
HYBRID FOG-CLOUD BASED DATA
DISTRIBUTION FOR INTERNET OF

THINGS APPLICATIONS

a dissertation submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

computer engineering

By

Fırat Karataş

September 2019

HYBRID FOG-CLOUD BASED DATA DISTRIBUTION FOR IN-

TERNET OF THINGS APPLICATIONS

By Fırat Karataş

September 2019

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.

İbrahim Körpeoğlu(Advisor)

Ezhan Karaşan

Özgür Ulusoy

Ahmet Coşar

Ertan Onur

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

Copyright Information

Internal or personal use of this material is permitted.

c©Elsevier 2019. “With permission from F. Karatas and I. Korpeoglu, Fog-Based

Data Distribution Service (F-DAD) for Internet of Things (IoT) applications, Fu-

ture Generation Computer Systems, Volume 93, Pages 156-169, Elsevier, 2019”

iii

ABSTRACT

HYBRID FOG-CLOUD BASED DATA DISTRIBUTION
FOR INTERNET OF THINGS APPLICATIONS

Fırat Karataş

Ph.D. in Computer Engineering

Advisor: İbrahim Körpeoğlu

September 2019

Technological advancements keep making machines, devices, and appliances

faster, more capable, and more connected to each other. The network of all

interconnected smart devices is called Internet of Things (IoT). It is envisioned

that there will be billions of interconnected IoT devices producing and consuming

petabytes of data that may be needed by multiple IoT applications. This brings

challenges to store and process such a large amount of data in an efficient and

effective way. Cloud computing and its extension to the network edge, fog com-

puting, emerge as new technology alternatives to tackle some of these challenges

in transporting, storing, and processing petabytes of IoT data in an efficient and

effective manner.

In this thesis, we propose a geographically distributed hierarchical cloud and

fog computing based IoT storage and processing architecture, and propose tech-

niques for placing IoT data into its components, i.e., cloud and fog data centers.

Data is considered in different types and each type of data may be needed by

multiple applications. Considering this fact, we generate feasible and realistic

network models for a large-scale distributed storage architecture, and propose al-

gorithms for efficient and effective placement of data generated and consumed by

large number of geographically distributed IoT nodes. Data used by multiple ap-

plications is stored only once in a location that is easily accessed by applications

needing that type of data. We performed extensive simulation experiments to

evaluate our proposal. The results show that our network architecture and place-

ment techniques can be used to store IoT data efficiently while providing reduced

latency for IoT applications without increasing network bandwidth consumed.

Keywords: Internet of Things, Fog Computing, Data Placement, Cloud Comput-

ing, Network Topology, Data Management.

iv

ÖZET

NESNELERİN İNTERNETİ UYGULAMALARI İÇİN
HİBRİT SİS-BULUT TABANLI VERİ DAĞITIMI

Fırat Karataş

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: İbrahim Körpeoğlu

Eylül 2019

Teknolojik gelişmeler makineleri, eşyaları ve cihazları daha hızlı, daha yetenekli

ve birbirleriyle daha bağlı hale getirmeye devam etmektedir. Birbirlerine bağlı

bu akıllı cihazların oluşturduğu ağ yapısı Nesnelerin İnterneti (IoT) olarak ad-

landırılmaktadır. Bu milyarlarca cihazın, birden fazla IoT uygulamasının ihtiyaç

duyduğu ve duyabileceği petabaytlarca veriyi üretme ve/veya kullanma yetenek-

lerine sahip olacağı öngörülmektedir. Bu durum, büyük miktardaki bu verinin

etkin ve verimli bir şekilde depolanması ve işlenmesi gibi zorlukları da beraberinde

getirmektedir. Bulut bilişim ve onun son kullanıcılara yakınlaştırılmış versiy-

onu olan sis bilişim, IoT verilerinin verimli ve etkili bir şekilde nasıl taşınacağı,

yerleştirileceği, saklanacağı ve işleneceği ile ilgili bu zorlukların bazılarının

üstesinden gelebilmek için yeni yöntemler ortaya koymaktadır.

Bu tezde; coğrafi olarak dağıtık, hiyerarşik bulut ve sis bileşenlerini içeren

bir IoT mimarisi ve oluşturulan büyük miktardaki IoT verisinin bu mimarinin

bileşenlerine, bulut ve sis veri merkezlerine, yerleştirmek için yeni teknikler

öneriyoruz. Verilerin sınıflandırılabileceği göz önünde bulundurulduğunda, bir-

den fazla uygulama bu verileri kullanabilir. Bu bilgiye dayanarak, coğrafi olarak

dağıtık IoT cihazlarının oluşturduğu ve kullandığı verileri, gerçeklenebilir ağ mod-

ellerinde etkin ve verimli şekilde veri merkezlerine yerleştirecek algoritmalar tasar-

layıp, bunları tamsayı doğrusal modelleme yöntemi kullanılarak elde edilen op-

timum sonuçlarla karşılaştırıyoruz. Birden fazla uygulama tarafından kullanılan

verileri, kopyalamadan ve o veriyi kullanan bütün uygulamalar tarafından ra-

hatlıkla erişilebilecek bir merkezde saklıyoruz. Önerdiğimiz ağ mimarisi ve algo-

ritmalar sayesinde; verilerin etkin ve verimli şekilde yerleştirilebileceğini, uygula-

maların bu verilere bant genişliğini arttırmadan daha hızlı şekilde erişebilmesine

olanak sağladığını yaptığımız kapsamlı simülasyon deneylerinin sonuçlarıyla

doğruluyoruz.

Anahtar sözcükler : Nesnelerin İnterneti, Sis Bilişim, Veri Yerleştirme, Bulut

v

vi

Bilişim, Ağ Mimarisi, Veri Yönetimi.

Acknowledgement

I would like to express my sincere gratitude to my advisor Prof. İbrahim

Körpeoğlu for his guidance and patience. I am grateful for his encouragement

and support during my hard times throughout the study, and I really appreciate

that.

I would like to thank the members of the thesis monitoring committee, Prof.

Ezhan Karaşan and Prof. Özgür Ulusoy for their precious comments and ideas

during this long journey. I would also like to thank my thesis defense jury Prof.

Ahmet Coşar and Assoc. Prof. Ertan Onur for accepting the invitation and

taking a part in my defense jury.

I want to express my deepest gratitude to my family. Without their encourage-

ment and patience I would not be here. I always sense their unlimited love and

support in my heart. I also apologize from them for missing irreversible moments

during this study.

I am very grateful to Prof. İbrahim Barışta from Medical Oncology Depart-

ment of Hacettepe University during my hard times. I cannot accomplish this

without him and my family.

I also want to thank my beloved friends who are always with me every time. I

would especially thank Cem Mergenci for organizing the thesis monitoring com-

mittees together.

I am thankful to my supervisors and colleagues in Meteksan Defence Ind. Inc.

for their support and encouragement.

The financial support of the Scientific and Technological Research Council of

Turkey (TUBİTAK) through the BİDEB 2211 program is appreciated.

vii

Contents

1 Introduction 1

1.1 Thesis Outline . 5

2 Related Work 7

2.1 Network Architecture . 7

2.2 Resource Allocation . 8

2.3 Data Placement . 10

3 Proposed Hybrid Fog-Cloud Based IoT Data Placement System

Architecture 12

3.1 Hybrid Fog-Cloud Based Network Architecture 13

3.2 Data-Centric IoT Data Placement Strategy 14

3.3 Data Classifier and Data Profiler Agents 15

3.4 Summary . 18

4 IoT Data Placement Problem in Hybrid Fog-Cloud Based Ar-

chitecture 19

4.1 Analytical Model of Data Placement in Hybrid Fog-Cloud Archi-

tecture . 20

4.2 Relation Between Applications and Data Usage 27

4.3 Proof of the Linearity of Mathematical Model 31

4.4 Summary . 34

5 Algorithms for Data Placement Problem in Hybrid Fog-Cloud

Based Architecture 36

5.1 Algorithm 1 . 37

viii

CONTENTS ix

5.2 Algorithm 2 . 39

5.3 Algorithm 3 . 41

5.4 Algorithm 4 . 44

5.5 Summary . 47

6 Hybrid Fog-Cloud Computing Based Network Topology Model-

ing 48

6.1 Hybrid Network Topology Modeling Algorithm 49

6.1.1 Rectangular Area Creation 50

6.1.2 Placement of CCs and Assigning FCUs 56

6.2 Length, Area and Cluster Relations 64

6.2.1 Length Distributions . 64

6.2.2 Area Relationship of Rectangles 67

6.2.3 Cluster Relationship . 70

6.3 Summary . 72

7 Performance Evaluation 73

7.1 Simulation Parameters . 74

7.2 Algorithms Used . 76

7.3 Latency Results . 78

7.3.1 Effect of Applications Run Ratio on Latency 78

7.3.2 Effect of Excess Use on Latency 86

7.4 Storage Results . 91

7.4.1 Effect of Applications Run Ratio on Data Storage 92

7.4.2 Effect of Excess Use on Data Storage 95

7.4.3 Effect of Storage Capacities on Data Storage 99

7.5 Algorithm Run-Time Results . 102

7.6 Network Occupancy Results . 103

7.7 Summary . 105

8 Conclusion and Future Work 107

List of Figures

3.1 An example FCU consisting of 2 FCs and 10 IoT nodes. 14

3.2 Example scenarios of Data Classifier & Data Profiler agents in the

proposed architecture. 17

4.1 An example of application - data type relation graph. 28

4.2 An example of network & data dependency graph (2 FCUs, 1 CC,

5 applications and 3 data types). 33

6.1 Examples of vertical and horizontal rectangle cuts. 51

6.2 Horizontal & vertical cut flowchart. 52

6.3 An example of vertical cuts over horizontal ones. 52

6.4 An example of a rectangle generated by the algorithm. 55

6.5 Examples of undivided/divided circumscribed circles. 57

6.6 Cluster centers in the first iteration of k-means algorithm. 57

6.7 An example of k-means choosing nearest CC. 59

6.8 An example of k-means choosing less crowded CC. 59

6.9 Histogram of all lengths in 10 million sample division. 65

6.10 Histograms of Length # 1 to # 6. 66

6.11 Histograms of Length # 7 to # 10. 67

6.12 Histogram of all areas in 10 million sample division. 68

6.13 Histograms of Areas # 1 to # 6. 69

6.14 Histograms of cluster areas and node counts according k-means

strategies. 71

x

LIST OF FIGURES xi

7.1 Smart city example network: M = 5, N = 100. Blue crosses are

FCU centers and cyan points are possible CC locations. After

using k-means with less crowded CC strategy chosen CC places

are marked with red diamond. 75

7.2 Average latency (EU = 10, appUseRatioInFCU = 0.05). 79

7.3 Average latency (EU = 10, appUseRatioInFCU = 0.1). 79

7.4 Average latency (EU = 10, appUseRatioInFCU = 0.5). 80

7.5 Average latency (EU = 10, appUseRatioInFCU = 0.75). 80

7.6 Average latency (EU = 10, appUseRatioInFCU = 1.0). 81

7.7 Average latency (EU = 10, appUseRatioInFCU = 0.05). 82

7.8 Average latency (EU = 10, appUseRatioInFCU = 0.1). 82

7.9 Average latency (EU = 10, appUseRatioInFCU = 0.5). 83

7.10 Average latency (EU = 10, appUseRatioInFCU = 0.75). 83

7.11 Average latency (EU = 10, appUseRatioInFCU = 1.0). 84

7.12 Average latency (EU = 10, appUseRatioInFCU = 1.0). 85

7.13 Average latency (EU = 10, appUseRatioInFCU = 1.0). 86

7.14 Average latency (appUseRatioInFCU = 0.2, EU = 2.5). 87

7.15 Average latency (appUseRatioInFCU = 0.2, EU = 5.0). 87

7.16 Average latency (appUseRatioInFCU = 0.2, EU = 10.0). 88

7.17 Average latency (appUseRatioInFCU = 0.2, EU = 2.5). 89

7.18 Average latency (appUseRatioInFCU = 0.2, EU = 5.0). 89

7.19 Average latency (appUseRatioInFCU = 0.2, EU = 10.0). 90

7.20 Total used CC & FCU storage capacities (appUseRatioInFCU =

0.2, EU = 5.0). 93

7.21 Total used CC & FCU storage capacities (appUseRatioInFCU =

0.5, EU = 5.0). 94

7.22 Total used CC & FCU storage capacities (appUseRatioInFCU =

1.0, EU = 5.0). 95

7.23 Total used CC & FCU storage capacities (appUseRatioInFCU =

0.05, EU = 10.0). 96

7.24 Total used CC & FCU storage capacities (appUseRatioInFCU =

0.05, EU = 20.0). 97

LIST OF FIGURES xii

7.25 Total used CC & FCU storage capacities (appUseRatioInFCU =

0.05, EU = 30.0). 98

7.26 Total used CC & FCU storage capacities (Average capacity in an

FCU = 5GB). 99

7.27 Total used CC & FCU storage capacities (Average capacity in an

FCU = 7GB). 100

7.28 Total used CC & FCU storage capacities (Average capacity in an

FCU = 15GB). 101

7.29 CPU run times of algorithms (appUseRatioInFCU = 1.00, EU =

10.0). 102

7.30 Network occupancy (appUseRatioInFCU = 0.1, EU = 30). 104

7.31 Network occupancy (appUseRatioInFCU = 0.1, EU = 30). 104

List of Tables

4.1 Notations of problem formulation. 23

6.1 Mean and variances of generated lengths. 65

6.2 Mean and variances of generated areas. 68

6.3 Mean and variances of cluster areas and node counts. 70

7.1 Algorithms used in experiments. 76

xiii

Chapter 1

Introduction

The idea of enabling communication between any pair of devices has led to the

emergence of Internet of Things (IoT), which encompasses all techniques and

technologies to interconnect all kinds of devices with each other via the Internet.

This evolution has started first with the design of radio frequency identifiers

(RFIDs) for small devices and things by using RFID technology and monitoring

the states of tagged devices, and then continued with the developments in wireless

sensor networks (WSN) [1].

There is an extensive amount of research and development going on in the IoT

field [2]. As the types and the number of nodes constituting IoT are increasing ev-

ery day, new and interesting IoT applications are envisioned and built [3] as well.

Not only the applications, but also the different types of technologies depending

on IoT are increasing. There are a lot of studies explaining the evolution in IoT

applications and technologies with future trends and research challenges [4–8].

Advances in IoT and development of new IoT products enable new kinds of

IoT concepts. For example, the advances make wearable smart devices connected

to the Internet popular, and now they are named as Wearable IoT (WIoT) [9].

Also, it is expected in the near future that the concept of smart cities [10] will be

implemented and deployed, and there are a lot of research activities going on to

1

tackle the related challenges [11–13].

While IoT technologies were evolving, new communication and networking

technologies supporting IoT have been designed as well. One of these is the low-

power wide area networks (LPWAN) technology [14, 15], which is a long-range

low-rate wireless communication technology that consumes low power. With up-

coming communication technologies, releasing the potential of IoT will become

faster. For example, 5G technology will increase the communication speed and

coverage between devices to support high-rate and high-quality demanding ap-

plications [16].

Various applications can use IoT technology nowadays. Some of these applica-

tions include, but not limited to, crowd-sensing [17], smart home [18] and smart

grid [19]. Since the number of potential applications is growing steadily, a classi-

fication can help to see the trends and analyze the requirements, and Scully [20]

does this by classifying all IoT applications into ten different groups. These ap-

plications are reviewed and explained in various papers, such as [21–23], and one

of the common problems of these applications is handling big data.

Since the number nodes forming IoT can increase exponentially, the volume

of data generated and consumed by these nodes can increase to an unprece-

dented level [24]. Storing and processing such a big volume of data is a daunting

task [25]. This becomes especially challenging when IoT nodes are geographically

distributed to a very large region [26].

Distributed cloud computing technology is an attractive alternative to store

and process large volumes of data [27]. Cloud computing can be used to as-

sign complicated and resource hungry tasks to capable data centers distributed

around the world [28]. New architectures are needed, however, to integrate cloud

computing with IoT [29]. Cisco is one of the first companies suggesting the idea

of edge and fog computing that extends the cloud computing capabilities closer

to the places where data is generated and consumed [30]. In this architecture,

besides large cloud computing data centers, there are a lot of smaller data centers

distributed in the region of interest providing fog computing capabilities, storing

2

and processing data in the field.

Fog computing data centers are small projections of more capable cloud data

centers. Applications, research challenges and other issues related to fog comput-

ing are reviewed in various articles [31–34].

Integration of cloud and fog computing paradigms together with IoT requires

the adaptation of the applications to this approach. One problem to consider is

how to place and use application data in the components of the distributed and

centralized cloud infrastructure [35,36]. Such an infrastructure will enable a lot of

new data-intensive applications, and these applications may share the generated

IoT data. The dependency relationship of the applications to the data becomes

critical in designing data placement strategies.

In this thesis, we focus on this problem of designing a cloud and fog based

IoT data storage architecture and related data placement methods on this in-

frastructure. We first propose a hybrid hierarchical architecture consisting of

geographically distributed cloud and fog computing data centers to extend the

capabilities of IoT devices, and to store and process large volumes of IoT data.

Leaves of the hybrid architecture are IoT devices and they are the least capable

components available in the architecture. Primary services offered by the cloud

and fog data centers in the proposed architecture is data-as-a-service (DaaS) [29],

which may enable commercially valuable data-driven IoT applications in a cost-

efficient manner.

With data-as-a-service, a network consisting of IoT nodes with both cloud and

fog computing data centers can create a data market [37]. In such data market,

there are data generators, consumers, and marketplaces. Data is provided to

the market by various types of sensors, which are less capable IoT nodes, and

applications running in smarter IoT nodes consume the generated data. Fog

and cloud computing data centers are the marketplaces where data storages and

exchanges occur. Therefore, IoT nodes can be considered as data generators,

data consumers or both, and data centers are the places where data resides.

3

We propose the IoT nodes in a certain local region to be considered together

with the fog data center(s) near them to constitute an architectural element

called Fog Computing Unit (FCU). These units are built by the combination of

heterogeneous IoT nodes and one or more fog computing data center(s). In each

unit, capabilities of all elements can be shared among others.

A lot of customers, i.e., applications, may share common demand for data

and this may become an important optimization factor, since the amount of data

shared by applications may be quite large. If each application stores the needed

data separately to maximize its benefits, which we name as application-centric

approach, storing and handling such a large amount of data can become very

costly and inefficient. This raises the question of how to handle huge amount of

data efficiently without disrupting application requirements.

To overcome the inefficient data storage problem, we propose that data gener-

ated by IoT nodes to be considered in types and each type of data to be stored

only in one location which is optimum for multiple applications requiring it. We

call this approach as data-centric approach. Based on this approach, we pro-

pose methods about where to store different types of data efficiently so that the

applications can reach their required data with the lowest feasible latency.

Part of this thesis is based on our work in [38], which is proposing consideration

of IoT data in different types, and at the same time proposing methods to place

different types of data efficiently and effectively into fog and cloud data centers.

While considering the needs of geographically distributed IoT nodes, we also

consider how to decrease the storage costs without affecting the performance,

which is important from the DaaS providers point of view.

Since there is no known deployed or well-known verification environment to

test fog based IoT algorithms, we also developed a model for hybrid fog-cloud

based IoT networks. By using this model we tested our heuristic algorithms.

We can summarize the contributions of our thesis as follows:

4

1. We propose a hybrid hierarchical fog-cloud computing data center network

architecture involving IoT nodes for storing and processing IoT data effi-

ciently.

2. We propose the consideration of IoT data in various and well-defined types,

based on the consideration that multiple IoT application may need to access

the same data. This allows efficient data storage, since data can be stored

only in one place and can be shared. While doing this, we also care about

not increasing network overhead and satisfying delay requirements.

3. According to the proposed data classification architectural model, we de-

velop a mathematical model for average data access latency that applica-

tions encounter, and provide an integer programming solution.

4. To achieve the best performance according to the given analytical model

without using linear solvers, we propose efficient data placement heuristic

algorithms to place the data in the mesh network of fog computing units,

which can provide efficient storage, low latency and reduced network over-

head compared to application-centric approach.

5. Since there is no known deployed fog-cloud based IoT architecture, we pro-

pose a method to model hybrid fog-cloud computing networks, and use this

model for the evaluation of our data placement algorithms.

1.1 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we give the state-

of-the-art and related work in IoT and handling of IoT data. In Chapter 3, we

specify the IoT data placement problem and propose a hybrid and hierarchical

fog-cloud based IoT storage architecture. In Chapter 4, we explain our analytical

model and give linear programming solution for the data placement problem

in the proposed storage architecture. In Chapter 5, we propose heuristic data

placement algorithms that can be used in the proposed architecture when the

network of fog and cloud data centers gets larger. In Chapter 6, we explain the

5

methods and our model for the simulated IoT network, which is required for the

evaluation of the algorithms. In Chapter 7, we present the results of our extensive

simulation experiments done based on the proposed IoT network model. Finally,

we give our conclusions and future work in Chapter 8.

6

Chapter 2

Related Work

Fog computing, an extension of cloud computing, tries to push clouds through

edges of the network, and can be employed in IoT networks to store and process

IoT data more effectively and efficiently. All of the work done in the literature

related to cloud and fog computing together with IoT have significant importance

to this research. On top of these studies, we focus on an important challenge of

big data placement in networks consisting of these elements where some of them

have limited resources (especially in IoT nodes). Under the light of these, we can

group fog-cloud enabled IoT related research studies into three major groups:

1. Network architecture and use cases.

2. Allocation of available resources.

3. Data placement strategies.

2.1 Network Architecture

The first group of related work consists of architectural and theoretical work done

in cloud and fog enabled IoT. In one of these works, Bonomi et al. [26] explain the

7

interplay of data in combination with IoT and fog-cloud computing paradigms,

and give some architectural structures for applications running in IoT nodes.

Since deploying and designing a smart city from network perspective is chal-

lenging and competitive; verifying the algorithms and use cases of the smart city

requires effort. For making these easier Santos et al. define a framework and

testbed called City of Things (CoT) [39] and deploy it in Antwerp, which enables

researchers to test possible IoT applications in smart cities. In another work,

Zanella et al. [21] describe a proof-of-concept system architecture for a smart city

application which is deployed in Padova.

Architectural designs vary according to use cases, and Santos et al. [40] explain

a hypothetical network structure for smart city applications using the 5G net-

work. Most of the network architectures enabling fog computing concept require

intelligent gateways and routers in the edges. As an example of these, including,

but not limited to, Aazam and Huh explain the smart gateway concept in [41],

and Jutila gives an efficient edge router in [42].

2.2 Resource Allocation

The second group of related work is resource provisioning or allocation, which is

inevitable where resources are limited and lots of demanders such as customers,

users, applications, etc., need to use them. Proper resource allocation is one of

the most important problems not only in cloud and fog computing but also in

IoT where the capabilities of nodes are limited, and therefore resources should be

used efficiently by applications and users. There is a lot of work done on resource

provisioning in cloud computing data centers and examples of this research are

including, but not limited to [43–46].

An important resource in IoT nodes that needs to be used carefully is the

network bandwidth, which is usually shared by a lot of applications. Angelakis

et al. [47] propose an allocation model for heterogeneous resource demands by

8

considering activation and utilization metrics of available network interfaces in

IoT devices. Tsai [48] proposes a network resource allocation algorithm for IoT

devices, called SEIRA, based on search economics for exploring solution space for

getting close to the optimum. Lera et al. [49] consider reducing network usage by

placing IoT data on fog computing nodes according to centrality indices. However,

they do not consider the characteristics of the distributed applications running in

the network, such as their quality-of-service requirements, data access patterns,

or where they are running.

In another group of the resource allocation studies, researchers want to answer

how IoT modules should be decoupled into fog and cloud computing nodes such

that the quality-of-service requirements are met. In one of these works, Taneja

and Davy consider partitioned application module layers and aim to place each of

these modules to computing nodes efficiently [50]. In another work, Rezazadeh et

al. [51] try to place IoT modules in fog and cloud nodes using simulated anneal-

ing. The same group propose a heuristic called LAMP to decrease the latency

applications encounter by placing different IoT application modules to fog and

cloud computing nodes [52]. Natesha and Guddeti use another heuristic called

First-Fit Decreasing (FFD) aiming again to decrease the latency applications

encounter together with the power consumption of computing nodes [53].

Resource provisioning is also another very important problem in more limited

fog computing data centers. Tocze and Nadjm-Tehrani [54] classify resources in

fog computing and survey the related research works and issues based on their

taxonomy. In their work, they discuss that data and storage mechanisms are

not well-studied in the literature. Another important shared resource in fog data

centers is computational components, and their utilization is considered in some

workload allocation studies. Deng et al. [55] model a hybrid fog-cloud com-

puting architecture by dividing the network into four subsystems and propose a

mathematical framework for optimizing workload sharing mechanism among data

centers while considering power consumption and delay. Tong et al. [56] present

a workload allocation strategy for mobile computing nodes by pushing cloud data

centers to the edges hierarchically and naming them as hierarchical edge cloud.

They try to allocate available computational resources on data centers used by

9

mobile workloads efficiently. Besides computational resources, I/O interfaces and

resources are also limited in fog computing nodes, and Zeng et al. [57] consider

these in a fog computing enabled embedded system.

There are also studies focusing not only on one specific type of resource but

also considering the general concept of resource sharing in fog computing. Arkian

et al. [58] describe MIST, which is a less dense communication scheme for fog

computing, and model the resource provisioning problem with a mixed-integer

nonlinear programming (MINLP) model by considering limited capabilities of

fog nodes in mobile crowd-sensing applications. They mainly focus on a specific

application and the reduction of their nonlinear MIST model to a linear one.

Skarlat et al. [59] discuss a software-based resource allocation scheme in fog en-

abled IoT environments with the help of fog colonies. They try to distribute

task requests or data among these colonies by using an entity called fog cell. Al-

though fog colonies resemble fog computing units, they do not include IoT nodes

and their work does not consider data and applications independently. Yu et

al. [60] tackle resource sharing problem mainly focusing on applications. They

investigate real-time application provisioning in a fog enabled IoT network with

the aim of satisfying applications’ quality-of-service (QoS) requirements such as

bandwidth and delay. Although they consider latency encountered by applica-

tions in their work, they do not focus on where data resides or how it is placed.

2.3 Data Placement

The third group of related work is data placement strategies. Qin et al. [61] dis-

cuss the differences between data characteristics of IoT and traditional Internet

applications while focusing on the data taxonomy in IoT. They emphasize that

in the conventional Internet, data is mainly generated by human beings, but it

is generated and consumed by IoT devices. Since it is easy to distribute these

smart and interconnected devices all around the world, data can be generated

and consumed by geographically distributed nodes, and as the number of smart

devices increase, data placement for these devices becomes an important issue.

10

Problems relevant to fog computing are also valid in other more mature domains

such as Online Social Networks (OSN) where the users are geographically dis-

tributed as well. Yu and Pan [62] handle data placement problem in OSNs by

using hypergraph partitioning techniques in geographically distributed data cen-

ters and nodes. In their work, they do not consider the capacity limitations of

data centers, which is crucial in fog computing enabled IoT networks. Tang et

al. [63] discuss the advantages of the geographical distribution of fog computing

nodes in smart cities for handling the big data generated by IoT nodes in various

use cases.

Various other researchers also consider data-centric use cases and placement.

Oteafy and Hassanein [64] discuss the importance and advantages of data-centric

placement in fog enabled IoT architectures for reducing access latencies, and

envision that applications requiring low latency can proliferate. An example of

these applications is streaming based traffic monitoring [65]. Publish-subscribe

models are also investigated and one model for DaaS on clouds has been proposed

in IoT architectures by defining a quality of data metric, which relies on extracting

useful and required data in smart city applications [66].

11

Chapter 3

Proposed Hybrid Fog-Cloud

Based IoT Data Placement

System Architecture

We focus on networks which are composed of cloud and fog computing data cen-

ters together with the geographically distributed and less capable IoT nodes. By

grouping and using these incapable nodes in each group with harmony, complex

applications may run and each of these may need some sort of data produced

by other nodes or groups. As the number of these less capable nodes increase,

processing, distributing and storing data become problematic. Therefore, we

try to answer the question of how to distribute and store data required by the

geographically distributed nodes in this section.

In this chapter, we start with defining our hierarchical hybrid fog-cloud based

network architecture (Chapter 3.1) which consists of both fog and cloud data cen-

ters together with less capable IoT nodes for overcoming distribution and storage

problems. On top of the considered network architecture, we explain a place-

ment strategy which we call data-centric approach (Chapter 3.2). And finally, we

present agents which are called Data Profiler and Data Classifier needed for this

solution to work in the defined network efficiently (Chapter 3.3).

12

3.1 Hybrid Fog-Cloud Based Network Architec-

ture

The network architecture starts with considering the hierarchical structure of

geo-distributed IoT data that is mentioned in the work of Bonomi et al. [26]. In

their geo-distributed structure, latency increases as data goes from IoT nodes to

cloud computing centers and this creates a problem for applications requiring low

latencies. A lot of IoT applications are inherently geo-distributed, like smart-city

applications, and therefore increased latency in such a geo-distributed system

is inevitable if proper precautions are not applied. Bearing these in mind, we

propose a hierarchical system and network architecture consisting of IoT nodes

and cloud computing data centers, and fog computing centers in between. This is

similar to the neighborhood concept in smart cities which includes fast responsive

edge computing nodes connected to IoT nodes [63]. In our proposed architecture,

we replace the edge nodes by (F)og (C)omputing data centers (FC), which are

small projections of cloud data centers and located near to the field. IoT nodes

in a region are connected to a fog computing data center located near them and

together they form a storage and processing unit called (F)og (C)omputing (U)nit

(FCU). The remaining building block of the architecture is (C)loud (C)omputing

data centers (CC), as usual, and they are possible candidates for storing and

serving data together with fog computing nodes. If the available resources of fog

computing data centers are not enough for storing data, the cloud data centers

are the ultimate places to store data.

A large volume of data is generated and consumed by IoT nodes. IoT nodes

in a region send and receive data to/from their directly connected FC nodes. In

an FCU, IoT nodes and the FC node(s) are connected with star topology (see

Figure 3.1). There may be more than one FC in an FCU. All FCUs and CCs are

connected via a mesh logical topology. The main difference between FCUs and

CCs is the availability of resources. Since FCs are small projections of CCs and

IoT nodes have restricted capabilities, available resources in FCUs are limited,

but in CCs resources are assumed as unlimited.

13

Symbol Description

FCU with 2 FCs

FCU Structure

IoT Node Type 1

FC

Comm-link

IoT Node Type 2

IoT Node Type 3

IoT Node Type 4

IoT Node Type 5

IoT Node Type 6

Symbol Description

FCU with 2 FCs

FCU Structure

IoT Node Type 1

FC

Comm-link

IoT Node Type 2

IoT Node Type 3

IoT Node Type 4

IoT Node Type 5

IoT Node Type 6

Figure 3.1: An example FCU consisting of 2 FCs and 10 IoT nodes.

3.2 Data-Centric IoT Data Placement Strategy

In Section 3.1, we define the network architecture which only shows the possible

places of data, in this section we want to explain the data placement problem

and present a solution strategy. The big data generated for possible consump-

tion needs to be first stored in the network efficiently and effectively. It can

either be stored regionally in the FCUs or the corresponding CCs. Since a lot

of applications may need the same type of data, we can develop clever place-

ment approaches and algorithms for storing data. Instead of storing the needed

data for each application separately, it is possible to store it once and distribute

it among all IoT applications in need. This requires first the categorization of

data. We propose the generated data to be partitioned, i.e., classified into several

well-defined types and all data of some certain type to be stored only once and

shared by all interested applications. Also, some applications may require several

different types of data for doing their jobs correctly. In this case, they access all

the required data of different types from the locations where they reside. We call

this as data-centric approach for placing, storing and using data by multiple ap-

plications. We call the other approach where data of some certain type is stored

separately for each interested application as application-centric data placement.

Data is not shared in the application-centric approach.

14

As a motivational example, consider an accident between a car and a pedestrian

in a smart city. Smart poles observing the accident can generate health data of

the pedestrian and can monitor the traffic nearby. Connected cars in the city can

also generate information about the traffic. Let another case be an emergency

situation related to a resident in one of the smart homes which is also happening

almost at the same time as the traffic accident. Sensors in the home generate vital

data of the patient and send it to health services for an emergency rescue. By

gathering both health and traffic data, the emergency services can easily optimize

available resources, which are ambulances in these cases, and give the task of

reaching emergency incident places with the ambulances in the fastest way. In

the example, traffic and health data are two different types of data generated by

IoT nodes distributed all over the city. Assigning and routing ambulances for two

distinct incidents as fast as possible is an application requiring these two different

types of data. Now, consider the navigation application which is popular and

commonly used in a smart city as another application running. It also requires

traffic data as in the case of health services and if the application-centric data

placement is used, the traffic data will be duplicated. By using the data-centric

approach and classifying data into types and placing them accordingly, we avoid

the unnecessary replication of data and reduce the storage costs accordingly.

3.3 Data Classifier and Data Profiler Agents

The data-centric approach requires decoupling of data from applications. Using

the structural elements defined in [67] with intelligent classification agents running

in them, enable the decoupling of data from applications, and make data-centric

placement approach possible. IoT nodes are connected to an FC and they are

the sources of generated data. An agent process, called (D)ata (C)lassifier (DC),

running in all FCs can be used to classify data generated in the network. DC

can also monitor the data generation volumes of each data type in each FCU

during the classification process. IoT nodes are the places where applications

run and consume data, so their access characteristics to data and their running

frequencies need to be profiled for intelligent data placement as well. Another

15

agent called (D)ata (P)rofiler (DP) works as profiling mechanism of applications.

DC and DP agents together can measure and derive the data characteristics of

IoT nodes, and notify the central mechanism for data placement procedures (see

Figure 3.2). Since IoT nodes are elements of FCUs, outputs of DC and DP agents

running in FCs give an idea about the data generation and usage characteristics

in FCUs. According to the outcome of the agents, data placement decisions can

be done adaptively.

An important benefit of classifying data and storing it once for each class

is added flexibility for designing new applications without considering the data

needs. Designers can use a publish-subscribe mechanism for accessing the avail-

able data types in the network. From data management perspective, duplication

is not needed in the case where data is used by more than one application and this

enables the reduction of storage costs. Regarding that point of view, the data-

centric approach can perform better than the application-centric data placement

approach dramatically.

Decreasing the storage costs by using the data-centric approach is an important

benefit. However, latencies encountered by applications have to be kept in mind

as well. We can achieve this by placing required data to the geographically close

places where interested applications run. The issue here is that more than one

application may want to use the data of the same type and these applications can

be at distinct and far away locations. Another assumption in the architecture

is that each application running in IoT nodes need to access a small amount

of data (compared to whole data stored) in the interaction time. Therefore,

propagation delay in accessing the needed data of certain type dominates the

response time. Effect of the processing delay is negligible. 1 With the help of

1The reason is although optical fiber connections are used, a request has to be made from
the demanding node and it is transmitted at the speed of light. A small response message is
transmitted back to the requested node from the destination which also travels at the speed of
light. So the propagation delay becomes “(2 × Distance) / Speed of light”, and it is roughly
0.4msec for a 60km distance. If small amount of data is assumed to be 1KB, then its processing
time becomes in the order of nanoseconds when a simple RAID 0 architecture used with two
SSDs whose read speeds are 500MB/s with SATA III interface. In today’s data centers, much
faster SSDs with PCI-Express interfaces can be used and this also reduces the processing times
significantly since their read/write speeds are in the order of GB/s.

16

CC

IoT Node D

IoT Node E

IoT Node F

Generated Data

(IoT Node D)

Generated Data

(IoT Node E)

Generated Data

(IoT Node F)

FC 1
IoT Node A

IoT Node B

IoT Node C

Generated Data

(IoT Node A)

Generated Data

(IoT Node B)

Generated Data

(IoT Node C)

DC

DC Output
Data Types 1...N

&

Data

Generation Volumes

Data Types 1...N

&

Data Generation Volumes

Data Types 1...N & Data Generation Volumes

Data Types 1...N

&

Data Generation Volumes

FC 2

DC

IoT Node D

IoT Node E

IoT Node F

Generated Data

(IoT Node D)

Generated Data

(IoT Node E)

Generated Data

(IoT Node F)

FC 1
IoT Node A

IoT Node B

IoT Node C

Generated Data

(IoT Node A)

Generated Data

(IoT Node B)

Generated Data

(IoT Node C)

DC

DC Output
Data Types 1...N

&

Data

Generation Volumes

FC 2

DC

CC

IoT Node D

IoT Node E

IoT Node F

Apps Data Request

& Transfer

Apps Data Request

& Transfer

Apps Data Request

& Transfer

FC 1
IoT Node A

IoT Node B

IoT Node C

Apps Data Request

& Transfer

Apps Data Request

& Transfer

Apps Data Request

& Transfer

DP

DP Output
Apps data access

profile &

Apps running profile

Application Data Access

&

Application Run Profiles

Application Data Access & Application Run Profiles

Application Data Access

&

Application Run Profiles

FC 2

DP

IoT Node D

IoT Node E

IoT Node F

Apps Data Request

& Transfer

Apps Data Request

& Transfer

Apps Data Request

& Transfer

FC 1
IoT Node A

IoT Node B

IoT Node C

Apps Data Request

& Transfer

Apps Data Request

& Transfer

Apps Data Request

& Transfer

DP

DP Output
Apps data access

profile &

Apps running profile

FC 2

DP

Figure 3.2: Example scenarios of Data Classifier & Data Profiler agents in the

proposed architecture.
17

DP, running frequencies of applications can be compared and for reducing the

average latency encountered, the shared data type can be placed near to the

application which runs and accesses it more. This reduces data placement to

an optimization problem where the average data access latency of applications

running in the geographically distributed FCUs needs to be minimized without

duplicating the data. We formulate this optimization problem and give its linear

model in Chapter 4.

Under the scope of our model, the mobility of applications or fast changes that

affect the outcomes of DC and DP agents are not considered. Our placement

model assumes that all outcomes of agents are available and placement decisions

are made accordingly. If significant changes are detected in the outcomes of the

agents, placement algorithms have to be rerun.

3.4 Summary

In this chapter, we start with explaining a network model consisting of cloud

computing data centers, IoT nodes and fog computing data centers in between.

We merge the geographically close fog computing data centers and IoT nodes,

and name each of these merged groups as fog computing unit (FCU).

By using the available storage resources of FCUs with harmony, we want to

decrease storage burden on cloud computing data centers. For doing it so, we

need to split data into well-known types and store in types. We call it as the

data-centric placement approach.

Finally, we describe two agents required to make data-centric placement ap-

proach feasible. One of the agents is responsible for splitting data and we name it

data classifier (DC), and the second agent is responsible for monitoring the data

access and running characteristics of the applications in FCUs.

18

Chapter 4

IoT Data Placement Problem in

Hybrid Fog-Cloud Based

Architecture

In the previous chapter, we explain a structural solution for data placement prob-

lem, and in this chapter we present the analytical model of the problem. As

mentioned at the end of Section 3.3, when multiple applications and data types

exist in network, data placement turns into a problematic task. By using the

outputs of agents defined, we can reduce it to an optimization problem and give

the solution in Section 4.1. According to the optimization model we define any

of the commercial linear solvers such as Gurobi [68] or CPLEX [69] can give the

optimum solution of the problem.

One of the important obstacles for developing new IoT applications is the data

to be used. Since we consider data in well-defined types, new applications can be

developed easily using existing data types. Under the light of this circumstance,

we foresee the gap between number of applications and available data types in-

creases. So we need a metric to define the relation between applications and data

types. We name this metric excess use and explain it in Section 4.2.

19

We conclude this chapter by explaining the linearity of the proposed model

with a numerical example in Section 4.3.

4.1 Analytical Model of Data Placement in Hy-

brid Fog-Cloud Architecture

As mentioned in Section 3.1, there are three main building blocks of fog supported

IoT system: IoT nodes, fog computing data centers, and cloud data centers. In

our architecture, all IoT nodes in a local region are connected to one FC node,

and there may be more than one FC node in the region. All of these IoT and

FC nodes in that region are called an FCU, and data is generated/consumed or

both in these. Generated data is placed either in FCUs or CCs, and applications

running in FCUs use the generated data. We consider the data in types and an

application may require one or more types of data. Multiple applications can use

the same data type, but that data type does not have to be handled and stored

separately for each application. In other words applications can share the same

data types.

If there are more than one FCs in an FCU, we consider them as a single larger

FC. Hence, we assume there is one FC with high capacity serving all of the

connected IoT devices deployed in a certain region. A geographical area, like a

city, has many regions and in each of these, there exists a different FCU.

Since the FCUs are geographically distributed and far away from each other

and the CCs, and there is a non-negligible latency in the communication of FCUs

with each other and with the CCs. We assume that this latency is directly

proportional with the physical distance, therefore we model the latency of two

points as the geographical distance in between.

20

Our system model has the following parameters:

M → Total number of CCs

N → Total number of FCUs

D → Total number of different data types existing

A → Total number of different applications running

L → Latency matrix showing the latency between any CC or FCU

and any other CC or FCU

where L is a (M + N) × (M + N) matrix which is directly related to the

geographical locations of data centers. Placement of the elements in L matrix

starts from CCs, for example l1,M+1 denotes the latency of the first CC to the

FCU numbered as 1. la,b indicates the latency between data centers a and b and

we define it as:

la,b =

{
x ∈ R+, if a 6= b

0, if a = b

An application does not necessarily run in every FCU. It may either run in a

few of or in all FCUs. Additionally, an application may not always access data

or require all types of data. After getting data, an application may spend time

for a while to process the gathered data. So, the DP agent running in FCs can

measure, for a certain time interval, how often applications run in the IoT nodes

(i.e., in FCUs), and which data types they access and how often. We define these

frequencies as follows:

AR → Application running frequencies in the FCUs

AF → Data access frequencies of the applications

where AR is an (N × A) matrix, and AF is an (A × D) matrix. AR is

normalized according to the most frequently running application.

Every FCU may have different number of IoT nodes and every type of data

may not be generated in every FCU. Hence, the amount of data produced may

change from one FCU to another. After the generation of data, it has to be

stored in one of the fog or cloud data centers in the network. We denote the data

21

generation volume of each type of data and where they are placed as follows:

GV → Data generation volume for each type of data in each FCU

DG → Total data generation volume for each type of data

P → Final placement matrix, where each data type is stored

where GV is an (N ×D) matrix, DG is a (D × 1) vector and P is a (D ×
(M + N)) matrix. If the elements of these matrices are considered individually,

gvki indicates data generation volume of data type i in FCU k, dgi describes

the total data generation volume of data type i, and finally pik indicates whether

data type i is placed or not in data center k which is either an FCU or a CC.

DG is the transpose of the column sum of the GV matrix, and the elements of

DG satisfy Equation 4.1.

dgi =
N∑
j=1

gvj,i (4.1)

P is a binary matrix because partial data placement and replication are not

allowed, and it has to satisfy Equation 4.2.

M+N∑
k=1

pi,k = 1,∀i ∈ D (4.2)

According to the architecture we describe in Section 3.1, FCs have limited

storage capacities, since they are small-scale versions of CCs. Therefore, we

define a variable for denoting the storage capacity constraint for each FCU, and

there is also another variable which indicates how much of the available capacity

in an FCU is used:

SC → Storage capacity of FCUs

UC → Used capacity of FCUs

where SC and UC are (1×N) vectors. After the placement of all the available

data types, we need to satisfy the following equation:

uci ≤ sci , i ∈ {1, 2, . . . , N} (4.3)

Referring back to the verbal definition of the problem in Chapter 3, the goal

is to minimize the average latency that applications encounter while obtaining

22

Table 4.1: Notations of problem formulation.

Symbol Definition
Indices
M Set of cloud computing data centers
N Set of fog computing units
D Set of data types
A Set of applications
Parameters
lij Latency from data center i ∈ M∪N to data center

j ∈ M∪N
uci Used storage capacity of FCU i ∈ N
sci Total storage capacity of FCU i ∈ N
gvj,i Data generation volume for data type i ∈ D in FCU

j ∈ N
dgi Total data generation volume for data type i
arij Running frequency of application j ∈ A in FCU i ∈ N
afij Access frequency of application i ∈ A to data type

j ∈ D
Decision Variable
pij 1 if data type i ∈ D is placed in data center j ∈ M∪N ,

0 otherwise

the required data from the data centers (fog or cloud centers) where it is stored.

Table 4.1 summarizes all of the notation used for describing the model, and

Equation 4.4 describes the average latency applications encounter while accessing

data by using these variables.

A∑
i=1

N∑
k=1

ark,i

D∑
y=1

sgn(afi,y)(
M+N∑
z=1

lz,(M+k)py,z)

D∑
j=1

sgn(afi,j)

A∑
w=1

N∑
q=1

arq,w

=
A∑
i=1

N∑
k=1

D∑
y=1

ark,isgn(afi,y)(
M+N∑
z=1

lz,(M+k)py,z)

D∑
j=1

sgn(afi,j)
A∑

w=1

N∑
q=1

arq,w

(4.4)

The denominator of Equation 4.4 is a scaling factor depending on the ap-

plication running frequency in the FCUs, and the numerator is total latency

23

applications encounter while gathering the required data. To explain the details,

“L × P” denotes the latency application encounter while reaching the required

data types where they reside, and it is multiplied by the sign function of the data

access frequencies of the application which is “sgn(AF)”. The output of this

multiplication gives the latency for an application to access all the required data

types, and finally it is multiplied by the application’s running frequency “AR”

in an FCU which is obtained from the output of DP agent.

sgn(.) is the sign function with the following definition:

sgn(x) =


1, if x ∈ R+

0, if x = 0

−1, if x ∈ R−

Why we use the sign function in the formulation is caching. As we mention in

Chapter 3, for a considered time-interval applications need a small amount of

data and when they gather required data type, they cache it inside the FCU.

We can reduce the Equation 4.4 into a matrix by form using the matrices AR,

AF , L and P . Then we have the following equations in matrix form:

DL = P ×L (4.5)

=
[−→
dl1

−→
dl2 . . .

−−−−→
dlM+N

]
FL =

[−−−→
dlM+1

−−−→
dlM+2 . . .

−−−−→
dlM+N

]
(4.6)

DD = sgn(AF) (4.7)

=


−→
dd1
−→
dd2

...
−−→
ddA


AL = DD × FL (4.8)

ARL = AL ◦ART (4.9)

SF =
[−→
sf1

−→
sf2 . . .

−−→
sfN

]
(4.10)

24

−→
sfi = ‖AR‖1,1 ×



∥∥∥−→dd1∥∥∥
1∥∥∥−→dd2∥∥∥
1

...∥∥∥−→dd2∥∥∥
A

 (4.11)

AAL = SF ◦ARL (4.12)

Average Latency = ‖AAL‖1,1 (4.13)

In Equation 4.5, DL is a (D× (M +N)) matrix and denotes the latencies of

obtaining each data (type) from where it is stored. Matrix DL can be denoted

as a row vector of (N × 1) column vectors and each of these column vectors is

displayed as
−→
dli. If we choose the last N column vectors to form another matrix

FL whose size is (D×N), we obtain the latency of each FCU for reaching each

data type (Equation 4.6). From the applications point of view, data dependencies

are important and it is shown by DD matrix, whose size is (A×D). It is a binary

matrix and indicates that if an application has a dependency on the following

data or not. We can also show this as a column vector of row vectors,
−→
ddi,

and each of these indicate the dependency of an application i on the data types.

When the matrices obtained in Equation 4.6 and Equation 4.7 are multiplied

(Equation 4.8), we obtain the latency matrix AL expressing the latencies that

applications encounter while reaching the needed data. It is an (A×N) matrix.

Until now, application running frequencies in the FCUs are not taken into

account. In order to consider the effect of these profiled running frequencies on

latencies, we obtain the ARL matrix by using the Hadamard product operator

(◦) in Equation 4.9. This operation is an element-wise product of the entries in

matrices AL and ART , and ARL is the weighted sum of the latencies appli-

cations encounter in which FCU they run. For normalizing the weighted laten-

cies obtained by ARL matrix, we define a scaling factor SF in Equations 4.10

and 4.11. In Equation 4.11, ‖.‖1 and ‖.‖1,1 denote L1 norms of a vector and a

25

matrix respectively. Lp,q norm of an (m× n) matrix A is defined as:

‖A‖p,q =

 n∑
j=1

(
m∑
i=1

|aij|p
)(p/q)

(1/p)

(4.14)

If the scaling factor and the weighted sum latency matrices are multiplied

element-wise, we obtain the AAL matrix, whose size is (A×N) (Equation 4.12).

It denotes the average weighted latency of each application running on each FCU.

As described in Chapter 3, the aim is to minimize average latency that applica-

tions encounter. Therefore, if the sum of each element in matrix AAL denoted

as ‖.‖1,1 is minimized, then the goal is achieved. Equation 4.13 is the matrix form

of the Equation 4.4.

Equations 4.15 to 4.18 give the integer programming model of the problem.

Minimize:

∑
i∈A

∑
k∈N

∑
y∈D

ark,isgn(afi,y)(
∑

z∈M∪N
lz,(M+k)py,z)∑

j∈D
sgn(afi,j)

∑
w∈A

∑
q∈N

arq,w
(4.15)

Subject to:

pi,j ∈ {0, 1} (4.16)

∑
j∈M∪N

pi,j = 1, ∀i ∈ D (4.17)

∑
i∈D

dgi × pi,(M+j) ≤ scj, ∀j ∈ N (4.18)

In integer programming model, Equation 4.15 is the objective function, which

is same as the cost function defined in the Equation 4.4. Equation 4.16 ensures

that partial data placement and replication are not allowed, while Equation 4.17

guarantees every data type is placed. Finally, Equation 4.18 indicates that the

storage capacities of the FCUs are not exceeded.

26

4.2 Relation Between Applications and Data

Usage

We envision that multiple applications may need the same type of data. Since

our approach to efficiently store, access and process IoT data involves considering

data in different types,e.g. traffic data, health data, applications can use any of

these available data types to run correctly and this requires the sharing of data.

In the emergency application given in Section 3.2, the data is classified as health

and traffic data, and two running applications, navigation and health services,

depend on either one or both of them: for the navigation service, only traffic

data is required, but for the health service, both data types are required. Hence,

multiple applications may require the same type of data, and an application may

require several different types of data. The application-centric data placement

approach stores the data for each application separately, but the data-centric

approach that our architecture is using enables the sharing of the stored data

by multiple applications. The question is how efficient the proposed architecture

is instead of using the application-centric data storage. Before answering this

question, we need to formulate the relationship between applications and their

data requirements.

The matrix AF, defined in Section 4.1, indicates required data types by the

applications. But this is not a compact form to express the sharing amount of

data among the applications (i.e., data overlap ratio), so we need to define a

metric to indicate how many applications require a specific data type.

We use a simple bipartite graph to show the relationship between the applica-

tions and the data types. The vertices are partitioned into two sets: applications

and data types. The edges of the bipartite graph denote the dependencies of

applications on the data types, which are the non-zero elements of AF matrix.

An example of this bipartite graph is given in Figure 4.1.

If we consider the example graph, we can easily say that both applications a1

and a2 require data type d1, a3 requires d1, d2 and dD and so on. It is obvious

27

Applications
Data Types

a1
a2
a3
...

aA−2
aA−1
aA

d1
d2
...

dD−1
dD

Figure 4.1: An example of application - data type relation graph.

in such a case that some of the data types are required by multiple applications,

and if the application-centric data storage is used, the data would be replicated

and the storage cost would increase.

In our model, whenever data of some type is generated, it has to be required

by one or more applications to be stored. Unused data types are not stored.

Therefore, each stored data type is needed by at least one application. This gives

the baseline definition of data excess use (sharing amount or overlap ratio) and

is defined in Equation 4.19.

ExcessUse =

A∑
i=1

D∑
j=1

sgn (afij)

D
(4.19)

Equation 4.19 gives a general idea about how data types set is enclosed. It

defines whether a data type is used by more than one application or not.

ExcessUse = 1 (4.20)

If Equation 4.20 is satisfied in the network then all data types are used by

different applications, there is no data type which has been used by multiple

28

applications.

ExcessUse > 1 (4.21)

If Equation 4.21 is the case, then there is at least one data type used by

multiple applications.

Relation Between AF and Excess Usage

The value of excess use depends on AF matrix (Equation 4.19) whose size is

defined by A and D. Therefore, the values of excess use is related with both A

and D parameters, and there exists three possible conditions:

1. A > D : This is the most probable case, since lots of applications can be

developed by using existing data types.

Lemma 4.2.1. If this is the case then:

ExcessUse > 1

and values of excessive usage is limited with [A/D,A].

Proof. At least one data type is required for an application to run correctly,

this is the condition and obligation to the data types in the network. If data

and applications are assumed as two different sets, each data type and ap-

plication become a member of these sets. By using the pigeonhole principle,

at least A − D applications are left, after one-to-one mapping of these sets

are done. Since the number of non-zero elements in AF is A, the following

equation has to be satisfied:

ExcessUse = A/D

A > D → ExcessUse > 1.

In the most extreme case, all applications may use all data types. In that case

then:

ExcessUse = A.

29

2. A = D : This case is a probable case in a scenario, since there is no limitation

on application and data counts.

Lemma 4.2.2. If this is the case then:

ExcessUse ≥ 1

then the values of excessive usage is limited with [1, A].

Proof. Since application and data type counts are equal in this case, if all

applications require one data type, which is a valid assumption throughout

the architecture, then in one-to-one mapping of application and data type sets

cover each other. This means no excess usage occurs, which sets

ExcessUse = 1.

In the most extreme case, all applications may use all data types. In that case:

ExcessUse = A.

3. A < D : This case is the most unlikely among others. In general, application

count is greater than data type count, since many more applications can be

designed with the available data types.

Lemma 4.2.3. If this is the case then:

ExcessUse ≥ 1

and values of excessive usage is limited with [1, A].

Proof. If one-to-one mapping of applications and data types is assumed, then

there exists some data types not used by any of the applications. It is a con-

tradiction, since unused data types are not stored. So at least one application

requires these uncovered data types. Again by using the pigeonhole principle,

all data set is covered by applications, which makes at least D non-zero ele-

ments in AF matrix. So excessive usage satisfies

ExcessUse = 1.

In the most extreme case, all applications may use all data types. In that case

then:

ExcessUse = A.

30

Given cases are the theoretical limits of excess use in the proposed architecture

and help us during the setup of our simulations.

4.3 Proof of the Linearity of Mathematical

Model

Formal problem formulation given in Section 4.1 with Equation 4.4 seems com-

plicated, and it can easily be confused with quadratic optimization although it is

linear. In this section we want to review the formulation in detail and prove it is

a linear optimization problem with an example.

Let’s start with Equation 4.4. In the denominator of the formal problem

definition, there exists a constant when we collect the outputs of DP agent from

all FCUs. It is a normalization factor for running frequencies of all applications

in all FCUs, and it is given in Equation 4.22. It is the sum of all elements in the

AR matrix and for the sake of simplicity let us denote it with C.

C =
A∑

w=1

N∑
q=1

arq,w (4.22)

After changing the summation with constant C, the formal form of the problem

becomes the following:

1

C

A∑
i=1

N∑
k=1

D∑
y=1

ark,isgn(afi,y)(
M+N∑
z=1

lz,(M+k)py,z)

D∑
j=1

sgn(afi,j)

(4.23)

The denominator of Equation 4.23 is a column sum of a binary matrix sgn(AF)

and each element of this sum indicates total number of different data types requird

by the corresponding application. We can easily replace this summation with a

row vector
−→
B whose elements are the column sums:

−→
B =

D∑
j=1

sgn(afi,j) (4.24)

31

And finally let us define a new matrix called SAF:

SAF = sgn(AF) (4.25)

The formal form of the equation becomes the following:

1

C

A∑
i=1

1

bi

N∑
k=1

D∑
y=1

ark,isafi,y(
M+N∑
z=1

lz,(M+k)py,z) (4.26)

It is definite based on Equation 4.26 that only variable left after obtaining

the outputs of DP and DC agents in the network is placement matrix P. When

the outputs of agents are available, AF, AR matrices, constant C and the row

vector B are calculated. Also, latency matrix L has been already known in the

beginning, and this concludes that there exists only one variable left to be decided

which is the placement matrix P. Since the defined cost function is not in the

quadratic form according to decision variable P, our formulation is linear.

Although we show the decision variable (placement matrix P) is not multiplied

with itself, we need to check that there is no multiplication between the elements

of the placement matrix. When we expand the equation element-wise, we see

that there is no multiplication between the elements of the decision matrix, and

this makes it possible to obtain optimal solution with commercial state of the art

linear solvers.

Let us consider the following example to expand the equation in element-wise

to see the linearity of the problem. There exists 5 applications using 3 data types

running in 2 FCUs, and there is an CC between these 2 FCUs. This example is

given graphically in Figure 4.2.

32

CC

IoT Node D

IoT Node E

IoT Node F

FC 2

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

FC 1

IoT Node A

IoT Node B

IoT Node C

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

IoT Node D

IoT Node E

IoT Node F

FC 2

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

FC 1

IoT Node A

IoT Node B

IoT Node C

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

IoT Node D

IoT Node E

IoT Node F

FC 2

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

FC 1

IoT Node A

IoT Node B

IoT Node C

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

Running Apps
App #1
App #2
App #3
App #4
App #5

Data Types
Data #1
Data #2
Data #3 IoT Node D

IoT Node E

IoT Node F

FC 2

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

FC 1

IoT Node A

IoT Node B

IoT Node C

Apps Data
Request & Transfer

Apps Data
Request & Transfer

Apps Data
Request & Transfer

DP

Running Apps
App #1
App #2
App #3
App #4
App #5

Data Types
Data #1
Data #2
Data #3

Data Types
Data #1
Data #2
Data #3

Running Apps
App #1
App #2
App #3
App #4
App #5

App #1

App #2

App #3

App #4

App #5

Data #1

Data #2

Data #3

Applications Data Types

Figure 4.2: An example of network & data dependency graph (2 FCUs, 1 CC, 5

applications and 3 data types).

If we put the numbers in Equation 4.26, we get the following:

1

C

5∑
i=1

1

bi

2∑
k=1

3∑
y=1

ark,isafi,y(
3∑

z=1

lz,(1+k)py,z) (4.27)

After writing all the elements together with constant C and column sum vector

B in the equation, we obtain the following:

33

1

C

5∑
i=1

1

bi

2∑
k=1

3∑
y=1

ark,isafi,y(
3∑

z=1

lz,(1+k)py,z)

=
1

C

5∑
i=1

1

bi

2∑
k=1

3∑
y=1

ark,isafi,y(l1,(1+k)py,1 + l2,(1+k)py,2 + l3,(1+k)py,3)

=
1

C

5∑
i=1

1

bi

2∑
k=1

ark,i(safi,1l1,(1+k)p1,1 + safi,1l2,(1+k)p1,2 + safi,1l3,(1+k)p1,3+

safi,2l1,(1+k)p2,1 + safi,2l2,(1+k)p2,2 + safi,2l3,(1+k)p2,3+

safi,3l1,(1+k)p3,1 + safi,3l2,(1+k)p3,2 + safi,3l3,(1+k)p3,3)

=
1

C

5∑
i=1

1

bi
(ar1,isafi,1l1,2p1,1 + ar1,isafi,1l2,2p1,2 + ar1,isafi,1l3,2p1,3+

ar1,isafi,2l1,2p2,1 + ar1,isafi,2l2,2p2,2 + ar1,isafi,2l3,2p2,3+

ar1,isafi,3l1,2p3,1 + ar1,isafi,3l2,2p3,2 + ar1,isafi,3l3,2p3,3

ar2,isafi,1l1,3p1,1 + ar2,isafi,1l2,3p1,2 + ar2,isafi,1l3,3p1,3+

ar2,isafi,2l1,3p2,1 + ar2,isafi,2l2,3p2,2 + ar2,isafi,2l3,3p2,3+

ar2,isafi,3l1,3p3,1 + ar2,isafi,3l2,3p3,2 + ar2,isafi,3l3,3p3,3)

. . .

Equation continues, and it is obvious that there exists no multiplication be-

tween any of the decision variables which concludes that the proposed formulation

is linear.

4.4 Summary

We start this chapter with a mathematical model of the data placement problem

explained in Chapter 3. We can obtain optimal solutions by using this model

with any of the linear-solvers available. As it can be clear in the performance

evaluation part that finding optimal solution become time-consuming when the

values of the parameters increase, so we propose four heuristic algorithms as an

alternative to this optimization model in Chapter 5.

34

Since we envision that the gap between the number of different applications

and data types increases, we define a metric called excess use to be used for

defining the dependencies of applications and data types.

At the end of this chapter, we expand the complex mathematical equation

with a numerical example to prove its linearity. This guarantees when the math-

ematical model is solved with linear solvers, the output is optimal, and the best

decisions given in the performance evaluation part are comprised of these results.

In other words, we evaluate our proposed algorithms according to the linear model

given in this chapter.

35

Chapter 5

Algorithms for Data Placement

Problem in Hybrid Fog-Cloud

Based Architecture

Chapter 4 reduces the problem in our proposed architecture to a binary integer

programming (BIP) problem, thus we can use any state of the art commercial

solvers such as Gurobi [68] or CPLEX [69] to solve the problem. The solution

time for these solvers increase exponentially as the number of data centers, data

types and running applications increase.

To overcome this, we propose four heuristic algorithms for reducing the de-

fined cost function and obtaining a solution close to the optimal one obtained by

solvers. In all algorithms, we assume that data generation volumes, data access

patterns and running frequencies of the applications are known a priori. As ex-

plained in Section 3.3, these values are tracked by DC and DP agents running

in FCs. Since all IoT nodes are the elements of FCUs, all data generation and

consumption incidents occur in FCUs. DC and DP agents, together, monitor all

data generation and usage characteristics, and provide the necessary information

for constructing GV, AR and AF matrices.

36

We propose four algorithms and group in two. In the first group, we want

to place the data types starting from the most generated and mostly used ones.

Cost function as a whole is not considered in this group, and Algorithm 1 and

Algorithm 2 belong to this group. We consider the cost function as whole in the

second group. The algorithms in this group not only consider data generation

volumes, but also the data access patterns of the applications. Algorithms 3 and

4 are the elements of this group, and as it will be clear in the simulation results

given in Chapter 7 that they converge best to the output of linear solvers.

5.1 Algorithm 1

Algorithm 1: Placement of mostly generated data near to the mostly
used FCU.
Data: M, N, D, A, L, AR, AF, GV, SC
Result: P

1 DG←matrixColumnSum(GV)
2 mergeSortDescendingWIndices(DG,0,D-1)
3 dataAccess←matrixMultiply(AR,AF)
4 P ← placeDataTypeAlg1(M,N,D,L, SC,DG, dataAccess, dataUse)
5 return P

In Algorithm 1, we try to place the mostly generated data type to the nearest

data center, where it is mostly used. This algorithm starts from placing the

mostly generated data types to the least, and if the nearest data center is full,

which can be the case if the nearest data center is a FC, it is placed to the second

best data center and so on.

If we elaborate the algorithm, from line 1 to line 2, data generation volumes of

each data type is calculated and sorted from the mostly generated to the least.

It will take O(D × N) time, since the dominating part in the section is matrix

column sum operation. It requires summing all the elements in GV matrix which

takes O(D×N). Sorting of the total data generation volumes does not take that

much time because in most of the architectures logarithm of the total number

of data generated log(D) is less than the total number of FCUs N. Line 3 is a

37

Procedure placeDataTypeAlg1(M, N, D, L, SC, DG, dataAccess)

1 Initialize P matrix: P ← 0
2 Initialize UC vector: UC ← 0
3 for i← 0 to D − 1 do
4 tempMax← 0
5 maxInd← 0
6 for j ← 0 to N − 1 do
7 if dataAccess[j][DG[0][i]] > tempMax then
8 tempMax← dataAccess[j][DG[0][i]]
9 maxInd← j

10 minDist←∞
11 minInd← 0
12 for j ← 0 to M +N − 1 do
13 if L[M +maxInd][j] < minDist then
14 if j < M then
15 minDist← L[M +maxInd][j]
16 minInd← j

17 else if UC[j −M] +DG[1][i] ≤ SC[j −M] then
18 minDist← L[M +maxInd][j]
19 minInd← j

20 if minInd ≥M then
21 UC[minInd−M]← UC[minInd−M] +DG[1][i]
22 P [i][minInd]← 1

23 return P

matrix multiplication and will take O(N × A × D) without using an optimized

matrix multiplication algorithm. This matrix multiplication is mandatory for

calculating the data access patterns of each FCU to the corresponding data type.

Then the placement procedure starts in line 4, and takes O(D × (M +N)).

In the placement procedure, from line 1 to line 2 the initialization of data

placement matrix and used capacities are set. Starting from line 3, the mostly

generated data type is placed to the nearest data center available where it is

mostly used.

38

5.2 Algorithm 2

Algorithm 2: Placement of mostly accessed data to the nearest data
center where it is mostly used.

Data: M, N, D, A, L, AR, AF, GV, SC
Result: P

1 DG←matrixColumnSum(GV)
2 dataAccess←matrixMultiply(AR,AF)
3 tempAccess←matrixColumnSum(dataAccess)
4 for i← 0 to D − 1 do
5 dataUse[0][i]← i
6 dataUse[1][i]← tempAccess[i]×DG[i]

7 mergeSortDescendingWIndices(dataUse,0,D-1)
8 P ← placeDataTypeAlg2(M,N,D,L, SC,DG, dataAccess, dataUse)
9 return P

Algorithm 2 is a slightly different version of Algorithm 1. It starts placing

from the mostly accessed data types instead of the mostly generated ones to the

nearest data centers, where they are mostly used without considering application

running profiles.

In both algorithms, DP agent can monitor application run profiles, and data

access patterns, while DC agent can give the statistics of data generation volumes.

According to the outputs of DC and DP agents, Algorithm 2 sorts data types

depending on their total access volumes, and this is the main difference between

Algorithm 1 and Algorithm 2. Then, placement starts from the most accessed

data type. The rule is to find for each data type a suitable data center (an FCU)

which preferably the nearest to FCU where it is mostly used. If the remaining

storage capacity of the nearest FCU is not big enough to store the data (of some

type), the second best FCU for that data type is chosen, and this continues until

the data is placed. If the available capacities of the nearby FCUs are not enough

for storing, the data type is placed to the nearest CC. The existence of CCs

guarantees the convergence of both algorithms, since they have unlimited storage

capacities.

In pseudo-code of the algorithm, from line 2 to 7, data access volumes for each

39

Procedure placeDataTypeAlg2(M, N, D, L, SC, DG, dataAccess,
dataUse)

1 Initialize P matrix: P ← 0
2 Initialize UC vector: UC ← 0
3 for i← 0 to D − 1 do
4 tempMax← 0
5 maxInd← 0
6 for j ← 0 to N − 1 do
7 if dataAccess[j][dataUse[0][i]] > tempMax then
8 tempMax← dataAccess[j][dataUse[0][i]]
9 maxInd← j

10 minDist←∞
11 minInd← 0
12 for j ← 0 to M +N − 1 do
13 if L[M +maxInd][j] < minDist then
14 if j < M then
15 minDist← L[M +maxInd][j]
16 minInd← j

17 else if UC[j −M] +DG[i] ≤ SC[j −M] then
18 minDist← L[M +maxInd][j]
19 minInd← j

20 if minInd ≥M then
21 UC[minInd−M]← UC[minInd−M] +DG[i]
22 P [i][minInd]← 1

23 return P

data type are calculated. It is an indication of how often each data type is used

by all FCUs. After the calculation, they are sorted from the most accessed to the

least. This process takes O(N × A×D) time without using any kind of matrix

multiplication optimization. Run times of both Algorithm 1 and 2 are dominated

by the calculation of data access patterns which requires the multiplication of

matrices. Sorting and calculating data access volumes do not take that much of

time. The placement procedure of the Algorithm 2 also takes O(D × (M +N)).

In the placement procedure, from line 1 to line 2 the initial values of data

placement matrix and used capacities are set. Starting from line 3, the most

accessed data type is placed to an available data center which is nearest to the

FCU where it is mostly used. The overall runtime of the algorithm is O(N×A×D)

40

because the total number of CCs is much less than the number of FCUs, and at

least one application runs in the system.

Both placement procedures for the first group of algorithms are almost same

except the decision start matrices DG and dataUse. For achieving better perfor-

mance in the first group of algorithms the bottleneck should be improved, which

is a rectangular matrix-matrix multiplication in both.

5.3 Algorithm 3

Algorithm 3: Placement of data that affect cost function most to the
nearest data center where it is used most one-by-one.

Data: M, N, D, A, L, AR, AF, GV
Result: P

1 DG←matrixColumnSum(GV)
2 mergeSortDescendingWIndices(DG,0,D-1)

3 normDenom←
∑N−1

i=0

∑A−1
j=0 ari,j

4 NAR← AR/normDenom
5 rowScaling ←matrixRowSum(sgn(AF))
6 for i← 0 to A− 1 do
7 for j ← 0 to D − 1 do
8 SFD[i][j]← sgn(AF [i][j])/rowScaling[i]

9 DCF ←matrixMultiply(NAR,SFD)
10 P ← placeDataTypeAlg3(M,N,D,L, SC,DG,DCF)
11 return P

The idea behind the second group of algorithms is to find a suitable place for

data types starting from the most effective one on the defined average latency

function. In this group, efficiencies of each data type are calculated according

to the variables defined in Chapter 4, and then placement choices for each data

type are ordered for minimizing the average latency. Since the problem is a

linear optimization procedure, each decision made affects the whole placement.

Regarding that, placing each data type to their best choice is not usually possible,

so it is thought that placing in turn will converge to the optimal solution. So

we try to find a suitable place for data types starting from the most effective

41

Procedure placeDataTypeAlg3(M, N, D, L, SC, DG, DCF)

1 Initialize P matrix: P ← 0
2 Initialize UC vector: UC ← 0
3 for i← 0 to D − 1 do
4 for j ← 0 to M +N − 1 do
5 pL[j]← 0
6 for k ←M to M +N − 1 do
7 pL[j]← pL[j] + (L[j][k]×DCF [k −M][DG[0][i]])

8 minDist←∞
9 minInd← 0

10 for j ← 0 to M +N − 1 do
11 if pL[j] < minDist then
12 if j < M then
13 minDist← pL[j]
14 minInd← j

15 else if UC[j −M] +DG[i] ≤ SC[j −M] then
16 minDist← pL[j]
17 minInd← j

18 if minInd ≥M then
19 UC[minInd−M]← UC[minInd−M] +DG[1][i]
20 P [i][mindInd]← 1

21 return P

one, and Algorithm 3 is the first of this group. It considers both the normalized

applications running frequencies and data requirement patterns of the application.

This distinguishes both Algorithm 3 and Algorithm 4 from the first group. Data

requirement pattern is different than the data access one, since whenever an

application needs a certain data type, it definitely has to access it. Hence, the

matrix of data access frequencies of the applications denoted by AF is changed

to a binary matrix while calculating the data requirement pattern. To be more

precise, if an application’s access frequency to a data type is greater than 0, then

the data requirement of the application to that type of data is ‘1’, this is also the

case in formal problem formulation given in equation 4.4; otherwise it is ‘0’.

There are two important issues in this algorithm. First one, each data type

is given precedence according to total generation volume. For example, if data

type Ais generated more than data type B, the precedence of data type A would

42

be higher than data type B. The second issue is that each data type is placed

according to its precedence. If we consider the previous example, data type A

would be placed before than data type.

Algorithm 3 starts from calculating which data types are generated mostly

in given network, from line 1 to 2; it again takes O(D × N) according to the

previous assumption explained in Section 5.1. After sorting which data types

are generated mostly, normalization of the applications running frequencies and

data dependency matrices are calculated from line 3 to 8. Normalization of the

applications running frequencies takes O(N × A) and changing data access fre-

quency matrix (AF) to binary takes O(A×D) time. After obtaining normalized

applications running frequency and data requirement matrices; we multiply them

with each other to get which data types are required in each FCU (line 9). If no

optimized matrix multiplication algorithm is used, it takes O(N×A×D). Then,

the placement procedure starts.

From line 1 to 2 of placement procedure, initialization of the data placement

matrix and used capacity vector variables are set. It takes O(D × (M + N)),

which is same for all algorithms. Starting from line 3, algorithm starts placing

from mostly generated data type by calculating total latency of each data center

to others. This gives the idea of how the cost function is affected if data is placed

that data center (from line 4 to line 7). After the calculation of how the cost

function is affected, placement of data types start. The goal is to place all data

types to their corresponding best places to minimize the cost function. Starting

from the mostly generated data type, all placement choices of each data type are

checked and the data is placed to the best among the available ones. Then, the

second mostly generated data type is placed and so on. The placement procedure

takes O(D × (M +N)2).

43

5.4 Algorithm 4

Algorithm 4: Placement of data that affect cost function most to the
nearest data center where it is used most according to best choices.

Data: M, N, D, A, L, AR, AF, GV
Result: P

1 DG←matrixColumnSum(GV)
2 mergeSortDescendingWIndices(DG,0,D-1)

3 normDenom←
∑N−1

i=0

∑A−1
j=0 ari,j

4 NAR← AR/normDenom
5 rowScaling ←matrixRowSum(sgn(AF))
6 for i← 0 to A− 1 do
7 for j ← 0 to D − 1 do
8 SFD[i][j]← sgn(AF [i][j])/rowScaling[i]

9 DCF ←matrixMultiply(NAR,SFD)
10 P ← placeDataTypeAlg4(M,N,D,L, SC,DG,DCF)
11 return P

As in the case of Algorithm 3, Algorithm 4 also tries to minimize the defined

cost function considering as a whole, and converge to the linear solution, but

there exists a small difference in the placement procedure. Algorithm 4 does not

guarantee that each data type is placed according to their total data generation

volume precedence, which is one of the rules used in the previous algorithm. In the

placement procedure of this algorithm mentioned rule is broken, and the available

best choices of each data type is assumed to be critical. They are placed whether

their best places are available or not. This makes Algorithm 4 is a tokenized

algorithm. This is the major difference of this algorithm and the others. In the

first and second algorithms, data types mostly generated and accessed ones are

placed to the closest data centers respectively, where they are used most; in the

third algorithm, starting from the mostly generated data type placement is done

according to where the cost function is minimized. However, in the last algorithm

starting from the mostly generated data type, every data type is placed to their

best choices.

To explain the placement procedure of this algorithm deeply, there are rounds,

and for each round according to the sorted remaining choices, data is placed if

44

Procedure placeDataTypeAlg4(M, N, D, L, SC, DG, DCF)

1 Initialize data placed vector: dataP laced← 0
2 Initialize P matrix: P ← 0
3 Initialize UC vector: UC ← 0
4 placedDataCnt← 0
5 turn← 0
6 while placedDataCnt 6= D do
7 for i← 0 to D − 1 do
8 if dataP laced[DG[0][i]] 6= 1 then
9 for j ← 0 to M +N − 1 do

10 pL[0][j]← j
11 pL[1][j]← 0
12 for k ←M to M +N − 1 do
13 pL[1][j]← pL[1][j] + (L[j][k]×DCF [k −M][DG[0][i]])

14 mergeSortAscendingWIndices(pL,0,M+N-1)
15 if pL[0][turn] ≥M then
16 if UC[pL[0][turn]−M] +DG[1][i] ≤ SC[pL[0][turn]−M]

then
17 P [DG[0][i]][pL[0][turn]]← 1
18 UC[pL[0][turn]−M]← UC[pL[0][turn]−M] +DG[1][i]
19 dataP laced[DG[0][i]]← 1
20 placedDataCnt← placedDataCnt+ 1

21 else
22 P [DG[0][i]][pL[0][turn]]← 1
23 dataP laced[DG[0][i]]← 1
24 placedDataCnt← placedDataCnt+ 1

25 turn← turn+ 1

26 return P

the capacity of the remaining best choice is available. This seems complicated,

but it will become clear by the following example. Consider three data types to

be placed in two FCUs and a CC. Starting from the most effective data type,

for example data type 1, FCU 1 minimizes the average latency. Then, data type

1 is placed to FCU 1, after that the second most effective data type is chosen,

which may be data type 2. Let its first choice be again FCU 1, but the remaining

capacity of FCU 1 is not available for storing another big data, so it is left

unplaced. Now comes to the last data type, which is data type 3, and let CC

be its first choice that minimizes the latency, then it is directly placed in CC.

No other data types are left except data type 2, and the first placement turn is

45

over since all the best choices for each data type are visited. The second round is

started from the most effective remaining data type on the average latency that

has not been placed yet. In the second round, the following best choice is taken

into account, and assume that the second best choice of data type 2 is FCU 2;

but again its capacity is not big enough for storing the data type 2, then the third

best choice comes into play in the next round. For this example, it must be CC,

since no other data centers are left and every data has to be placed in one data

center, then the final place for data type 2 is CC.

All of the discussion about the algorithm part of Algorithm 3 is also valid for

Algorithm 4. The difference starts with the initialization part of the placement

procedure. A new vector called dataPlaced is defined in Algorithm 4, and it is

a flag indicating whether the corresponding data type is placed or not. Since the

last algorithm does not guarantee to place data types in order according to their

data generation volume precedence, we have to keep track of which data types are

placed and which are not. Except the flag, there also exists two other variables:

placedDataCnt and turn. The first of them is used for checking whether all

data types are placed or not, and the second one is used for in which round the

placement algorithm is.

In the placement procedure, from line 1 to line 3 initialization of the vectors is

completed. Lines 4 and 5 define the required variables for tokens. Starting from

line 6, algorithm places each data type to its best choice turn-by-turn. Algorithm

terminates when all data types are placed, and it is checked by placedDataCnt.

Run time of the algorithm is not different than the previous one with wise im-

plementation. In the pseudo-code it seems O(D2 × (M + N)2), but we do not

need to calculate the effects of placing each data type to all data centers again

and again in all rounds. It is enough to calculate it once, and this makes the

run time of the algorithm O((D× (M +N)2) + (D2× (M +N))). Since most of

the time the relation D ≤ (M + N) holds, the run time is same as Algorithm 3:

O(D × (M +N)2).

46

The major advantage of using all proposed algorithms is their parallelizable na-

ture, since they mostly consist of vector and matrix operations. This paralleliza-

tion potential of the algorithms makes them suitable for running on multi-core

architectures efficiently.

5.5 Summary

In this chapter, we present four heuristic algorithms for the data placement prob-

lem, which can be used instead of the linear model given in Chapter 4. The

problem with linear model is the run-time since the solution space grows ex-

ponentially as the number of data centers, data types and running applications

increase. On the contrary, our proposed algorithms have cubic run-times at most.

All algorithms assume that outputs of DC and DP agents, which are data gen-

eration volumes, data access patterns and running frequencies of the applications,

are known a priori. By using these outputs, proposed algorithms try to place the

data types efficiently.

Proposed algorithms can be grouped in two: the first group consists of the

algorithms focusing on data patterns and the second one considers the average

latency function as a whole.

All of the proposed algorithms can easily run in any of the available cloud

data centers in the network, while they obtain outputs of the agents. This can be

achieved by using a centralized mechanism, such as software-defined networking

(SDN) controller.

47

Chapter 6

Hybrid Fog-Cloud Computing

Based Network Topology

Modeling

Until now, we have presented the hybrid data placement structure and the al-

gorithms. As mentioned in previous chapters of this thesis, most of the work

about the IoT networks in a large area, such as smart city scale, is hypothetical.

There exists no well-known deployed architecture, regarding that fact to verify

our proposed algorithms and network structure, we need to generate a simulation

environment with the elements of our proposed architecture: IoT nodes, fog and

cloud computing data centers.

In the generation of sample network topology, we consider IoT nodes and fog

computing nodes together forming the architectural element, which we propose,

the Fog Computing Units (FCUs). We also bear in mind the neighborhood con-

cept in the smart cities, and we divide the city in smaller regions to form these

neighborhoods. In each neighborhood, we place the IoT nodes and fog computing

data centers together, and name each neighborhood as an FCU. After constituting

the neighborhoods, in other words FCUs, we have cloud computing data centers

to be placed, and we place them to the intersection points of the neighborhoods.

48

Under the light of these assumptions, we form the smart city network in a

rectangular region and divide this large area into smaller ones calling each of

them as neighborhoods. The corners of these smaller rectangles are the possible

candidate places for CCs, and during the placement procedure of CCs, we consider

the load balancing between them. Finally, we form the sample network topology

to verify our proposed algorithms.

In the next sections of this chapter, we present algorithms used in our hybrid

network topology generation. Section 6.1 describes the algorithms for generating

the smart city network with neighborhoods, and Section 6.2 gives some exper-

imental results related to the algorithms used from different perspectives, such

as the balance between rectangles, the workloads of CCs while forming CC and

FCU clusters which may be used for other services.

6.1 Hybrid Network Topology Modeling Algo-

rithm

Algorithm for generating sample network topology starts by creating neighbor-

hoods in a rectangular city area. After generating FCUs, we get the candidate

places for CCs, and among these we choose the suitable ones to place CCs ac-

cording to some criteria. Then, we obtain the sample network topology to verify

our proposed algorithms.

In this section we want to explain the algorithms for obtaining FCUs and

choosing CC places in a smart city model. Section 6.1.1 explains how we divide

the big city rectangle into smaller ones to get neighborhoods, and Section 6.1.2

explains how we choose the CC places and form the FCU connections in between.

49

6.1.1 Rectangular Area Creation

The main structure of the proposed architecture is the fog computing units

(FCUs). To model FCUs, we need to generate some areas representing these

elements and to achieve this, we model the city as a rectangular area mentioned

in previous chapters, and divide it into smaller rectangles. Each rectangle is

assumed to be a neighborhood in the city. Inside these rectangles, IoT nodes

and fog computing data centers reside. As mentioned in Section 3.1, every IoT

node is connected to a FC in the neighborhood, and IoT nodes are distributed

randomly in each of these rectangular areas while there exists FC data center(s)

serving them. For the sake of concentrating our goal of verifying our proposed

algorithms and the network architecture, we do not mainly focus on what is

happening inside FCUs, such as how the internal connections are formed, which

data centers are chosen by which IoT nodes, etc. and leave it as a future work.

But what we assume is the following, nodes constituting the FCUs are uniformly

distributed along the region.

We start the algorithm by getting X & Y lengths of the large rectangle, the total

number of rectangles to be generated inside, and limits of how many times X and

Y axes to be divided. After obtaining the size and total number of rectangles to be

generated, we start dividing the big rectangle horizontally. We obtain horizontal

rows, and when we divide each of these rows vertically, smaller rectangular regions

appear. The algorithm terminates when the required number of rectangles are

created. In each horizontal row, the starting Y coordinate of each rectangle is

equal, but their X coordinates are different. The output of the algorithm gives

us random rectangles in quadruples: two start coordinates of each rectangle (X

& Y axes) and lengths of each sides (X & Y sides).

6.1.1.1 Horizontal and Vertical Division Counts

In the division process of the big rectangle (city) to the smaller ones (neighbor-

hoods), we first focus on how we obtain smaller rectangles inside the big one. And

50

Algorithm 5: Calculation of horizontal and vertical cut counts.

Data: Max Xdiv, Max Ydiv, N
Result: hRow Cnt & vCut Cnt Each Row

1 hCutInd← 1
2 rectReq ← N
3 while rectReq > 0 do
4 checked← 0
5 while checked = 0 do
6 vCutCnt← random integer(1,Max Xdiv)
7 if (vCutCnt+ (Max Xdiv ∗ (Max Ydiv − hCutInd))) ≥ rectReq

then
8 if vCutCnt > rectReq then
9 vCutCnt← rectReq

10 vCut Cnt Each Row[hCutInd− 1]← vCutCnt
11 hCutInd← hCutInd+ 1
12 rectReq ← rectReq − tempXDivCnt
13 checked← 1;

14 hRow Cnt← hCutInd− 1
15 return hRow Cnt & vCut Cnt Each Row

we decide to divide the big rectangle in one direction first: either horizontally or

vertically, then divide it in the other direction instead of generating arbitrary ran-

dom rectangles (see Figure 6.1). Bear in mind that, we also do not want to use

a grid-like rectangular areas, since the total number of required rectangles may

not always satisfy the product of vertical and horizontal cuts, and it significantly

degrades randomness of the areas of the generated rectangles.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

(a) An example of 12 vertical rectangle

cuts.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

(b) An Example of 5 horizontal rect-

angle cuts.

Figure 6.1: Examples of vertical and horizontal rectangle cuts.

51

In the beginning of the algorithm, we do not know exactly how many hori-

zontal divisions and how many vertical cuts needed, but what we do know is the

maximum number of total horizontal cuts (Max Ydiv) and the maximum allowed

number of vertical cuts (Max Xdiv) in each horizontal segment; so we start by

considering each horizontal slice one-by-one (see Figure 6.3).

For each horizontal slice, we generate a random integer to find out how many

vertical cuts needed for that segment, then we check whether the remaining num-

ber of rectangles can be satisfied by the other horizontal cuts if they are all divided

with maximum allowable vertical cuts. Pseudo-code of the explained algorithm

is given in Algorithm 5.

Make a
horizontal cut

Check total number of
rectangles reached

NO

YES

Store total
horizontal cut count

& vertical cut
counts for each
horizontal slice

Generate a
random integer
as vertical cut

count for
horizontal slice

Figure 6.2: Horizontal & vertical cut flowchart.

Figure 6.3: An example of vertical cuts over horizontal ones.

6.1.1.2 Choosing Y-Points

In Chapter 6.1.1.1, we calculate how many horizontal cuts needed in total and

vertical cuts required for each horizontal slice. After that, we need to find the

52

coordinates of each horizontal cut, in other words figure out the Y-axis points of

each rectangle. For each Y-axis point, we randomly select a point from uniform

distribution. The critical point is if all points are chosen totally random in the

whole grid, imbalance between rectangles increases. We overcome this by defining

minimum and maximum limits according to the horizontal cuts for each random

variable. The pseudo-code of this process is given in Algorithm 6.

Algorithm 6: Choosing Y-points.

Data: hRow Cnt, Y, yDiv Ratio
Result: yAxis Pts

1 yAxis P ts[hRow Cnt]← Y
2 yAxis P ts[0]← 0
3 leftY ← Y
4 for i← 0 to hRow Cnt− 1 do
5 tempPartSize← hRow Cnt− i
6 minL← (leftY/tempPartSize) ∗ (1− yDiv Ratio)
7 maxL← (leftY/tempPartSize) ∗ (1 + yDiv Ratio)
8 chosenL← minL+ ((maxL−minL) ∗ random(0, 1))
9 leftY ← leftY − chosenL

10 yAxis P ts[i]← yAxis P ts[i− 1] + chosenL

11 return yAxis Pts

The limit of each random Y-axis point is input to the algorithm (yDiv Ratio),

and each iteration remaining Y-axis is divided by left horizontal cut count. The

algorithm starts considering the whole Y-axis (large rectangle’s Y-side), and af-

ter choosing one random point from U˜[(1 − yDiv Ratio) ∗ (Y/Hcut count), (1 +

yDiv Ratio) ∗ (Y/Hcut count)], left Y-length is divided by one minus of the total

horizontal cut count, and the algorithm terminates after finding the last horizon-

tal slice’s Y-axis point.

In each iteration one point is chosen which is perturbed from the expected

mean of the remaining Y length with a variance related to the input yDiv Ratio.

We expect the distribution of points is correlated with the Central Limit Theorem

(CLT), and we show this with example distributions in Chapter 6.2.1.

53

Algorithm 7: Choosing X-points.

Data: hRow Cnt, vCut Cnt Each Row, X, Y, xDiv Ratio
Result: xAxis Pts

1 tempInd← 0
2 xAxis P ts[0]← 0
3 for i← 0 to hRow Cnt− 1 do
4 tempInd← sum(vCut Cnt Each Row[0→ i]) + i
5 xAxis P ts[tempInd]← X
6 leftX ← X
7 for j ← 0 to vCut Cnt Each Row[i]− 1 do
8 tempPartSize← vCut Cnt Each Row[i]− j
9 minL← (leftX/tempPartSize) ∗ (1− xDiv Ratio)

10 maxL← (leftX/tempPartSize) ∗ (1 + xDiv Ratio)
11 chosenL← minL+ ((maxL−minL) ∗ random(0, 1))
12 leftX ← leftX − chosenL
13 tempInd← tempInd+ 1
14 xAxis P ts[tempInd]← xAxis P ts[tempInd− 1] + chosenL

15 tempInd← tempInd+ 2

16 return xAxis Pts

6.1.1.3 Choosing X-Points

In the previous Chapter 6.1.1.2, we decide how to choose Y-axis points of each

horizontal cut. What is left before creating random number of rectangles is the

vertical cuts on the horizontal ones, in other words the X-axis points of the

rectangles.

Bearing in mind the balance between rectangles, for each horizontal cut we

divide the X-axis into regions and perturb the division points with some limits,

which is an input to the algorithm (xDiv Ratio). This is done as in the case of

choosing Y-axis points, we first decide the expected mean which is the mid-point

of the perturbation and within the limits we generate a random number using

uniform distribution. Details, example distributions and extra explanation are

given in the experimental results section (Chapter 6.2.1).

54

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Figure 6.4: An example of a rectangle generated by the algorithm.

6.1.1.4 Creating Rectangles in Quadruples

In the previous sections, we have marked the X and Y points of the each cut,

and this section we define the rectangles in quadruples: X & Y coordinates of the

left-bottom point and the side lengths of the rectangle. An example run of the

algorithm is given in Figure 6.4. The left-bottom point of the rectangle is marked

by red ‘X’ in the example. Quadruple notation of the generated rectangle is ‘{0,

0, 100, 50}’, meaning that the coordinates of the left-bottom point is (0, 0) and

the X & Y side-lengths are 100 and 50 respectively.

Pseudo-code of the generating rectangle algorithm is given in Algorithm 8.

Other than creating the rectangle in quadruple, it calculates some critical values

for the network generation such as areas and centers of the generated rectangles

and inner intersection points of each rectangle.

The importance of these points will become clear in the next sections, but we

can explain briefly as the following. Since at the beginning, we assume that IoT

nodes are uniformly distributed along neighborhoods, so the area is used when

calculating the traffic related data in the corresponding neighborhood, and it is

critical while making a decision of which cloud computing data center is better for

the corresponding FCU according to some balance criteria. Rectangle centers are

used for calculating distances between FCUs and CCs, and the inner intersection

points are the candidate places of CCs.

55

6.1.2 Placement of CCs and Assigning FCUs

In the previous sections, we have generated rectangles for denoting FCUs. In this

section, we want to place the remaining critical element of the proposed architec-

ture, which is cloud computing data centers (CCs). As described in Section 3.1,

CCs are the ultimate places to store data when the available storage capacity of

FCUs does not satisfy the demand. As a consequence of that, for easily serve to

the FCUs we need to place CCs near to more than one FCU. Under the light of

this goal, we choose placing CCs in the inner corners, i.e. the intersection points,

of the FCUs.

The algorithm used for choosing the places of CC points is k-means clustering.

The difference is in the first iteration, instead of randomly chosen cluster centers

as in the case of k-means, we choose the cluster centers according to projection

of a circle to the big city rectangle. We draw a circumscribed circle of the big

rectangle. Afterwards, we divide it into slices according to the total number of

clusters to be generated. Finally in the first iteration, we choose the crossing

points of circle radii with big rectangle as the first center points of the clusters

(see Figure 6.6). Initial cluster center choosing algorithm is given in Algorithm 9.

As mentioned previously, load balancing between CCs should be kept in mind.

We use two different clustering strategies: first one which does not consider load

balancing is try to connect FCUs to the nearest CC and the second one is for

load balancing which chooses the less crowded CC if possible.

In the first algorithm, whose pseudo-code is given in Algorithm 10, we connect

FCUs to the nearest CC. All FCUs have equal weight, so the size of rectangles or

the number of IoT nodes in each FCU is not considered. Although we use mesh

logical topology, there may exist some services, except data sharing, available for

FCUs which may require star topology and delay is important. Regarding that

by choosing the nearest CC in the first strategy supports this demand.

To explain the pseudo-code, we define maximum iteration count to block the

oscillations and guarantee the termination of algorithm. In each iteration the

56

-10 0 10 20 30 40 50 60 70 80 90
-20

-10

0

10

20

30

40

50

60

70

80

(a) An example of a circumscribed circle.

-10 0 10 20 30 40 50 60 70 80 90
-20

-10

0

10

20

30

40

50

60

70

80

(b) An example of a divided circumscribed cir-

cle.

Figure 6.5: Examples of undivided/divided circumscribed circles.

-10 0 10 20 30 40 50 60 70 80 90
-20

-10

0

10

20

30

40

50

60

70

80

Figure 6.6: Cluster centers in the first iteration of k-means algorithm.

distance of each FCU center to the given cluster is calculated, and if there exists

a nearer one, we move the FCU to that cluster. At the end of each iteration,

new cluster center is calculated, and if no FCUs move or the maximum number

of iterations reached, algorithm terminates.

57

In the second strategy (Algorithm 11), used for load balancing, we update

the cluster centers of k-means algorithm with bearing in mind the areas of the

connected FCUs to that CC. Also there exists a penalization mechanism when

calculating distance to cluster centers. If there exists crowded FCUs connected

to the corresponding CC, distance from FCU to that CC becomes large according

to the formula given below.

Distance =
Total Cluster Area+ FCU Area

FCU Area
×
√

(Xcc −Xfcu)2 + (Ycc − Yfcu)2

(6.1)

Equation 6.1 gives priority to less crowded CCs to be connected by the FCU.

The rest of the algorithm is same as the first one except the cluster center cal-

culation. We update them at the end of each iteration according to the areas of

FCUs connected to CC.

After running k-means algorithm with different strategies, we obtain the center

points of each cluster with FCUs assigned, and we choose the nearest intersection

point of rectangles as the place for the corresponding CC. We connect all FCUs

to the placed CC, finally we obtain our network topology with CCs placed in

the intersection point of the FCUs, and each FCU is modeled as a rectangle.

Examples of these two strategies are given Figures 6.7& 6.8.

We want to emphasize that the clustering may become an important issue in

a star topology network, and this may be the case in each FCU. But for the

verification purpose of the proposed algorithms and model, we use mesh logical

topology.

58

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Figure 6.7: An example of k-means choosing nearest CC.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Figure 6.8: An example of k-means choosing less crowded CC.

59

Algorithm 8: Creating rectangles.

Data: N, X, Y, hRow Cnt, xAxis Pts, yAxis Pts
Result: createdRects, rectAreas, rectCenters, innerCorners

1 totalXPts← N + hRow Cnt
2 yPtInd← 0
3 cornerInd← 0
4 rectInd← 0
5 for i← 0 to totalXPts− 2 do
6 if xAxis P ts[i] = X then
7 yPtInd← yPtInd+ 1
8 else
9 xLength← xAxis P ts[i+ 1]− xAxis P ts[i]

10 yLength← yAxis P ts[yPtInd+ 1]− yAxis P ts[yPtInd]
11 createdRects[rectInd][0]← xAxis P ts[i]
12 createdRects[rectInd][1]← yAxis P ts[yPtInd]
13 createdRects[rectInd][2]← xLength
14 createdRects[rectInd][3]← yLength
15 rectAreas[rectInd]← xLength ∗ yLength
16 rectCenters[rectInd][0]← xAxis P ts[i] + xLength/2
17 rectCenters[rectInd][1]← yAxis P ts[i] + yLength/2
18 rectInd← rectInd+ 1

19 if xAxis P ts[i] 6= 0 then
20 if yAxis P ts[yPtInd] 6= 0 then
21 innerCorners[cornerInd][0]← xAxis P ts[i]
22 innerCorners[cornerInd][1]← yAxis P ts[yPtInd]
23 cornerInd← cornerInd+ 1

24 if yAxis P ts[yPtInd] + yLength < Y then
25 innerCorners[cornerInd][0]← xAxis P ts[i]
26 innerCorners[cornerInd][1]← yAxis P ts[yPtInd] + yLength
27 cornerInd← cornerInd+ 1

28 return createdRects, rectAreas, rectCenters, innerCorners

60

Algorithm 9: Setting initial cluster centers.

Data: M, X, Y
Result: CC Coords

1 tempCriticalAng ← arctan(Y/X)
2 angLimits← {tempCriticalAng, π/2, π − tempCriticalAng, π, π +

tempCriticalAng, 3π/2, 2π − tempCriticalAng, 2π, 2π +
tempCriticalAng}

3 tempAngLimCheck ← 0
4 for i← 0 to M − 1 do
5 angOfPt← i ∗ (M/2π)
6 while angOfPt > angLimits[tempAngLimCheck] do
7 tempAngLimCheck ← tempAngLimCheck + 1
8 switch tempAngLimCheck do
9 case 0 do

10 CC Coords[i][0]← X
11 CC Coords[i][1]← (Y/2) + ((X/2) ∗ tan(angOfPt))

12 case 1 do
13 CC Coords[i][0]← (X/2) + ((Y/2) ∗ cot(angOfPt))
14 CC Coords[i][1]← Y

15 case 2 do
16 CC Coords[i][0]← (X/2)− ((Y/2) ∗ cot(π − angOfPt))
17 CC Coords[i][1]← Y

18 case 3 do
19 CC Coords[i][0]← 0
20 CC Coords[i][1]← (Y/2) + ((X/2) ∗ tan(π − angOfPt))
21 case 4 do
22 CC Coords[i][0]← 0
23 CC Coords[i][1]← (Y/2)− ((X/2) ∗ tan(angOfPt− π))

24 case 5 do
25 CC Coords[i][0]← (X/2)− ((Y/2) ∗ cot(angOfPt− π))
26 CC Coords[i][1]← 0

27 case 6 do
28 CC Coords[i][0]← (X/2) + ((Y/2) ∗ tan(angOfPt− 3π/2))
29 CC Coords[i][1]← 0

30 case 7 do
31 CC Coords[i][0]← X
32 CC Coords[i][1]← (Y/2)− ((X/2) ∗ cot(angOfPt− 3π/2))

33 return CC Coords

61

Algorithm 10: Choose CC places & assign FCUs to the nearest CC.

Data: M, N, innerCorners, rectCenters, rectAreas, X, Y, maxIter
Result: CC Coords, FCU Clust

1 movedFCUCnt← 1
2 iterCnt← 0
3 for i← 0 to N − 1 do
4 oldClust[i]← 0
5 FCU Clust[i]← 1

6 for i← 0 to M − 1 do
7 clustSize[i]← 0
8 while (movedFCUCnt > 0) & (iterCnt < maxIter) do
9 movedFCUCnt← 0

10 for i← 0 to N − 1 do
11 oldClusters[i]← FCU Clust[i]
12 minDist←∞
13 minInd← 0
14 for j ← 0 to M − 1 do
15 tempDist← sqrt((CC Coords[j][0]− rectCenters[i][0])2 +

(CC Coords[j][1]− rectCenters[i][1])2)
16 if tempDist < minDist then
17 minDist← tempDist
18 minInd← j

19 if iterCnt 6= 0 then
20 clustSize[oldClust[i]]← clustSize[oldClust[i]]− 1
21 FCU Clust[i]← minInd
22 clustSize[minInd]← clustSize[minInd] + 1
23 if oldClust[i] 6= FCU Clust[i] then
24 movedFCUCnt← movedFCUCnt+ 1

25 for i← 0 to M − 1 do
26 CC Coords[i][0]← 0
27 CC Coords[i][1]← 0

28 for i← 0 to N − 1 do
29 CC Coords[FCU Clust[i]][0]← CC Coords[FCU Clust[i]][0] +

((1/clustSize[FCU Clust[i]]) ∗ rectCenters[i][0])
30 CC Coords[FCU Clust[i]][1]← CC Coords[FCU Clust[i]][1] +

((1/clustSize[FCU Clust[i]]) ∗ rectCenters[i][1])

31 iterCnt← iterCnt+ 1

32 return CC Coords, FCU Clust

62

Algorithm 11: Choose CC places & assign FCUs /w Area Balance.

Data: M, N, innerCorners, rectCenters, rectAreas, X, Y, maxIter
Result: CC Coords, FCU Clust

1 movedFCUCnt← 1
2 iterCnt← 0
3 for i← 0 to N − 1 do
4 oldClust[i]← 0
5 FCU Clust[i]← 1

6 for i← 0 to M − 1 do
7 clustArea[i]← 0
8 while (movedFCUCnt > 0) & (iterCnt < maxIter) do
9 movedFCUCnt← 0

10 for i← 0 to N − 1 do
11 oldClusters[i]← FCU Clust[i]
12 minDist←∞
13 minInd← 0
14 for j ← 0 to M − 1 do
15 tempDist← ((clustersArea[j] + rectAreas[i])/rectAreas[i]) ∗

sqrt((CC Coords[j][0]− rectCenters[i][0])2 +
(CC Coords[j][1]− rectCenters[i][1])2)

16 if tempDist < minDist then
17 minDist← tempDist
18 minInd← j

19 if iterCnt 6= 0 then
20 clustArea[oldClust[i]]← clustArea[oldClust[i]]− rectAreas[i]
21 FCU Clust[i]← minInd
22 clustArea[minInd]← clustArea[minInd] + rectAreas[i]
23 if oldClust[i] 6= FCU Clust[i] then
24 movedFCUCnt← movedFCUCnt+ 1

25 for i← 0 to M − 1 do
26 CC Coords[i][0]← 0
27 CC Coords[i][1]← 0

28 for i← 0 to N − 1 do
29 CC Coords[FCU Clust[i]][0]← CC Coords[FCU Clust[i]][0] +

((rectAreas[i]/clustArea[FCU Clust[i]]) ∗ rectCenters[i][0])
30 CC Coords[FCU Clust[i]][1]← CC Coords[FCU Clust[i]][1] +

((rectAreas[i]/clustArea[FCU Clust[i]]) ∗ rectCenters[i][1])

31 iterCnt← iterCnt+ 1

32 return CC Coords, FCU Clust

63

6.2 Length, Area and Cluster Relations

In Section 6.1, we describe the algorithms used for creating hybrid fog-cloud

network topology in order to model our proposed architecture and verify the

algorithms to solve IoT data placement problem. In this part, we want to present

some experimental results regarding the distributions used while creating FCU

and CC network topology.

In Sections 6.2.1 and 6.2.2, distributions of the created rectangles side lengths

and the area distributions of the FCUs are given, respectively. In the last Sec-

tion 6.2.3, we investigate the balance between CC and FCU clusters modeled.

6.2.1 Length Distributions

Details of the point selection algorithm is given in Section 6.1.1, and now we want

to investigate the distributions of the lengths generated by selected points. We

divide one side of a big rectangle whose side length is ‘10’ into ten smaller pieces,

and set the division ratio (perturbation from mean) for each of them is to ‘0.2’ as

an example. We repeat the process 10 million times, and we obtain the histogram

for the lengths in Figure 6.9. The mean and the variance of the generated lengths

are ‘1.000’, ‘0.016’. On the one hand, mean is somehow expected since we want

to obtain ten smaller pieces from a big length of ‘10’; on the other hand, variance

is somewhere between Uniform and Normal distributions. If we consider the first

length which is a Uniform distribution and when we keep dividing the rest of

big length we end up with a Normal distribution at last for the remaining small

piece.

The distribution relation is a corollary of Central Limit Theorem [70]. In each

iteration, we generate independent random variables for the smaller lengths, and

for the last piece we subtract the sum of these independent random variables from

the maximum length which is a constant and has no effect on the distribution.

It only affects the mean but not the variance. Mean and variance values for each

64

length is given in Table 6.1, and the histograms are presented from Figure 6.10

to Figure 6.11.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Length

0

0.5

1

1.5

2

2.5

3
S

am
pl

e
C

ou
nt

105 Distribution of All Lengths

Figure 6.9: Histogram of all lengths in 10 million sample division.

Table 6.1: Mean and variances of generated lengths.

Length # Mean Variance

1 1.000 0.013

2 1.000 0.014

3 1.000 0.014

4 1.000 0.014

5 1.000 0.014

6 1.000 0.015

7 1.000 0.016

8 1.000 0.017

9 1.000 0.021

10 1.000 0.021

65

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Length

0

2000

4000

6000

8000

10000

12000

S
am

pl
e

C
ou

nt

Distribution of Length 1

(a) Histogram of Length # 1.

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

Length

0

2000

4000

6000

8000

10000

12000

S
am

pl
e

C
ou

nt

Distribution of Length 2

(b) Histogram of Length # 2.

0.7 0.8 0.9 1 1.1 1.2 1.3

Length

0

2000

4000

6000

8000

10000

12000

14000

S
am

pl
e

C
ou

nt

Distribution of Length 3

(c) Histogram of Length # 3.

0.7 0.8 0.9 1 1.1 1.2 1.3

Length

0

2000

4000

6000

8000

10000

12000

14000

S
am

pl
e

C
ou

nt

Distribution of Length 4

(d) Histogram of Length # 4.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Length

0

2000

4000

6000

8000

10000

12000

14000

16000

S
am

pl
e

C
ou

nt

Distribution of Length 5

(e) Histogram of Length # 5.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Length

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
am

pl
e

C
ou

nt

Distribution of Length 6

(f) Histogram of Length # 6.

Figure 6.10: Histograms of Length # 1 to # 6.

66

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Length

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
S

am
pl

e
C

ou
nt

104 Distribution of Length 7

(a) Histogram of Length # 7.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Length

0

0.5

1

1.5

2

2.5

S
am

pl
e

C
ou

nt

104 Distribution of Length 8

(b) Histogram of Length # 8.

0.4 0.6 0.8 1 1.2 1.4 1.6

Length

0

0.5

1

1.5

2

2.5

3

S
am

pl
e

C
ou

nt

104 Distribution of Length 9

(c) Histogram of Length # 9.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Length

0

0.5

1

1.5

2

2.5

3

S
am

pl
e

C
ou

nt

104 Distribution of Length 10

(d) Histogram of Length # 10.

Figure 6.11: Histograms of Length # 7 to # 10.

6.2.2 Area Relationship of Rectangles

In our proposed architecture, we define an architectural element called Fog Com-

puting Unit (FCU) (Chapter 3), and we emphasize that it resembles the neighbor-

hood concept in a city. We also assume that IoT nodes in a FCU are distributed

uniformly, so there is a direct correlation between the areas of FCUs and poten-

tial data generation and consumption volumes. Hence, in this section we simulate

some randomly generated FCUs considering fixed size and FCU count to figure

out the relation between the distributions of the generated areas.

We generate a big rectangle whose X & Y lengths are ‘10-by-5’ respectively.

67

We allow maximum vertical and horizontal cuts of ‘3’ and ‘2’ with a total of ‘6’

FCUs. We give a perturbation ratio for X ‘0.2’ and ‘0.3’ for Y.

4 6 8 10 12 14 16

Area Size

0

2

4

6

8

10

12

14

S
am

pl
e

C
ou

nt

104 Distribution of All Areas

Figure 6.12: Histogram of all areas in 10 million sample division.

Table 6.2: Mean and variances of generated areas.

Area # Mean Variance

1 8.334 3.037

2 8.334 3.279

3 8.334 3.278

4 8.333 3.036

5 8.332 3.278

6 8.333 3.279

68

4 5 6 7 8 9 10 11 12 13

Area Size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
am

pl
e

C
ou

nt

Distribution of Area 1

(a) Histogram of Area # 1.

4 6 8 10 12 14 16

Area Size

0

0.5

1

1.5

2

2.5

S
am

pl
e

C
ou

nt

104 Distribution of Area 2

(b) Histogram of Area # 2.

4 6 8 10 12 14 16

Area Size

0

0.5

1

1.5

2

2.5

S
am

pl
e

C
ou

nt

104 Distribution of Area 3

(c) Histogram of Area # 3.

4 5 6 7 8 9 10 11 12 13

Area Size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
am

pl
e

C
ou

nt

Distribution of Area 4

(d) Histogram of Area # 4.

4 6 8 10 12 14 16

Area Size

0

0.5

1

1.5

2

2.5

S
am

pl
e

C
ou

nt

104 Distribution of Area 5

(e) Histogram of Area # 5.

4 6 8 10 12 14 16

Area Size

0

0.5

1

1.5

2

2.5

S
am

pl
e

C
ou

nt

104 Distribution of Area 6

(f) Histogram of Area # 6.

Figure 6.13: Histograms of Areas # 1 to # 6.

69

6.2.3 Cluster Relationship

In Section 6.1.2, we use k-means for modeling the connections and the assignments

between CCs and FCUs with two different strategies: in the first one we connect

FCUs to the nearest CC and in the second one we choose less crowded CCs. In

this section, we want to give some experimental results regarding to these two

different strategies.

Before giving the results, we want to explain the simulation environment. We

model the city as an ‘80 x 60’ rectangle, there exists ‘40’ neighborhoods and we

want to place ‘5’ CC data centers. What we expect to see in the simulations is

the means of two different strategies should be the same from both area and node

count perspectives; but the variances should be different. For the verification, we

repeat the process in 1 million different cities with given specs, and we obtain the

following results given in Table 6.3 and in Figure 6.14.

Table 6.3: Mean and variances of cluster areas and node counts.

Strategy Mean Variance

Minimum Distance
Area 960.000 78024.092

Node Count 8.000 3.741

Less Crowded CC
Area 960.000 16535.888

Node Count 8.000 5.493

The simulation results confirm us that the means of both strategies from each

perspective are the same: the expected cluster area is equal to the total area

divided by the number of cluster count which is ‘960’ according to values chosen,

and the mean number of FCUs connected to a CC in each cluster is ‘8’ which

equals to the division of the total number FCUs by cluster count.

The variances of two strategies from area and cluster node count perspectives

are different. It is expected, since when we choose the nearest CC first strategy,

we do not consider the cluster area size, but from the node count point of view,

the deviation is smaller than the one in less crowded CC strategy. From traffic

balancing in a cluster perspective, i.e. less crowded CC strategy, what we expect

to see is the areas of the clusters should not deviate much from each other to

70

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3
104 Minimum Distance Related Area Distributions

(a) Histogram of Cluster Areas formed by Min-

imum Distance Strategy.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12
105Minimum Distance Related Cluster Size Distributions

(b) Histogram of Node Counts formed by Min-

imum Distance Strategy.

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.5

1

1.5

2

2.5

3

3.5
104 Traffic Related Area Distributions

(c) Histogram of Cluster Areas formed by Less

Crowded CC Strategy.

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9
105 Traffic Related Cluster Size Distributions

(d) Histogram of Node Counts formed by Less

Crowded Strategy.

Figure 6.14: Histograms of cluster areas and node counts according k-means

strategies.

maintain the balance between clusters. This is what we validate according to the

simulation results, the variance of the less crowded strategy is much less that the

nearest CC first one. By using this strategy in our models, we sustain the balance

between FCU and CC connections from other available services in the network.

71

6.3 Summary

In this chapter, we try to model the network to be used in the performance eval-

uations of our proposed solutions since there is no known deployed architecture.

We start the chapter by creating rectangular regions to define the neighbor-

hoods in the smart city, and represent the algorithms related to this (Chap-

ter 6.1.1). In order not to create grid-like neighborhoods, we use a hierarchical

cut approach to get smaller rectangles inside the big one.

After the creation of neighborhoods, which we use them as models for FCUs, we

try to place cloud computing centers wisely to simulate a possible deployment. To

do so, we use a clustering mechanism based on k-means (Chapter 6.1.2) between

CCs and FCUs, then decide where to place cloud computing data centers.

In the final part of this chapter, we present some simulation results regard-

ing to the network models created by the algorithms (Chapter 6.2). During the

generation of models, we consider the distribution of the neighborhood areas and

balance criteria between CCs, since they become very important in a deployed

architecture. For the performance evaluation of data placement model and algo-

rithms, we use a model generated by the algorithms presented in this chapter.

72

Chapter 7

Performance Evaluation

We define the data placement problem in Chapter 3, and present some solution

strategies for the problem in Chapters 4 & 5. Now in this chapter, we would like

to discuss the performance results of our algorithms and compare them with the

optimal solutions. We make extensive simulations using by MATLAB [71] and

linear solver Gurobi 7.5.2 [68], which is called inside MATLAB by using its API.

We concentrate on four important metrics in our simulations:

• Latency: It is the critical parameter, since we want to place the IoT big data

in an effective and efficient way such that the average latency applications

encounter minimized.

• Storage cost: It is the second important parameter, while obtaining average

minimum latency we do not want to use the data storage elements available

in the network excessively.

• Run-time: It is important, since we want to replace linear solvers with

heuristic algorithms which give fairly good results when the number of ele-

ments in the architecture drastically increase.

• Network occupancy: It is always important, and we do not want to inject

more traffic into the network while satisfying the latency demands.

73

In the rest of this chapter starting with the simulation parameters (Section 7.1)

and algorithms used in the evaluation (Section 7.2), we represent the performance

of our algorithms according to metrics defined above (from Section 7.3 to Sec-

tion 7.6).

7.1 Simulation Parameters

For testing the performance of proposed algorithms, we use a network model

created by the algorithms given in Chapter 6. We generate a ‘60 x 80’ km2 smart

city consisting of ‘5’ cloud computing data centers (CCs) (M). For choosing the

places of CCs, we use the second k-means strategy which tries to choose less

crowded CCs in order to preserve load balance between CCs. An example of the

network model used in the simulations is given in Figure 7.1.

After the generation of the network model, we calculate the delays between

FCUs and CCs according to the round trip time of the light 1, assuming that

high capacity fiber optic or wireless links exist between data centers. We still

need to generate the other parameters explained in Table 4.1. So, we choose

different number of applications (A) run in the network as ‘45’ and different

number of the available data types (D) as ‘20’. For data generation volumes of

each data type in each FCU (GV), we firstly generate a random variable for the

total data generation volume from normal distribution ∼N(1GB, 256MB), then

we distribute the generated data volume to each FCU with respect to their areas.

Then we randomly generate applications running frequency in FCUs (AR)

matrix and their access frequencies to the data types (AF) matrix, both, from

uniform distribution ∼U[0,3]. For the generation of AR matrix, we define a new

metric called application run ratio (appUseRatioInFCU) which describes at

least how many applications run in an FCU, and is is calculated according to the

1A request has to be made from one data center to the other and a reply is transmitted back
at the speed of light which makes the latency formula as “(2 × Distance) / Speed of light”.

74

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

Figure 7.1: Smart city example network: M = 5, N = 100. Blue crosses are FCU
centers and cyan points are possible CC locations. After using k-means with less
crowded CC strategy chosen CC places are marked with red diamond.

formula given in Equation 7.1.

appUseRatioInFCUi =

A∑
j=1

sgn(arij)

A
(7.1)

For a given appUseRatioInFCU, AR matrix is generated, and it satisfies that

at least one application runs in an FCU, and each application runs in at least

one FCU. We fix the parameters mentioned above for all simulations except the

application run ratio (appUseRatioInFCU). For the performance evaluation

from different perspectives, we sweep appUseRatioInFCU together with other

parameters, such as the number of FCUs (N), the storage capacities of FCUs

(SC) and excess use (EU) while generating applications data access frequency

matrix. For each sweeping variable, we run ‘100’ samples of simulations, and

report the averages of these ‘100’ runs as our results.

75

7.2 Algorithms Used

We compare four proposed algorithms with both random placement, the data-

centric and the application-centric solutions in aforementioned smart city network

model generated with the parameters given in Section 7.1. For the comparison

of the algorithms, we use some abbreviations in the results and these are given

in Table 7.1.

Table 7.1: Algorithms used in experiments.

Alg1 The first proposed algorithm

Alg2 The second proposed algorithm

Alg3 The third proposed algorithm

Alg4 The fourth proposed algorithm

RP Random placement

LPDC Optimal linear solution for the data-centric placement

LPAC Optimal linear solution for the application-centric placement

Alg1 is the first placement heuristic algorithm for the data-centric approach

(Algorithm 1) which tries to place the mostly generated data type to the nearest

data center where it is mostly used. Detailed explanation and pseudo-code are

given in Chapter 5.1.

Alg2 is the second placement heuristic algorithm for the data-centric approach

(Algorithm 2) which is a slightly different version of the first one as explained in

Chapter 5.2.

Alg3 is the third placement heuristic algorithm used in the data-centric ap-

proach (Algorithm 3) which considers the cost function as a whole, and tries to

minimize it. Detailed explanation of the algorithm is available in Chapter 5.3.

Alg4 is the fourth placement heuristic algorithm (Algorithm 4), which is a

modified version of the third one, still considering the defined cost function as

whole. Details of the algorithm is given in Chapter 5.4.

76

RP is the random placement algorithm. All data types are randomly placed

in any of the FCUs and CCs while taking into account only storage capacity

limitations of FCUs.

LPDC denotes the output of linear solver for the model given by the Equa-

tions 4.15-4.18 in Chapter 4.1.

LPAC denotes the output of the linear solver for the application-centric ap-

proach. It is slightly different version of the LPDC. The data is not typed, and

the data access frequency denoted by AF matrix in the data-centric model is con-

sidered in the capacity constraint of the LPAC linear model. The corresponding

model for LPAC is given from Equations 7.2-7.5.

Minimize: ∑
i∈A

∑
k∈N

ark,i
∑

z∈M∪N
lz,(M+k)pi,z∑

w∈A

∑
q∈N

arq,w
(7.2)

Subject to:

pi,j ∈ {0, 1} (7.3)

∑
j∈M∪N

pi,j = 1,∀i ∈ A (7.4)

∑
i∈A

adri × pi,(M+j) ≤ scj,∀j ∈ N (7.5)

All the variables used in Equations 7.2-7.5 are same as the variables used in

LPDC except with one minor difference and a new variable. As the minor differ-

ence, LPAC placement variable, pi,j, denotes the required data for application

i is placed in data center j which is an FCU or a CC, where it denotes the final

place of data type i in LPDC. A new variable ADR is introduced for denoting

the total size of the data required by the applications which is a vector of size

(A×1) (Equation 7.6). It is obtained by multiplication of matrix AF with vector

77

DG whose size is (D × 1) and defined in Equation 4.1.

ADR = AF × DG (7.6)

7.3 Latency Results

In this section we give the results related to average latency applications encounter

while reaching their required data types defined by Equation 4.4. During the

investigation of how average latency is affected, we use two different metrics to

be swept together with total number of FCUs exist in the system: ‘applications

run ratio (appUseRatioInFCU)’ and ‘excess use (EU)’. For both metrics we

sweep total number of FCUs exist in the network from ‘50’ to ‘150’. We randomly

generate the storage capacities (SC) of each FCU from the normal distribution

with parameters ∼N(3GB, 1GB), such that an FCU can store ‘3’ different types

of data on average.

For making the comparisons of the results easy, we group them in two: com-

parison of the random placement with first two algorithms as the first group,

and as the second group we consider the third and fourth heuristic algorithms

together with the outputs of linear solver models explained previously.

7.3.1 Effect of Applications Run Ratio on Latency

In the simulated network model, there exists ‘45’ different applications running

requiring at most ‘20’ different data types, which sets minimum excess use (EU)

to ‘2.25’ (see Equation 4.19), and its maximum value is limited by total number

of different applications run in the model. Bearing the values in mind, we set

parameter EU to a moderate value which is ‘10’ meaning that the available

applications require ‘200’ data types in total, not necessarily to be different. We

change the application run ratio in an FCU from ‘0.05’ to ‘1.0’.

78

Comparisons of the algorithms are given in the next two sections (Sec-

tion 7.3.1.1 & 7.3.1.2).

7.3.1.1 Comparison of Alg1 & Alg2 & RP

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.23

0.235

0.24

0.245

0.25

0.255

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 0.05)

RP Alg1 Alg2

Figure 7.2: Average latency (EU = 10, appUseRatioInFCU = 0.05).

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.23

0.235

0.24

0.245

0.25

0.255

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 0.10)

RP Alg1 Alg2

Figure 7.3: Average latency (EU = 10, appUseRatioInFCU = 0.1).

79

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.24

0.245

0.25

0.255
La

te
nc

ie
s

(m
s)

Average Latency (appUseRatioInFCU = 0.50)

RP Alg1 Alg2

Figure 7.4: Average latency (EU = 10, appUseRatioInFCU = 0.5).

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.24

0.242

0.244

0.246

0.248

0.25

0.252

0.254

0.256

0.258

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 0.75)

RP Alg1 Alg2

Figure 7.5: Average latency (EU = 10, appUseRatioInFCU = 0.75).

80

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.238

0.24

0.242

0.244

0.246

0.248

0.25

0.252

0.254

0.256

0.258

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 1.00)

RP Alg1 Alg2

Figure 7.6: Average latency (EU = 10, appUseRatioInFCU = 1.0).

In this group of algorithms, we do not consider the average latency cost function

as a whole, and all the results are worse than the algorithms in the second group

as seen from Figures 7.2 to 7.11.

The average latency encountered by applications increases as the number of

FCUs grows. There are two reasons of this, at first when the number of FCUs

scales up, average distances between data centers increase, and as the second

reason the probability of placing data to a far location where it is used moderately

increases.

If we compare the algorithms with each other our first two algorithms give

better results when the application run ratio (appUseRatioInFCU) is less than

‘0.5’ (see Figures 7.2- 7.4). After ‘0.5’ all the algorithms give almost the same

result. This is somehow expected, since when appUseRatioInFCU approaches

to ‘1’, the number of applications running on an FCU increases and it becomes

problematic to choose the place for a data type where it is mostly used. Although

our first two proposed algorithms are far from the second group, they give better

or similar results as the random placement.

81

7.3.1.2 Comparison of Alg3 & Alg4 & LDC & LPAC

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19
La

te
nc

ie
s

(m
s)

Average Latency (appUseRatioInFCU = 0.05)

Alg3 Alg4 LPDC LPAC

Figure 7.7: Average latency (EU = 10, appUseRatioInFCU = 0.05).

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.165

0.17

0.175

0.18

0.185

0.19

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 0.10)

Alg3 Alg4 LPDC LPAC

Figure 7.8: Average latency (EU = 10, appUseRatioInFCU = 0.1).

82

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 0.50)

Alg3 Alg4 LPDC LPAC

Figure 7.9: Average latency (EU = 10, appUseRatioInFCU = 0.5).

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

0.202

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 0.75)

Alg3 Alg4 LPDC LPAC

Figure 7.10: Average latency (EU = 10, appUseRatioInFCU = 0.75).

83

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

0.202

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 1.00)

Alg3 Alg4 LPDC LPAC

Figure 7.11: Average latency (EU = 10, appUseRatioInFCU = 1.0).

These algorithms consider the defined average latency cost function as a whole,

and as a consequence of that they give almost ‘30%’ better results than the ran-

dom placement and our proposed first two algorithms. We also evaluate the linear

model of the application-centric (LPAC) data placement with this group, and

its results are better when appUseRatioInFCU and the number of FCUs are

small. Although it gives good results with small number of applications running

in FCUs and less crowded architectures, its performance changes drastically as

these two numbers grow. As seen in Figure 7.11, its performance is ‘4%’ less than

the data-centric approaches.

If we compare the average latencies of the data-centric approaches, the best

result is obtained by LPDC which is inevitable, since it is the optimal solution of

the defined model and solved by a linear solver, Gurobi [68]. When the number

of FCUs increase, the average latency of all data-centric approaches also increase,

but the rise is not as high as in the case of the application-centric one. As the

simulation results confirm, our proposed third and fourth algorithms give almost

the same results as the optimal solution, and their performances for this setup

are almost the same. As seen in the Figures 7.7- 7.11, they track the optimal

84

solution with a slight difference.

Before finishing the discussion about the effect of application run ratio on

latency, we want to consider a final scenario in which FCU count increases dras-

tically, and all applications run in each of the FCUs. It is a possible scenario

when Social Internet of Things (SIoT) [72] concept is deployed, and becomes

widely used. So instead of sweeping the FCU count ‘50’ to ‘150’, we continue

rising it until ‘500’ and set application run ratio to ‘1.0’, meaning all ‘45’ of ‘45’

applications run in all FCUs (see Figure 7.12& 7.13).

50 100 150 200 250 300 350 400 450 500

Number of FCUs

0.23

0.235

0.24

0.245

0.25

0.255

0.26

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 1.00)

RP Alg1 Alg2

Figure 7.12: Average latency (EU = 10, appUseRatioInFCU = 1.0).

The interesting thing in this scenario is at some point average latencies start to

decrease. This can be expected as there is a limited rectangular area, which is ‘60

x 80’ km2, and it is divided into many more small rectangles such as 500 smaller

ones. Therefore, the average distance between the centers of these rectangles start

to decrease, so the average latency does. Also again in this case, the data-centric

approach performs better than application-centric placement by about ‘10%’.

All simulations verify that for networks composed of FCUs and CCs, if running

frequencies of applications on FCUs are high, the data-centric placement approach

85

50 100 150 200 250 300 350 400 450 500

Number of FCUs

0.18

0.185

0.19

0.195

0.2

La
te

nc
ie

s
(m

s)

Average Latency (appUseRatioInFCU = 1.00)

Alg3 Alg4 LPDC LPAC

Figure 7.13: Average latency (EU = 10, appUseRatioInFCU = 1.0).

outperforms the application-centric one, and our proposed algorithms Alg3 and

Alg4 are good alternatives to be used instead of the linear model.

7.3.2 Effect of Excess Use on Latency

From average latency perspective, we investigate the effect of excess use metric

in this section. It is an indication of the dependencies between the available data

types and applications. There is a linear proportion with this metric and the

required number of data types by the applications (see Section 4.2).

We fix the number of different applications running to ‘45’, and for these sim-

ulations we choose appUseRatioInFCU to ‘0.2’ which means that ‘9’ different

applications run in an FCU. Also the number of available different data types in

the model is set to ‘20’, and this limits the minimum excess use to ‘2.25’. By

considering these, we sweep excess use parameter from ‘2.5’ to ‘10’ while changing

the total number of FCUs from ‘50’ to ‘150’.

86

7.3.2.1 Comparison of Alg1 & Alg2 & RP

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.225

0.23

0.235

0.24

0.245

0.25

0.255

La
te

nc
ie

s
(m

s)
Average Latency (Excess Use = 2.50)

RP Alg1 Alg2

Figure 7.14: Average latency (appUseRatioInFCU = 0.2, EU = 2.5).

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.23

0.235

0.24

0.245

0.25

0.255

0.26

La
te

nc
ie

s
(m

s)

Average Latency (Excess Use = 5.00)

RP Alg1 Alg2

Figure 7.15: Average latency (appUseRatioInFCU = 0.2, EU = 5.0).

87

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.235

0.24

0.245

0.25

0.255
La

te
nc

ie
s

(m
s)

Average Latency (Excess Use = 10.00)

RP Alg1 Alg2

Figure 7.16: Average latency (appUseRatioInFCU = 0.2, EU = 10.0).

In the first group of the simulations, we compare the random placement with our

first two algorithms (Figures 7.14- 7.16). The results resemble what we observe

in appUseRatioInFCU simulations, as excess use increases the performance of

two heuristics degrades, but they are still better than the random placement. It

is expected since we increase the dependency on each data type by increasing the

excess use parameter. This is the difference between appUseRatioInFCU case,

where we increase the number of applications in an FCU.

Both algorithms in this group are also worse than the second group, because

they just try to minimize one of the maximum delays encountered by an appli-

cation for reaching its required data.

7.3.2.2 Comparison of Alg3 & Alg4 & LDC & LPAC

In this group we discuss the effect of excess use on our remaining algorithms

together with the linear solver results (Figures 7.17- 7.19).

88

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.17

0.172

0.174

0.176

0.178

0.18

0.182

0.184

0.186

0.188

0.19

La
te

nc
ie

s
(m

s)

Average Latency (Excess Use = 2.50)

Alg3 Alg4 LPDC LPAC

Figure 7.17: Average latency (appUseRatioInFCU = 0.2, EU = 2.5).

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.174

0.176

0.178

0.18

0.182

0.184

0.186

0.188

0.19

0.192

0.194

La
te

nc
ie

s
(m

s)

Average Latency (Excess Use = 5.00)

Alg3 Alg4 LPDC LPAC

Figure 7.18: Average latency (appUseRatioInFCU = 0.2, EU = 5.0).

89

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.176

0.178

0.18

0.182

0.184

0.186

0.188

0.19

0.192

0.194

0.196

La
te

nc
ie

s
(m

s)

Average Latency (Excess Use = 10.00)

Alg3 Alg4 LPDC LPAC

Figure 7.19: Average latency (appUseRatioInFCU = 0.2, EU = 10.0).

At first, we want to discuss the application-centric data placement (LPAC).

According to the results obtained, as our sweeping parameter increases the per-

formance of the application-centric placement degrades. It is somehow expected

from storage perspective, and this is the problem we want to solve with the data-

centric approach. As excess use increases, the dependencies of the data types also

rises which create pressure on the storage costs. When dependency on data types

for an application increases, required storage capacity also expands. Regarding

this fact, it becomes difficult to place an application’s whole data in an FCU, and

these data types need to choose CC data centers to be placed.

Performance of the data-centric approaches slightly degrades as the parameter

increases. Also when the number of FCUs expands, there is a rise in the average

latency of both heuristic algorithms and the data-centric linear solution. The

reason is the same as in the case of appUseRatioInFCU simulations. When

the number of the FCUs increases, the total number of applications running in

the network also increases, and this makes difficult to find the best place of all

running applications distributed among FCUs.

90

Now, we want to compare our heuristics with the output of linear solver. It is

clear that all possible solutions are bounded by the output of linear solver, since

it is optimal. What we try to do is to obtain a solution which is as close as to the

optimal one, and definitely it is the case. Algorithms Alg3 and Alg4 both track

the optimal solution and they give almost ‘0.1%’ worse results on the average.

To sum up, all the latency related discussions with considering all the simula-

tions, the data-centric approaches overwhelm the application-centric one, when

there exists highly data dependent applications running. And our proposed algo-

rithms Alg3 and Alg4 are fair replacements of linear model. If we consider our

proposed Alg3 and Alg4 algorithms in all cases, Alg4 is slightly better than the

Alg3 in average latency perspective, but it has a drawback compared to Alg3

which becomes clear when we discuss the run-times of the algorithms.

7.4 Storage Results

In this section, we discuss where data types are placed when using the algorithms.

We divide the possible storage places into two: CCs and FCUs. During the

simulations how the data placement is affected, we consider three different metrics

swept together with the number of available FCUs. As a first metric we consider

again appUseRatioInFCU which is responsible for how many applications run

in an FCU (Section 7.4.1). Excess use is considered as the second parameter as

an indication of the dependency between data types and running applications

(Section 7.4.2). Finally, we consider the available storage capacities (SC) of the

FCUs (Section 7.4.3).

For better presentation of the results in this group, we divide the figures into

two. In the first figure, we present results of LPAC, LPDC and random place-

ment (RP). In the second figure, we give results all data-centric approaches except

RP.

91

7.4.1 Effect of Applications Run Ratio on Data Storage

We start with the effect of application running ratio on the required storage capac-

ities. Since we also consider this parameter in the average latency (Section 7.3.1),

in this section we want to see whether a correlation between used storage capac-

ities and average latency exists. Previously, we conclude that if the number of

FCUs increases, the average latency also increases in all cases. When we choose

a higher appUseRatioInFCU parameter, the latency increases but the perfor-

mance of the application-centric strategy becomes worse than the data-centric

ones.

In this section, we want to see whether the effect of the increase in the latency

in the application-centric placement is a consequence of where the data is placed

or not. We also want to observe how the proposed data-centric approaches place

data according to the parameter appUseRatioInFCU. We fix EU to ‘5.0’,

and the storage capacity of an FCU is randomly chosen such that it can store 3

different types on the average from the normal distribution ∼N(3GB, 1GB).

There are two dimensions in the figures (Figure 7.20- 7.22): the number of the

FCUs and appUseRatioInFCU parameter. It is clear since the total required

capacity is constant, there is an inverse proportion between the used storage ca-

pacities in CCs and FCUs. In the discussions we consider used storage capacities

in the FCUs, the converse of all the comments is true for the CCs.

Firstly, we focus on the number of FCUs. In all cases simulated, as it can be

seen from the figures that there is a direct proportion between the FCU count and

used storage capacity in the FCUs. This is a consequence of increasing the pos-

sible places for data to be placed. Secondly, we consider appUseRatioInFCU

parameter, and the result we obtain is the contrary of previous case. When we

increase this parameter, used storage capacity in FCUs decreases. We can explain

this as the correlation between latency and the number of applications running in

FCUs. When a data type is requested from many places, it has to be placed such

that it can be reached from all places requested easily, and this can be achieved

by putting it on somewhere in the middle.

92

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

20

40

60

80

100

120

140

160
T

ot
al

 C
C

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)
Total Storage Capacity Used in CCs (appUseRatioInFCU = 0.20)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

0.5

1

1.5

2

2.5

3

3.5

4

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (appUseRatioInFCU = 0.20)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

15

20

25

30

35

40

45

50

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (appUseRatioInFCU = 0.20)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC and
RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (appUseRatioInFCU = 0.20)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

Figure 7.20: Total used CC & FCU storage capacities (appUseRatioInFCU =
0.2, EU = 5.0).

When we consider the algorithms used in the simulations individually, what we

see is LPAC requires the most data storage total as expected. It is higher than

‘180GB’ and this is inevitable, since all applications replicate their required data

type instead of sharing. On the contrary, the data-centric placement strategies

only require ‘20GB’ which is directly related with total number of different data

types exists in the network model. Hence, the data-centric approaches give much

more better results than traditional placement approach.

First two data-centric heuristic algorithms choose FCUs frequently than third

and fourth ones, since they do not consider the whole latency. In other approaches

93

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

20

40

60

80

100

120

140

160

180
T

ot
al

 C
C

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)
Total Storage Capacity Used in CCs (appUseRatioInFCU = 0.50)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

1

2

3

4

5

6

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (appUseRatioInFCU = 0.50)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

10

15

20

25

30

35

40

45

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (appUseRatioInFCU = 0.50)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC and
RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

14

15

16

17

18

19

20

21

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (appUseRatioInFCU = 0.50)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

Figure 7.21: Total used CC & FCU storage capacities (appUseRatioInFCU =
0.5, EU = 5.0).

except these two, there exists a balance between data to be stored in FCUs and

CCs. The ratio of used capacities of the FCUs increases ‘20%’, when the total

number of FCUs increases. This verifies that in a crowded network model, the

data-centric approaches try to store the data in the FCUs. It also supports the

result obtained in the average latency case: when the parameter increases, it

becomes harder to find the best place among the FCUs, and as a consequence

the average latency increases.

94

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

20

40

60

80

100

120

140

160

180
T

ot
al

 C
C

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)
Total Storage Capacity Used in CCs (appUseRatioInFCU = 1.00)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

1

2

3

4

5

6

7

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (appUseRatioInFCU = 1.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

10

15

20

25

30

35

40

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (appUseRatioInFCU = 1.00)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC and
RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

13

14

15

16

17

18

19

20

21

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (appUseRatioInFCU = 1.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

Figure 7.22: Total used CC & FCU storage capacities (appUseRatioInFCU =
1.0, EU = 5.0).

7.4.2 Effect of Excess Use on Data Storage

Now, we want to discuss what happens if the dependency between the data types

and applications increases, and the parameter that represents this is excess use

(EU). In Section 7.3.2, we explain how the latency is affected regarding to this

parameter, and now we want to figure out whether there exists a relation between

the required storage capacities and the latency. From the latency perspective,

we conclude there is a direct proportion between excess use and latency: when

excess use increases, the latency also increases; but it is more sensible in while

95

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

50

100

150

200

250

300

350
T

ot
al

 C
C

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)
Total Storage Capacity Used in CCs (Excess Use = 10.00)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

0.5

1

1.5

2

2.5

3

3.5

4

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Excess Use = 10.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

16

18

20

22

24

26

28

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Excess Use = 10.00)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC and
RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Excess Use = 10.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

Figure 7.23: Total used CC & FCU storage capacities (appUseRatioInFCU =
0.05, EU = 10.0).

using LPAC strategy than the data-centric approaches.

As we have shown in previous section that there is an inverse proportion be-

tween appUseRatioInFCU and the storage capacity used in FCUs. So for this

purpose we choose a smaller value of the parameter we use in the previous sec-

tion (appUseRatioInFCU) and set it to ‘0.05’ for these simulations. Storage

capacity of an FCU is again chosen randomly from ∼N(3GB, 1GB) distribution.

We use two different parameters to be swept in the simulations: the number

of the FCUs and excess use. We sweep FCU count from ‘50’ to ‘150’ in all

96

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

100

200

300

400

500

600

700
T

ot
al

 C
C

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)
Total Storage Capacity Used in CCs (Excess Use = 20.00)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Excess Use = 20.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

2

4

6

8

10

12

14

16

18

20

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Excess Use = 20.00)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC and
RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

15

16

17

18

19

20

21

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Excess Use = 20.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

Figure 7.24: Total used CC & FCU storage capacities (appUseRatioInFCU =
0.05, EU = 20.0).

simulations, and for excess use we use ‘10’, ‘20’ and ‘30’ which are moderate

values residing in the limits. At first sight, we observe that when the dependencies

between data types and applications increase, it becomes problematic to store the

data applications need. Thus, LPAC can barely place its data in the FCUs. The

required total capacity for the application-centric approach rises, and using this

method penalizes the service providers from storage cost perspective. Required

total capacity is again unaffected from the increases in FCU count and excess use

in data-centric approaches as in the case of appUseRatioInFCU.

There exists again and inverse proportion between the chosen parameter and

97

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

100

200

300

400

500

600

700

800

900

1000

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Excess Use = 30.00)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

1

2

3

4

5

6

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Excess Use = 30.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

2

4

6

8

10

12

14

16

18

20

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Excess Use = 30.00)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC and
RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

14

15

16

17

18

19

20

21

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Excess Use = 30.00)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2, Alg3,
Alg4 and LPDC.

Figure 7.25: Total used CC & FCU storage capacities (appUseRatioInFCU =
0.05, EU = 30.0).

the required storage capacity in the FCUs. It is inevitable since the dependencies

between the applications and data types rise, and although the number of running

applications does not change, their requirements to different data types increase

as this parameter goes up. This forces the data-centric approaches to choose

places in between the FCUs where the latency cost is decreased.

If we consider the algorithms individually, their behavior look similar in the

appUseRatioInFCU case. First two algorithms almost place all their data to

FCUs, and for the optimal solution together with the remaining two algorithms,

there is a balance between CCs and FCUs. From the total storage perspective,

98

when the FCU count increases, total capacity used in the FCUs also rises as in

the previous case, and all the data-centric approaches need only ‘20GB’ of total

storage. On the contrary of this, the required capacity of the application-centric

approach is more than ‘920GB’ in the worst case.

If we sum up the results regarding excess use, it is much more beneficial to

use the data-centric approaches instead of traditional application-centric one in

a highly data and application dependent network topology.

7.4.3 Effect of Storage Capacities on Data Storage

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

100

200

300

400

500

600

700

800

900

1000

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Average SC = 5GB)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC
and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

0.5

1

1.5

2

2.5

3

3.5

4

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Average SC = 5GB)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2,
Alg3, Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

2

4

6

8

10

12

14

16

18

20

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Average SC = 5GB)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC
and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Average SC = 5GB)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2,
Alg3, Alg4 and LPDC.

Figure 7.26: Total used CC & FCU storage capacities (Average capacity in an
FCU = 5GB).

99

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

100

200

300

400

500

600

700

800

900

1000
T

ot
al

 C
C

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in CCs (Average SC = 7GB)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC
and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

0.5

1

1.5

2

2.5

3

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Average SC = 7GB)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2,
Alg3, Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

2

4

6

8

10

12

14

16

18

20

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Average SC = 7GB)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC
and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

17

17.5

18

18.5

19

19.5

20

20.5

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Average SC = 7GB)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2,
Alg3, Alg4 and LPDC.

Figure 7.27: Total used CC & FCU storage capacities (Average capacity in an
FCU = 7GB).

As a final scenario of the storage discussion, we change the available capacities

in the FCUs and observe the results. We fix application run ratio and excess use

parameters to ‘0.1’ and ‘30’, respectively. We sweep the means of the available

storage resources in the FCUs from ‘5’ to ‘15’ together with the number of FCUs

exist in the network model (see Figures 7.26 to 7.28).

In these group of simulations, we try to see how FCUs are preferable if their

capacities are high enough to store multiple different types of data. According

to the results, it is easily seen that if the storage capacities of FCUs increase, all

algorithms try to place their data to them. It is inevitable since we use mesh

logical topology and some of the FCUs reside almost in equal distances to the

others, these FCUs are chosen as the best places for the data types. When the

100

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

100

200

300

400

500

600

700

800

900

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Average SC = 15GB)

RP LPDC LPAC

(a) Used CC Capacity in LPAC, LPDC
and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

0.2

0.4

0.6

0.8

1

1.2

T
ot

al
 C

C
 U

sa
ge

 C
ap

ac
ity

 (
G

B
)

Total Storage Capacity Used in CCs (Average SC = 15GB)

Alg1 Alg2 Alg3 Alg4 LPDC

(b) Used CC Capacity in Alg1, Alg2,
Alg3, Alg4 and LPDC.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0

20

40

60

80

100

120

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Average SC = 15GB)

RP LPDC LPAC

(c) Used FCU Capacity in LPAC, LPDC
and RP.

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

18.8

19

19.2

19.4

19.6

19.8

20

20.2

20.4

T
ot

al
 F

C
U

 U
sa

ge
 C

ap
ac

ity
 (

G
B

)

Total Storage Capacity Used in FCUs (Average SC = 15GB)

Alg1 Alg2 Alg3 Alg4 LPDC

(d) Used FCU Capacity in Alg1, Alg2,
Alg3, Alg4 and LPDC.

Figure 7.28: Total used CC & FCU storage capacities (Average capacity in an
FCU = 15GB).

capacity of these FCUs are limited, some of the data types should be placed in

sub-optimal places, and this increases the average latency applications encounter

while reaching their required data types. This is also a validation of what we try

to make with the data-centric approach: in limited capacities we should choose

better places such that the average latency applications encounter is minimized,

and these places are FCUs mostly. So while the storage capacities of the FCUs

grow indefinitely, much more data can be placed in them and the average latency

becomes minimum.

In this section we present the results obtained from the storage capacity per-

spective, and it is obvious that using the data-centric approaches in a network

101

where highly data dependent applications run, dramatically decreases the re-

quired data storage costs. Also as a conclusion, reason of the rise in average

latency when appUseRatioInFCU and excess use parameters increase is not

the storage capacities. It mostly depends on the relationship between applications

and their required data types.

7.5 Algorithm Run-Time Results

We want to replace the linear model with heuristic algorithms, and make them

possible for using in dynamic environments. All the proposed algorithms can run

in any of the available cloud data centers in the network when a drastic change is

observed in the data generation and access patterns or whenever new placement

is wanted. Hence, the run-times of the algorithms become important, and in this

section we want to investigate them.

50 100 150 200 250 300 350 400 450 500

FCU Count

10-5

10-4

10-3

10-2

10-1

100

R
un

 T
im

e
(s

)

Log-Plot of CPU Run Times (appUseRatioInFCU = 1.00, Excess Use = 10.00)

RP
Alg1
Alg2

Alg3
Alg4
LPDC

LPAC

Figure 7.29: CPU run times of algorithms (appUseRatioInFCU = 1.00, EU =
10.0).

Run-time analyses of the algorithms according to model parameters are given

102

in Chapter 5. In this section, we want to compare these run-times with the

run-times of the linear solvers. We come up with almost the same graph in all

simulations we run so far, hence we choose just one of them to be presented here

(Figure 7.29). To see the effect of the parameters clearly, we use logarithmic plot

instead of a linear one.

As expected while the number of FCUs (N) increases, run-times of all al-

gorithms increase. Obtaining the optimal solutions from linear solvers become

time-consuming, when the total number of FCUs in the network is large, and this

makes them difficult to adapt in a highly dynamic network.

When we consider the run-times of our proposed algorithms, increase in Alg4

is more than the others. As mentioned in Section 7.3, although Alg4 gives the

best results among the proposed algorithms, its run-time is worse than the others;

but it stills much better than the linear solvers. Alg1 and Alg2 require almost

the same CPU run-time which verifies analyses made in Section 5.1 & 5.2.

To sum up, all of out proposed data-centric algorithms outperform from CPU

run-time point of view the linear solvers, and they are adequate to be used in a

highly dynamic and crowded environments to decrease the storage and latency

costs.

7.6 Network Occupancy Results

Until now, we consider whether better average latency with less storage goal is

achieved or not. Now, we want to be sure that we do not inject extra traffic

to the network while reaching our goal, since it is not preferable. In order to

calculate the network occupancy, we mainly focus on the traffic demand of the

FCUs. As applications try to reach their required data types according to the

access frequencies (AF) and run ratios (AR), they generate a demand for the

corresponding data types. When we multiply these matrices together with total

data generation volume of the data type, we can find traffic demands of the

103

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.6

0.8

1

1.2

1.4

1.6

1.8

T
ot

al
 N

et
w

or
k

(G
bp

s)

105Network Occupancy (appUseRatioInFCU = 0.10, Excess Use = 30.00)

RP
Alg1
Alg2

Alg3
Alg4
LPDC

LPAC

Figure 7.30: Network occupancy (appUseRatioInFCU = 0.1, EU = 30).

50 60 70 80 90 100 110 120 130 140 150

Number of FCUs

0.6

0.8

1

1.2

1.4

1.6

1.8

T
ot

al
 N

et
w

or
k

(G
bp

s)

105Network Occupancy (appUseRatioInFCU = 0.10, Excess Use = 30.00)

Alg1 Alg4 LPAC

Figure 7.31: Network occupancy (appUseRatioInFCU = 0.1, EU = 30).

applications running. This is the baseline for calculating the network occupancy.

104

We examine all the results of the simulations, and the result we obtain is

the same: there is no change from network occupancy perspective, and the

application-centric approach is worse than the data-centric ones. Since all the

results are similar from network occupancy perspective, we use the following two

figures (Figure 7.30 & 7.31) showing this.

In the first figure (Figure 7.30), all algorithms are plotted and in the second

figure (Figure 7.31), only LPAC, Alg1 and Alg4 are plotted. It is easily seen

that there is a direct relation between the total number of FCUs and the network

occupancy. It is inevitable that when the total number of FCUs increases, de-

mand also increases; but the interesting thing is in all simulations LPAC gives

worse results than the data-centric placement algorithms, and it concludes that

preferring the data-centric placement instead of the application-centric one also

decreases network occupancy slightly.

If data-centric algorithms are considered individually, Alg1 & Alg2 give

slightly better results than other data-centric approaches. So we can conclude

that placing mostly generated data types near to where they are used most de-

creases network occupancy slightly.

7.7 Summary

In this chapter, we present our simulation results to evaluate the performance of

the linear models of both application-centric and data-centric approaches together

with our proposed heuristic algorithms.

The results verify that the application-centric approach has some performance

drawbacks from the required storage capacity perspective where there exists lots

of different applications, and it has worse performance from latency perspective

when the network gets crowded and the data dependencies of the applications

increase. In these cases, the data-centric approaches outperform significantly.

105

Among the data-centric approaches, we observe that Alg1 and Alg2 give

similar results in the simulations, and we conclude that in chosen scenarios placing

mostly generated (Alg1) and mostly accessed (Alg2) data types near where they

are required mostly give the same results; but from the network occupancy point

of view they have a little advantage.

The optimal latency results are obtained by solving the linear model defined

in Section 4.1 with linear solvers such as Gurobi [68]. The optimal result requires

a balance between CCs and FCUs to place data. Although the best results

are obtained from linear solvers, there is a significant drawback from run-time

perspective, as the number of nodes in the network increases, it takes long time

to find the optimal solution. At this point our proposed last two algorithms come

into play. Alg3 and Alg4 are very good alternatives of the linear model, and

they give only ‘0.1%’ worse results when the average latency is considered. Their

run-times are better than the linear model even if the number of nodes in the

network increases. Alg3 has better performance from run-time point of view,

but Alg4 is good at the latency.

To sum up, using the data-centric approaches instead of the application-centric

gives significant advantage to the service providers, and our proposed Alg3 and

Alg4 algorithms give almost the same results as the optimal solutions.

106

Chapter 8

Conclusion and Future Work

In this thesis, we first propose a cloud computing (CC) and fog computing (FC)

based IoT network model for efficiently placing and serving IoT big data. We

consider the fact that same type of IoT data may be needed and used by multiple

applications. Therefore, we propose classification of the IoT data into types, and

identification of which applications may require which types of data (Chapter 3).

On top of that model, we define the data placement problem as an optimization

model (Chapter 4) where the average latency encountered by applications in

accessing their required data has to be minimized.

Proposed data placement strategy depends on the classification of data into

types for reducing the network storage costs using the Fog Computing Units

(FCUs). Data Classifier (DC) and Data Profiler (DP) agents run in fog computing

data centers are responsible for the classification of the data and monitoring

applications’ run and data access profiles. Data is distributed among FCU and

CC resources without replicating for each application separately, which we name

the data-centric placement, and it significantly reduces required storage costs for

handling the big data generated in IoT networks.

Finding the optimal solution from latency perspective gets time consuming

when the crowded networks proliferate, and for getting over this problem we

107

propose four heuristic algorithms (Chapter 5). All of these algorithms depend on

the classification of data into types as in the linear case, and they become very

effective when the number of applications, data types, node counts increase.

Since there is no known deployed network model consisting of the elements we

use, we need to model the network for the performance evaluation of both linear

models and the proposed algorithms. We model a rectangular network assuming

it as a smart city with smaller rectangles, which are neighborhoods, and present

the algorithms used during generation of the model (Chapter 6).

We conduct extensive simulations using the network model generated to eval-

uate all proposed heuristic algorithms together with the linear solutions, and

present them in Chapter 7. Our simulation results show that our algorithms

can efficiently place data without increasing average latency that applications en-

counter. We also observe that when application running frequencies on FCUs and

excess use between applications and data types increase, the data-centric place-

ment strategies perform much better than the application-centric data placement

where each application stores their needed data separately and independently.

Since we mainly focus on the hierarchical architecture and placement algo-

rithms together with their analyses, we leave the comparison of our proposed

heuristic algorithms with meta-heuristic algorithms, such as genetic algorithms,

simulated annealing, particle swarm optimization (PSO), as a future work. We

also leave the details of establishing the connections between fog computing data

centers and IoT nodes out of the scope of this work. For different metrics, vari-

ous connection mechanisms can be studied as new research issues. Although we

do not consider replication and partial data placement in this thesis, they may

be required for some cases, for instance replication becomes important when the

reliability is critical or when the network satisfy the QoS needs of a delay critic

application. These issues are left as potential future research areas of our work

presented in this thesis.

Our work is complementary with some other approaches and methods that try

to optimize the different objectives, and focus on a different aspect of the resource

108

allocation problem. There are works, for example, that focus on application

placement or virtual machine placement considering available server and network

resources. One can integrate our work with such resource allocation algorithms

to have a more comprehensive placement and resource allocation solution.

We believe that this thesis will guide fog-cloud based IoT network designers

in designing efficient network architectures and data placement strategies, which

will become more important as the number of IoT nodes and data-intensive IoT

applications proliferate.

109

Bibliography

[1] “ITU Internet Reports The Internet of Things,” tech. rep., ITU, Geneva,

Nov 2005.

[2] J. E. Ibarra-Esquer, F. F. Gonzalez-Navarro, B. L. Flores-Rios, L. Burtseva,

and M. A. Astorga-Vargas, “Tracking the evolution of the internet of things

concept across different application domains,” Sensors, vol. 17, no. 6, 2017.

[3] D. Evans, “The Internet of Things How the Next Evolution of the Internet

is Changing Everything.” https://www.cisco.com/c/dam/en_us/about/

ac79/docs/innov/IoT_IBSG_0411FINAL.pdf, Apr 2011. (accessed 28 July

2018).

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications,” IEEE Communications Surveys Tutorials, vol. 17, no. 4,

pp. 2347–2376, 2015.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Future Gen-

eration Computer Systems, vol. 29, no. 7, pp. 1645 – 1660, 2013.

[7] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi,

I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, and P. Doody, “Inter-

net of Things Strategic Research Roadmap,” in Internet of Things - Global

110

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Technological and Societal Trends From Smart Environments and Spaces to

Green ICT (O. Vermesan and P. Friess, eds.), ch. 2, pp. 9–52, Aalborg: River

Publishers, 2011.

[8] J. A. Stankovic, “Research directions for the internet of things,” IEEE In-

ternet of Things Journal, vol. 1, pp. 3–9, Feb 2014.

[9] S. Hiremath, G. Yang, and K. Mankodiya, “Wearable internet of things:

Concept, architectural components and promises for person-centered health-

care,” in 2014 4th International Conference on Wireless Mobile Commu-

nication and Healthcare - Transforming Healthcare Through Innovations in

Mobile and Wireless Technologies (MOBIHEALTH), pp. 304–307, Nov 2014.

[10] T. Nam and T. A. Pardo, “Conceptualizing smart city with dimensions of

technology, people, and institutions,” in Proceedings of the 12th Annual In-

ternational Digital Government Research Conference: Digital Government

Innovation in Challenging Times, dg.o ’11, (New York, NY, USA), pp. 282–

291, ACM, 2011.

[11] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information frame-

work for creating a smart city through internet of things,” IEEE Internet of

Things Journal, vol. 1, pp. 112–121, April 2014.

[12] G. Suciu, A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu, “Smart

cities built on resilient cloud computing and secure internet of things,” in

2013 19th International Conference on Control Systems and Computer Sci-

ence, pp. 513–518, May 2013.

[13] W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, and M. Jo, “Efficient energy

management for the internet of things in smart cities,” IEEE Communica-

tions Magazine, vol. 55, pp. 84–91, January 2017.

[14] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of lpwan

technologies for large-scale iot deployment,” ICT Express, vol. 5, no. 1, pp. 1

– 7, 2019.

111

[15] A. Ikpehai, B. Adebisi, K. M. Rabie, K. Anoh, R. E. Ande, M. Hammoudeh,

H. Gacanin, and U. M. Mbanaso, “Low-power wide area network technolo-

gies for internet-of-things: A comparative review,” IEEE Internet of Things

Journal, vol. 6, pp. 2225–2240, April 2019.

[16] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and

L. Ladid, “Internet of things in the 5g era: Enablers, architecture, and busi-

ness models,” IEEE Journal on Selected Areas in Communications, vol. 34,

pp. 510–527, March 2016.

[17] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and

future challenges,” IEEE Communications Magazine, vol. 49, pp. 32–39, Nov

2011.

[18] Y. Jie, J. Y. Pei, L. Jun, G. Yun, and X. Wei, “Smart home system based on

iot technologies,” in 2013 International Conference on Computational and

Information Sciences, pp. 1789–1791, June 2013.

[19] M. Yun and B. Yuxin, “Research on the architecture and key technology of

internet of things (iot) applied on smart grid,” in 2010 International Con-

ference on Advances in Energy Engineering, pp. 69–72, June 2010.

[20] P. Scully, “The Top 10 IoT Segments in 2018 - based

on 1600 real IoT projects.” http://iot-analytics.com/

top-10-iot-segments-2018-real-iot-projects/, Feb 2018. (accessed

28 July 2018).

[21] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of

Things for Smart Cities,” IEEE Internet of Things Journal, vol. 1, pp. 22–32,

Feb 2014.

[22] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and

A. Oliveira, “Smart Cities and the Future Internet: Towards Cooperation

Frameworks for Open Innovation,” in The Future Internet, (Berlin), pp. 431–

446, Springer, 2011.

112

http://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/
http://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/

[23] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”

IEEE Transactions on Industrial Informatics, vol. 10, pp. 2233–2243, Nov

2014.

[24] E. Ahmed, I. Yaqoob, I. A. T. Hashem, I. Khan, A. I. A. Ahmed, M. Imran,

and A. V. Vasilakos, “The role of big data analytics in internet of things,”

Computer Networks, vol. 129, pp. 459 – 471, 2017. Special Issue on 5G

Wireless Networks for IoT and Body Sensors.

[25] M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mobile Networks and

Applications, vol. 19, pp. 171–209, Apr 2014.

[26] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A plat-

form for Internet of Things and Analytics,” in Big Data and Internet of

Things: A Roadmap for Smart Environments (N. Bessis and C. Dobre, eds.),

pp. 169–186, Cham: Springer, 2014.

[27] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia, “Above the Clouds: A

Berkeley View of Cloud Computing,” tech. rep., University of California at

Berkeley, Feb 2009.

[28] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U.

Khan, “The rise of “big data” on cloud computing: Review and open research

issues,” Information Systems, vol. 47, pp. 98 – 115, 2015.

[29] A. Botta, W. de Donato, V. Persico, and A. Pescape, “Integration of Cloud

computing and Internet of Things: A survey,” Future Generation Computer

Systems, vol. 56, pp. 684 – 700, 2016.

[30] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its

Role in the Internet of Things,” in Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, MCC ’12, (New York, NY,

USA), pp. 13–16, ACM, 2012.

[31] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Applica-

tions and Issues,” in Proceedings of the 2015 Workshop on Mobile Big Data,

Mobidata ’15, (New York, NY, USA), pp. 37–42, ACM, 2015.

113

[32] I. Stojmenovic and S. Wen, “The Fog Computing Paradigm: Scenarios and

Security Issues,” in 2014 Federated Conference on Computer Science and

Information Systems, vol. 2, pp. 1–8, 2014.

[33] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in the Fog: To-

wards a Comprehensive Definition of Fog Computing,” SIGCOMM Com-

puter Communication Review, vol. 44, pp. 27–32, Oct 2014.

[34] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xi-

ang, and R. Ranjan, “Fog computing: Survey of trends, architectures, re-

quirements, and research directions,” IEEE Access, vol. 6, pp. 47980–48009,

2018.

[35] M. Ashouri, P. Davidsson, and R. Spalazzese, “Cloud, edge, or both? to-

wards decision support for designing iot applications,” in 2018 Fifth In-

ternational Conference on Internet of Things: Systems, Management and

Security, pp. 155–162, Oct 2018.

[36] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung, “Developing

iot applications in the fog: A distributed dataflow approach,” in 2015 5th

International Conference on the Internet of Things (IoT), pp. 155 – 162, Oct

2015.

[37] J. Deichmann, K. Heineke, T. Reinbacher, and D. Wee, “Creat-

ing a successful Internet of Things data marketplace.” http://www.

mckinsey.com/business-functions/digital-mckinsey/our-insights/

creating-a-successful-internet-of-things-data-marketplace, Oct

2016. (accessed 28 July 2018).

[38] F. Karatas and I. Korpeoglu, “Fog-Based Data Distribution Service (F-DAD)

for Internet of Things (IoT) applications,” Future Generation Computer Sys-

tems, vol. 93, pp. 156 – 169, Apr 2019.

[39] J. Santos, T. Vanhove, M. Sebrechts, T. Dupont, W. Kerckhove, B. Braem,

G. V. Seghbroeck, T. Wauters, P. Leroux, S. Latre, B. Volckaert, and F. D.

Turck, “City of things: Enabling resource provisioning in smart cities,” IEEE

Communications Magazine, vol. 56, pp. 177–183, July 2018.

114

http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/creating-a-successful-internet-of-things-data-marketplace
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/creating-a-successful-internet-of-things-data-marketplace
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/creating-a-successful-internet-of-things-data-marketplace

[40] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Fog Computing:

Enabling the Management and Orchestration of Smart City Applications in

5G Networks,” Entropy, vol. 20, pp. Art. Num. 4, 1–26, Jan 2018.

[41] M. Aazam and E.-N. Huh, “Fog Computing and Smart Gateway Based Com-

munication for Cloud of Things,” in 2014 International Conference on Future

Internet of Things and Cloud, pp. 464–470, Aug 2014.

[42] M. Jutila, “An Adaptive Edge Router Enabling Internet of Things,” IEEE

Internet of Things Journal, vol. 3, pp. 1061–1069, Dec 2016.

[43] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation

heuristics for efficient management of data centers for Cloud computing,”

Future Generation Computer Systems, vol. 28, no. 5, pp. 755 – 768, 2012.

[44] Z. Guo, S. Hui, Y. Xu, and H. J. Chao, “Dynamic Flow Scheduling for Power-

Efficient Data Center Networks,” in 2016 IEEE/ACM 24th International

Symposium on Quality of Service (IWQoS), pp. 1–10, June 2016.

[45] Z. Guo, Z. Duan, Y. Xu, and H. J. Chao, “Cutting the Electricity Cost

of Distributed Datacenters Through Smart Workload Dispatching,” IEEE

Communications Letters, vol. 17, pp. 2384–2387, December 2013.

[46] Z. Guo, Z. Duan, Y. Xu, and H. J. Chao, “JET: Electricity cost-aware

dynamic workload management in geographically distributed datacenters,”

Computer Communications, vol. 50, pp. 162 – 174, 2014.

[47] V. Angelakis, I. Avgouleas, N. Pappas, E. Fitzgerald, and D. Yuan, “Allo-

cation of Heterogeneous Resources of an IoT Device to Flexible Services,”

IEEE Internet of Things Journal, vol. 3, pp. 691–700, Oct 2016.

[48] C.-W. Tsai, “SEIRA: An effective algorithm for IoT resource allocation prob-

lem,” Computer Communications, vol. 119, pp. 156 – 166, 2018.

[49] I. Lera, C. Guerrero, and C. Juiz, “Comparing centrality indices for network

usage optimization of data placement policies in fog devices,” in 2018 Third

International Conference on Fog and Mobile Edge Computing (FMEC),

pp. 115–122, April 2018.

115

[50] M. Taneja and A. Davy, “Resource aware placement of iot application mod-

ules in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM), pp. 1222–1228, May 2017.

[51] Z. Rezazadeh, D. Rahbari, and M. Nickray, “Optimized module placement in

iot applications based on fog computing,” in Electrical Engineering (ICEE),

Iranian Conference on, pp. 1553–1558, May 2018.

[52] Z. Rezazadeh, M. Rezaei, and M. Nickray, “Lamp: A hybrid fog-cloud

latency-aware module placement algorithm for iot applications,” in 2019

5th Conference on Knowledge Based Engineering and Innovation (KBEI),

pp. 845–850, Feb 2019.

[53] N. B.V. and R. M. R. Guddeti, “Heuristic-based iot application modules

placement in the fog-cloud computing environment,” in 2018 IEEE/ACM

International Conference on Utility and Cloud Computing Companion (UCC

Companion), pp. 24–25, Dec 2018.

[54] K. Toczé and S. Nadjm-Tehrani, “A Taxonomy for Management and Opti-

mization of Multiple Resources in Edge Computing,” Wireless Communica-

tions and Mobile Computing, vol. 2018, pp. Art. ID 7476201, 1–23, 2018.

[55] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload Al-

location in Fog-Cloud Computing Toward Balanced Delay and Power Con-

sumption,” IEEE Internet of Things Journal, vol. 3, pp. 1171–1181, Dec

2016.

[56] L. Tong, Y. Li, and W. Gao, “A Hierarchical Edge Cloud Architecture for

Mobile Computing,” in IEEE INFOCOM 2016 - IEEE International Con-

ference on Computer Communications, pp. 1–9, April 2016.

[57] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint Optimization of Task

Scheduling and Image Placement in Fog Computing Supported Software-

Defined Embedded System,” IEEE Transactions on Computers, vol. 65,

pp. 3702–3712, Dec 2016.

116

[58] H. R. Arkian, A. Diyanat, and A. Pourkhalili, “MIST: Fog-based data an-

alytics scheme with cost-efficient resource provisioning for IoT crowdsens-

ing applications,” Journal of Network and Computer Applications, vol. 82,

pp. 152 – 165, 2017.

[59] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource Provisioning

for Iot Services in the Fog,” in 2016 IEEE 9th International Conference on

Service-Oriented Computing and Applications (SOCA), pp. 32–39, Nov 2016.

[60] R. Yu, G. Xue, and X. Zhang, “Application Provisioning in Fog Computing-

enabled Internet-of-Things: A Network Perspective,” in IEEE INFOCOM

2018 - IEEE Conference on Computer Communications, pp. 783–791, April

2018.

[61] Y. Qin, Q. Z. Sheng, N. J. Falkner, S. Dustdar, H. Wang, and A. V. Vasilakos,

“When things matter: A survey on data-centric internet of things,” Journal

of Network and Computer Applications, vol. 64, pp. 137 – 153, 2016.

[62] B. Yu and J. Pan, “Location-aware Associated Data Placement for Geo-

distributed Data-intensive Applications,” in IEEE INFOCOM 2015 - 2015

IEEE Conference on Computer Communications, pp. 603–611, April 2015.

[63] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A Hierarchi-

cal Distributed Fog Computing Architecture for Big Data Analysis in Smart

Cities,” in Proceedings of the ASE BigData & SocialInformatics 2015, (New

York, NY, USA), pp. Art. Num. 28, 1–6, ACM, Oct 2015.

[64] S. M. A. Oteafy and H. S. Hassanein, “IoT in the Fog: A Roadmap for

Data-Centric IoT Development,” IEEE Communications Magazine, vol. 56,

pp. 157–163, Mar 2018.

[65] A. Aliyu, A. H. Abdullah, O. Kaiwartya, Y. Cao, J. Lloret, N. Aslam, and

U. M. Joda, “Towards video streaming in IoT Environments: Vehicular com-

munication perspective,” Computer Communications, vol. 118, pp. 93 – 119,

Mar 2018.

117

[66] E. Badidi, H. Routaib, and M. El Koutbi, “Towards data-as-a-service pro-

visioning with high-quality data,” in Advances in Ubiquitous Networking 2

(R. El-Azouzi, D. S. Menasche, E. Sabir, F. De Pellegrini, and M. Benjillali,

eds.), (Singapore), pp. 611–623, Springer, Nov 2017.

[67] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,

“Fog Computing: Principles, Architectures, and Applications,” in Internet

of Things (R. Buyya and A. V. Dastjerdi, eds.), ch. 4, pp. 61 – 75, Morgan

Kaufmann, 2016.

[68] G. Optimization, “Gurobi optimizer.” https://www.gurobi.com/

products/gurobi-optimizer, 2018. (accessed 31 May 2018).

[69] IBM, “Cplex optimizer.” http://www.ibm.com/analytics/data-science/

prescriptive-analytics/cplex-optimizer, 2018. (accessed 31 May

2018).

[70] V. V. Petrov, Sums of Independent Random Variables. Springer Verlag, 1975.

[71] MathWorks, “Matlab.” http://www.mathworks.com/products/matlab.

html, 2018. (accessed 05 June 2018).

[72] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social Internet of Things

(SIoT) - When social networks meet the Internet of Things: Concept, archi-

tecture and network characterization,” Computer Networks, vol. 56, pp. 3594

– 3608, Nov 2012.

118

https://www.gurobi.com/products/gurobi-optimizer
https://www.gurobi.com/products/gurobi-optimizer
http://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
http://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
http://www.mathworks.com/products/matlab.html
http://www.mathworks.com/products/matlab.html

	Introduction
	Thesis Outline

	Related Work
	Network Architecture
	Resource Allocation
	Data Placement

	Proposed Hybrid Fog-Cloud Based IoT Data Placement System Architecture
	Hybrid Fog-Cloud Based Network Architecture
	Data-Centric IoT Data Placement Strategy
	Data Classifier and Data Profiler Agents
	Summary

	IoT Data Placement Problem in Hybrid Fog-Cloud Based Architecture
	Analytical Model of Data Placement in Hybrid Fog-Cloud Architecture
	Relation Between Applications and Data Usage
	Proof of the Linearity of Mathematical Model
	Summary

	Algorithms for Data Placement Problem in Hybrid Fog-Cloud Based Architecture
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Algorithm 4
	Summary

	Hybrid Fog-Cloud Computing Based Network Topology Modeling
	Hybrid Network Topology Modeling Algorithm
	Rectangular Area Creation
	Horizontal and Vertical Division Counts
	Choosing Y-Points
	Choosing X-Points
	Creating Rectangles in Quadruples

	Placement of CCs and Assigning FCUs

	Length, Area and Cluster Relations
	Length Distributions
	Area Relationship of Rectangles
	Cluster Relationship

	Summary

	Performance Evaluation
	Simulation Parameters
	Algorithms Used
	Latency Results
	Effect of Applications Run Ratio on Latency
	Comparison of Alg1 & Alg2 & RP
	Comparison of Alg3 & Alg4 & LDC & LPAC

	Effect of Excess Use on Latency
	Comparison of Alg1 & Alg2 & RP
	Comparison of Alg3 & Alg4 & LDC & LPAC

	Storage Results
	Effect of Applications Run Ratio on Data Storage
	Effect of Excess Use on Data Storage
	Effect of Storage Capacities on Data Storage

	Algorithm Run-Time Results
	Network Occupancy Results
	Summary

	Conclusion and Future Work

