.89% 0.02% 0.01% 

40 Jobs 

IV 0% 0% 0% 0.25% 7.19% 0% 0% 
  

I 0% 0% 0% 0.79% 2.16% 0.27% 1.05% 
II 0.62% 0% 0% 0.20% 3.21% 0.04% 0.005% 
III 0.001% 0% 0% 0.10% 3.76% 0.02% 0.005% 

60 Jobs 

IV 0% 0% 0% 0.37% 4.48% 0.11% 0.10% 
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specifically for the efficient schedule that have nT(Moore) tardy jobs (Table 6). 

The number of the problems such a situation occurs is relatively small, and most 

of the cases that can not be solved by Nelson’s Heuristic, are solved by BS-I and 

BS-D. Nevertheless, the number of these instances seems to be increasing as the 

problem size increases. In order to see whether this trend will continue for larger 

problem sizes and to better observe the performance of our heuristics, we 

performed some further experiments on problems with 80,100 and150 jobs. 

 

Table  6: Number of Efficient Schedules for which No Solution is Found 

Heuristic  20 Jobs 30 Jobs 40 Jobs 60 Jobs 
Nelson’s Heuristic 0/96 0/140 2/176 3/262 

BS-I 0/96 0/140 1/176 0/262 
BS-D 0/96 0/140 0/176 0/262 

GA(K&K) 0/96 0/140 0/176 0/262 
SA(K&K) 1/96 1/141 1/176 3/262 

GA 0/96 0/141 0/176 0/262 
TS 2/96 6/141 5/176 18/262 

 
 

6.2 Experiments on Larger Problems 
 

 We generated larger size problems with 80, 100 and 150 jobs using the same 

processing time and due date distributions stated before. For each job size, 

processing time and due date distribution type, we generated 5 problems and 

obtained 120 problems in total. We compared Nelson’s Heuristic with BS-I, BS-

D, GA, TS, SA(K&K) and GA(K&K) algorithms and measured their relative 

performance. In our experiments with larger problems, we first consider average 

percentage difference of each heuristic’s solution from Nelson’s Heuristic. The 

average percentage difference is the arithmetic mean of the percentage differences 
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over all the efficient solutions and all the problems with the same size. In 

mathematical terms, it is defined as follows.  

Average Percentage Difference = 
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where F (m,n) is the minimum flowtime provided by the considered heuristic for 

the mth problem when nT = n. F Nelson(m,n) is the minimum flowtime resulting 

from Nelson’s Heuristic. nT(m,Moore) and nT(m,SPT) are the number of tardy jobs 

in the sequences formed according to Moore’s Algorithm and SPT order, 

respectively, for the mth problem. Finally, nm,ψ  is given below. 
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nm,ψ  =                        

                    0,     o.w. 

The other measures we consider in the experiments with larger problems are as 

follows. 
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 The corresponding results are presented in Table 7.  As seen in the table, 

proposed heuristics and Nelson’s Heuristic perform better than the SA(K&K), 

GA(K&K), GA and TS, also in larger size problems with respect to all these 

measures. As it can be understood from the N+/NTotal measure, in more than %90 

of the cases Nelson’s Heuristic performs better than or equal to these iterative 

algorithms.  

 Proposed beam search algorithms perform slightly better than the Nelson’s 

Heuristic. As the job size increases, number of instances in which proposed 

heuristics perform better than the Nelson’s Heuristic increases. We also observe 

that BS-D performs slightly better than the BS-I on the problems with larger job 

sizes. In most of the cases, however, their solution qualities are almost the same. 

As it can be seen in Table 7, BS-D outperforms Nelson’s Heuristic in a few more 

instances than BS-I does.GA and TS perform better than the GA(K&K) and 

SA(K&K) almost for all measures presented in Table 7. TS and GA’s 

performance are nearly same for the cases in which they both find a solution. In  
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Table 7: Comparison of the other Heuristics with Nelson’s Heuristic  

Problem 
Size Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average % Difference 0.143% 0.140% -0.487% -2.835% -0.213% -0.263% 

N+ / NTotal 14/394 15/394 4/394 0/394 5/394 5/394 
N- / NTotal 0/394 0/394 352/394 378/394 264/394 169/394 

Max % Difference 0.526% 0.526% 0.526% -0.014% 0.526% 0.359% 

80 Jobs 

Min % Difference 0.000% 0.000% -3.693% -24.480% -1.874% -4.132% 
  

Average % Difference 0.032% 0.029% -0.612% -3.150% -0.320% -0.275% 
N+ / NTotal 15/484 17/484 8/484 0/484 12/484 7/484 
N- / NTotal 0/484 0/484 423/484 451/484 345/484 245/484 

Max % Difference 0.161% 0.161% 0.273% -0.031% 0.273% 0.116% 

100 Jobs 

Min % Difference 0.000% 0.000% -5.313% -29.500% -2.780% -4.642% 
  

Average % Difference 0.085% 0.085% -0.537% -4.000% -0.287% -0.276% 
N+ / NTotal 30/796 31/796 3/796 0/796 4/796 7/796 
N- / NTotal 0/796 0/796 747/796 687/796 703/796 574/796 

Max % Difference 1.225% 1.225% 1.458% -0.074% 1.450% 1.438% 

150 Jobs 

Min % Difference 0.000% 0.000% -3.340% -38.030% -3.342% -5.941% 
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these cases, overall average difference from Nelson’s Heuristic is nearly same. 

GA’s maximum deviation values are less than TS’s, and number of instances that 

TS performs as well as Nelson’s Heuristic is more than those that GA does. 

However, the real handicap of TS is that there are considerable number of 

instances in which it can not find an approximately efficient schedule for some NT 

values (Table 8). GA, on the other hand, finds efficient schedules approximately 

for every instance. 

 In Appendix G, the performance measure given in Table 7 is presented for 

each processing time and due date distribution in detail for the 80, 100 and 150 

jobs cases. According to the tables in Appendix G, most of the instances in which 

BS-I and BS-D perform better than the Nelson’s Heuristic occur among the test 

problems with Type I due date. These problems also require much more CPU time 

than the others. In addition, GA performs better than the TS in the problems with 

Type I and IV due date distributions and TS performs better in the problems with 

Type II and III due date distributions.         

 We again observed the cases where compared heuristics fail to find 

approximately efficient schedules for some of the NT values in the efficient range. 

The number of such instances is given in Table 8. This table illustrates that as the 

size of the problem increases such cases appear more frequently for Nelson’s 

Heuristic. Problems, where feasible solutions cannot be found, frequently coincide 

with Type I due date distribution, and less frequently with Type II and III. BS-D 

and BS-I algorithms halved the number of these cases in the problems with 80 and 

100 jobs. However, the experiments on the problems with 150 jobs demonstrate 

that the performance of our proposed algorithms on this issue worsens as the size 

of the problem increases. 
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Table 8: Number of Efficient Schedules for which No Solution is Found 

Heuristic  80 Jobs 100 Jobs 150 Jobs 
Nelson 's Heuristic 8/394 16/484 22/797 

BS-I 5/394 7/484 18/797 
BS-D 5/394 7/484 17/797 

GA(K&K) 0/394 0/484 0/797 
SA(K&K) 12/394 30/484 107/797 

GA 0/394 0/484 0/797 
TS 36/394 75/484 70/797 

  

 While the number of no solution cases is quite high for SA(K&K) and TS 

algorithms, GA and GA(K&K) find an approximate solution for every NT value of 

the problems considered in our experiments. Nevertheless, as it can be seen in 

Table 9, the computation time requirements for GA and GA(K&K) are a lot more 

than that of the beam search based algorithms. Therefore, for large size problems, 

if the decision makers desire to find approximately efficient schedules for all NT 

values in the efficient range, they should first use BS-D or BS-I algorithms in 

order to minimize the number of instances where no solution is found. Then 

genetic algorithm should be used to solve the remaining instances. 

Table 9: Average CPU Time in Milliseconds 

Heuristic  80 Jobs 100 Jobs 150 Jobs 
Nelson's Heuristic 80.03  135.95  486.28  

BS-I 276.13  570.7  2601.5  
BS-D 258.15  565.25  2517.55  

GA(K&K) 136836  26925.5  2057585.5  
SA(K&K) 27836.76  48184.16  139499.3  

GA 272333.6  681263.7  4094870.2  
TS 272381.5  630742.8  3273617.3  
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C h a p t e r  7  

 
CONCLUSION 
 

 

 As a result of our experiments, we concluded that BS-D and BS-I perform 

quite well for the multicriteria scheduling problem of minimizing average 

flowtime and number of tardy jobs. In most of the cases, these two algorithms 

find the efficient schedules optimally. Even in the cases where BS-D or BS-I 

deviate from optimum, the deviation is quite small and the deviation is stable 

with respect to problem size. In addition, both BS-D and BS-I perform better 

than the other heuristics given in this thesis with respect to all problem types 

that we test. The only disadvantage of our proposed beam search heuristics is 

that, they, although rarely in some cases, fail to find approximately efficient 

solutions for some of the nT values in the efficient ranges. For such cases, we 

propose that GA or GA(K&K) be used.  

 We believe that the good performance of our proposed approach is due to 

the beam search mechanism. In fact, GA(K&K) and SA(K&K), which are two 

existing heuristics in the literature, search among all possible sequences for the 

efficient schedules. However, BS-I and BS-D limit the search space by utilizing 

Theorem 1 and Smith’s Algorithm. Hence, they find better solutions by 

searching a smaller space and more efficiently than GA(K&K) and SA(K&K) 

do.  

 Theorem 1 and Smith’s Algorithm are also utilized by GA and TS. 

Therefore, GA and TS outperform GA(K&K) and SA(K&K). However, our 
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experiments show that in general the proposed beam search algorithms perform 

better than GA and TS. Since, this study shows that utilizing the characteristics 

of the efficient solutions in the approximate or optimal solution methods to limit 

the search space is quite effective; we believe that such a beam search 

mechanism can be also quite beneficial to solve the other multicriteria 

scheduling problems. Therefore, we strongly suggest using this technique in the 

future multicriteria scheduling studies.  

     As further studies, BS-I and BS-D can also be applied to the other bicriteria 

single machine problems such as minimizing weighted flowtime and number of 

tardy jobs, and minimizing weighted flowtime and weighted number of tardy 

jobs. With the insights gained from this study, we already extended our current 

research to consider the first problem. We consider the second problem which 

seems to be more challenging, as a future work.  

 We believe that beam search applications are quite promising to solve 

multicriteria scheduling problems in general. Therefore, another line of research 

may extend this work to more complex settings, such as parallel machine 

environments. As a final open area of possible investigation, we note the 

robustness of the solutions which is a fundamental application issue.      
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APPENDIX 

 
A. Example for Nelson et al.’s (1986) Branch and Bound 
Algorithm 
 

 The process times and the due dates of our example are given below.   

Table 1: Sample Problem Parameters 

Job(j) Processing 
Time(Pj)      Due Date (dj)

1 1 40 
2 2 3 
3 3 5 
4 5 7 
5 10 20 
6 15 32 

 

 For this problem nT(Moore) = 1, F (Moore) = 19.83 , nT(SPT) = 4  and 

F (SPT) = 13. Therefore, in this problem we need to find 4 efficient schedules. 

Note that, SPT order is the efficient schedule corresponding to nT  = 4. In the 

SPT order, Job 1 and Job 2 are early and the remaining jobs are tardy. The 

corresponding Branch and Bound tree has four levels as seen in Figure 2.  The 

single starting node in level 1 represents the SPT order.  

 As seen in the Figure 2, each node k has a set of early jobs denoted as Ek. 

Since the starting node at level 1 represents SPT order, E1: {1, 2} is the set of 

jobs that is early in the SPT order. In the efficient schedule for nT = 3, besides 

Job 1 and Job 2  another job among 3,4,5 and 6 must be also early (See 

Theorem 1). Thus, at the second level, these four jobs are tried one by one by  
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E1:{1,2}

E2:{1,2,3} E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}13.5, 3* 14.16, 3 13.83, 3 13.83, 3

E6:{1,2,3,
4}

E7:{1,2,3,
5}

E8:{1,2,3,
6}

Infeasible

14.3, 2 14.3, 2
E10:{1,2,4

,6}
E9:{1,2,4,

5} 15, 2

Infeasible

E11:{1,2,4,
6}15.5, 2

E12:{1,2,3,
5,6}16, 1

Level 1  nT= nT(SPT) = 4

Level 2  nT = 3

Level 3  nT= 2

Level 4  nT= 1

Figure 2: B&B Tree for the Sample Problem

* The first entry refers to the minimum flowtime when the jobs in set E2 are nontardy and the second entry is the number of tardy jobs.
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being added to the set of early jobs referred by 2nd, 3rd, 4th and 5th nodes. For 

example, in the 2nd node, Job 3 is added to E3, and then, by using Smith’s 

Algorithm, the schedule that gives minimum flowtime while keeping jobs 1, 2 and 

3 non-tardy is found. The resulting flowtime is 13.5. In a similar fashion, other 

three nodes at the second level are constructed, and the minimum flowtime values 

are found as 14.16, 13.83 and 13.83. Since the smallest flowtime at this level is 

given by the second node, the efficient schedule for nT = 3 corresponds to the 

sequence at this node. 

 At the third level, all possible subsets of {3,4,5,6} (tardy jobs in SPT order) 

with cardinality two is added to the early jobs of SPT order to find efficient 

schedule for nT = 2. For this reason, each node at level 2 is further expanded by 

adding one more job. For example, node 2 (E2: {1,2,3}) is expanded to the next 

level to form nodes 6, 7, and 8 by adding job 4, 5 and 6.  Node 3 (E3: {1,2,4}) is 

expanded to the next level to form nodes 9 and 10 by adding jobs 5 and 6. 

However, Job 4 is not added to E3 to prevent repetition. After all nodes are 

expanded to level three, for each node, Smith’s Algorithm is run. As a result, it 

appears that efficient schedule for nT = 2 is the one that corresponds to E7 = 

{1,2,3,5} with flowtime 14.3. The algorithm continues in this manner.  

 
B. Example for Independent Beam Search Algorithm 
 

 As an example, we consider the problem given in Appendix-A. Let us solve 

the same problem also with independent beam search algorithm. As can be seen in 

Figures 2 and 3, the first two levels of both the B&B and the BS-I tree are the 

same. Both trees start with a node that represents SPT order. Then, four new nodes 

are expanded from this initial node by adding jobs 3,4,5 and 6 to E2, E3, E4 and E5, 

respectively. Using Smith’s Algorithm, the schedules that give minimum flowtime 

while keeping the jobs in E2, E3, E4 and E5 nontardy are found. Since the schedules 
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found for nodes 2 and 4 have the smallest flowtime, they are selected to be 

expanded to the next level.  

 At level 3, the new nodes are generated by adding one more job to E2 and E4. 

Nodes 6, 7 and 8 are generated by adding jobs 4, 5 and 6 to E2. Similarly, nodes 9, 

10 and 11 are generated by adding jobs 3, 4 and 6 to E4. As the schedules found 

for nodes 7 and 9 have the smallest F values, they are expanded to the next level. 

The algorithm continues in a similar way for the fourth level.  
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E1:{1,2}

E2:{1,2,3} E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}13.5, 3 14.16, 3 13.83, 3 13.83, 3

E6:{1,2,3,
4}

E7:{1,2,3,
5}

E8:{1,2,3,
6}

Infeasible

14.3, 2 14.3, 2
E10:{1,2,5,

4}
E11:{1,2,5,

6}15.5, 2

E13:{1,2,3
5,6}16, 1

Level 1 nT= nT(SPT) = 4

Level 2  nT = 3

Level 3  nT= 2

Level 4  nT= 1

Figure 3: Independent Beam Search Tree for the Sample Problem where b = 2

E9:{1,2,5,
3}14.3, 2

E12:{1,2,3
5,4}

E15:{1,2,5
3,6}

E14:{1,2,5
3,4} 16, 1

Infeasible

InfeasibleInfeasible
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C. Example for Dependent Beam Search Algorithm 
 
 Dependent beam search algorithm is also applied to the sample problem given 

in Appendix-A. The results are presented in Figure 4. As can be seen in Figure 4, 

at the third level, the two nodes with minimum F value are nodes 7 and 8. Without 

considering the fact that both these nodes are expanded from the node 2, they are 

expanded to the next level. 
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E1:{1,2}

E2:{1,2,3} E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}13.5, 3 14.16, 3 13.83, 3 13.83, 3

E6:{1,2,3
4}

E7:{1,2,3
5}

E8:{1,2,3
6}

Infeasible

14.3, 2 14.3, 2
E10:{1,2,5

4}
E11:{1,2,5

6}15.5, 2

E13:{1,2,3
5,6}16, 1

Level 1  nT= nT(SPT) = 4

Level 2  nT = 3

Level 3 nT= 2

Level 4  nT= 1

Figure 4: Dependent Beam Search Tree for the Sample Problem where b = 2

E9:{1,2,5
3}14.3, 2

E12:{1,2,3
5,4}

E15:{1,2,3
6,5}

E14:{1,2,3,
6,4} 16, 1

Infeasible

InfeasibleInfeasible
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D. Tabu-search (TS) 
 
 Tabu search is a mathematical optimization method, belonging to the class of 

local search techniques. Tabu search (TS) is an iterative heuristic which avoids 

local optima by using memory structures called tabu list. Tabu lists temporarily 

record visited solutions and prevents algorithm to cycle around these solutions. 

 The jobs that are early in the SPT order must be also early in at least one of the 

efficient schedules with nT  =  n where nT(SPT) ≥≥ n  nT(Moore) (Nelson et al., 

1986). This theorem indicates that to find the efficient schedule for nT = n, it is 

necessary to determine which other nT(SPT) – n  jobs will be early besides the 

early jobs of SPT order. Therefore, subsets of SPT order’s tardy jobs with 

cardinality nT(SPT) – n should be evaluated using Smith’s Algorithm to find the 

schedule with minimum F  while having n tardy jobs. The TS algorithm is based 

on searching these subsets by evaluating them with Smith’s Algorithm to find 

approximately efficient schedules with nT = n where nT(SPT) ≥≥ n  nT(Moore).  

 In other words, to find the efficient schedule with nT  = n,  the subsets of the 

jobs that are tardy in the SPT order with cardinality nT(SPT) – n  are searched. 

First, randomly a subset with cardinality nT(SPT) – n is selected and taken as 

current subset. Then, some neighbors of this current subset with cardinality 

nT(SPT) – n  is generated. Next, these neighbors are evaluated by using Smith’s 

Algorithm. The neighbor for which Smith’s Algorithm gives the least F  is 

accepted as the new current subset. After 100 iterations or every neighbor is 

appeared to be infeasible, the schedule that Smith’s Algorithm finds for the 

current subset is accepted as approximately efficient schedule with nT  = n. Then, 

the same procedure is repeated for nT   = n + 1.                       

 The procedure described above is a forward search starting from nT  =  nT(SPT) 

– 1 and continuing towards nT  = nT(Moore). However, our initial runs indicate that 
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the forward search can not find an approximately efficient schedule for some nT = 

n where nT(SPT) ≥≥ n  nT(Moore) . Thus, a backward search is also performed by 

starting from nT  = nT(Moore). In this backward search, the jobs that are tardy in 

Moore’s Algorithm are allowed to be tardy at the every iteration. For each nT  =  n, 

which other n – nT(Moore) jobs will be also allowed to be tardy, is searched in the 

same manner as in forward search. After backward and forward search is 

completed, among the schedules that these searches find for nT  =  n, the one with 

the smallest F  is selected as the resulting approximately efficient schedule with 

nT   =  n. 

 

Neighborhood Selection  

 The neighbors of the current subset are generated by selecting a specific job 

from the current subset and replacing it with another job that is not an element of 

the current subset. Indeed, the selected job is replaced with every possible job one 

by one to generate all possible neighbors. A job is selected to be replaced with a 

probability that is inversely proportional to the number of times the job is selected 

before.  
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Tabu List and Aspiration Criteria 

 The jobs from the current subset that are selected to be replaced are added to 

the tabu list. The jobs in the tabu list are not added to the current subset to 

generate its neighbors. Once a job is added to the Tabu list, it stays in the list for 5 

iterations, since, our pilot experiments indicate that 5 iterations give good results 

for both small and large problem sizes. But if adding a specific job that is in the 

Tabu list to the current subset will give better results than the best result ever 

found, we use the job for that iteration, and then, we keep it in the Tabu list for the 

next 5 iterations. 

 Following pseudo algorithm is given to describe steps of forward and 

backward search of TS. 

 

Forward Search 

Step 0:  Find the tardy jobs in the SPT sequence and define E0 as the set of these 

jobs. Set n = 1, Iteration = 0. 

Step 1: Take subset of  E0  with cardinality n randomly. Call this subset as Ecurrent 

and evaluate Ecurrent with Smith’s Algorithm. Record the F value given by the 

schedule that Smith’s Algorithm finds and refer to it as F current.   

Step 2: Find the neighbors of Ecurrent.  Evaluate them using Smith’s Algorithm and 

record the corresponding F value for each neighbor.  

Step 3: If all the neighbors are infeasible according to Smith’s Algorithm, then go 

to Step 6, other wise go to Step 4. 

Step 4: The neighbor of Ecurrent with minimum F  value is selected as the new 

Ecurrent and new Ecurrent’s F  value is assigned as new F current . Iteration = Iteration 

+ 1.  

Step 5: If Iteration <100 go to Step 2. Otherwise go to Step 6. 
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Step 6: The schedule that is found by evaluating Ecurrent with Smith’s Algorithm is 

called as current approximately efficient schedule for nT = n.  

Step 7: n = n+1. If nT(SPT) - n < nT(Moore) go to Step 8. Otherwise go to Step 1. 

Step 8: Terminate the algorithm.    

 

Backward Search 

Step 0:  Find the non-tardy jobs in the sequence ordered according to Moore’s 

Algorithm and define E0 as the set of these jobs.  Set n = 1, Iteration = 0. 

Step 1: Take subset of  E0  with cardinality n randomly. Call this subset as Ecurrent 

and evaluate Ecurrent with Smith’s Algorithm. Record the F  value given by the 

schedule that Smith’s Algorithm finds and refer to it as F current.   

Step 2: Find the neighbors of Ecurrent .  Evaluate them with Smith’s Algorithm and 

record the corresponding F  value for each neighbor.  

Step 3: If all the neighbors are infeasible according to Smith’s Algorithm, then go 

to Step 6, other wise go to Step 4. 

Step 4: The neighbor of Ecurrent with the minimum F  value is selected as the new 

Ecurrent and new Ecurrent’s F  value is assigned as new F current . Iteration = Iteration 

+ 1.  

Step 5: If Iteration <100 go to Step 2. Otherwise go to Step 6. 

Step 6: The schedule that is found by evaluating Ecurrent with Smith’s Algorithm is 

called as current approximately efficient schedule for nT = n.  

Step 7: n = n+1. If nT(Moore) + n >nT(Moore) go to Step 8. Otherwise go to Step 

1. 

Step 8: Terminate the algorithm. 

 It is important to note that the Ecurrent in the forward search represents the jobs 

to be non-tardy with the early jobs of the SPT order. However, in backward search 
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Ecurrent represents the jobs to be tardy with the tardy jobs of sequence built by 

Moore’s Algorithm.        

E. Genetic Algorithm (GA) 
 
 Genetic algorithm finds which jobs should be tardy in the efficient schedule 

with nT  =  n, for each n where nT(SPT) ≥≥ n  nT(Moore). GA searches on the 

subset of the N jobs with cardinality n. GA algorithm uses binary representation, 

that is, each of these subsets is represented with chromosomes with N genes which 

have a value 1 or 0. Each gene represents the tardiness state of the corresponding 

job. For example, if the jth gene has value 1, then the jth job is allowed to be tardy, 

otherwise the jth job should be non-tardy. 

 As known, the schedule which gives minimum F  and keeps the jobs with 

gene value zero non-tardy, can be found using Smith’s Algorithm. Therefore, 

finding the right chromosome is equivalent to finding the efficient schedule. GA 

searches on the chromosomes for efficient schedules in the following manner.  

Step 0: Initialization of the parameters;  n = nT(SPT) – 1, w = 0. 

Step 1: Establish the initial chromosome population for the efficient schedule with 

nT = n. 

Step 2: Select two chromosomes from the current chromosome population. One of 

the chromosomes will be chosen randomly while the other one will be determined 

according to a tournament. 

Step 3: Apply crossing-over to the selected chromosomes and generate two new 

chromosomes. The new chromosomes are added to the population while the worst 

two existed chromosomes according to fitness function will be removed from the 

population. 
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Step 4: Apply mutation to the current population. Then evaluate the population 

with Smith’s Algorithm and record the schedule with least fitness function value 

as the best schedule.   

Step 5: If the best chromosome of the population does not change for 20 

consecutive crossovers or after 100 mutations, go to Step 6. Otherwise repeat 

Steps 2, 3 and 4. 

Step 6: State last best schedule that is recorded in Step 4 as the approximately 

efficient schedule for nT = n. 

Step 7: Compare the new best schedule’s F  value with the previous one. If new 

F  value is higher than or equal to the old one, w = w + 1/9. Otherwise, calculate 

the percentage improvement and refer to it as α . Set w = w + factor/9 where 

factor = 0.85α . If w 1≥ , go to Step 8. Otherwise, initialize the statistics 

considered in Step 5 and go to Step 2.   

Step 8: If n = nT(Moore) go to Step 9.  Otherwise set n = n -1, w = 0 and go to Step 

1.  

Step 9: Terminate the algorithm. 

 

The Fitness Function  

Fitness Function = 
)()(

)()()1(
)()(
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 This fitness function is quite similar to the one used in Keha and Koksalan 

(2003). Only difference is that NT(C) and F(C) are NT and F obtained by 

evaluating the chromosome C with Smith’s Algorithm. This fitness function is 

used to determine the worst two chromosomes in the current population and to 

determine the second parent chromosome for crossing over operations via 

tournaments. 
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Initial Population  

 Keha and Koksalan (2003) presents an algorithm to find initial schedule with 

nT = n. Their GA starts the search for the efficient schedule with nT = n at this 

initial schedule. They refer to this algorithm as initial heuristic.  We also propose 

another initial heuristic. For a given problem having nT ≤  n constraint, we assign a 

job to each position starting from the first position. Job j is eligible to be assigned 

to the current position if scheduling the remaining unassigned jobs according to 

Moore’s Algorithm yields at most n tardy jobs in total. Among the eligible jobs, 

the one having shortest processing time will be placed to the current location in 

the schedule.    

 For creating the initial population of chromosomes, one schedule for each NT 

value n, n -1, n +1, and n +2 are generated by using Köksalan and Keha(2003)’s 

initial heuristic and one schedule is generated by using our proposed initial 

heuristic for each of these nT  values. Eight chromosomes are created to represent 

tardy jobs of these schedules. Three other chromosomes are created to represent 

the tardy jobs of the schedules that are generated according to EDD order, SPT 

order, and Moore’s Algorithms.  

 Five neighbor chromosomes are generated from the chromosome that 

represents SPT order. Five other neighbor chromosomes are also generated from 

Moore’s Algorithm’s representative chromosome. Neighbors are created by 

changing the values of some genes from 1 to 0 in SPT order case and from 0 to 1 

in Moore’s Algorithm case.  In both cases the total gene values of the neighbor 

chromosomes will be equal to n.  Lastly, nine solutions are generated randomly. 

The initial population consists of all these listed chromosomes. 

 

Crossing Over Operation 

 Two points crossing over is used in the algorithm. Two genes on the parent 

chromosomes are selected randomly and the parts of the chromosomes between 
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these genes are interchanged. As a result of this operation, two new chromosomes 

are generated. After the crossing over, new offsprings’ gene values are randomly 

increased to 1 or decreased to 0 in order to make the total gene value equal to n. 

This crossing over mechanism is quite similar to the one presented by Keha and 

Koksalan (2003).  

 

Mutation 

 Mutation is applied to a randomly selected chromosome in the current 

population. The selected chromosome’s two genes, one with value 1 and the other 

with value 0 is selected randomly and their gene values are interchanged.          

 

F. Detailed Comparison Tables with Optimum Solution  
 Table 10-17 present the result of a detailed comparison of each heuristic with 

the optimum solutions on the test problems. The measures presented in these 

tables are the same measures that are presented in Table 3 in Chapter 6. The 

results are presented with respect to each problem size, processing distribution and 

due date distribution type.   
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Table 10: Comparison of Heuristics with Optimum Solution on the Test Problems with 20 Jobs and Low Processing Time Variability 

Due Date  
Distribution Type 

Performance  
Measure 

Nelson's 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0.28% 0% 0% 0.49% 3.37% 0.14% 0.44% 

ND/NTotal 1/13 0/13 0/13 3/13 13/13 1/13 5/13 
Max. Deviation 0.2829% 0% 0% 0.61% 10.59% 0.14% 1.13% 

I 

Average CPU 
Time(millisecond) 19 23.75 37.4  915.4 1342.18 1718.6 1825.36 

  
Average Deviation 0% 0% 0% 1.02% 5.04% 0% 0.94% 

ND/NTotal 0/9 0/9 0/9 2/9 9/9 0/9 3/9 
Max. Deviation 0% 0% 0% 1.55% 7.95% 0% 2.44% 

II 

Average CPU 
Time(millisecond) 9.6   10  15.8 740.6 1395.86 1415.6 ms 1449.55 

  
Average Deviation 0% 0% 0% 1.58% 3.62% 0% 1.66% 

ND/NTotal 0/6 0/6 0/6 1/6 6/6 0/6 3/6 
Max. Deviation 0% 0% 0% 1.58% 7.47% 0% 4.57% 

III 

Average CPU 
Time(millisecond) 4  4.5  12.6  609.2  1449.55  1050  1127.43 

  
Average Deviation 0% 0% 0% 0.35% 7.25% 0% 0% 

ND/NTotal 0/21 0/21 0/21 5/21 21/21 0/21 0/21 
Max. Deviation 0% 0% 0% 0.76% 22.38% 0% 0% 

IV 

Average CPU 
Time(millisecond) 28 21.8 24.8 971.6 1664.29 1515.4  3328.6  
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Tablo 11: Comparison of Heuristics with Optimum Solution on the Test Problems with 20 Jobs and High Processing Time Variability 

Due Date  
Distribution Type 

Performance  
Measure 

Nelson's 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0% 0% 0% 1.56% 3.61% 0.11% 0.88% 

ND/NTotal 0/16 0/16 0/16 8/16 16/16 2/16 2/16 
Max. Deviation 0% 0% 0% 2.44% 14.26% 0.18% 1.12% 

I 

Average CPU 
Time(millisecond) 15.6  19 28.2 1203 1181.11 1934.4 2147.48 

  
Average Deviation 0% 0% 0% 0% 4.02% 0% 0% 

ND/NTotal 0/7 0/7 0/7 0/7 7/7 0/7 0/7 
Max. Deviation 0% 0% 0% 0% 15.24% 0% 0% 

II 

Average CPU 
Time(millisecond) 4 4.75  6.8  653  1476.39   1237.4 1127.43 

  
Average Deviation 0% 0% 0% 0.26% 5.52% 0% 0% 

ND/NTotal 0/7 0/7 0/7 1/7 6/7 0/7 0/7 
Max. Deviation 0% 0% 0% 0.26% 13.11% 0% 0% 

III 

Average CPU 
Time(millisecond) 4.5 6  13  723  3310.70  1296.5  1275.06 

  
Average Deviation 0% 0% 0% 0.74% 6.75% 0% 0.05% 

ND/NTotal 0/18 0/18 0/18 5/18 18/18 0/18 2/18 
Max. Deviation 0% 0% 0% 2.51% 35.66% 0% 0.07% 

IV 

Average CPU 
Time(millisecond) 18.8  15.4  22.2  709.4  253374.59 1318.6  2899.1 
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Table 12: Comparison of Heuristics with Optimum Solution on the Test Problems with 30 Jobs and Low Processing Time Variability 

Due Date  
Distribution Type 

Performance 
Measure 

Nelson’s 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0% 0% 0% 0.60% 3.50% 0.37% 0.12% 

ND/NTotal  0/17 0/17 0/17 13/17 16/17 5/17 6/17 
Max. Deviation 0% 0% 0% 1.20% 11.60% 0.84% 0.2817 

I 

Average CPU 
Time(millisecond) 31.4  38  46.8 3528 4509.71  7262.6 6281.38 

  
Average Deviation 0% 0% 0% 0.21% 5.24% 0.08% 0.13% 

ND/NTotal 0/10 0/10 0/10 8/10 9/10 2/10 2/10 
Max. Deviation 0% 0% 0% 0.35% 19.64% 0.11% 0.13% 

II 

Average CPU 
Time(millisecond) 8.25 19.5 22 2996 3597.03 7675.5 4898.94 

  
Average Deviation 0% 0% 0% 0.39% 2.87% 0% 0.64% 

ND/NTotal 0/9 0/9 0/9 2/9 8/9 0/9 1/9 
Max. Deviation 0% 0% 0% 0.52% 9.49% 0% 0.64% 

III 

Average CPU 
Time(millisecond) 7 9.6  9.8  2368.8 4093.64 4722  3704.41 

  
Average Deviation 1.95% 0% 0% 0.65% 4.94% 0.31% 0.24% 

ND/NTotal 2/28 0/28 0/28 22/28 28/28 6/28 11/28 
Max. Deviation 3.01% 0% 0% 2.14% 15.19% 0.90% 0.60% 

IV 

Average CPU 
Time(millisecond) 34.2 34.4 40.6  3390.4 4509.71   6668.4 10468.98  
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Table 13: Comparison of Heuristics with Optimum Solution on the Test Problems with 30 Jobs and High Processing Time Variability 

Due Date  
Distribution Type 

Performance 
Measure 

Nelson’s 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0.02% 0% 0% 0.67% 2.29% 0.39% 0.08% 

ND/NTotal  1/24 0/24 0/24 17/24 24/24 4/24 6/24 
Max. Deviation 0.02% 0% 0% 3.63% 15.46% 0.76% 0.38% 

I 

Average CPU 
Time(millisecond) 19 34.6  37.2  4175  3972.84 8215.6  8589.93  

  
Average Deviation 2.39% 0% 0% 0.09% 3.28% 0% 0.20% 

ND/NTotal 1/11 0/11 0/11 7/11 11/11 0/11 1/11 
Max. Deviation 2.39% 0% 0% 0.22% 9.27% 0% 0.20% 

II 

Average CPU 
Time(millisecond) 10 12.8  12.8  2778.4  4026.53 5484.6  4402.34  

  
Average Deviation 0.006% 0% 0% 0.017% 4.80% 0% 0% 

ND/NTotal  1/10 0/10 0/10 4/10 10/10 0/10 0/10 
Max. Deviation 0.006% 0% 0% 0.049% 18.38% 0% 0% 

III 

Average CPU 
Time(millisecond) 12.6 12.6  12.8  2556 2791.73 5056.2  4133.9  

  
Average Deviation 0% 0% 0% 0.65% 4.94% 0.31% 0.64% 

ND/NTotal 0/31 0/31 0/31 27/31 31/31 12/31 2/31 
Max. Deviation 0% 0% 0% 2.14% 15.19% 0.90% 0.97% 

IV 

Average CPU 
Time(millisecond) 31.6  46.75 47  3940.6 5690.83  8253.2 11703.79  
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Table 14: Comparison of Heuristics with Optimum Solution on the Test Problems with 40 Jobs and Low Processing Time Variability 

Due Date  
Distribution Type 

Performance  
Measure 

Nelson's 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0.36% 0% 0% 1.00% 2.50% 0.29% 0.97% 

ND/NTotal 1/32 0/32 0/32 31/32 31/32 16/32 14/32 
Max. Deviation 0.36% 0% 0% 3.09% 9.49% 0.64% 4.78% 

I 

Average CPU 
Time(millisecond) 59.4  75  87.2  12690.4  8965.74 29469  24051.82  

  
Average Deviation 0% 0% 0% 0.18% 2.48% 0.05% 0.06% 

ND/NTotal 0/18 0/18 0/18 16/18 17/18 7/18 7/18 
Max. Deviation 0% 0% 0% 0.96% 13.59% 0.17% 0.20% 

II 

Average CPU 
Time(millisecond) 21.8  28.6  34.8  9225 6871.94  17956.2  14388.14  

  
Average Deviation 0.06% 0% 0% 0.19% 4.90% 0.06% 0.04% 

ND/NTotal 1/17 0/17 0/17 10/17 16/17 2/17 2/17 
Max. Deviation 0.06% 0% 0% 0.34% 15.22% 0.06% 0.06% 

III 

Average CPU 
Time(millisecond) 12.8  22  37.4  8715.8  6871.94  16419 14173.39  

  
Average Deviation 0% 0% 0% 0.45% 7.69% 0% 0.52% 

ND/NTotal l 0/21 0/21 0/21 5/21 21/21 0/21 6/21 
Max. Deviation 0% 0% 0% 1.24% 27.12% 0% 1.48% 

IV 

Average CPU 
Time(millisecond) 19.2  22.2  28  4947  4133.90 9931.2  20401.09  
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Table 15: Comparison of Heuristics with Optimum Solution on the Test Problems with 40 Jobs and High Processing Time Variability 

Due Date  
Distribution Type 

Performance  
Measure 

Nelson's 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0% 0% 0% 0.79% 1.74% 0.18% 0.41% 

ND/NTotal 0/35 0/35 0/35 32/35 35/35 21/35 10/35 
Max. Deviation 0% 0% 0% 3.21% 9.59% 0.64% 1.49% 

I 

Average CPU 
Time(millisecond) 40.8  71.8  68.8  14012.6 7301.44 27344  27219.36  

  
Average Deviation 0.88% 0% 0% 0.23% 3.26% 0.13% 0% 

ND/NTotal 1/16 0/16 0/16 8/16 16/16 4/16 0/16 
Max. Deviation 0.88% 0% 0% 0.50% 12.59% 0.37% 0% 

II 

Average CPU 
Time(millisecond) 15.6  25.4  28.2  8065.4 7408.81  16203.2 13421.77  

  
Average Deviation 0% 0% 0% 0.24% 4.90% 0.02% 0.01% 

ND/NTotal 0/14 0/14 0/14 14/14 13/14 1/14 2/14 
Max. Deviation 0% 0% 0% 0.96% 17.69% 0.02% 0.22% 

III 

Average CPU 
Time(millisecond) 15.6  21.8 22  7181.4  5798.20  14312.4   12079.6  

  
Average Deviation 0% 0% 0% 0.25% 7.19% 0% 0% 

ND/NTotal 0/23 0/23 0/23 9/23 23/23 0/23 0/23 
Max. Deviation 0% 0% 0% 0.74% 33.49% 0% 0% 

IV 

Average CPU 
Time(millisecond) 21.8  25.2  28.2  4943.6 ms 3704.40 ms 10487.4 ms 22548.5 ms 
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Table 16: Comparison of Heuristics with Optimum Solution on the Test Problems with 60 Jobs and Low Processing Time Variability 

Due Date  
Distribution Type 

Performance  
Measure 

Nelson's 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0.82% 0.83% 0.06% 0.87% 2.21% 0.45% 0.36% 

ND/NTotal 5/49 3/49 2/49 46/49 47/49 38/49 26/49 
Max. Deviation 2.22% 2.22% 0.07% 2.88% 11.09% 3.35% 4.20% 

I 

Average CPU 
Time(millisecond) 87.6  187.4  193.8 61093.6 17609.37  123700.2  112098.65  

  
Average Deviation 0% 0% 0% 0.16% 2.60% 0.05% 0.04% 

ND/NTotal 0/23 0/23 0/23 21/23 23/23 8/23 7/23 
Max. Deviation 0% 0% 0% 0.65% 10.23% 0.11% 0.19% 

II 

Average CPU 
Time(millisecond) 28  65.4  78.2  37503.4 12938.59  75890.6  55727.2  

  
Average Deviation 0% 0% 0% 0.14% 5.49% 0.03% 0.01% 

ND/NTotal 0/14 0/14 0/14 13/14 13/14 5/14 2/14 
Max. Deviation 0% 0% 0% 0.52% 13.89% 0.05% 0.01% 

III 

Average CPU 
Time(millisecond) 18.8  34.4 31.2  25625  6925.63   51675  36453.54  

  
Average Deviation 0% 0% 0% 0.07% 4.67% 0.05% 0.17% 

ND/NTotal 0/39 0/39 0/39 20/39 39/39 6/39 14/39 
Max. Deviation 0% 0% 0% 0.31% 26.39% 0.08% 1.00% 

IV 

Average CPU 
Time(millisecond) 56.2 53 52.8 23878.4 9771.05  49984.4  108770.05  
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Table 17: Comparison of Heuristics with Optimum Solution on the Test Problems with 60 Jobs and High Processing Time Variability 

Due Date  
Distribution Type 

Performance  
Measure 

Nelson's 
Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS 

  
Average Deviation 0.36% 0% 0% 0.79% 2.16% 0.27% 1.05% 

ND/NTotal 0/52 0/52 0/52 50/52 52/52 40/52 9/52 
Max. Deviation 0.36% 0% 0% 2.52% 13.23% 1.16% 4.09% 

I 

Average CPU 
Time(millisecond) 78.2 181.2 181.6 64871.8 19703.16 132490.6  119936.96 

  
Average Deviation 0.62% 0% 0% 0.20% 3.21% 0.04% 0.005% 

ND/NTotal 1/21 0/21 0/21 18/21 21/21 9/21 2/21 
Max. Deviation 0.62% 0% 0% 0.65% 13.28% 0.09% 0.005% 

II 

Average CPU 
Time(millisecond) 21.8 65.8  58.75 34934.2 10898.48 73297 52613.34  

  
Average Deviation 0.002% 0% 0% 0.10% 3.76% 0.02% 0.005% 

ND/NTotal 1/23 0/23 0/23 20/23 23/23 9/23 1/23 
Max. Deviation 0.002% 0% 0% 0.48% 16.88% 0.05% 0.005% 

III 

Average CPU 
Time(millisecond) 25 65.8 71.8 37443.6  11005.85 74503 60720.10  

  
Average Deviation 0% 0% 0% 0.37% 4.48% 0.11% 0.10% 

ND/NTotal 0/41 0/41 0/41 32/41 41/41 7/41 10/41 
Max. Deviation 0% 0% 0% 1.23% 26.97% 0.17% 0.48% 

IV 

Average CPU 
Time(millisecond) 46.8 65.6 75 24634.6 9502.61  52834.6  118326.34  
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G. Detailed Comparison Tables with Nelson’s Heuristics  
 Table 18-23 present the result of a detailed comparison of each heuristic with the 

Nelson’s Heuristic on the test problems with 80, 100 and 150 jobs. The measures that are 

presented in these tables are the same measures presented in Table 7 in Chapter 6. The 

results are given with respect to each problem size, processing distribution and due date 

distribution type.   
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Table 18: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 80 Jobs and Low Processing Time Variability 

Due Date  
Distribution 

Type 

Performance  
Measure BS-I BS-D GA(K&K) SA(K&K) GA TS 

Average % Difference 0.336% 0.342% -0.858% -2.197% -0.372% -0.592% 
N+ / NTotal 3/64 3/64 1/64 0/64 1/64 2/64 
N- / NTotal 0/64 0/64 60/64 59/64 57/64 31/64 

Max % Difference 0.526% 0.526% 0.526% -0.217% 0.526% 0.359% 
Min % Difference 0% 0% -2.595% -10.174% -1.874% -4.134% 

I 

Avg. CPU Time(ms) 418.6 450 194484.4 33769.18 382415.8 814379.5 
Average % Difference 0.006% 0.006% -0.273% -1.905% -0.118% -0.052% 

N+ / NTotal 1/46 1/46 0/46 0/46 0/46 0/46 
N- / NTotal 0/46 0/46 44/46 44/46 36/46 31/46 

Max % Difference 0.006% 0.006% 0% -0.032% 0% 0% 
Min % Difference 0% 0% -0.693% -7.815% -0.460% -0.467% 

II 

Avg. CPU Time(ms) 290.6 293.6 159650 29474.21 314424.8 427134.5 
Average %  Difference 0.161% 0.161% -0.225% -2.041% -0.795% 0.008% 

N+ / NTotal 2/33 2/33 1/33 0/33 2/33 2/33 
N- / NTotal 0/33 0/33 29/33 32/33 22/33 15/33 

Max % Difference 0.197% 0.197% 0.151% -0.055% 0.197% 0.197% 
Min % Difference 0% 0% -0.777% -8.513% -0.540% -0.065% 

III 

Avg. CPU Time(ms) 215.6 222 127509.6 24964.49 252050.2 273159.9 
Average % Difference 0% 0.072% -0.316% -5.219% -0.104% -0.149% 

N+ / NTotal 0/59 1/59 0/59 0/59 0/59 0/59 
N- / NTotal 0/59 0/59 46/59 59/59 32/59 36/59 

Max % Difference 0% 0.072% 0.004% -0.147% 0% 0% 
Min % Difference 0% 0% -1.013% -24.485% -0.276% -0.881% 

IV 

Avg. CPU Time(ms) 134.4 147 77465.4 23407.57 161034.4 706253.6 
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Table 19: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 80 Jobs and High Processing Time Variability 

Due Date  
Distribution 

Type 
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS 

Average % Difference 0.08% 0.08% -0.983% -1.731% -0.371% -0.753% 
N+ / NTotal 5/77 5/77 0/77 0/77 0/77 0/77 
N- / NTotal 0/77 0/77 71/77 71/77 65/77 25/77 

Max % Difference 0.24% 0.24% -0.002% -0.032% 0% 0% 
Min % Difference 0% 0% -3.694% -7.978% -1.735% -3.400% 

I 

Avg. CPU Time(ms) 524.8 562.4 226759.4 49392.12 449968.8 1036858.8 
Average % Difference 0.320% 0.320% -0.171% -1.947% -0.053% -0.047% 

N+ / NTotal 2/35 2/35 1/35 0/35 1/35 0/35 
N- / NTotal 0/35 0/35 33/35 33/35 20/35 7/35 

Max % Difference 0.062% 0.062% 0.062% 0% 0.062% 0% 
Min % Difference 0% 0% -0.510% -10.282% -0.232% -0.124% 

II 

Avg. CPU Time(ms) 231.2 240.4 132050.2 24642.37 261750 688966.4 
Average % Difference 0.216% 0.216% -0.087% -3.089% 0.002% 0.009% 

N+ / NTotal 1/27 1/27 1/27 1/27 1/27 1/27 
N- / NTotal 0/27 0/27 29/33 26/27 11/27 8/27 

Max % Difference 0.216% 0.216% 0.207% -0.014% 0.216% 0.216% 
Min % Difference 0% 0% -0.470% -12.655% -0.050% -0.045% 

III 

Avg. CPU Time(ms) 131.2 153.2 106853 19166.29 212168.8 362012.06 
Average % Difference 0% 0% -0.231% -4.049% -0.049% -0.100% 

N+ / NTotal 0/53 0/53 0/53 0/53 0/53 0/53 
N- / NTotal 0/53 0/53 44/53 53/53 22/53 18/53 

Max % Difference 0% 0% -0.002% -0.067% 0% 0% 
Min % Difference 0% 0% -0.887% -23.523% -0.136% -0.323% 

IV 

Avg. CPU Time(ms) 118.8 140.4 69922 17877.8 144856.2 737177.4 
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Table 20: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 100 Jobs and Low Processing Time Variability 

Due Date  
Distribution 

Type 
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS 

Average %  Difference 0.032% 0.032% -1.068% -2.468% -0.555% -0.647% 
N+ / NTotal 6/84 6/84 0/84 0/84 0/84 1/84 
N- / NTotal 0/84 0/84 75/84 74/84 73/84 48/84 

Max % Difference 0.070% 0.070% 0% -0.042% -0.002% 0.025% 
Min % Difference 0% 0% -3.163% -11.341% -2.377% -4.456% 

I 

Avg. CPU Time(ms) 906.2 990.4 518509.2 69524.78 1008134.4 814379.4 
Average % Difference 0.016% 0.016% -0.305% -2.151% -0.091% -0.055% 

N+ / NTotal 2/43 2/43 0/43 0/43 0/43 1/43 
N- / NTotal 0/43 0/43 40/43 42/43 35/43 13/45 

Max % Difference 0.025% 0.006% 0% -11.541% -0.002% 0.007% 
Min % Difference 0% 0% -0.002% -0.071% -0.341% -0.313% 

II 

Avg. CPU Time(ms) 471.8 543.8 327906.2 40641.13 640590.6 427134.5 
Average % Difference 0.014% 0.014% -0.122% -2.783% 0.007% -0.024% 

N+ / NTotal 1/26 1/26 1/26 0/26 1/26 0/26 
N- / NTotal 0/26 0/26 22/26 25/26 12/26 7/26 

Max % Difference 1.039% 1.039% 0% -0.047% 0.274% 0% 
Min % Difference 0% 0% -0.496% -13.771% 0% -0.097% 

III 

Avg. CPU Time(ms) 203.2 228 227290.8 18146.23 441028.2 273160 
Average % Difference 0.002% 0.002% -0.143% -4.268% -0.033% -0.089% 

N+ / NTotal 1/62 1/62 6/62 0/62 9/62 4/62 
N- / NTotal 0/62 0/62 42/62 62/62 25/62 37/62 

Max % Difference 0.002% 0.002% 0.094% -0.233% 0.149% 0.052% 
Min % Difference 0% 0% -0.823% -24.317% -0.221% -0.370% 

IV 

Avg. CPU Time(ms) 175.2 187.4 161859.4 32641.75 318774.8 706253.6 
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Table 21: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 100 Jobs and High Processing Time Variability 

Due Date  
Distribution 

Type 
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS 

Average % Difference 0.021% 0.017% -1.164% -2.659% -0.580% -0.519% 
N+ / NTotal 4/105 5/105 0/105 0/105 0/105 0/105 
N- / NTotal 0/105 0/105 100/105 92/105 96/105 57/105 

Max % Difference 0.053% 0.053% -0.006% -0.031% 0% 0% 
Min % Difference 0% 0% -5.313% -14.100% -2.780% -4.642% 

I 

Avg. CPU Time(ms) 1381.2 1303.2 651368.6 98462.13 1254365.8 1036858.8 
Average % Difference 0.161% 0.087% -0.449% -2.574% -0.202% -0.047% 

N+ / NTotal 1/69 2/69 1/69 0/69 2/69 1/69 
N- / NTotal 0/69 0/69 63/69 62/69 57/69 39/57 

Max % Difference 0.161% 0.161% 0.062% -0.059% 0.012% 0.116% 
Min % Difference 0% 0% -1.287% -10.064% -0.976% -0.207% 

II 

Avg. CPU Time(ms) 803.4 772 471637.6 56908.31 906313 688966.4 
Average % Difference 0% 0% -0.148% -3.152% -0.009% -0.029% 

N+ / NTotal 0/34 0/34 0/34 0/34 0/34 0/34 
N- / NTotal 0/34 0/34 33/34 33/34 16/34 14/34 

Max % Difference 0% 0% -0.005% -0.069% 0% 0.000% 
Min % Difference 0% 0% -0.552% -14.437% -0.031% -0.074% 

III 

Avg. CPU Time(ms) 375 321.8 280056.4 32749.13 590328.25 362012 
Average % Difference 0% 0% -0.247% -4.970% -0.060% -0.107% 

N+ / NTotal 0/62 0/62 0/62 0/62 0/62 0/62 
N- / NTotal 0/62 0/62 48/62 62/62 32/62 35/62 

Max % Difference 0% 0% 0% -0.076% 0% 0.000% 
Min % Difference 0% 0% -0.247% -29.496% -0.179% 0.458% 

IV 

Avg. CPU Time(ms) 206 219 160556.2 36399.85 342664 737177.4 
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Table 22: Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 150 Jobs and Low Processing Time Variability 

Due Date  
Distribution 

Type 
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS 

Average % Difference 0.023% 0.023% -0.129% -2.968% -0.621% -1.084% 
N+ / NTotal 2/132 2/132 0/64 0/64 0/132 0/132 
N- / NTotal 0/132 0/132 123/132 109/132 125/132 95/132 

Max % Difference 0.023% 0.023% 0% -0.137% 0% 0% 
Min % Difference 0% 0% -3.342% -10.783% -2.450% -5.941% 

I 

Avg. CPU Time(ms) 4056.2 4296.8 2978565.4 200199.1 5871646.8 4016009.18
Average % Difference 0.013% 0.003% -0.199% -2.568% -0.080% -0.060% 

N+ / NTotal 3/64 3/64 0/64 0/64 0/64 0/64 
N- / NTotal 0/64 0/64 63/64 60/64 54/64 43/64 

Max % Difference 0.020% 0.006% 0% -0.074% 0% 0% 
Min % Difference 0% 0% -0.497% -13.894% -0.485% -0.346% 

II 

Avg. CPU Time(ms) 2096.8 2234.6 1874315.6 96905.2 3716753 2015413.4 
Average % Difference 0.335% 0.335% 0.210% -2.620% -0.069% -0.016% 

N+ / NTotal 2/59 2/59 1/59 0/59 1/59 1/59 
N- / NTotal 0/33 0/33 54/59 57/59 49/59 43/59 

Max % Difference 0.664% 0.664% 0.449% -0.149% 0.566% 0.614% 
Min % Difference 0% 0% -0.558% -12.804% -0.481% -0.143% 

III 

Avg. CPU Time(ms) 1531.4 1618.6 1775550 81067.5 3524253.2 1900415.63
Average % Difference 0% 0% -0.171% -6.620% -0.112% 0.126% 

N+ / NTotal 1/98 1/98 0/98 0/98 0/98 0/98 
N- / NTotal 0/98 0/98 89/98 95/98 81/98 92/98 

Max % Difference 0% 0% 0.000% -0.322% 0% 0% 
Min % Difference 0% 0% -0.631% -34.808% -0.339% -0.504% 

IV 

Avg. CPU Time(ms) 593.8 712.4 775106 101146.4 1609331.2 3481929.98
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Table 23 Comparison of Heuristics with Nelson’s Heuristic on the Test Problems with 150 Jobs and High Processing Time Variability 

Due Date  
Distribution 

Type 
Performance Measure BS-I BS-D GA(K&K) SA(K&K) GA TS 

Average % Difference 0.02% 0.01% -0.914% -2.765% -0.498% -0.317% 
N+ / NTotal 11/149 0/149 0/149 0/149 0/149 3/149 
N- / NTotal 11/149 0/149 141/149 104/149 138/149 73/139 

Max % Difference 0.07% 0.03% 0.000% -0.109% 0% 0.015% 
Min % Difference 0% 0% -2.749% -10.508% -2.811% -4.249% 

I 

Avg. CPU Time(ms) 5218.6 5187.4 3381065.6 239229.6 6633975.2 4692090.72
Average % Difference 0.141% 0.131% -0.473% -2.878% -0.231% -0.051% 

N+ / NTotal 9/106 10/106 1/106 0/106 2/106 2/106 
N- / NTotal 0/106 0/106 101/106 89/106 98/106 82/106 

Max % Difference 1.225% 1.225% 1.458% 0% 1.458% 1.438% 
Min % Difference 0% 0% -1.304% -11.393% -0.985% -0.455% 

II 

Avg. CPU Time(ms) 3487.6 3512.4 2742934.2 173141 5444396.6 3430658.84
Average % Difference 0.099% 0.116% -0.270% -2.542% -0.093% -0.031% 

N+ / NTotal 4/74 4/74 1/74 0/74 1/74 1/74 
N- / NTotal 0/74 0/74 71/74 69/74 66/74 53/74 

Max % Difference 0.388% 0.455% 0.442% -0.080% 0.442% 0.232% 
Min % Difference 0% 0% -0.788% -12.832% -0.585% -0.204% 

III 

Avg. CPU Time(ms) 2071.8 2103 2041987.4 106890.9 4079712.4 2445661.79
Average % Difference 0% 0% -0.231% -7.111% -0.110% 0.130% 

N+ / NTotal 0/53 0/53 0/115 0/115 0/115 0/115 
N- / NTotal 0/53 0/53 106/115 113/115 92/115 93/115 

Max % Difference 0% 0% 0.000% -0.146% 0% 0% 
Min % Difference 0% 0% -0.916% -38.034% -0.726% -0.607% 

IV 

Avg. CPU Time(ms) 1084.2 1146.8 891159.4 109414.3 1878893.8 4206759.32
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