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ABSTRACT

IMPLEMENTATION OF A SPECIALIZED
ALGORITHM FOR CLUSTERING USING MINIMUM

ENCLOSING BALLS

Utku Guruşçu

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Emre Alper Yıldırım

July, 2010

Clustering is the process of organizing objects into groups whose members are

similar in some ways. The main objective is to identify the underlying structures

and patterns among the objects correctly. Therefore, a cluster is a collection of

objects which are more similar to each other than to the objects belonging to

other clusters.

The clustering problem has applications in wide-ranging areas including facil-

ity location, classification of massive data, and marketing. Many of these appli-

cations call for the solutions of the large-scale clustering problems.

The main problem of focus in this thesis is the computation of k spheres that

enclose a given set of m vectors, which represent the set of objects, in such a way

that the radius of the largest sphere or the sum of the radii of spheres is as small

as possible. The solutions of these problems allow one to divide the set of objects

into k groups based on the level of similarity among them.

Both of the aforementioned mathematical problems belong to the hardest class

of optimization problems (i.e., they are NP-hard). Furthermore, as indicated by

previous results in the literature, it is not only hard to find an optimal solution

to these problems but also to find a good approximation to each one of them.

In this thesis, specialized algorithms have been designed and implemented by

taking into account the special underlying structures of the studied problems.

These algorithms are based on an efficient and systematic search of an optimal

solution using a Branch-and-Bound framework. In the course of the algorithms,

the problem of computing the smallest sphere that encloses a given set of vectors
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appears as a sequence of subproblems that need to be solved. Our algorithms

heavily rely on the recently developed efficient algorithms for this subproblem.

A software has been developed that can implement the proposed algorithms in

order to use them in practice. A user-friendly interface has been designed for the

software. Extensive computational results reveal that our algorithms are capable

of solving large-scale instances of the problems efficiently. Since the architecture

of the software has been designed in a flexible and modular fashion, it serves as

a solid foundation for further studies in this area.

Keywords: geometric optimization problems, design of algorithms, approximation

algorithms, large-scale optimization, clustering problems.



ÖZET

EN KÜÇÜK KÜRELERLE DEMETLEME PROBLEMİ
İÇİN ÖZGÜN BİR ALGORİTMANIN GELİŞTİRİLMESİ

Utku Guruşçu

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Emre Alper Yıldırım

Temmuz, 2010

Nesnelerin belirli yakınlık kıstaslarına göre gruplara ayrılmaları sürecine lit-

eratürde ”demetleme” (clustering) adı verilmektedir. Burada temel amaç,

verilen nesne kümesindeki yapıyı ve örüntüleri (pattern) doğru bir şekilde

tanımlayabilmektir. Dolayısıyla, kümeleme süreci sonucunda ortaya çıkacak

olan gruplarda aranan nitelik, aynı gruba ait olan nesneler arasındaki yakınlık

ilişkisinin farklı gruplara ait olan nesneler arasındakine göre daha yüksek ol-

masıdır.

Kümeleme probleminin tesis yerleşimi, büyük ölçekli verilerin tasnifi ve

pazarlama gibi çok değişik alanlarda uygulamaları bulunmaktadır. Bu uygu-

lamalarda büyük ölçekli kümeleme problemlerinin etkin çözümüne gereksinim

duyulmaktadır.

Bu tez çerçevesinde kümeleme probleminde verilen nesneleri temsil eden ve

yüksek boyutlu bir uzayda yer alan m tane vektörü kapsayan, yarıçapları toplamı

veya en büyüğünün yarıçapı en küçük olan k tane kürenin hesaplanması prob-

lemleri ele alınmıştır. Bu problemlerin çözümleri sonucunda problemlerde verilen

nesneler, birbirlerine olan yakınlık ilişkilerine göre k tane gruba ayrılmaktadır.

Sözü edilen matematiksel problemler, evrensel olarak en zor problemler

sınıfında yer almaktadır (NP-zor). Literatürde, problemlerin sadece en iyi

çözümlerini hesaplamanın değil, iyi bir yaklaşık çözümlerini hesaplamanın bile

evrensel olarak zorluğu gösterilmiştir.

Bu tezde problemlerin özgün yapıları kullanılarak özel çözüm yöntemleri

geliştirilmiştir. Bu çözüm yöntemleri, dal-sınır yöntemi kullanılarak en iyi

çözümün sistemli ve etkin bir şekilde aranması üzerine kurgulanmıştır. Bu

çözüm sürecinde verilen vektörleri kapsayan tek bir kürenin hesaplanması, sürekli
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çözülmesi gereken bir alt problem olarak ortaya çıkmaktadır. Bu alt problem-

lerin çözümü için son zamanlarda geliştirilen etkin çözüm yöntemlerinden fay-

dalanılmıştır.

Geliştirilen çözüm yöntemleri, bir yazılıma dönüştürülerek uygulamada kul-

lanılmaları sağlanmıştır. Geniş çevrelerin kullanımını sağlayabilmek amacıyla

yazılımda kullanılabilirlik artırılmıştır. Yapılan kapsamlı deneysel hesaplama

çalışmaları sonucunda geliştirilen yöntemlerin büyük ölçekli problemleri etkin bir

şekilde çözebildikleri ortaya çıkarılmıştır. Geliştirilen yazılım, diğer pek çok ge-

ometrik eniyileme problemlerine de uygulanabilecek şekilde esnek ve modüler bir

yapıda tasarlandığı için gelecekteki benzeri akademik çalışmalar için önemli bir

alt yapı teşkil etmektedir.

Anahtar sözcükler : geometrik eniyileme problemleri, çözüm yöntemi tasarımı,

yaklaşık çözüm yöntemleri, büyük ölçekli eniyileme, kümeleme problemi.
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Chapter 1

Introduction and Literature

Review

Clustering is the process of organizing objects into groups whose members are

similar in some ways. The main objective is to identify the underlying structures

and patterns among the objects correctly. Therefore, a cluster is a collection of

objects which are more similar to each other than to the objects belonging to

other clusters.

The clustering problem has applications in wide-ranging areas including infor-

mation retrieval (M. Charikar et al. [7]), facility location (Z. Drezner (ed.) [13])

and data mining (R. Agrawal et al. [2]). For example, clustering of customers

according to their shopping habits enables firms to develop more cost efficient and

effective marketing techniques such as informing their customers only about the

products they are interested in. For instance, large-scale enterprises may record

all information about the transactions of their customers, such as age and postal

code, along with the list of purchased items into their database, and then they

may wish to use this information in order to devise medium term and long term

marketing strategies. In addition, clustering of the products and the way they

are presented to customers have a significant role on sales. The locations of goods

in supermarkets or listing of products in e-commerce web sites are such examples
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of clustering.

Other application areas of the clustering problem include the classification of

plants or animals according to their genetic characteristics, clustering of books in

the library according to their subjects, authors or editions, grouping of patients

in hospitals according to their bloodtype. Therefore, designing and implementing

specific and efficient algorithms for these problems has a significant importance.

The use of computers in decision support systems has increased with the

development of information technology. Rapid developments in computer tech-

nology has brought new perspectives to operations research. While larger scale

problems can be solved within a shorter amount of time, much larger scaled prob-

lems that need solutions have arisen. For example, in the above marketing case,

more volumes of data can be stored in their database. Nevertheless, this type of

database must be administered in a more systematic and efficient way in order

to keep integrity. Generally, the increase in the dimension of new problems is

much faster than the increase in the dimension of solvable problems. Therefore,

efficient algorithms are essential for large-scale clustering problems.

One of the crucial components of the clustering problem is to accurately and

meaningfully define the closeness criterion among objects. Different closeness

criteria exist in the literature for certain types of clustering problems. In the

marketing example above, two customers who live nearby and whose ages and

shopping lists are similar to each other can be defined as “close” under all mean-

ingful “closeness” criteria. First, parameters that will be used to relate the objects

must be identified. Then, each parameter is represented as a dimension in a high-

dimensional space. Therefore, each object can be represented as a vector in this

resulting space.

The distance among the vectors determines the similarity of the objects. We

use the Euclidean distance as a measure of similarity among the objects. For

example, customer’s age, postal code, and expenses for electronic goods can be

considered as the parameters that will be used to cluster customers. Therefore,

a three dimensional space is constructed and every customer is represented as



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 3

a three dimensional vector. The similarity among customers can then be iden-

tified by the distance among the corresponding vectors in this space. Vectors

corresponding to similar customers are closer to each other whereas vectors cor-

responding to dissimilar customers are not.

After defining the closeness criterion, clustering of objects can be mathemat-

ically expressed as “the grouping of vectors, corresponding to objects, as clusters

that satisfies certain closeness criteria in high dimensional space”. The distance

among the vectors within a certain cluster must be as small as possible.

Clusters can be defined in several ways. One common approach is to define a

cluster by a simple geometric object that covers all the vectors within a cluster.

Spheres, ellipsoids, and boxes are usually chosen as covering geometric objects

since they are easy to represent.

Next, the number of groups (k) must also be specified. There are two ap-

proaches for determining k while enclosing a given set of vectors: (1) computing

k geometric objects according to a predetermined objective function, (2) com-

puting minimum number of geometric objects while ensuring a given enclosing

criteria. Hence, k is a parameter of the problem for the first approach, and is

a decision variable of the problem for the second approach. Thus, the decision

maker predetermines the number of groups in the former approach, while the

number of groups is determined only after the solution of the problem in the

latter approach.

In this study, sphere is used as the enclosing geometric object. Moreover, we

assume that the decision maker predetermines the number of clusters. Therefore,

k is a parameter of the problem. In other words, the first approach is adopted.

Therefore, the problems studied in this thesis can be defined as computing k

spheres that enclose all the given vectors, while minimizing a certain objective

function. These types of problems are called geometric optimization problems

due to their geometric structure.

Only the first approach (k is a parameter) is covered in the context of this

study since it can be used to obtain a solution for the second approach (k is a
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decision variable) easily. If k is a parameter, the minimum number of clusters

that satisfies certain clustering properties can be computed by solving the problem

with carefully selected k values. For instance, a binary search over k would be

sufficient for this approach. As a result, our algorithms can be used for the

solution of the second approach together with a binary search.

Within this study, several factors are taken into consideration during the

selection of geometric objects. In recent years, many researchers have developed

efficient algorithms that can compute a sphere (k = 1) which encloses a given

vector set (Yıldırım [46]; Ahipaşaoğlu and Yıldırım [3]). This problem is known

as the 1-center or the minimum enclosing ball (MEB) problem. The proposed

algorithms are able to solve large-scale MEB problems. Some of these algorithms

have been tested and the computational results demonstrate their efficiency in

practice. These studies and their results led us to select the sphere as the covering

geometric object. The clustering problem for k = 1 is a special case of the

optimization problems studied in this thesis. Since the algorithm for k = 1 is

solved repeatedly in our approach, it provides a basis for developing algorithms

for cases where k can take different values.

Finally, we use two distinct objective functions. Hence, the clustering prob-

lems studied in the scope of this thesis can be defined as the computation of k

spheres that enclose a given set of vectors, which represents the set of objects, in

a high dimensional space in such a way that the radius of the largest sphere or

the sum of the radii of spheres is as small as possible. We develop an efficient

algorithm based on a systematic and efficient search of an optimal solution using

a branch-and-bound framework. Then, we implement our algorithm and develop

a software package. As a result, a user friendly software package is developed

for certain clustering problems. Encapsulation, abstraction, modularity, usabil-

ity and flexibility are determined as the fundamental necessities of the software

package. Finally, experimental studies reveal that the proposed algorithms are

able to solve large-scale clustering problems in a reasonable amount of time.

The remainder of this thesis is organized as follows: A review of related lit-

erature is provided in the remainder of this chapter. Chapter 2 formally defines
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and presents nonlinear mixed-integer formulations of the clustering problems.

Chapter 3 is devoted to the approximation algorithms for finding approximate

solutions to problems. A review of the implementation of the algorithms and soft-

ware package is given in chapter 4. Numerical results are presented in Chapter 5.

Chapter 6 concludes the thesis by giving an overall summary of the contribution

to the existing literature and lists some possible future research directions.

1.1 Literature Review

In the scope of this thesis, we study the problem of computing k spheres in a high

dimensional space that enclose a given set of vectors in such a way that the radius

of the largest sphere or the sum of the radii of spheres is as small as possible.

In the literature, these problems are initially studied on networks. In this

context, a function that corresponds to the distances among the nodes on a

network is first defined. Then, the objective is to find the k facility locations on a

network in such a way that the maximum distances among the demand points and

their respective nearest facilities or the sum of the distances among the demand

points and their respective nearest facilities is minimized. These problems are

mostly suitable for site selections.

In the pioneer work of the Hakimi [21], the “one-center” and the “one-median”

problems are initially formulated and solved on networks. The “one-center” prob-

lem aims to locate a single facility on a network in such a way that the maximum

distance among the facility and the demand points on a network is minimized,

while the “one-median” problem aims to locate again a single facility on a net-

work while minimizing the sum of distances between the facility and the demand

points on a network. He introduces the concepts of the “absolute center” and the

“absolute median” of a weighted graph. These concepts are the generalizations

of the “center” and the “median” of a graph, respectively. Two methods are pro-

posed in the study where the first method is used for locating a switching center

(facility) in a communication network optimally and the second method is used
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for finding the most suitable location of a site such as hospital or police station

in a highway system. The former method formulates and solves the “one-center”

problem where the latter one formulates and solves the “one-median” problem

on networks.

There are further studies in the literature for the “one-center” and the “one-

median” problems on networks. Goldman [19] proposes simple algorithms for the

one-median problem, where he locates a single central facility on two different

types of simple networks in such a way that the distances among the central

facility and the sources of the flow is minimized. S. L. Hakimi, E. F. Schmeichel,

J. G. Pierce [24] provide some improvements in Hakimi’s method for the “one-

center” problem on networks.

The “one-center” and the “one-median” problems on networks are later gen-

eralized to the “k-center” and the “k-median” problems on networks by Hakimi

[22]. This study proves that the “k-median” of a weighted graph includes at least

one of the optimal k switching centers (facilities) of a network. Therefore, this

result can reduce the “k-median” problem on networks to a finite search.

Then, several solution methods have been proposed for different k values where

k > 1 [10, 17, 18, 23, 29, 35, 44, 45] in the literature. One of the most impor-

tant solution methods, for the k-center problem, in the literature is proposed by

Minieka [15]. He shows that there are only a finite number of potential switching

centers in a graph which reduces the problem to a finite search while it is enough

to solve only a finite series of set covering problems in order to find k centers on

a network.

The aforementioned problems show that there is a finite number of alterna-

tives (number of nodes) for determining the k centers or k medians on general

networks. However, Kariv and Hakimi [33] prove that finding a k-median of a

general network is NP-hard. Similarly, Hsu and Nemhauser [28] and Kariv and

Hakimi [32] show that the k-center problem is also NP-hard on general networks.

For a review of the studies about the k-center and the k-median problems in a

network location literature, the reader is referred to the review papers of Tansel,

Francis and Lowe [42, 43].
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The k-center and the k-median problems are also studied in high dimensional

continuous spaces. These problems aim to find k supply points from a given set

of points anywhere in the plane, in such a way that the distance from a point to

its respective nearest supply point or the sum of the distances from the points to

their respective nearest supply points is as small as possible. Hence, switching

centers (facilities) in network location literature correspond to the supply points

in continuous spaces. Moreover, these supply points refer to the centers of the

spheres in the aforementioned problems. Therefore, there are no constraints on

the centers of the spheres. Megiddo and Supowit [38] prove that, even for the

plane, both problems are NP-complete.

The results in the literature reveal that it is hard to develop theoretically

efficient algorithms for the studied problems since no polynomial time algorithm

has been developed for NP-hard problems yet. On the other hand, some efficient

algorithms have been proposed for some of the special cases of both the “k-center”

and the “k-median” problems in a plane for k = 2.

Drezner [12] presents a trivial O(nd +1)-time algorithm for the solution of the

planar 2-center problem where n is the number of demand points and d is the

dimension of the space. He also develops an efficient algorithm for solving the

planar 2-median problem with a maximum of 100 demand points. The efficiency

of these algorithms are further improved by using different search techniques.

Agarwal and Sharir [1] give an O(n2logn)-time algorithm for the planar 2- center

problem by using the parametric searching method. Afterwards, Matousek [37]

uses the randomization method to propose a simpler algorithm with a running

time of O(n2logn) again for the planar 2-center problem. The running time of

the planar 2-center algorithms are also further improved by Hershberger [25] and

Jaromzyl and Kowaluk [31], respectively.

The first subquadratic solution to the planar 2-center problem is provided

by Sharir [40]. He developes an O(nlog9n)-time algorithm by integrating the

parametric searching technique with various other techniques such as dynamic

maintenance of planar configurations. This algorithm is improved to O(nlog2n)-

time algorithm subsequently by Eppstein [16]. However, the running times of
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these algorithms depend on the number of supply points, where the size of the

problems grows exponentially as a function of k. Therefore, these algorithms can

not be generalized, while maintaing the same efficiency, for cases where k > 2.

Approximation algorithms are the alternative solution methods that aim to

find approximate solutions to various optimization problems rather than exact

solutions. These algorithms are often designed and developed for NP-hard prob-

lems, while it is not proved that there can ever exist an efficient polynomial time

exact algorithm for solving these problems. Therefore, approximation algorithms

are often developed for this class of problems. For a given positive ε value, (1+ε)-

approximate solution can be defined as the following for the studied problems.

If the optimal value of the problem is r, then the objective function value of the

approximate solution will not be more than (1 + ε) × r. The solution times of

these algorithms are generally inversely proportional with the value of the ε.

There are efficient approximation algorithms in the literature for both the

k-center and the k-median problems. Gonzalez [20] presents a 2-approximation

algorithm (ε = 1) for the k-center problem that requires O(pn) computations,

where p is the number of clusters and n is the number of points. However, this

algorithm lacks to find the solution if the points do not satisfy the triangular

inequality. Another 2-approximation algorithm for the k-center problem is pro-

posed in Hochbaum ve Shmoys [26, 27]. They develop general purpose algorithms

that works with the problems in wide-ranging areas such as location theory, rout-

ing and etc. Furthermore, they show that any algorithm proposed with a better

approximation factor will imply that P=NP for several of these problems. Finally,

Feder and Greene [27] prove that, for n ≥ 2, it is impossible to find an optimal

solution to k-center problem within an approximation factor around 1.822 unless

P = NP .

There are also efficient approximation algorithms for the k-median problem

in the literature. Charikar and Guha [8] propose a 6.66-approximation algo-

rithm, first constant factor approximation algorithm, for the k-median problem.

Then, Jain and Vazirani [30] present a 6-approximation algorithm for the metric
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k-median problem. Shortly after, Charikar and Guha [9] improve Jain and Vazi-

rani’s algorithm and develop a 4-approximation algorithm for the metric k-median

problem.

Furthermore, in the literature there exist algorithms that are both theoreti-

cally and practically efficient for the special cases of the 1-center and 1-median

problems. Chrystal and Peirce [41, 11] propose the first known exact algorithm

for the MEB problem in the plane. It computes the minimum enclosing ball

of m points in the plane in O(m2) operations for the worst case. However, the

number of operations needed to solve these problems grows exponentially as a

function of the dimension. Later, Elzinga and Hearn [14] also consider the MEB

problem that encloses a given set of points in a high dimensional space in n di-

mensions. They provide a solution procedure in which the memory requirement

of the computer is independent of the number of points. However, the solution

time of the procedure grows, approximately, linearly with the number of points.

Therefore, a new concept, core set of size ε, have arisen in the literature for the

minimum enclosing ball problems.

Let us have a set of vectors S ⊂ Rd, where d is the dimension of the space,

and a positive ε value (ε > 0). An ε-core-set P ⊂ S ensures that, if the smallest

ball that encloses P is expanded by ε, then the resulting ball encloses S. In

other words, if the radius of the smallest ball that encloses P is multiplied by

1 + ε, then the resulting ball contains S. Note that the size of the core set is

independent of the number of points and the number of dimensions. The existence

of an epsilon core set of size O(1/ε2) for the minimum enclosing ball problem

is first established by Badiou, Har-Peled and Indyk [5]. They propose a (1+ε)-

approximate algorithm that computes the minimum enclosing ball of a given set in

O(mn/ε2+(1/ε10)log(1/ε)) operations. The existence of an epsilon-core set of size

O(1/ε) is found by Badiou and Clarkson [4] and Kumar, Mitchell and Yıldırım [34]

independently. Panigraphy [39] constructs the best known complexity bounded

algortihm for the fixed ε problem, which computes the approximation algorithm

in O(mn/ε) operations.
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Finally, Yıldırım [46] focuses on the minimum enclosing ball problem on rel-

atively large scale instances. Two (1 + ε) algorithms are developed for the afore-

mentioned problem for a given positive ε value. The MEB for a given instance

can be computed in O(mn/ε) operations with both of the algorithms. This result

is the same as the best known complexity for fixed ε. The extensive computational

results reveal that they can compute the algorithm with a smaller size of the core

set than the worst case estimates. These agorithms are effective and simple to

implement. Moreover, they have good worst case complexities and efficient in

practice. These studies have provided a significant background for the solution

methods developed in this thesis since the MEB problem arises as a sequence of

subproblems in the solution of the studied problems.

Previous studies in the literature, for the geometric optimization problems

studied in the scope of this thesis, can be classified mostly as theoratical studies

and have not been implemented in practice. However, these types of problems

arise in numerous important applications such as data analysis, data mining, im-

age processing and facility location. Therefore, the design and implementation

of efficient algorithms are essential for solving such problems. We cover an im-

portant gap in the literature by designing and also implementing specific and

efficient algorithms for solving certain types of geometric optimization problems.



Chapter 2

Problem Definition and Notation

In this chapter, we give the formal definitions of our problems and introduce the

parameters, variables, and the mathematical models that can be used to solve

the problems.

We study the problem of computing k minimum enclosing spheres in a high

dimensional space that enclose a given set of m vectors in such a way that the

radius of the largest sphere (min-max problem) or the sum of the radii of spheres

(min-sum problem) is as small as possible. While the former problem is the same

as the k-center problem, the latter one can be considered as a version of k-median

problem with a different objective function.

Let S = {p1, p2, ..., pm} ⊂ Rn be the given vector set, where p1, p2, ..., pm are

the vectors that correspond to objects, n is the dimension of the space, and m

is the number of vectors. The problem can be viewed as the assignment of m

vectors to k groups and the computation of the smallest enclosing ball of vectors

in each cluster in such a way that the radius of the largest sphere or the sum of

the radii of spheres is as small as possible. Each group of vectors corresponds to

a cluster. Intra - group similarity is increased by trying to reduce the distances

among the vectors within a cluster.

Note that, if the optimal assignment of m vectors to k groups is known in

11
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advance, the smallest sphere that encloses each cluster can be computed efficiently

by the existing minimum enclosing ball (MEB) algorithms. Then, the maximum

radius or the sum of the radii of spheres will yield the optimal solution. However,

this simple algorithm is not valid for our problems since we do not know the

optimal assignment.

Moreover, both of the optimization problems can be solved by using a brute-

force approach. First, we assign m vectors to k clusters in all possible ways. Then,

we compute the minimum enclosing ball for each cluster. Next, we compute the

objective function value for each possible clustering. Finally, we can select the

optimal grouping which gives the smallest objective function value. This method

is known as complete enumeration. The number of all possible clusterings is

finite, which makes the problems solvable. On the other hand, we can arrange m

vectors to k groups in km possible ways. Therefore, the number of all possible

clusterings increases exponentially with the number of vectors. Note that, km

can be an extremely large number even if k and m are relatively small. For

instance, if k = 2 and m = 50, then km is around 1.13× 1015, and this number is

beyond the computational limit of today’s most advanced computers. As a result,

the complete enumeration method is computationally feasible for only very small

values of k and m. Therefore, it is clear that sophisticated solution methods are

required for solving the studied problems efficiently. The studied problems can

be formally modeled as a nonlinear mixed-integer programming model (NLMIP)

as in Model 1 and Model 2.
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min-max problem

Parameters

pi = vector i, i = 1, 2, ....,m

k = number of spheres

M = big constant

Decision Variables

βij =

{
1, if the ith vector is assigned to the jth sphere

0, otherwise.

i = 1, ....,m , j = 1, ...., k.

cj = center of the jth sphere , j = 1, ...., k

r = radius of the largest sphere

Having defined the parameters and the decision variables of the min −max

problem, we can can formulate the problem as the following nonlinear mixed-

integer optimization model:

Model 1 (NLMIP 1):

Minimize r (2.1)

Subject to

k∑
j=1

βij = 1, i = 1, ....,m (2.2)

∥∥pi − cj
∥∥ ≤ r + (1− βij)M, i = 1, ....,m, j = 1, ...., k (2.3)

βij ∈ {0, 1}, i = 1, ....,m, j = 1, ...., k (2.4)

cj ∈ Rn, j = 1, ...., k (2.5)

r ∈ R (2.6)
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min-sum problem

Parameters

pi = vector i, i = 1, 2, ....,m

k = number of spheres

M = big constant

Decision Variables

βij =

{
1, if the ith vector is assigned to the jth sphere

0, otherwise.

i = 1, ....,m , j = 1, ...., k.

cj = center of the jth sphere , j = 1, ...., k

rj = radius of the jth sphere , j = 1, ...., k

Having defined the parameters and the decision variables of the min − sum

problem, we can can formulate the problem as the following nonlinear mixed-

integer optimization model:

Model 2 (NLMIP 2):

Minimize
k∑

j=1

rj (2.7)

Subject to

k∑
j=1

βij = 1, i = 1, ....,m (2.8)

∥∥pi − cj
∥∥ ≤ rj + (1− βij)M, i = 1, ....,m, j = 1, ...., k (2.9)

βij ∈ {0, 1}, i = 1, ....,m, j = 1, ...., k (2.10)

cj ∈ Rn, j = 1, ...., k (2.11)

rj ∈ Rn j = 1, ...., k (2.12)
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In the above two mathematical models, the objective functions are very sim-

ilar. In the first model, the objective is to minimize the maximum of the radii of

spheres, whereas in the second model the objective is to minimize the sum of the

radii of spheres.

The first constraint set is the same for both models. In this set, there is a

constraint for each vector, which implies that there is a total of m constraints.

We ensure that a vector is assigned to exactly one cluster and no vector remains

unassigned.

The second constraint set is also similar in both models. It includes a con-

straint for each vector and each cluster, which implies that there is a total of

m × k constraints. If pi is assigned to the jth cluster, then βij is equal to one.

Therefore, the constraint that corresponds to the (i, j) pair ensures that the dis-

tance between pi and cj ,which represents the center of the jth cluster, can be

at most r for Model 1, and at most rj for Model 2. Thus, pi is enclosed by the

unique sphere whose center is cj and radius is r for Model 1, and rj for Model 2.

If pi is not assigned to the cluster j, then βij is equal to 0. In this case, the right

hand side of the (i, j) pair becomes a large number. Therefore, the constraint

on the distance between the vector pi and the center of jth cluster cj becomes

redundant. For both problems, M must be a big enough constant in order to

satisfy this condition. For instance, M can be selected as the distance among the

furthest vectors since this is an upper bound on r for Model 1 and rj for Model

2.

The third and the fourth set of constraints for both models ensure that the

assignment variable is a binary variable and the variables corresponding to the

centers of the clusters are free.

The fifth set of constraints are different for both models, but both constraints

ensure that the variables corresponding to the maximum radius in the min−max

problem and the variables related to the radii in the min−sum problem are free.

Nevertheless, one must pay attention that r or rj can only take nonnegative values

due to the first constraint set.
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There are totally km + kn + 1 decision variables in Model 1 and km + kn + k

decision variables in Model 2. In addition to this, there are m× k coverage and

m assignment constraints in both models.

Furthermore, the first constraint set depends on the distance between the

vectors and the centers of the clusters. Therefore, these constraints are nonlin-

ear. Moreover, βij are binary variables, hence there exists integer variables in

both models. Therefore, both models are nonlinear mixed-integer programming

models.

Note that, there exists commercial solvers for solving both of the problems.

Most of them are licensed products such as DICOPT and MINLP, and etc. These

solvers can only be used with other licensed products such as GAMS. We have

solved our models using these solvers. However, these solvers are able to solve

only very small scaled problems (15 vectors, 5 dimensions) in reasonable time. In

other words, even small-scaled instances of the problems can not be solved with

these commercial solvers. Therefore, we have concluded that these solvers can

not exploit the specific structure of our problems. As a result, we have focused

on designing and implementing specialized algorithms that are able to use the

specific geometric structure of the problems.

In the recent years, mixed-integer nonlinear problems have arisen in a variety

of applications (Leyyfer et al. [36]). Several methods exist for solving such prob-

lems. The branch-and-bound method is one of the algorithms that is used for

solving various optimization problems. The aim of the method is to search for

an optimal solution in a systematic and efficient way where the integrality con-

straints are initially relaxed, and then added to the model subsequently. We have

developed and implemented a specialized branch-and-bound method that exploits

the underlying problem structure and tries to solve the problems efficiently in this

thesis.



Chapter 3

The Algorithm

As mentioned before, commercial solvers fail to solve the studied problems ef-

ficiently since they are general purpose solvers and are unable to exploit the

specific geometric structure of the problems. In this chapter we first present a

branch-and-bound algorithm that initially finds a good feasible solution and then

solves each of the problems in a systematic and efficient way by making use of

initial feasible solution. Then, we present the algorithm that computes the initial

approximate feasible solution.

3.1 The Branch-and-Bound Algorithm

If the optimal assignment of m vectors to k clusters is known in advance, each of

the problems can be solved easily by computing the smallest spheres that enclose

the vectors in each cluster. While we do not know the optimal assignment in

advance, we need to develop a systematic and efficient search method. The

branch-and-bound method was identified to be the most suitable method for

solving the studied problems.

Let S = {p1, p2, ..., pm} ⊂ Rn be the given vector set, where p1, p2, ..., pm

are the vectors that correspond to objects, n is the dimension of the space and

17
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m is the number of vectors. rj corresponds to the radius and cj corresponds

to the center of the jth sphere. Moreover, Cj represents the jth cluster. The

branch-and-bound algorithm for solving each of the problems is as follows where

the expression in paranthesis corresponds to the objective function value of the

min − sum problem and the expression outside the paranthesis corresponds to

the objective function vaue of the min−max problem:
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Algorithm 1: The Branch-and-Bound Algorithm

Input: S =
{
p1, p2, ...., pm

}
⊂ Rn, k, m, Initial Upper Bound, Best Clusters,

Best Radii, Best Centers
1 begin
2 initialize
3 BestRadii←Best Radii;
4 BestCenters←Best Centers;
5 BestClusters←Best Clusters;
6 UpperBound←Initial Upper Bound;
7 C1 ←

{
p1

}
;

8 Cj ← ∅, j = 2, ..., k;
9 For j = 1 to k

10 Compute the MEB for cluster Cj , assign its center to cj , and radius
11 to rj ;
12 end for
13 if

∑k
j=1 rj ≥UpperBound [maxj=1,...kr

j ≥UpperBound ]
14 Stop branching (Pruning);
15 end if
16 if any unassigned vector is enclosed by any sphere
17 Assign it to the enclosing sphere whose center is the closest to
18 corresponding vector;
19 end if
20 if all vectors are assigned to clusters
21 Stop branching ;
22 if

∑k
j=1 rj <UpperBound [maxj=1,...k rj <UpperBound ]

23 UpperBound←
∑k

j=1 rj [UpperBound ←maxj=1,...k rj ]
24 BestRadii←

{
r1, r2, ..., rk

}
25 BestCenters←

{
c1, c2, ..., ck

}
26 BestClusters← {C1, C2, ..., Ck}
27 end if
28 end if
29 if there exists any unassigned vector (pi)
30 For j = 1 to numberOfNonemptyClusters+1
31 Cj ← Cj ∪

{
pi

}
;

32 Go to step 9;
33 end for
34 end if
35 Return BestRadii, BestCenters, BestClusters
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We can explain the practical performance of the algorithm by a branch-and-

bound tree. Every node of a tree corresponds to a partial grouping obtained so

far. Each node has zero or more child nodes. Each of these children is obtained

by assigning an unassigned vector to a different cluster. If all the vectors are

assigned to clusters in a node, such a node is called a leaf node and leaf nodes

do not have any children nodes. This structure has to be constructed carefully

in order to provide both time and memory efficiency.

The algorithm aims to search systematically for the arrangement of m vectors

to k groups using different objective functions. To begin with, the given vector

set S, the number of spheres k, the initial upper bound, the best clusters, the best

radii and the best centers are the input parameters of the algorithms. Without

loss of generality, we can assign the first vector p1 to the first cluster C1 initially

in order to break symmetry which will be detailed further in the following sec-

tions. UpperBound parameter constitutes an initial upper bound on the optimal

value. BestRadii, BestCenters and BestClusters parameters constitutes the best

radii, the best centers and the best clusters obtained so far. The values of these

parameters are initially computed during the initial upper bound computation.

We have used an efficient algorithm for computing the initial upper bound value

which will be explained in detail in the next section.

Next, we compute the MEB for each cluster. The radius of each ball that

corresponds to a cluster is assigned to rj, and the center of each ball is assigned

to cj.

Following this, we check whether the radius of the smallest ball for the min−
max problem or the sum of the radii of the balls for the min − sum problem

is greater than the UpperBound value or not. If this condition is satisfied, we

stop branching for this partial grouping (pruning) since it cannot be a part of

the optimal solution. Therefore, we are able to prevent any partial groupings

that start with wrong assignments and the number of potential nodes can be

significantly decreased.

After computing the MEB for each cluster, we check whether any unassigned

vector lies inside any balls. We assign a vector to only one cluster in each node.
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Therefore, it is enough to control only the newly constructed ball whether it

contains any unassigned vector since all other balls are controlled before. If there

is any such vector, it will be assigned to the corresponding cluster. If there is

an unassigned vector that is enclosed by more than one ball, it will be assigned

to the ball whose center is closest to itself. We therefore aim to increase the

number of assigned vectors in partial clusterings without changing the structure

of the balls and so decrease the size of the branch-and-bound tree. This approach

mainly may lead us to reach a leaf node as soon as possible.

As a result, if all the vectors are assigned to clusters, we reach a feasible solu-

tion for each of the problems. Therefore, we update the UpperBound, BestRadii,

BestCenters and BestClusters parameters if the radius of the smallest ball for

the min −max problem or the sum of the radii of the balls for the min − sum

problem is less than the UpperBound value.

If there are still unassigned vectors at the end of the clustering process, we

continue branching. As for the new entry, we aim to select the vector that will

minimize the number of unassigned vectors in the subsequent steps. We use a

max - min approach for this selection. After finding the closest vector to each of

the cluster centers, we select the furthest vector from its repective nearest cluster

center as the new entry vector. Then, the new entry vector will be assigned

to numberOfNonemptyClusters + 1 clusters in order to prevent symmetry in

clusters. The whole algorithm is repeated in the next stage. At the end of the

algorithm, m vectors are assigned to k clusters.

For each node of the tree, only one cluster’s geometric structure changes since

the new vector is added only to that cluster. Therefore, it suffices to solve exactly

one MEB problem for each node of the tree. Hence, the use of an efficient

algorithm for solving the MEB problem is crucial to improve the solution time

of the problem. Efficient algorithms are used for computing the MEB (Yıldırım

[46]; Ahipaşaoğlu and Yıldırım [3]).
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3.2 Initial Approximate Solution

Notice that, decreasing the number of potential nodes in the branch-and-bound

tree plays an important role in the efficiency of the algorithm. As mentioned

before, we stop branching if the objective function value of a node exceeds the

upper bound value. Therefore, obtaining a good initial upper bound value (fea-

sible solution) enables us to prune a potentially larger number of nodes.

Prior to the development of the algorithm, we concentrated on finding an

efficient algorithm for computing the initial upper bound value. For instance,

the assignment of m vectors to k clusters randomly yields a feasible solution.

However, this solution may coincide with the optimal solution, or it may be quite

far from it.

Therefore, we have decided to find a more accurate approach for comput-

ing the initial upper bound value. We focused on ease of implementation and

the approximation factor of the algorithm. Hence, an approximation algorithm,

which is easy to implement is used for the min −max problem (Gonzalez [20];

Hochbaum and Shmoys [26, 27]).

The algorithm starts with selecting an arbitrary vector from the given vector

set S. The furthest vector from this randomly selected vector represents the

center of the first cluster. Then, the furthest vector from the center of the first

cluster represents the center of the second cluster. If k is predetermined as 2,

we stop searching cluster centers. Otherwise, we compute the distances among

all unassigned vectors and existing cluster centers. Then, we select the furthest

vector from the respective nearest cluster center as the center of the following

cluster. We repeat this approach until we find k centers for k clusters. The aim

is to select the cluster centers as far apart as possible. After determining the

cluster centers, every unassigned vector is assigned to the closest cluster center.

As a result, m vectors are assigned to k clusters, so we obtain a feasible solution.

The initial upper bound value can be at most 2 times the optimal value using

this approach (Gonzalez [20]; Hochbaum and Shmoys [26, 27]).
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Although this algorithm does not give a theoretically good approximation for

the min−sum problem, it gives a feasible solution for it. There are approximation

algorithms for the min − sum problem but they are considerably more difficult

to implement (Charikar, M. and S. Guha [9]). So, we choose to use the same

algorithm for computing an initial upper bound value for both of the problems

even though it may not return a provably good feasible solution for the min−sum

problem.



Chapter 4

Implementation

One of the main goals of this study is to test the efficiency of proposed algorithms

in practice by solving medium to large scale instances of the previously defined

geometric optimization problems. To this end, we implement our algorithms,

and develop a software package. This chapter is devoted to the resulting software

package and implementation of the algorithms.

4.1 Software Package

First, we aim to find the most appropriate programming language for implement-

ing the branch-and-bound algorithm. We identify specific selection criteria. To

begin with, we wish to release the resulting software package for free use of the

scientific world. Therefore, we try to make it compatible with most of the com-

mercial and noncommercial operating systems. Prevalence of the programming

language is another concern because we aim to have high participation rates in

the further developement of the software package. In addition to this, we try to

select a middle-level programming language that lies at the interface of high-level

and low-level programming languages. Furthermore, we wish to deal with the

implementation of “The Big Picture”. Last but not least, efficient memory man-

agement capability and run time speed are defined as other criteria. As a result,

24
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C++ seems to be the most appropriate programming language for developing the

software package. Therefore, we determine C++ as the programming language.

Having decided the programing language, we identify the following software

design metrics.

• Flexibility: The resulting software package has a decisive role in this re-

search area. Therefore, a flexible structure is designed.

• Usability: The widespread use of the resulting software package is aimed,

hence usability is increased.

• Modularity: Software is partitioned into separate and independent parts

called modules in order to improve the sustainability.

• Encapsulation: Information hiding is provided by encapsulation in order

to increase the robustness of the software package and limit the interdepen-

dencies of the components.

• Abstraction: The software package is partitioned to its most fundamental

parts by abstraction. The abstract data types are modelled by classes in

software.

• Compliance of Technical Infrastructure of Software: We aim to

minimize the memory usage to increase the dimension of the solvable in-

stances of our problems. Advanced data structures are used for keeping

data in memory.

After stating the software design metrics, we develop initial pseudo-code for

our algorithm. The pseudo-code is as follows :
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• Input data

• Perform initial control

• Compute initial upper bound

• Solve problem

• Output results

The algorithms are implemented via the commercial product Microsoft Visual

Studio 6.0 and non-commercial product UNIX Command Window simultaneously

in order to obtain synchronization.

Next, we design the technical infrastructure of our software. First, we create

independent and separate classes for different modules. We define all parameters

and functions of classes in library files (.h), while we code functions in method

compiler files (.cpp). Functions are defined as public and parameters are defined

as private members of classes. Moreover, a main file is created in order to compile

the whole program (main.cpp) and so provide integrity. We create the following

files:

1. Library Files

• mebClass.h

• menuClass.h

• nodeClass.h

• outputClass.h

• searchClass.h

• upperBoundClass.h

• initialControlClass.h
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2. Method Compilers

• mebFunctions.cpp

• menuFunctions.cpp

• nodeFuntions.cpp

• outputFunctions.cpp

• searchFunctions.cpp

• upperBoundFunctions.cpp

• initialControlFunctions.cpp

3. Main Compiler

• main.cpp

We can summarize the general structure of these files as follows:

• Each class has distinct names.

• The parameters and the functions of the classes are defined in library files

(.h).

• The functions are coded in correponding method compiler files (.cpp).

• Objects are used for accessing to the classes.

• Objects are created as pointers and these pointers are deleted when they

are no longer needed.

We provide the integrity by creating own method compiler files for each library

file. Moreover, classes have some functions that perform the same operations for

each class. These functions and their intended usages can be summarized as

follows:

• Constructors:
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– We use constructors for assigning initial values to some data members

during object creation. Constructors are invoked whenever a new class

object created.

∗ Default Constructor:

· Constructor with no arguments.

∗ Parameterized constructor:

· Constructor with arguments.

• Destructors:

– Destructors are executed whenever an instance of the class deleted.

We release the private resources by destructors.

• Set and Get functions:

– We can get read or write access to private data members by setter and

getter functions.
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4.2 Implementation Details

Computational complexity theory analyzes the amount of resources that is needed

to solve computational problems. Time and space complexitites are the most

important measures of the computational complexity. Time complexity measures

the number of steps required for solving an instance of a problem whereas the

amount of the memory used for solving this instance is studied in the context

of space complexity. Since all algorithms have space and time constraints, both

complexities are crucial.

As mentioned before, we implement a specialized algorithm for clustering

problems using minimum enclosing balls. Therefore, we have to consider our

algorithms in terms of both the time and the space complexities. The number of

nodes in our branch-and-bound tree increases exponentially as a function of k.

Therefore, it is crucial to develop an efficient algorithm for decreasing the number

of nodes in our branch-and-bound tree. For example, let us have a small-scale

instance with m=50, n=2 and k=2. In the worst, the branch-and-bound tree

can have 1.13 × 1015 nodes. This number is beyond the computational limits of

today’s most advanced computers. Hence, we initially aim to develop an efficient

algorithm to decrease the number of nodes in the branch-and-bound tree.

However, there are other important issues that must be handled during the

implementation of these algorithms. One of these issues is the space constraint

where memory must be used efficiently and effectively. If this is not achieved, the

size of the solvable instances of problems decreases considerably. Therefore, it is

important to use the most appropriate data types and data structures during the

implementation in order to provide memory efficiency. We use the following data

types and data structures:

• We use int, float, double, char, unsigned, string and boolean data types.

• We use arrays if we are working with a data of fixed size since arrays keep

less memory than other containers.

• A vector is a kind of a container that is implemented as dynamic arrays. We
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can handle storage automatically in vectors where they are used to access

individual elements with their position index. We use vectors, if we are

working with a data of dynamic size and do not delete any member of the

data.

• A set is a type of a container that is used to store unique elements which

are sorted in ascending order. We use sets, if were are working with a data

which is sorted.

• Lists are used when we need to add or remove elements anywhere in that

container. We use lists, if we are working with a data of dynamic size in

which we can delete any member of the container in any time.

The memory allocated for data types, vectors, lists and sets are freed whenever

the destructor of the class is invoked. On the other hand, we can free the memory

of arrays whenever we want. All arrays, vectors, lists and sets can keep data

variables in all kinds of data types.

We do not only implement our algorithms, but also develop a software pack-

age for solving certain clustering problems. Our software package is composed

of separate and independent modules. All separate modules have different and

specialized functionalities. These modules are represented by separate classes in

order to maintain modularity. The dependencies of these modules are illustrated

in Figure 4.1. Moreover, we try to use the most efficient data structures in these

modules in order to decrease the amount of memory used.
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Figure 4.1: Dependencies of Modules

All the contents of these modules are summarized below:

4.2.1 The Main Module

The main module corresponds to the main compiler file (main function) in our

software. Our program starts execution from the main function which organizes

the rest of the program by invoking the classes that correspond to separate mod-

ules. We also provide integration and synchronization of the modules via this

function. The algorithm of this module is as follows:
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Algorithm 2: Algorithm of the Main Module

1 begin
2 initialize
3 Define parameters;
4 Open files for outputs;
5 Perform menu operations;
6 Start time;
7 if Initial condition is satisfied
8 Go to step 14;
9 end if

10 else
11 Compute initial upper bound;
12 Compute optimal solution by constructing the branch-and-bound tree;
13 end else
14 Stop time;
15 Compute run time;
16 Output results;
17 Restart or terminate the program;

18

We define all necessary parameters of the program in the main function. These

parameters can be altered by the results coming from other modules. These

parameters are;

• Integer type parameters:

– searchMethod: Tree traversal algorithm type

∗ DFS: Depth First Search

∗ BFS: Breadth First Search

∗ BEST: Best First Search

∗ RFS: Random First Search

∗ HS: Hybrid Search

– algorithmType: MEB algorithm type

∗ Meb u

∗ Meb u elim

∗ Meb u away
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∗ Meb u away elim

– problemType: Problem type

∗ min-max

∗ min-sum

– numberOfClusters: Number of clusters (k)

– dimension: Number of dimensions (n)

– pointNumber: Number of points (m)

– numberOfLBPrunes: Number of prunes in the branch-and-bound tree

– numberOfExaminedNodes: Number of examined nodes in the branch-

and-bound tree

– numberOfReachedLeaves: Number of reached leaves in the branch-and-

bound tree

– numberOfOpenNodes: Maximum number of active nodes in the

branch-and-bound tree

• Double type parameters;

– tolerance: Tolerance

– upperBound: Best solution obtained so far

– timeDifference: Running time of the program

– vm : Maximum virtual memory usage

– rss : Maximum resident set size usage

• Double type two dimensional arrays:

– userMatrix: Vector set (S)

• Integer type vector of vectors:

– clusters: Vectors in clusters

These parameters are defined prior to the execution of the algorithm and used

during the run time. As a result, for each class (module) in the main function,

we;
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• Create the object,

• Return the results,

• Erase the object.

4.2.2 The Menu Module

In software engineering, a menu corresponds to a list of commands that is pre-

sented to users. Users can give instructions to the computer via menus.

We construct a menu for our software in order to provide convenient access

to various operations. Users define all parameters of the program via menu class.

We therefore designed a user-friendly interface for menu operations in order to

maintain the clarity of the program.

Once the program starts, the user defines input parameters of the program

to execute the code. Hence, the initial object is created for the menu class

that corresponds to the menu module. Thus, users can perform the following

operations via menu class.

• The user defines the following parameters respectively from both the menu

screen or built-in files. These are constant parameters and cannot be altered

during the execution.

– k, m, n, S

– Problem type

– Tree traversal algorithm type

– MEB algorithm type

– Tolerance

If the user prefers to take S from the screen, there are two choices. The

matrix can be constructed manually or randomly according to normal or uniform
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distribution. After providing parameters, the user can not intervene with the

program until it finds an optimal solution or manual termination.

Users may face user or code-related problems in all kinds of software. Software

engineers have to deal with each types of these problems. Entering an integer

by mistake instead of entering a character can be considered as a user-related

problem. Conversely, trying to divide a number by zero is a code-related problem.

When these problems occur, warning the user with an output message is a better

programming practice than crashing the code or terminating the program. These

problems that can arise during the execution of the program must be foreseen by

programmers. This is one of the key aspects of software engineering.

Exception handling is a supervision mechanism that deals with all kinds of

problems during the run time. We design a comprehensive exception handling

mechanism for our software where both user and code originated errors are han-

dled in detail. As a result, in case of problems, we prefer to give tangible error

messages rather than terminating the program.

Finally, we assign necessary parameters to the variables in the main file.

Hence, every separate class can use these parameters.

4.2.3 The MEB Module

The problem of computing the MEB of a given vector set arises as a subproblem

in our problems. If the initial control is satisfied, we call the MEB algorithm ei-

ther once or never. Otherwise, we call the MEB algorithm for numberOfClusters

times during the initial upper bound computation and numberOfNonemptyClus-

ters times for each node in the branch-and-bound tree. Hence, using an efficient

algorithm for computing the MEB is one of the key aspects of our algorithms. As

a result, the MEB module is the fundamental part of our software and the class

related to this module is called the Algorithm class.

There are four separate and theoretically efficient algorithms in the literature
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(Yıldırım [46]; Ahipaşaoğlu and Yıldırım [3]) for computing the MEB. These al-

gorithms are also efficient in practice in terms of the time and space complexities.

We implement these algorithms in the Algorithm class. Each of these algorithms

is iterative in nature and tries to find the optimal center by moving the center at

each iteration. They differ in terms of the possible movements of the center at

each iteration.

We can summarize the differences of the algorithms as follows:

• Meb u: The center of the cluster is moved towards the furthest vector in

each step. (Yıldırım [46])

• Meb u elim: The center of the cluster is moved towards the furthest vector

and potential vectors that are inside the interior of the MEB are removed

from the vector set in each step. (Ahipaşaoğlu and Yıldırım [3])

• Meb u away : The Center of the cluster is moved towards the furthest vector

or away from the closest vector in each step. (Yıldırım [46])

• Meb u away elim: The center of the cluster is moved towards the furthest

vector or away from the closest vector and potential vectors that can be

inside the cluster are removed from the vector set in each step. (Ahipaşaoğlu

and Yıldırım [3])

The Algorithm class takes n, m, tolerance and S as parameters.

4.2.4 The Initial Control Module

We identify two special cases of our problems in consideration. These cases are

as follows;

• k = 1

• |S| ≤ k.
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We handle these special cases separately and efficiently in this module. The

class takes m, n, tolerance, S, k and the algorithm type as parameters. The

algorithm of the module is as follows:

Algorithm 3: Algorithm of the Initial Control Module

1 begin
2 if k = 1
3 Compute the MEB with the selected algorithm type;
4 end if
5 else if |S| ≤ k
6 Assign each vector to a separate cluster;
7 Assign 0 to radius of each cluster;
8 end else if

9

In the above cases, we can easily compute an optimal solution. Therefore,

we do not need to do any further operations such as computing the initial upper

bound or constructing the branch-and-bound tree.

4.2.5 The Initial Upper Bound Module

As mentioned before, we also concentrate on providing an efficient algorithm

for computing an initial upper bound. This algorithm is implemented via the

upper bound class. The class takes n, m, tolerance, S and the problem type as

parameters. We can summarize the algorithm as follows:



CHAPTER 4. IMPLEMENTATION 38

Algorithm 4: Algorithm of the Initial Upper Bound Module

1 begin
2 Select an arbitrary vector;
3 Compute the furthest vector from the arbitrary vector and determine it as
4 the center of the first cluster;
5 Compute the furthest vector from the center of the first cluster and
6 determine it as the center of the second cluster;
7 if k ≥ 3
8 For i = 3 to k
9 Compute the distances among all unassigned vectors and cluster

10 centers;
11 Select the furthest vector from the respective nearest cluster center as
12 the center of the cluster i;
13 end for
14 end if
15 Assign each unassigned vector to the cluster with the nearest center;
16 Compute solution;
17 Keep this solution as the best solution obtained so far;

18

This approximate solution provides an initial upper bound value for the

branch-and-bround algorithm.

4.2.6 The Tree Traversal Module

We use the branch-and-bound algorithm for finding optimal solutions to our op-

timization problems. It is a systematic enumeration method of all candidate

solutions while discarding a large number of candidates by using upper and lower

bounds. We implement our branch-and-bound algorithm via the search class.

We use a branch-and-bound tree for representing our algorithm. The branch-

and-bound tree has a hierarchical structure with a set of linked nodes. Each node

contains same data sructures and can have zero or more child nodes. The root

node is the root of the tree. A parent node is a node that has at least one child.

Moreover, each node has exactly one parent except the root node. Nodes that do

not have any child nodes are called leaf nodes. The height of a node corresponds

to the length of a path from that node to the deepest node of the tree reachable
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from that node. Hence, the height of the tree corresponds to the height of the

root node. Conversely, the level of a node is the length of a path from that node

to the root node. Therefore, the level of each node is one more than the level of

its parent node. An active node is a node that is created but not examined yet.

An arbitrary vector is assigned to the first cluster in the root node without

loss of generality. We try to circumvent the symmetry of clusters in nodes using

this approach. If we do not assign any nodes to any clusters in the root node,

then there may exist some nodes in the tree that have potentially symmetric

clusters. For example, let us given an instance such that k = 3. The following

figure, Figure 4.2, represents the case in which we do not assign any vector to

any cluster in the root node.

Figure 4.2: The Branch-and-Bound Tree (No Vector Assignment)

Notice that the clusters in node 1, node 2, and node 3 in Figure 4.2 are

symmetric. Hence, all nodes give the same lower bound value, and we do not

have to compute the lower bound value for each one of these nodes. On the other

hand, if we assign a vector to an arbitrary cluster in the root node, the tree will

be as follows:
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Figure 4.3: The Branch-and-Bound Tree (With Vector Assignment)

Therefore, the symmetry is tried to be broken with this approach. How-

ever, there is another potential source of symmetry if we create k child nodes

for each node other than leaf nodes in the tree. We can see that the clus-

ters in node 2, and node 3 in Figure 4.3 are still symmetric. Thus, we do not

have to examine each of these nodes. In order to prevent symmetry, we create

min{numberOfNonemptyClusters + 1, k} child nodes for each node other than

the leaf nodes in the tree. Let us recall the above instance again. Suppose again

that, the first vector is assigned to the first cluster in the root node, and we

determine the second vector as the new entry vector for child nodes of the root

node. Then, if the second vector is assigned to each child node, the tree will be

constructed as in Figure 4.3. On the other hand, if we assign the second vector to

each min{numberOfNonemptyClusters + 1, k} nodes, the tree will be as follows:
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Figure 4.4: The Branch-and-Bound Tree (With min{numberOfNonemptyClusters
+ 1, k} Child Nodes)

Hence, we may break the symmetry of clusters in the nodes of the tree through

the following reasons. The first vector is always assigned to the first cluster.

Therefore, it can not be assigned to any other cluster for other nodes of the tree,

and the first cluster of any node can not be appeared in any other clusters of the

other nodes. Furthermore, each cluster in each descendant node of a given node

is a superset of the corresponding cluster in the ancestor node. As a result, the

cluster combination in a specific node can not be appeared in any other node. We

aim to decrease the number of examined nodes, which is crucial for our algorithm,

in the branch-and-bound tree using these two approaches.

In addition, we use the heap data structure to represent our tree. Heap is a

kind of tree based data structure. It satisfies the following heap property. For

instance, if Y is a child node of X, then key(X) ≥ key(Y ) or key(X) ≤ key(Y ).

The former case is called a max-heap and the latter case is called a min-heap.

Max-heap implies that the root node is an element with the greatest key whereas

min-heap implies that the root node is an element with the smallest key.

In our tree structure, each node has its own key. The root node always has

the smallest key, and all other nodes will always have greater keys. Therefore,
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our tree-based data structure is a min-heap data structure.

One important question in implementing such an alogirthm is the way the

tree is stored. We do not need to store the whole tree. It is enough to store

only the active nodes (subproblems) that still need to be examined. Hence, a

new question arises. ”How much information do we need to keep for each active

node?”. We choose to keep the minimum required information for each active

node while preventing the repetitions of certain calculations in each node.

The process of visiting (examining) each node in a tree data structure, called

tree traversal, has a crucial role in the solution time of the problem. Trees are

non-linear data structures that can be traversed in many ways. We implement five

tree traversal methods. These are depth-first search (DFS), breadth-first search

(BFS), best-first search (BEST), random-first search (RFS) and hybrid-search

(HS). All of the methods have their own advantages and disadvantages.

In the DFS algorithm, we aim to find a good initial lower bound in order to

prune the tree significantly. Hence, we descend as quickly as possible to find a

good feasible solution. We traverse the root, the left sub-tree, and the right sub-

tree respectively. With the DFS algorithm, the number of active nodes can be

at most the height of the tree. Therefore, the DFS algorithm is efficient in terms

of the worst case space complexity, whereas it may not be efficient in terms of

the worst case time complexity since the optimal solution may be the rightmost

leaf node of the tree. It is a practical tool in cases where you want to choose one

possible solution through many different solutions.

The BFS algorithm is based on traversing the tree in level-order. One visits

every node on the same level before going to a lower level in the tree. Its worst

case time complexity is the same as the DFS algorithm. Moreover, it is not

efficient in terms of the worst case space complexity since it examines the tree

level by level and there may exist many active nodes during the tree traversal.

One can use this algorithm when interested in all possible best solutions.

One can attempt to minimize the total number of nodes examined in the tree

by choosing the active node with the best (smallest) upper bound. The tree
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is traversed by exploring the most promising node chosen. Hence, we continue

with better partial groupings in the BEST algorithm. Although this heuristic is

efficient in terms of time complexity since it may decrease the total number of

examined nodes, it is not efficient in terms of space complexity since there may

exist many active nodes during the tree traversal.

Nodes are examined in a random manner in the RFS algorithm. The worst

case time and space complexities of the method are the same as the BFS algo-

rithm. We cannot predict the solution time of the method since it may use both

the best and the worst paths to the optimal solution.

The DFS and the BEST algorithms are merged in order to develop a stronger

tree traversal method. We call this method the HS algorithm. We aim to include

the stronger parts of both algorithms and exclude the weaker parts of each of

them. As mentioned before, the DFS algorithm is an efficient algorithm in terms

of space complexity, and the BEST algorithm is a type of heuristic that tries to

examine paths that are closer to an optimal solution. However, the BEST algo-

rithm is not efficient in terms of space complexity. Hence, we adopt a compromise

betweeen these two ideas.

The HS algorithm relies on switching between the DFS and the BEST algo-

rithms when necessary. Our initial incentive was to start with the DFS algorithm

to find an initial feasible solution. However, since we can find an initial feasible

solution with the approximation algorithm as well, we concluded that using the

DFS algorithm at start is not necessary. As a result, we start with the BEST

algorithm which allows us to minimize the total number of examined nodes.

Starting with this algorithm, however, may lead to memory problems especially

for large-scale instances. For this reason, when a pre-defined upper memory limit

is reached, we switch to the DFS algorithm. This allows us to overcome the

memory problem and also to find potential better upper bounds. If we have not

reached an optimal solution up to that point, we need to switch to the BEST

algorithm again when the predefined lower memory limit is reached. This again

allows us to minimize the total number of examined nodes and also to continue

with better partial groupings. Switching between the two algorithms continues
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until an optimal solution is found. With the HS algorithm, we not only have

an efficient tree traversal algorithm but we also decrease the possibility of facing

potential memory problems during the tree trversal.

The predefined upper and the predefined lower memory limits must be deter-

mined carefully. We defined specific selection criteria during the determination

of the memory limits. To begin with, switching between the tree traversal al-

gorithms has a time-cost that should be taken into consideration. Moreover, as

mentioned before the number of active nodes can be at most the height of the

tree in the DFS algorithm. Therefore, we can set a high upper memory limit.

In addition, during the DFS algorithm the number of the active nodes decrease

in the course of the time, while it increases during the BEST algorithm. Hence,

lower memory limit must not be set very low. As a result, we define the upper

memory limit as the %70 of the total memory and the lower bound limit as the

%50 of the total memory.

We determine the keys of the nodes in the branch-and-bound tree according

to the chosen tree traversal algorithm type. These keys are sorted in either

ascending or descending order. Then, the node with the smallest or the largest

key is examined according to the ordering criteria. The order of the node is called

the priority of the node.

The search class takes m, n, tolerance, S, the algorithm type, the problem

type, the search method, k, upper bound and best clusters as parameters. We

can summarize the algorithm as follows:
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Algorithm 5: Algorithm of the Tree Traversal Module

1 begin
2 Create the root node;
3 Perform node operations;
4 Create children nodes of the root node;
5 Add required information of the root node to the heap;
6 Delete the root node;
7 While There are nodes to examine
8 Select a node to examine (current node);
9 Perform node operations of the current node;

10 if Lower bound of the current node exceeds upper bound
11 Prune the current node;
12 Delete the current node;
13 Go to step 7;
14 end if
15 Create children nodes of the current node;
16 For i = 1 to numberOfChildrenOfTheCurrentNode
17 Perform node operations;
18 if The node is leaf
19 Determine it as the leaf node;
20 Do required updates;
21 end if
22 else
23 if Lower bound of the node exceeds upper bound
24 Prune the node;
25 end if
26 else
27 Do required updates;
28 Add required information of the node to the heap;
29 end else
30 end else
31 Delete the child node;
32 end for
33 end while

34
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We use additional advanced data structures in this module. For the DFS, BFS

and BEST algorithms we use priority queues for storing the tree. It is similar

to the heap structure, in which only the max heap element can be retrieved.

The elements in priority queue are ordered according to a predefined ordering

criterion. This criterion is different for each algorithm. In addition, we use

vectors for storing the tree in the RFS and HS algorithms. The ordering criterion

of the heap differs for both of the algorithms.

4.2.7 The Node Module

As mentioned before, each node in the branch-and-bound tree corresponds to a

partial clustering obtained so far. During the tree traversal, we examine these

nodes in order to find an optimal solution. We use the same processes for each

node of the tree where all node operations are performed via the node class.

To begin with, we determine the amount of information we should keep for

each node of the tree. We have two options. We can either keep a minimum

amount of information, or we can keep all of the available information. In the

former case, we have to repeat all certain calculations for each node, whereas we

need a large amount of memory to keep all the available information in the latter

case. Hence, we adopt a compromise between these two ideas.

For each node we determine the sufficient amount of information to store that

will prevent any calculation repetitions in its descendant nodes. Therefore, we

see that it is enough to keep the following parameters:

• Integer type parameters

– Number of dimensions, number of points, the algorithm type, the prob-

lem type, number of clusters, level of the node, next entry

• Double type parameters

– Tolerance, order of the node, radius of the node
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• Vector of vectors

– Indices of vectors in each cluster

• List of lists

– Distances among unassigned points and cluster centers

• Vector

– Radii of the clusters

• List

– Indices of vectors that are not assigned to any clusters

We keep these values for each active node. When we delete a node, we delete

all these parameters. Moreover, we use the most convenient data structures for

keeping these values in order to save memory. We initially compute these values

in the root node. Then, we transfer these values to the children nodes from the

parent nodes. Therefore, we do not need to repeat the same calculations for

each node. We use copy constructors for transferring information from parent

nodes to children nodes. Copy constructors are used for creating a new object

as a copy of an existing object. In addition, we do some further computations

in children nodes such as computing the distances among the unassigned points

and the center of the new constructed cluster, computing the new entry vector,

computing the new constructed sphere, updating the indices of vectors in clusters

and radii of clusters.

The class takes m, n, tolerance, S, order, unassigned points list, the algorithm

type, the problem type, k, current clusters, distances of unassigned points to

cluster centers as parameters.

We develop an efficient and modular algorithm for the Node module and we

apply this algorithm to each of the nodes. Suppose we add a new entry vector

(pj) to cluster i (Ci) for each node where ci corresponds to the center of the ith

cluster: The algorithm then proceeds as follows;
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Algorithm 6: Algorithm of the Node Module

1 begin
2 Select entering vector (pj);
3 Random vector for the root node;
4 Vector inherited from the parent node for the other nodes;
5 Clear distances among all unassigned vectors and ci;
6 Assign pj to Ci;
7 Remove pj from the unassigned vectors;
8 For Nonempty clusters
9 Clear distances among pj and center of the corresponding cluster;

10 end for
11 Compute MEB for Ci;
12 Update radius value of Ci;
13 Compute distances among the unassigned points and ci;
14 If There exist any vector inside Ci

15 Remove the vector from the unassigned vectors;
16 Add vector to Ci;
17 Clear the distances among the vector and centers of nonempty clusters;
18 end if
19 Compute the distances among all unassigned points and ci;
20 Find the closest vector to each of the cluster center;
21 Determine the vector that is furthest from the respective nearest ci

22 as the new entry vector

23

4.2.8 The Output Module

Output corresponds to the information that is produced by the computer pro-

grams and received by the users. Hence, outputs can vary from software to

software. In our software, we output our results via the output class. The class

provides users with the following capabilities:

• View all the results from the output screen.

– Optimal solution

– Initial upper bound

– Optimal clustering

– Number of reached leaves in the branch-and-bound tree



CHAPTER 4. IMPLEMENTATION 49

– Number of examined nodes in the branch-and-bound tree

– Number of prunes in the branch-and-bound tree

– Maximum number of active nodes in the branch-and-bound tree

– Number of vectors in clusters

– RAM usage

– Virtual Memory Usage

– Running time

• Save all the results to the files.

• Terminate or restart the program.

We have mentioned the importance of the exception handling in previous

sections. We develop a detailed exception handling for the output class like the

menu class.
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Computational Results

In this chapter, we report the results of our extensive computational experiments.

The computational experiments were carried out on a Pentium (R) Dual-Core

CPU E5200 processor with a clock speed of 2.50 GHz and 4 GB RAM running

under Linux OS version Ubuntu 9.04. The algorithms were implemented, ex-

ecuted and run in the C++ environment using the Gcc version 4.3.3. (For this

Chapter, number of points corresponds to the number of vectors (m)).

5.1 Computational Setup

We initially tested the efficiency of the proposed branch-and-bound algorithms

for the aforementioned min − max and min − sum problems using k = 2 and

k = 3.

For each value of k, different choices of n and m were used in order to assess

the performance of the algorithms with respect to the sizes of the problems. The

first data set was generated for k = 2 with sizes (n,m) chosen from all possible

choices with n ∈ {25, 50, 100} and m ∈ {100, 500, 1000} and the second data set

was generated for k = 3 with sizes (n, m) chosen from all possible choices with

n ∈ {10, 25, 50} and m ∈ {48, 96, 144}. Note that, n is doubled, and m is either

50
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doubled or quintuplicated in both data sets. Therefore, the effect of doubling the

number of dimensions and/or doubling or quintuplicating the number of vectors

on both the hardness of the problems and the efficiency of the proposed algorithms

could be measured with the above choices of n and m. In addition, we could also

test the effect of k on both problems with the approximate sized instances where

n = 50, m = 100 for k = 2 and n = 50, m = 96 for k = 3 with all the other

parameters fixed. The accuracy parameter of the MEB algorithms, ε, is set to

10−3 for both data sets.

For each fixed value of n and m, two different distributions were used to gener-

ate random instances to factor into the effect of the distributions on the problems.

These distributions are the uniform spherical distribution and the pseudo-normal

spherical distribution. All the input vectors were generated within a sphere us-

ing these distributions. The uniform spherical distribution has vectors uniformly

distributed in a given sphere where the pseudo-normal spherical distribution has

vectors pseudo-normally distributed in a given sphere. The Matlab code devel-

oped by J.Burkardt [6] is used for generating these random data vectors.

Then, different radii and cluster types were constructed for each fixed values

of k, (n, m) and each fixed distribution. For k = 2, ten different radii pairs were

constructed and we call these radii pairs simply as radius types. For each radius

type, the center of the first sphere lies at the origin and the center of the second

sphere lies at the vector of all ones for each dimension of the space. Table 5.1

illustrates these radii types.

For k = 3, again, ten different radii pairs were constructed that are also called

radius types. For each radius type, the center of the first sphere lies at the origin

and the center of the second sphere is (
√

n, 0, 0, ..., 0) while the center of the third

sphere is (
√

n/2,
√

3n/
√

4(n− 1),
√

3n/
√

4(n− 1), ...,
√

3n/
√

4(n− 1)). Table

5.2 illustrates these radii types.
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Radii of the Spheres
Radius Type First Sphere Second Sphere

1
√

n/4
√

n/4

2
√

n/4
√

n/2

3
√

n/4
√

3n/4

4
√

n/4
√

n

5
√

n/2
√

n/2

6
√

n/2
√

3n/4

7
√

n/2
√

n

8
√

3n/4
√

3n/4

9
√

3n/4
√

n

10
√

n
√

n

Table 5.1: The Radius Types for k = 2

Radii of the Spheres

Radius Type First Sphere Second Sphere Third Sphere

1
√

n/3
√

n/3
√

n/3

2
√

n/3
√

n/3
√

2n/3

3
√

n/3
√

n/3
√

n

4
√

n/3
√

2n/3
√

2n/3

5
√

n/3
√

2n/3
√

n

6
√

n/3
√

n
√

n

7
√

2n/3
√

2n/3
√

2n/3

8
√

2n/3
√

2n/3
√

n

9
√

2n/3
√

n
√

n

10
√

n
√

n
√

n

Table 5.2: The Radius Types for k = 3

As seen from both Table 5.1 and Table 5.2, we aimed to measure the efficiency

of the proposed algorithms on vector sets chosen from both the disjoint and

overlapping spheres with various sizes.

Without loss of generality, the radius of the second sphere is set to be greater

than or equal to the radius of the first sphere for each radius type and for each k

value. Moreover, for k = 3 the radius of the third sphere is again always greater

than or equal to each of the radius of the first and the second spheres for each

radius type. This allows us to break the symmetry of the spheres for different

radius types since the index of the larger sphere is not critical.
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Furthermore, the number of vectors in each sphere may have an impact on the

efficiency of the proposed algorithms. Hence, three different cluster pairs were

generated, with respect to the number of vectors in each sphere, for each fixed

radius type for k = 2. Table 5.3 illustrates the cluster types for k = 2.

Number of Vectors in Cluster Types

Cluster Type First Cluster Second Cluster

1 m/4 3m/4

2 m/2 m/2

3 3m/4 m/4

Table 5.3: The Cluster Types for all Radius Types for k = 2

In additon, for k = 3 different number of cluster pairs were generated for each

fixed radius type regarding the number of vectors in each sphere. In radius types

1, 7 and 10, it is sufficient to generate only two cluster types because the radii

of the spheres are identical. Table 5.4 illustrates the number of vectors in each

spheres for these radius types.

Number of Vectors in Cluster Types

Cluster Type First Cluster Second Cluster Third Cluster

1 m/3 m/3 m/3

2 m/2 m/3 m/6

Table 5.4: The Cluster Types for Radius Types 1, 7, 10 for k = 3

There are four cluster types in each of the radius types 2, 3, 4, 6, 8 and 9 since

two spheres have identical radii and the symetric spheres that arise as a result

of the identical radii can be eliminated. The number of vectors in each cluster is

illustrated in Table 5.5.

Number of Vectors in Cluster Types

Cluster Type First Cluster Second Cluster Third Cluster

1 m/3 m/3 m/3

2 m/6 m/3 m/2

3 m/3 m/6 m/2

4 m/3 m/2 m/6

Table 5.5: The Cluster Types for Radius Types 2, 3, 4, 6, 8, 9 for k = 3

One needs to generate seven cluster types in radius type 5, which are illus-

trated in Table 5.6, since each of the spheres has a distinct radius.
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Number of Vectors in Cluster Types

Cluster Type First Cluster Second Cluster Third Cluster

1 m/6 m/3 m/2

2 m/6 m/2 m/3

3 m/3 m/2 m/6

4 m/3 m/6 m/2

5 m/3 m/3 m/3

6 m/2 m/3 m/6

7 m/2 m/6 m/3

Table 5.6: The Cluster Types for Radius Type 5 for k = 3

In addition to all, for each fixed k, (n, m), radius type, cluster type, and the

distribution; five different problem instances were generated. The computational

results are reported in terms of averages over these instances. This implies that

there is a total of 2700 instances for k = 2. We run each of these instances four

times to test the efficiency of the each tree traversal algorithms (the BEST and the

DFS) along with the each MEB algorithms (meb u away and meb u away elim).

Furthermore, the upper memory limit for the BEST algorithm was reached for 100

of these instances. Therefore, these instances were rerun using the HS algorithm

together with the meb u away and the meb u away elim algorithms. Further-

more, there is a total of 3330 instances for k = 3. We run each of these instances

once with the HS algorithm along with the meb u away elim algorithm. As a

result, we took 14330 runs in the scope of this thesis.

5.2 Algorithmic Setup

We designed and implemented five different tree traversal algorithms in the scope

of this thesis. As mentioned before, each algorithm has its own advantages and

disadvantages. We have already tested the efficiency of the BFS, the DFS, the

RFS and the BEST algorithms along with all the MEB algorithms on consider-

ably smaller scale instances in practice in two of our previous works (TUBITAK

Project Report (2008) and the national YA/EM conference (2009)).

The results of the previous experiments revealed that the BFS and the RFS

algorithms are inefficient in practice, as expected since even small-scaled instances
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of the problems cannot be solved within a reasonable amount of time. The BFS

algorithm faced memory problems in general and the RFS algorithm usually

gave unpredictable performance. Therefore, we did not use the BFS and the RFS

algorithms in the scope of this study.

For k = 2, we initially solved our problems with both the DFS and the BEST

algorithms. Note that, as mentioned before the BEST and the HS algorithms

exhibit the same performance if the memory usage does not exceed the predefined

upper memory limit for a specific instance. Therefore, the HS algorithm was used

for the instances in which the memory usage reached the upper memory limit.

We analyzed the results and observed that the HS algorithm works better

than both the BEST and the DFS algorithms for k = 2 in terms of the running

time. Moreover, this algorithm did not come across with any space problems since

it switches to the DFS algorithm whenever a predefined upper memory limit is

reached. These results will be presented in the following section. Therefore, while

it was stated precisely that the HS algorithm is the most efficient tree traversal

algorithm in practice in terms of the running time, we continued to solve the

instances of k = 3 with only the HS algorithm.

The problem of computing the MEB of a given vector set arises as a sub-

problem in both of the aforementioned problems. In this study, we implemented

four separate and theoretically efficient algorithms for computing the MEB that

are also efficient in practice in terms of both time and memory complexities.

However, we also tested their efficiency in practice in the studies mentioned

above (TUBITAK Project, YA/EM Conference). As stated theoratically in the

literature the algorithms in both algorithm pairs, meb u and meb u elim, and

meb u away and meb u away elim, gave the same solutions to the same prob-

lems with different solution times. Furthermore, the solutions generated from

both pairs and the memory usage of them do not differ much. On the other

hand, the latter pair performed better than the former pair in terms of the solu-

tion time. As a result, we did not choose to use the meb u and the meb u elim

algorithms in the scope of this thesis.

For k = 2, we used the meb u away and the meb u away elim algorithms
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for computing the MEB of a given vector set. The results revealed, as in the

literature, that the latter algorithm performed better than the former algorithm

in 99% of the instances in terms of the running time with negligible difference in

memory requirements. Therefore, we used only the meb u away elim algorithm

for k = 3 case.

5.3 Experimental Results

The software package outputs various results to the users. These results are the

optimal solution of the problem, the initial upper bound, the optimal clusters, the

number of reached leaves, the number of examined nodes, the number of prunes

and the maximum number of active nodes in the branch-and-bound tree, the

number of vectors in clusters, the maximum RAM usage, the maximum virtual

memory usage and the running time.

The number of examined nodes in the branch-and-bound tree can be used

to assess the hardness of the problems, while the running time corresponds to

the speed of the algorithms. Therefore, these outputs are selected as the specific

criteria for measuring the efficiency of the proposed branch-and-bound algorithms

in practice. There is a relationship among these criteria. Note that, the running

time of the proposed algorithms increases as the number of examined nodes in the

branch-and-bound tree increases. However, the running time of the algorithms

depends also on the sizes of the subproblems that are solved in the nodes of the

tree. Therefore, examining fewer nodes in the branch-and-bound tree does not

always imply that the algorithm finds a solution in a shorter amount of time.

However, other results generated by the software package such as the initial

upper bound, the optimal clusters, the number of reached leaves, the number of

prunes, the number of vectors in clusters, the maximum RAM usage, the maxi-

mum virtual memory usage were not be defined among the specific criteria men-

tioned above due to some significant reasons. First, the tree traversal algorithm

type significantly effects the number of reached leaves and the maxiumu number
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of active nodes along with the number of examined nodes in the branch-and-

bound tree. Notice that, if one uses the DFS algorithm, the number of reached

leaves in the branch-and-bound tree increases, while the maximum number of

active nodes in the branch-and-bound tree decreases due to the structure of the

algorithm. Conversely, if the BEST algorithm is used, then the maximum num-

ber of active nodes in the branch-and-bound tree increases, while the number of

reached leaves in the branch-and-bound tree decreases. In addition, if the num-

ber of examined nodes in the branch-and-bound tree increases, then the number

of potential prunes and the number of potential leaves in the branch-and-bound

tree may also increase. Therefore, these result may be foreseen beforehand since

they depend mostly on the tree traversal algorithm types. Apart from these the

maximum number of active nodes in the branch-and-bound tree directly affects

the maximum RAM and virtual memory usages of the algorithms along with the

size of the problems. In other words, the maximum RAM and virtual memory

usages may also be foreseen in advance. Therefore, we chose to use the memory

usages of the tree traversal algorithms only for comparing them in terms of the

memory complexity.

The computational results are reported in Tables A.1 through A.4. However,

we could not include the results of all computational experiments in these tables

due to space constraints. Therefore, we include the part of the results that

represents the general structure of the computational results in Appendix A.

The results for k = 2 are illustrated in Tables A.1 through A.2. We fixed

some parameters in these results in order to give the general structure of the

computational results. To begin with, the problem type is fixed to the min−max

problem because it is harder than the min − sum problem for this data set.

Moreover, the tree traversal algorithm algorithm was fixed to the BEST algorithm

and the MEB algorithm is fixed to the meb u away elim algorithm while this

combination of algorithms seems to be the most efficient algorithm combination

for solving the problems. As a result, these tables illustrate the efficiency of

the proposed algorithms on the harder problems with the best tree traveral and

minimum enclosing ball algorithms. For k = 2, Table A.1 illustrates the results of

the number of examined nodes in the branch-and-bound tree for each radius and
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cluster type and Table A.2 gives the results of the running time of the algorithms

again for each radius and cluster type.

The results for k = 3 are given in Tables A.3 through A.4. The problem

type is again fixed to the min −max problem as in the above data set. More-

over, the tree traversal and the MEB algorithms were fixed to the HS and the

meb u away elim algorithms, respectively, while only the HS algorithm was used

as the tree traversal algorithm and the meb u away elim algorithm was used as

the MEB algorithm for this case. Table A.3 illustrate the results of number

of examined nodes in the branch-and-bound tree for each radius type and each

cluster type. Table A.4 corresponds to the results of the running time of the

problems again for each radius and cluster type.

All of the tables are divided into four columns and four rows. The rows

corrspond to the number of vectors while the columns present the number of

dimensions of the space. The values in the tables give the number of examined

nodes in the branch-and-bound tree or the running time of the algorithm. The

empty cells correspond to the instances that were not solved to optimally with

the algorithms due to time or space constraints.

5.4 Discussions

This section summarizes the results of the computational experiments. We ini-

tially present the effects each one of the parameters on the efficiency of the pro-

posed branch-and-bound algorithms for k = 2 and k = 3, respectively. Then, an

overall discussion will be given.

5.4.1 The Effect of the Problem Type

We studied two different problems in the scope of this thesis, namely the min−
max problem and the min− sum problems. We discuss the performance of the

proposed branch-and-bound algorithms on both problems in this section.
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As mentioned before, we generated random data sets either from disjoint or

overlapping spheres with various sizes. Both problems are very similar to each

other for radius type 1 and for each value of k in which the data vectors were

generated from the disjoint spheres that are far from each other. For this case, the

disjoint clusters that the input data sets were generated are simply the optimal

solutions of each of the problems. However, an unexpected and interesting result

was appeared for other radius types of the min− sum problem for this data set.

For k = 2, the algorithm assigned exactly one vector to one cluster and assigned

the rest of the vectors to the remaining cluster. Similarly for k = 3, the algorithm

again assigned exactly one vector to each one of the two clusters and assigned

the rest of the vectors to the remaining cluster. A cluster with exactly one vector

has a radius value of zero, hence this solution seems to have minimized the sum

of the radii of the spheres. On the other hand, the algorithm behaved differently

for the min −max problem while the objective is to minimize the maximum of

the radii of spheres.

In Figure 5.1, we show the relationship between the problem type and the

number of examined nodes in the branch-and-bound tree for k = 2. The next

figure, Figure 5.2, shows the relation between the problem type and the running

time in seconds again for k = 2. While showing the relations between the stated

parameters in Figures 5.1 and 5.2, the radius type 1, cluster type 1, the BEST

and the meb u away elim algorithms, and the uniform spherical distributions

were fixed. Each of the three lines in the figures corresponds to different sizes

of data sets for (n, m) with numerical values given by (100, 100), (100, 500) and

(100, 1000). The figures illustrate that the number of examined nodes in the

branch-and-bound tree and the running time are close to one another for each

problem type.
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Figure 5.1: The Effect of Problem Type on the Number of Nodes, k = 2

Figure 5.2: The Effect of Problem Type on the Running Time, k = 2

Figures 5.3 and 5.4 are organized similarly to Figures 5.1 and 5.2, respectively,

showing the pattern of parameters for k = 3. In these figures, the radius type

3, cluster type 2, the HS and the meb u away elim algorithms and the uniform

spherical distribution are fixed. Each line corresponds to a different size of data

set for (n, m) with numerical values given by (25, 96), (10, 144) and (25, 144).

The number of examined nodes in the branch-and-bound tree and the running

time are larger for the min−max problem while the algorithms try to exchange

the most suitable vectors between the clusters to minimize the maximum radii

of spheres. On the other hand, the min− sum problem tries to find exactly two
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vectors that each will be assigned to single clusters in order to minimize the sum

of the radii of spheres as stated above.

Figure 5.3: The Effect of Problem Type on the Number of Nodes, k = 3

Figure 5.4: The Effect of Problem Type on the Running Time, k = 3

As a result, we can say that the algorithms perform similarly while solving the

instances that belong to the radius type 1 for both problems and for each value of

k. Furthermore, other radius types can be solved easily by the algorithms for the

min−sum problem and for each value of k, but the the algorithms get difficult to

solve the problems for the radius type other than 1 for the min−max problem.

Therefore Figures 5.1 and 5.2 represent the radius type 1 for both problems and

for each value of k. In addition, Figures 5.3 and 5.4 represent the radius types

other than 1 for the min−max problem for each value of k.
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5.4.2 The Effect of the Radius Type

We constructed ten different radii configurations, called radius types, for each

value of k. The radius types for k = 2 and k = 3 are illustrated in Tables 5.1

and 5.2, respectively. We study the effects of these radius types on the efficieny

of the proposed algorithms in this section.

The relationship among the radius types and the number of examined nodes in

the branch-and-bound tree for k = 2, are illustrated in Figure 5.5. The following

figure, Figure 5.6, plots the relation between the radius types and the running

time for k = 2. We fixed the min−max problem, radius type 3, cluster type 1, the

BEST and the meb u away elim algorithms and uniform spherical distribution

for the illustration of the relations between the stated parameters in Figures 5.5

and 5.6. Each of the three lines in the figures shows different sizes of data sets

for (n, m) with numerical values given by (25, 500), (25, 500) and (25, 1000).

The figures report that both the number of nodes in the branch-and-bound tree

and the running time vary widely with the radius types. It can be seen that the

radius types 4, 7, 3, and 9 tend to yield more difficult instances than the other

radius types.

Figure 5.5: The Effect of Radius Type on the Number of Nodes, k = 2

The patterns of parameters (number of nodes and the running time) for k = 3

are shown in Figures 5.7 and 5.8, which are organized similarly to Figures 5.5

and 5.6, respectively. We used the min−max problem, cluster type 1, the BEST

and the meb u away elim algorithms, and the uniform spherical distribution in
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Figure 5.6: The Effect of Radius Type on the Running Time, k = 2

these figures. Each line corresponds to a different size of data set for (n,m) given

by (50, 48), (10, 96) and (10, 144). We found results similar to those of k = 2.

The number of nodes and the running time are different for each radius type.

Radius type 5, 6, 3, 8, and 9 gave rise to the hardest instances.

Figure 5.7: The Effect of Radius Type on the Number of Nodes, k = 3

We use the min−max problem for showing the results for the radius types,

while the min−sum problem does have a small impact on the radius types other

than the radius type 1.

Studying these results in detail, we can say that our algorithms can solve

instances in which the data sets are generated from the disjoint spheres more

efficiently than the instances in which the data sets are generated from overlapping

spheres for both of the problems. As mentioned before, the algorithms try to

select the cluster centers as far as possible. Therefore, they may eliminate many
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Figure 5.8: The Effect of Radius Type on the Running Time, k = 3

vectors since these vectors are identified to be inside the clusters (See Algorithm

6, Step 15). As a result, they might identify the underlying structures of the

instances and solve the problems easily.

We can divide the overlapping spheres into two groups with respect to their

sizes. The first group includes the spheres that have the same size while the

second group consists of spheres with different sizes. If the spheres are not of

the same size, then the size of the smaller sphere is forced to be enlarged, and

the size of the larger sphere is also forced to be minimized with respect to the

objective function of the min−max problem. Therefore, some data vectors must

be removed from the larger sphere and assigned to the smaller ones, which may

complicate the problem. On the other hand, if the sizes of the spheres are similar,

then there will not be as many vector exchanges between the spheres. Hence the

instances in the former group might be easier than the instances in the latter

group. In addition, as the difference among the sizes of the spheres increase, the

vector exchange among the spheres will also increase and this may imply that the

problems can become harder.

5.4.3 The Effect of the Cluster Type

As stated before called cluster types were generated with respect to the number

of vectors in each sphere, for each radius type. We consider to the effects of these

cluster types in this section.
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For k = 2, Figure 5.9 corresponds to the relationship among the cluster types

and the number of examined nodes in the branch-and-bound tree. The next

figure, Figure 5.10, shows the relation between the cluster types and the running

time for k = 2. In both figures the other parameters (min−max problem, radius

type 4, the BEST and the meb u away elim algorithms and the uniform spherical

distribution) are fixed. Each of the three lines in the figures shows different sizes

of data sets for (n, m) with numerical values given by (50, 100), (50, 500) and

(50, 1000). The figures show that the cluster type effects both the number of

examined nodes and the running time, in which these values are the largest for

the first cluster type and the smallest for the third cluster type.

Figure 5.9: The Effect of Cluster Type on the Number of Nodes, k = 2

Figure 5.10: The Effect of Cluster Type on the Running Time, k = 2

Figures 5.11 and 5.12 are organized similarly to Figures 5.9 and 5.10, re-

spectively, showing the patterns of parameters for k = 3. In these figures, the

min−max problem, radius type 5, the HS and the meb u away elim algorithms
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and the uniform spherical distribution are kept constant. Each line corresponds

to a data set with different size for (n, m) given by (25, 48), (10, 96) and (10,

144). As mentioned before, all the radius types have different number of cluster

types. However, radius type 5 has 7 cluster types and it includes all the differ-

ent cluster types. Therefore we included radius type 5. The results reveal that

different cluster types have different effects on the algorithms. The number of

examined nodes in the branch-and-bound tree and the running time significantly

increase with the radius types 1, 2, 4, 5, and 7.

Figure 5.11: The Effect of Cluster Type on the Number of Nodes, k = 3
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Figure 5.12: The Effect of Cluster Type on the Running Time, k = 3

On the one other hand, for the min − sum problem, the cluster types in

which the number of vectors in each cluster is the same are harder than the

cluster types in which the number of vectors are different in each cluster. This

is also reasonable due to the observations given in the Section 5.4.1, because the

algorithms try assign m - k + 1 vectors to one cluster and k − 1 vectors to the

remaining k − 1 clusters.

On the other hand, the cluster types that tend to make the problem harder in

both cases (k = 2 and k = 3) have specific properties in common for the min−
sum problem. The cluster types in which the largest sphere has more vectors

than the smaller ones, usually makes the problem harder. This can be reasonable

since, if the number of vectors in the larger sphere is more than the number of

vectors in the smaller ones, then the algorithms try to transfer more vectors from

the larger sphere to the smaller ones according to the objective function of the

min− sum problem. Therefore, this lead to more difficult instances.

5.4.4 The Effect of the Number of Vectors

We also tested the effect of the number of vectors m on the efficiency of the

proposed branch-and-bound algorithms. The discussion of these effects are given

in this section. As mentioned before, the radius type has a great impact on the

efficiency of the branch-and-bound algorithms. Therefore, we initially illustrate

the effect of m on the instances with specific radius types that are harder to solve
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and then show the effect on those that are easier to solve.

First, we present the results for the radius types that are harder to solve.

In Figure 5.13 we plot the relationship between m and the number of examined

nodes in the branch-and-bound tree for k = 2. The next figure, Figure 5.14,

presents the relation between m and the running time in seconds again for k = 2.

We used the min−sum problem, the BEST and the meb u away elim algorithms

and n = 25 in these figures. Each of the three lines in the figures shows different

data sets for (radius type, cluster type) with numerical values given by (4, 2),

(4, 3), (7, 1) respectively. We can easily deduct from the figures that an increase

in the number of vectors has significant effect on both the number of examined

nodes in the branch-and-bound tree and on the running time for the data sets

with specific radius types that are harder to solve. It can be seen that, increasing

m by a factor of 5 can increase the number of examined nodes in the branch-and-

bound tree by a factor of 100 and also can increase the running time by a factor

of 1000.

Figure 5.13: The Effect of Number of Vectors on the Number of Nodes, k = 2
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Figure 5.14: The Effect of Number of Vectors on the Running Time, k = 2

Next, the results for the radius types that are easier to solve are given. The

relationship between m and the number of examined nodes in the branch-and-

bound tree for k = 2 is illustrated in Figure 5.15. We also show the relation

between m and the running time in seconds again for k = 2 in the next figure,

Figure 5.16. We fixed the min−max problem, the DFS and the meb u away elim

algorithms and the uniform spherical distribution in Figures 5.15 and 5.16. Each

of the three lines in the figures corresponds to different data sets for (radius type,

cluster type) with numerical values given by (1, 1), (2, 1), (5, 1) respectively. The

figures illustrate that an increase in m (i.e doubling or increasing the number of

vectors by a factor of 5) has a neglible effect on both the number of examined

nodes in the branch-and-bound tree and on the running time for the data sets

with specific radius types that are easier to solve.
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Figure 5.15: The Effect of Number of Vectors on the Number of Nodes, k = 2

Figure 5.16: The Effect of Number of Vectors on the Running Time, k = 2

Figures 5.17, 5.18, 5.19 and 5.20 are organized similarly to Fig-

ures 5.13, 5.14, 5.15 and 5.16 respectively, showing the similar plots of parameters

for k = 3. In all figures the min−max problem, the HS and the meb u away elim

algorithms, and n = 25 are fixed. Each of the three lines in the figures correspond

to different data sets for (radius type, cluster type) with numerical values given

by (3, 2), (5, 2), (6, 2), respectively, for Figures 5.17, 5.18 and with numerical

values given by (1, 1), (7, 1), (10, 1) respectively for the Figures 5.19 and 5.20.

The results are also similar with the case k = 2. On the one hand, we can derive

from the figures that tripling the number of vectors can increase both the number
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of examined nodes and the running time by a factor of 100 for the radius types

that are harder to solve. On the other hand, these changes have a negligible

effect on both the number of examined nodes in the branch-and-bound tree and

the running time for the data sets with specific radius types that are easier to

solve.

Figure 5.17: The Effect of Number of Vectors on the Number of Nodes, k = 3

Figure 5.18: The Effect of Number of Vectors on the Running Time, k = 3

We can summarize the above results and interpret their reasons as follows.

The number of examined nodes in our experiments might grow as the number of

vectors increases, while the number of potential nodes in the branch-and-bound

tree increases with the number of vectors. Moreover, the size of the subproblems

may become larger with the increase in the number of vectors, which also increases

the solution times of the subproblems. As a result, the number of examined nodes

in the branch-and-bound tree and the running time increase with respect to the

increase in m.
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Figure 5.19: The Effect of Number of Vectors on the Number of Nodes, k = 3

Figure 5.20: The Effect of Number of Vectors on the Running Time, k = 3

5.4.5 The Effect of the Number of Dimensions

The effects of n on the efficiency of the proposed algorithms are discussed in this

section. We initially illustrate the effect of n on the instances with specific radius

types that are harder to solve and then show the same effect on instances that

can be solved easily.

We start with more difficult radius types. Figure 5.21 corresponds to the rela-

tionship between n and the number of examined nodes in the branch-and-bound
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tree for k = 2. The relation between n and the running time is given in Fig-

ure 5.22. We used the min−max problem, the BEST and the meb u away elim

algorithms and m = 48 in these figures. Each of the three lines in the figures show

different data sets for (radius type, cluster type) with numerical values given by

(3, 1), (9, 1), (9, 2) respectively. We can easily deduct from the figures that an

increase in the number of dimensions has a significant effect on both the number

of examined nodes in the branch-and-bound tree and on the running time for the

data sets with specific radius types that are harder to solve. It can be seen that

doubling n can increase the number of examined nodes in the branch-and-bound

tree by a factor of twenty and also increase the running time by a factor of three

hundred.

Figure 5.21: The Effect of Number of Dimensions on the Number of Nodes, k = 2

Figure 5.22: The Effect of Number of Dimensions on the Running Time, k = 2

Next, we deal with the easier radius types. The relationship between n and the

number of examined nodes in the branch-and-bound tree, for k = 2 is illustrated
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Figure 5.23: The Effect of Number of Dimensions on the Number of Nodes, k = 2

Figure 5.24: The Effect of Number of Dimensions on the Running Time, k = 2

in Figure 5.23. We also show the relation between n and the running time in

seconds again for k = 2 in the next figure, Figure 5.24. We fixed the min −
max problem, the BEST and the meb u away elim algorithms and the uniform

spherical distribution for results given in Figure 5.23 and 5.24. Each of the three

lines in the figures corresponds to different data sets for (radius type, cluster

type) with numerical values given by (1, 1), (2, 1), (5, 1) respectively. The

figures illustrate that the increase in n (i.e doubling the number of vectors or

increasing the number of vectors by a factor of 5) has a neglible effect on both

the number of examined nodes in the branch-and-bound tree and has a relatively

small effect on the running time for the data sets with specific radius types that

are easier to solve.
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Figures 5.25, 5.26, 5.27 and 5.28 are organized similarly to Fig-

ures 5.21, 5.22, 5.23 and 5.24 respectively, showing the similar pattern of pa-

rameters for k = 3. In all figures the min − max problem, the HS and the

meb u away elim algorithms, and m = 48 are fixed. Each of the three lines in

the figures corresponds to different data sets for (radius type, cluster type) with

numerical values given by (2, 1), (5, 1), (6, 1), respectively, for Figures 5.25, 5.26

and with numerical values given by (1, 1), (7, 1), (10, 1), respectively, for Fig-

ures 5.27 and 5.28. The results are also similar the case k = 2. On the one

hand, we can see from the figures that increasing the number of dimensions by

a factor of 5 can incresae the number of examined nodes and the running time

by a factor of 1000 and 100, respectively, for the radius types that are harder to

solve. On the other hand, these increases do not have a significant effect on both

the number of examined nodes in the branch-and-bound tree or the running time

for the data sets with specific radius types that are easier to solve.

Figure 5.25: The Effect of Number of Dimensions on the Number of Nodes, k = 3
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Figure 5.26: The Effect of Number of Dimensions on the Running Time, k = 3

Figure 5.27: The Effect of Number of Dimensions on the Number of Nodes, k = 3

These results were not expected since an increase in the number of dimension

was expected to affect only the solution time of the MEB algorithms. However,

this was not the priori case. Through the increase in the number of dimensions,

the vectors get closer to the boundary of the sphere, especially for the uniform

spherical distribution. This already changes the structure of the instances. We

may find fewer data vectors that are inside the newly constructed cluster (see

Algorithm 6, step 14). Hence, this can delay reaching a leaf node in the branch-

and-bound tree. In addition, the MEB algorithms perform more efficiently for

the data sets in which the vectors are closer to the center of the spheres. As

a result, an increase in the dimension of the space also increases the number of

examined nodes in the branch-and-bound tree and the running time of the MEB

algorithms.
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Figure 5.28: The Effect of Number of Dimensions on the Running Time, k = 3

5.4.6 The Effect of the Distribution

As mentioned before, we used two different distributions to generate random

instances, the uniform and the pseudo-normal spherical distribution. The effects

of these distributions on the proposed algorithms are analyzed in this section.

In Figure 5.29, we show the relationship between the distribution and the

number of examined nodes in the branch-and-bound tree for k = 2. The next

figure, Figure 5.30, shows the relation between the distribution and the running

time in seconds again for k = 2. In Figures 5.29 and 5.30, we used the min−max

problem, radius type 3, cluster type 1, the BEST and the meb u away elim

algorithms. Each of the three lines in the figures show different sizes of data sets

for (n, m) with numerical values given by (25, 100), (25, 500) and (25, 1000). The

figures illustrate that the number of examined nodes in the branch-and-bound tree

and the running time are larger when the uniform spherical distibution is selected.

The increase we see in the parameters (i.e. the number of examined nodes in the

branch-and-bound tree and the running time) is much more significant as the size

of the data set increases from (25, 100) to (25, 1000) when the uniform spherical

distribution is used in comparision to the increase of the same parameters when

using the normal distribution.
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Figure 5.29: The Effect of Distribution on the Number of Nodes, k = 2

Figure 5.30: The Effect of Distribution on the Running Time, k = 2

Figures 5.31 and 5.32 are similar to Figures 5.29 and 5.30, respectively, show-

ing the pattern of parameters for k = 3. In these figures, the min−max problem,

radius type 5, cluster type 5, the HS and the meb u away elim algorithms are

fixed. Each line corresponds to a different size of data set for (n,m) as (50,

48), (25, 96) and (10, 144). The number of examined nodes in the branch-and-

bound tree and the runnng time are larger for the uniform spherical distribution.

The increase observed in the parameters as the data set size increases for the

uniform spherical distribution is more than the increase for the pseudo-normal

distribution.
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Figure 5.31: The Effect of Distribution on the Number of Nodes, k = 3

Figure 5.32: The Effect of Distribution on the Running Time, k = 3

These results can be explained as follows. The pseudo-normal spherical distri-

bution is a type of centered Gaussian distribution where the center of mass of the

data vectors corresponds to the center of the sphere. Therefore, there may exist

more vectors that can be inside the newly constructed cluster that is given in

the 14th step of the Algorithm 6 with the pseudo-normal spherical distribution.

Hence, one can reach a leaf node in a shorter amount of time. On the other hand,

the uniform spherical distribution has vectors closer to the outside surface of the

sphere than the pseudo-normal spherical distribution. Therefore, computing the

MEB of such data set is also more difficult as stated in the literature.
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5.4.7 The Effect of the MEB algorithm

Two different MEB algorithms were used to compute the MEB of a given vector

set, the meb u away and the meb u away elim algorithms, in the scope of this

study. This section is devoted to the observation of the effects of these algorithms

on the branch-and-bound algorithms.

The relationship between the MEB algorithms and the number of examined

nodes in the branch-and-bound tree for k = 2 is illustrated in Figure 5.33. We

also show the relation between the MEB algorithms and the running time in

seconds again for k = 2 in the next figure, Figure 5.34. We used the min −
max problem, radius type 9, cluster type 1, the DFS algorithm and the uniform

spherical distribution for results given in Figure 5.33 and 5.34. Each of the three

lines in the figures corresponds to different sizes of data sets for (n, m) with

numerical values given by (50, 500), (100, 500) and (100, 1000). Figure 5.33

illustrates that the number of examined nodes in the brach-and-bound tree is the

same for both of the MEB algorithms. The subproblems solved in nodes are

smaller-scaled problems. Therefore, the difference between the meb u away and

the meb u away elimalgorithms are small. Though it can not be seen clearly

from Figure 5.34, the branch-and-bound algorithm finds the solution in a shorter

amount of time if the meb u away elim algorithm is selected.

Figure 5.33: The Effect of MEB algorithm on the Number of Nodes, k = 2
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Figure 5.34: The Effect of MEB algorithm on the Running Time, k = 2

We used only the meb u away elim algorithm for k = 3. Therefore, we do

not compare two different MEB algorithms for this case. We can summarize the

above results as follows. To begin with, both algorithms give same solutions to the

same problems (Yıldırım [3]). Therefore, the same radius value of the node was

computed in each node of the branch-and-bound tree. Then, the number of ex-

amined nodes in the brach-and-bound tree is the same for both of the algorithms

if we use the same tree traversal algorithm. In addition, the meb u away elim

algorithm performed better than the meb u away algorithm in terms of the solu-

tion time in 99% of the instances which is also stated in the literature (Yıldırım

[3]).

5.4.8 The Effect of the Tree Traversal Algorithm

As already mentioned before, we used three different tree traveral algorithms to

traverse the branch-and-bound tree, the DFS, the BEST and the HS algorithms.

We summarize the effects of these algorithms on the problems in this section.

For k = 2, we initially solved the problems with the BEST and the DFS

algorithms because the HS and the BEST algorithms exibit the same performance

unless the predefined memory limit is reached. In Figure 5.35, we show the

relationship between the DFS and the BEST algorithms in terms of the number
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of nodes in the branch-and-bound tree. On the other hand, we illustrate the

relation between the algorithms and the running time in Figure 5.36. We fixed

the min − max problem, radius type 4, cluster type 1, the meb u away elim

algorithm and the uniform spherical distribution in Figures 5.35 and 5.36. Each

of the two lines in the figures correspond to different sizes of data sets for (n, m)

with numerical values given by (50, 100), (25, 500). The figures illustrate that

the number of examined nodes in the branch-and-bound tree and the running

time are larger when the DFS algorithm is selected.

Figure 5.35: The Effect of Tree Traveral Algoritm on the Number of Nodes, k = 2

Figure 5.36: The Effect of Tree Traveral Algoritm on the Running Time, k = 2

Note that there exists an important issue that must be considered: An increase

in the problem size also increases the memory usage of the algorithms. Such an
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increase mostly effects the BEST algorithm, while the number of all nodes in the

branch-and-bound tree is a constraint, this number can be at most the height

of the tree for the DFS algorithm. Therefore, we may face memory problems

with the BEST algorithm. As a consequence, we used the HS algorithm for the

instances in which the upper memory limit is reached. We, next, examine this

case on five specific instances in which the upper memory limit is reached. These

instances were rerun with the HS algorithm. The upper memory limit was set to

2.5 GB of the total memory and the lower memory limit was set to 2.0 GB of the

total memory. Table 5.7 illustrates these instances and the maximum memory

usages of the algorithms for them.

Maximum Memory Usages of the Tree Traversal Algorithms on Specific Instances

Instance BEST Algorithm DFS Algorithm HS Algorithm

1 3.66 Gb 0.001 Gb 2.58 Gb

2 3.67 Gb 0.001 Gb 2.61 Gb

3 3.58 Gb 0.001 Gb 2.59 Gb

4 3.35 Gb 0.001 Gb 2.52 Gb

5 3.21 Gb 0.001 Gb 2.68 Gb

Table 5.7: Maximum Memory Usages of 5 Specific Instances, k = 2

It can be deduced from Table 5.7 that the memory usage can be limited if one

uses the HS algorithm. We compare the performances of the algorithms in the

following figures. Figure 5.37 and 5.38 correspond to the comparision of the three

algorithms in terms of the number of examined nodes in the branch-and-bound

tree and running time, respectively, for the specific instances given above.

Figures report that the BEST algorithm is the most efficient one in terms of

the number of examined nodes in the branch-and-bound tree. This is expected

since the BEST algorithm aims to minimize the total number of examined nodes.

On the other hand, notice that the HS algorithm gives similar results to the BEST

algorithm.

The HS algorithm is the most efficient algorithm in terms of the running time.

As mentioned before, the HS algorithm starts with the BEST algorithm. Hence,

it can start with better partial groupings. Then, whenever it switches to the

DFS algorithm, it descends as quickly as possible to reach a leaf node. Notice

that, while the DFS algorithm starts from scratch, the BEST algorithm starts
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Figure 5.37: Number of Nodes for the Specific Instances

Figure 5.38: Running Time for the Specific Instances

from better partial groupings. Therefore, it might find potentially better upper

bounds and might be able to prune more nodes. This observation may explain

the better performance of the HS algorithm in terms of the running time.

5.4.9 The General Discussion

This section is devoted to the overall discussion of the computational experiments

and their results. First, we tried design not only extensive, but also systematic

computational experiments. Therefore, the computational setup was designed

in a meaningful way. What we mean by meaningful is that, we took all the
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relevant parameters of the problems into consideration one by one and analyzed

the effects of each one on the proposed branch-and-bound algorithms for both

problems. These parameters are the numner of clusters k, the number of vectors

m, the number of dimensions n, the radius and the cluster types, the distribution,

the minimum enclosing ball and the tree traveral algorithms. As a result, we can

summarize the following results.

The number of spheres, k, and the number of vectors, m, have a significant

effect on the efficieny of the proposed algorithms. The number of potential nodes

in the branch-and-bound tree increases as a function of k and m. Therefore, the

number of examined nodes and accordingly the running time increase as k and/or

m increases.

Moreover, the effect of the number of dimensions, n, cannot be underesti-

mated. An increase in n not only makes the MEB algorithms more difficult,

but also makes the problems more difficult while it alters the structure of the

generated data sets for the distributions used in our computations.

In addition, the difficulty of the problems depends heavily both on the radius

and the cluster types. While the radius and the cluster types change the structure

of the data vectors, the difficulty of the problems also differs according to the

selected radius and cluster types. Furthermore, similar radius and cluster types

affects mostly the efficiency of the proposed branch-and-bound algorithms.

Furthermore, two different algorithms were used to compute the MEB

of a given vector set. Our results comply with the literature that the

meb u away elim performs better than the meb u away algorithm. Therefore,

the use of the meb u away elim algorithm is suggested.

The DFS, the BEST and the HS algorithms were used to traverse the branch-

and-bound tree in the scope of this study. All the algorithms have their own

advantages and disadvantages. However, we observed that the HS algorithm is

the most efficient algorithm in terms of the running time, and the DFS algorithm

is the most efficient algorithm with respect to the memory usage. Therefore,

if there is a limited memory or the size of the input set is very large the DFS
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algorithm is recommended. Otherwise it is better to use the HS algorithm but

with carefully selected upper and lower memory limits.

Besides, we used two different distributions to generate random instances

within a sphere, the uniform and the pseudo-normal spherical distributions. It is

more difficult for the algorithms to solve the instances generated from the uniform

spherical distribution due to the structure of the data sets.

Finally, the proposed branch-and-bound algorithms are capable of solving the

min− sum problem more efficiently than the min−max problem for this data

set.



Chapter 6

Conclusion

In this study, a specialized algorithm is designed and implemented for clustering

problems using minimum enclosing balls. The main clustering problems of focus

in this thesis are the computation of k spheres in a high dimensional space that

enlose a given set of m vectors, which corresponds to the set of objects, in such a

way that the radius of the largest sphere or the sum of the radii of spheres is as

small as possible. The aim is to identify the underlying structures and patterns

among the objects correctly in order to divide the set of object into k clusters

based on the level of similarity among them. The Euclidean distance is used as

a measure of similarity among the objects.

General purpose solvers cannot solve the problems efficiently since they are

not able to exploit the specific underlying structures of the problems. Therefore,

we designed specific algorithms based on a systematic and efficient search of

an optimal solution using a Branch-and-Bound framework. A software package

is developed in order to implement the proposed branch-and-bound algorithms.

We designed the architecture of the software in a flexible and modular fashion.

Therefore, it constitutes a solid foundation for further studies. The algorithms

were tested in practice via the software package.

Extensive and systematic computational experiments were designed for testing

the efficiency of the algorithms in practice. The proposed branch-and-bound

87
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algorithms were tested in a controlled manner of all parameters. We suggested

the most efficient MEB and tree traversal algorithms in terms of time and space

complexities. The results of the experiments revealed that the algorithms are

able to solve medium-scale intances of the problems effectively and efficiently.

For future research, this study can be extended in many ways. First, the

proposed algorithms can be tested with larger values of k, n or m values such

as 10, 1000 and 10000 respectively. Moreover, it is possible to implement differ-

ent MEB algorithms to compute the MEB of a given vector set. Furthermore,

different tree traversal algorithms can be developed. These algorithms can be a

compromise between the proposed tree traversal algorithms, such as the combina-

tion of the BEST, BFS and DFS algorithms. A new tree traversal algorithm can

be developed as well. In addition, only specific lower and upper memory limits

are tested in the scope of this study. However, the HS algorithm can be tested

with different upper and lower memory limit in order to find the optimal values of

each memory limits. The distributions used to generate the random instances can

be choosen differently and various distributions can be used to generate random

instances, especially for the min−sum problem. The radius and cluster types af-

fects directly the efficiency of the algorithms. An extensive computational study

can be performed to identify the specific reasons of this phenomenon. Moreover,

the instances with new radius or cluster types can be generated. The effect of

the accuracy parameter of the MEB algorithms, ε, can be studied. Finally, it

would be interesting to define the clusters with differens geometric objects, such

as ellipsoids or boxes.
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[3] S. D. Ahipaşaoğlu and E. A. Yıldırım. Identification and elimination of

interior points for the minimum enclosing ball problem. SIAM Jourmal On

Optimization, 19:1392–1396, 2008.

[4] M. Badoiu and K. L. Clarkson. Smaller core-sets for balls. In Proceedings of

the 14th Annual Symposium on Discrete Algorithms, pages 801–802, 2003.

[5] M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-

sets. In Proceedings of the 34th Annual ACM Symposium on Theory of

Computing, pages 250–257, 2002.

[6] J. Burkardt. Random data. http://www.csit.edu/ burkardt/m src/

random data/random data.html.

[7] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering

and dynamic information retrieval. Proc. 29th Annu. ACM Sympos. Theory

Comput, pages 626–635, 1997.

[8] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: de-

terministic approximation algorithms for group steiner trees and k-median.

89



BIBLIOGRAPHY 90

Proceedings of the 30th Annual ACM Symposium on Theory of Computing,

pages 114–123, 1998.

[9] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility

location and k-median problems. Proceedings of the 40th Annual Symposium

on Foundations of Computer Science, pages 378–388, 1999.

[10] N. Christofidesa and P. Viola. The optimum location of multi-centers of a

graph. Opnl. Res. Quart., 22:145–154, 1971.

[11] G. Chrystal. On the problem to construct the minimum circle enclosing n

given points in the plane. In Proceedings of the Edinburgh Mathematical

Society, 3:30–33, 1985.

[12] Z. Drezner. The planar two-center and two-median problems. Transportation

Science, 18:351–361, 1984.

[13] Z. Drezner. Facility location. Springer-Verlag, New York, 1995.

[14] D. Elzinga and D. Hearn. The minimum covering sphere problem. Journal

of Physics: Conference Series Create an alert RSS this journal, 19:96–104,

1972.

[15] E.Minieka. The m-center problem. SIAM Review, 12:138–139, 1970.

[16] D. Eppstein. Faster construction of planar two-centers. In Proceedings of

the Eighth ACM-SIAM Symposium on Discrete Algorithms, 1997.

[17] R. S. Garfinkel, A. W. Neebe, and M. R. Rao. The m-center problem: Bot-

tleneck facility location. Working Paper, Graduate School of Management,

University of Rochester, New York, 1974.

[18] A. J. Goldman. Optimum locations for centers in a network. Transportation

Science, 4:352–360, 1969.

[19] A. J. Goldman. Optimal center location in simple networks. Transportation

Science, 5:212–221, 1971.



BIBLIOGRAPHY 91

[20] T. Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoratical Computer Science, 38:293–306, 1985.

[21] S. L. Hakimi. Optimum locations of switching centers and the absolute

centers and medians of a graph. Operations Research, 12:450–459, 1964.

[22] S. L. Hakimi. Optimum distribution of switching centers in a communication

network and some related graph theoretic problems. Operations Research,

13:462–475, 1965.

[23] S. L. Hakimi and S. M. Maheswari. Optimum locations of centers in net-

works. Operations Research, 20:967–973, 1972.

[24] S. L. Hakimi, E. F. Schmeichel, and J. G. Pierce. On p-centers in networks.

Transportation Science, 12:1–15, 1978.

[25] J. Hershberger. A faster algorithm for the two-center decision problem.

Information Processing Letters, 47:23–39, 1993.

[26] D. S. Hochbaum and D. Shmoys. A best possible heuristic for the k-center

problem. Math. Oper. Res., 10:180–184, 1985.

[27] D. S. Hochbaum and D. Shmoys. A unified approach to approximation

algorithms for bottleneck problems. J. ACM, 33:533–550, 1986.

[28] W. L. Hsu and G. L. Nemhauser. Easy and hard bottleneck location prob-

lems. Discrete Applied Mathematics, 1:209–215, 1979.

[29] M. Hung and J. G. Morris. Solving constrained discrete space minimax

location-allocation problems. Working Paper, Center for Business and Eco-

nomic Research, Kent State University, Kent, Ohio, 1975.

[30] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility lo-

cation and k-median problems using the primal-dual schema and lagrangian

relaxation. Journal of the ACM, 48:274–296, 2001.



BIBLIOGRAPHY 92

[31] J. W. Jaromczyk and M. Kowaluk. A geometric proof of the combinatorial

bounds for the number of optimal solutions to the 2-center euclidean prob-

lem. Proceedings of the Seventh Canadian Conference on Computational

Geometry, pages 19–24, 1995a.

[32] O. Kariv and S. L. Hakimi. An algorithmic approach to network location

problems. I: The p-centers. SIAM Journal on Applied Mathematics, 37:513–

538, 1979a.

[33] O. Kariv and S. L. Hakimi. An algorithmic approach to network loca-

tion problems. II: The p-medians. SIAM Journal on Applied Mathematics,

37:539–560, 1979b.

[34] P. Kumar, J. S. B. Mitchell, and E. A. Yıldırım. Approximate minimum

enclosing balls in high dimensions using core-sets. The ACM Journal of

Experimental Algorithmics, 8, 2003.

[35] J. Levy. An extended theorem for location on a network. Opnl. Res. Quart,

18:433–442, 1967.

[36] S. Leyffer, J. Linderoth, J. Luedtke, A. Miller, and T. Munson. Applications

and algorithms for mixed integer nonlinear programming. Journal of Physics:

Conference Series, 180, 2009.

[37] J. Matousek. Randomized optimal algorithm for slope selection. Inf. Process.

Lett., 39:183–187, 1991b.

[38] N. Megiddo and K. Supowit. On the complexity of some common geometric

location problems. SIAM Journal on Computing, 13:182–196, 1984.

[39] R. Panigrahy. Minimum enclosing polytope in high dimensions. Unpublished

manuscript, 2006.

[40] M. Sharir. A near-linear algorithm for the planar 2-center problem. Discrete

Comput. Geom, 18:125–134, 1997.

[41] J. J. Sylvester. On Poncelets approximate linear valuation of surd forms.

Philosophical Magazine, 1860.



BIBLIOGRAPHY 93

[42] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks: A

survey. Part I: The p-center and p-median problems. Management Science,

29:482–497, 1983a.

[43] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks: A survey.

Part II: Exploiting tree network structure. European Journal of Operations

Research, 29:498–511, 1983b.

[44] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The location of emer-

gency service facilities. Operations Research, 19:1363–1373, 1971.

[45] R. E. Wendell and A. P. Hurter. Optimum locations on a network. Trans-

portation Science, 7:18–33, 1973.

[46] E. A. Yıldırım. Two algorithms for the minimum enclosing ball problem.

SIAM Journal on Optimization, 19:1368–1391, 2008.



Appendix A

Numerical Results

Table A.1: Number of Examined Nodes in the Branch-and-Bound Tree, k = 2

Radius Type 1, Cluster Type 1

n/m 100 500 1000

25 56,2 58,2 53

50 91 99,4 99,8
100 125,8 181 179

Radius Type 1, Cluster Type 2

n/m 100 500 1000

25 59,4 57,8 57,8

50 92,2 99,4 99,4
100 137,4 180,6 159

Radius Type 1, Cluster Type 3

n/m 100 500 1000

25 54,6 55,8 56,2

50 83,4 97,4 91,4
100 123,4 177,8 169,8

Radius Type 2, Cluster Type 1

n/m 100 500 1000

25 46,2 46,2 57,8

50 75,4 81 78,2

100 103 112,2 96,6

Radius Type 2, Cluster Type 2

n/m 100 500 1000

25 54,6 53 45,4

50 77 89 84,2

100 83,8 147,8 160,2

Radius Type 2, Cluster Type 3

n/m 100 500 1000

25 32,2 61 40,2

50 48,6 91,8 52,6

100 62,6 133,8 93,8

94
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Radius Type 3, Cluster Type 1

n/m 100 500 1000

25 1844,2 5893 5973

50 19081 80143,8 68977,8

100 67407,4

Radius Type 3, Cluster Type 2

n/m 100 500 1000

25 854,6 5827,4 3169,8

50 4605,4 69609,4 51103

100 24591,4

Radius Type 3, Cluster Type 3

n/m 100 500 1000

25 276,2 2815 3215

50 711,6 23814,2 32175

100 1910,2

Radius Type 4, Cluster Type 1

n/m 100 500 1000

25 21878,2 684929

50 1296431,4

100

Radius Type 4, Cluster Type 2

n/m 100 500 1000

25 10390,6 409195

50 221661

100

Radius Type 4, Cluster Type 3

n/m 100 500 1000

25 752,6 97178,2

50 12143

100

Radius Type 5, Cluster Type 1

n/m 100 500 1000

25 56,2 57 54,2

50 83,4 96,2 98,6

100 125,8 179 173,8

Radius Type 5, Cluster Type 2

n/m 100 500 1000

25 55,8 60,2 55,8

50 91,4 99 99,8

100 132,6 180,6 156,6

Radius Type 5, Cluster Type 3

n/m 100 500 1000

25 53 57,4 53,8

50 82,6 99 96,2

100 118,2 175 167,4

Radius Type 6, Cluster Type 1

n/m 100 500 1000

25 344,6 194,2 248,2

50 647,8 567,4 701

100 1362,2 1376,2 1083

Radius Type 6, Cluster Type 2

n/m 100 500 1000

25 118,2 217,8 223,4

50 304,2 504,6 414,2

100 514,2 1215 957

Radius Type 6, Cluster Type 3

n/m 100 500 1000

25 84,6 155,8 161

50 167,8 313,4 350,6

100 247,4 875,8 857,4
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Radius Type 7, Cluster Type 1

n/m 100 500 1000

25 8513,4 89448,2

50 421281
100

Radius Type 7, Cluster Type 2

n/m 100 500 1000

25 2880,6 38811

50 47114,2
100

Radius Type 7, Cluster Type 3

n/m 100 500 1000

25 291 13581,8

50 2023,4
100

Radius Type 8, Cluster Type 1

n/m 100 500 1000

25 59,8 62,6 63

50 84,2 115 100,2

100 123 187 180,6

Radius Type 8, Cluster Type 2

n/m 100 500 1000

25 63,8 66,6 62,6

50 94,2 107,8 101,4

100 134,2 189,4 182,2

Radius Type 8, Cluster Type 3

n/m 100 500 1000

25 59,4 62,2 59,8

50 82,6 107,8 102,2

100 124,2 178,6 171,4
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Radius Type 9, Cluster Type 1

n/m 100 500 1000

25 546,2 1262,6 1479,4

50 3675 12281,8 6692,2

100 17787 209881

Radius Type 9, Cluster Type 2

n/m 100 500 1000

25 336,2 767,6 987,4

50 1675 7521,8 3897,2

100 10787 121881

Radius Type 9, Cluster Type 3

n/m 100 500 1000

25 260,2 925,8 1034,6

50 457 7225,4 6998,2

100 1659 75384,2

Radius Type 10, Cluster Type 1

n/m 100 500 1000

25 88,2 68,6 68,2

50 111,8 115,8 113,8

100 141,8 209 201,4

Radius Type 10, Cluster Type 2

n/m 100 500 1000

25 75,4 72,2 69,4

50 114,6 123 112,6

100 161,8 203,4 194,2

Radius Type 10, Cluster Type 3

n/m 100 500 1000

25 97,4 75,8 68,2

50 114,2 123,4 109,4

100 136,2 193,4 194,2

Table A.2: Running Time, k = 2

Radius Type 1, Cluster Type 1

n/m 100 500 1000

25 0,092 0,862 1,9

50 0,238 2,46 6,97
100 0,54 9,112 21,89

Radius Type 1, Cluster Type 2

n/m 100 500 1000

25 0,074 0,832 1,944

50 0,204 2,49 6,6

100 0,486 8,01 18,418

Radius Type 1, Cluster Type 3

n/m 100 500 1000

25 0,084 0,748 2,038

50 0,256 2,628 5,892

100 0,548 9,162 21,808

Radius Type 2, Cluster Type 1

n/m 100 500 1000

25 0,078 0,734 2,124

50 0,232 2,642 5,792

100 0,49 7,272 17,074

Radius Type 2, Cluster Type 2

n/m 100 500 1000

25 0,064 0,68 1,452

50 0,192 2,198 5,292

100 0,26 6,484 21,41

Radius Type 2, Cluster Type 3

n/m 100 500 1000

25 0,036 0,654 0,996

50 0,114 1,964 1,816

100 0,15 4,104 4,816
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Radius Type 3, Cluster Type 1

n/m 100 500 1000

25 3,196 145,612 354,122

50 53,774 4060,932 8844,912

100 274,868

Radius Type 3, Cluster Type 2

n/m 100 500 1000

25 1,062 89,926 122,104

50 8,402 2213,16 4415,528

100 69,896

Radius Type 3, Cluster Type 3

n/m 100 500 1000

25 0,212 24,74 71,056

50 0,856 341,024 1375,416

100 3,236

Radius Type 4, Cluster Type 1

n/m 100 500 1000

25 34,958 15089,042

50 3367,93

100

Radius Type 4, Cluster Type 2

n/m 100 500 1000

25 14,246 6674,424

50 446,796
100

Radius Type 4, Cluster Type 3

n/m 100 500 1000

25 0,82 1079,016

50 20,958

100

Radius Type 5, Cluster Type 1

n/m 100 500 1000

25 0,084 0,85 1,884

50 0,254 2,574 7,064

100 0,522 9,236 22,37

Radius Type 5, Cluster Type 2

n/m 100 500 1000

25 0,076 0,862 2,048

50 0,246 2,568 6,806

100 0,434 8,114 18,338

Radius Type 5, Cluster Type 3

n/m 100 500 1000

25 0,09 0,836 1,836

50 0,232 2,642 7,08

100 0,46 9,062 21,216

Radius Type 6, Cluster Type 1

n/m 100 500 1000

25 0,608 3,184 10,984

50 1,872 20,396 66,692

100 6,07 100,034 189,698

Radius Type 6, Cluster Type 2

n/m 100 500 1000

25 0,13 2,576 7,202

50 0,536 11,646 22,988
100 1,338 52,406 106,63

Radius Type 6, Cluster Type 3

n/m 100 500 1000

25 0,078 1,058 2,788

50 0,238 3,418 9,81

100 0,462 17,696 49,196
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Radius Type 7, Cluster Type 1

n/m 100 500 1000

25 13,256 2079,43

50 1056,912
100

Radius Type 7, Cluster Type 2

n/m 100 500 1000

25 3,364 585,132

50 82,738

100

Radius Type 7, Cluster Type 3

n/m 100 500 1000

25 0,208 112,944

50 2,51
100

Radius Type 8, Cluster Type 1

n/m 100 500 1000

25 0,09 0,908 2,414

50 0,218 3,306 6,81

100 0,504 9,69 23,992

Radius Type 8, Cluster Type 2

n/m 100 500 1000

25 0,086 0,922 2,164

50 0,224 2,93 7,104

100 0,452 8,732 24,896

Radius Type 8, Cluster Type 3

n/m 100 500 1000

25 0,098 0,906 2,278

50 0,204 2,868 6,9

100 0,542 9,338 24,064
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Radius Type 9, Cluster Type 1

n/m 100 500 1000

25 2,102 37,264 76,768

50 20,652 1311,088 1997,276

100 515,43 56090,52

Radius Type 9, Cluster Type 2

n/m 100 500 1000

25 0,642 17,782 56,004

50 7,638 345,754 474,562

100 49,51 11852,894

Radius Type 9, Cluster Type 3

n/m 100 500 1000

25 0,21 8,168 22,844

50 0,536 106,6 274,826
100 3,06 1995,006

Radius Type 10, Cluster Type 1

n/m 100 500 1000

25 0,126 0,932 2,37

50 0,31 3,078 7,58

100 0,488 10,506 25,294

Radius Type 10, Cluster Type 2

n/m 100 500 1000

25 0,094 0,988 2,496

50 0,26 3,006 7,372

100 0,498 9,286 23,71

Radius Type 10, Cluster Type 3

n/m 100 500 1000

25 0,148 1,062 2,416

50 0,318 3,416 7,962

100 0,526 9,468 26,45

Table A.3: Number of Examined Nodes for Branch-and-Bound Tree, k = 3

Radius Type 1, Cluster Type 1

n/m 48 96 144

10 56,4 67,8 66

25 79,2 118,2 123,6
50 118,8 173,4

Radius Type 1, Cluster Type 2

n/m 48 96 144

10 52,8 58,2 66,6

25 89,4 108 122,4

50 111,6 156

Radius Type 2, Cluster Type 1

n/m 48 96 144

10 156,6 349,8 364,2

25 522,6 739,6 3367,2

50 118897,2 89565984

Radius Type 2, Cluster Type 2

n/m 48 96 144

10 163,8 376,2 368,4

25 431,2 1823,2 24792,6

50 46564,8 64614968,4

Radius Type 2, Cluster Type 3

n/m 48 96 144

10 70,2 159,6 187,8

25 134,4 292,8 844,2

50 175,8 570

Radius Type 2, Cluster Type 4

n/m 48 96 144

10 391,2 505,2 1052,4

25 1215,6 3049722,6 5662,6

50 1531189,2
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Radius Type 3, Cluster Type 1

n/m 48 96 144

10 243,6 2242,4 4489,4

25 1931 52873,4 559707

50 17282,

Radius Type 3, Cluster Type 2

n/m 48 96 144

10 551,8 2130,4 6951

25 2397,2 76890,2 428882,4

50 13560,2

Radius Type 3, Cluster Type 3

n/m 48 96 144

10 143,4 436,8 711,4

25 200 4106,2 19038

50 348,6

Radius Type 3, Cluster Type 4

n/m 48 96 144

10 790,8 5056,2 16998,6

25 11897,6 620487 14960882,2

50 202719,2

Radius Type 4, Cluster Type 1

n/m 48 96 144

10 162 210 290,4

25 232,2 578,4 545,4

50 429,6

Radius Type 4, Cluster Type 2

n/m 48 96 144

10 212,4 379,2 395,4

25 418,8 782,4 703,2

50 586,2

Radius Type 4, Cluster Type 3

n/m 48 96 144

10 214,2 298,2 248,4

25 274,2 506,4 640,2

50 0445

Radius Type 4, Cluster Type 4

n/m 48 96 144

10 136,2 228,6 230,8

25 378,6 394,6 949,2

50 293,4

Radius Type 5, Cluster Type 1

n/m 48 96 144

10 545 3641,4 10542,2

25 11364,2 134829,8 1016488,6

50 121168,8

Radius Type 5, Cluster Type 2

n/m 48 96 144

10 469,6 1303,8 4046,2

25 1556,2 18642,6 129424,8

50 11190

Radius Type 5, Cluster Type 3

n/m 48 96 144

10 186,2 907,4 1325,6

25 310,2 1998,8 5877,2

50 428,8

Radius Type 5, Cluster Type 4

n/m 48 96 144

10 885,2 2720,2 6947,4

25 5451,6 145158 1487217,4

50 108591
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Radius Type 5, Cluster Type 5

n/m 48 96 144

10 571,2 2328,2 3183,6

25 1543,4 31415,8 103862,6

50 14972

Radius Type 5, Cluster Type 6

n/m 48 96 144

10 123,6 736,2 891,4

25 276,6 2901,6 5932,4

50 262,4

Radius Type 5, Cluster Type 7

n/m 48 96 144

10 506,2 1583,4 3242,6

25 2382,2 23916 130412,6

50 6582,8

Radius Type 6, Cluster Type 1

n/m 48 96 144

10 769,2 3085,6 4874,2

25 5298,8 44855,6 128304,8

50 43574,6

Radius Type 6, Cluster Type 2

n/m 48 96 144

10 1268,4 4613,8 5620,8

25 15096,8 127272,8 457889

50 95833,4

Radius Type 6, Cluster Type 3

n/m 48 96 144

10 1072,8 1938 2597,6

25 8676,8 72758,6 92582

50 20709,2
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Radius Type 6, Cluster Type 4

n/m 48 96 144

10 597,4 1355 2246,4

25 6948,2 54156,8 208994

50 15378,8

Radius Type 7, Cluster Type 1

n/m 48 96 144

10 73,2 86,4 107,2

25 92,4 124,2 139,2

50 124,6

Radius Type 7, Cluster Type 2

n/m 48 96 144

10 113,8 99 97,6

25 101,8 123 135,6

50 120,6

Radius Type 8, Cluster Type 1

n/m 48 96 144

10 519,8 1673,6 2375,6

25 4104 39534,4 43179,8

50 3723,4

Radius Type 8, Cluster Type 2

n/m 48 96 144

10 578,8 1295,8 2373,8

25 2352 14926,2 2309691,2

50 3097

Radius Type 8, Cluster Type 3

n/m 48 96 144

10 215 440,8 632,2

25 654,2 3050,4 16029,6

50 952

Radius Type 8, Cluster Type 4

n/m 48 96 144

10 1147 2613 3715,4

25 3047,2 34668 1041264

50 24915

Radius Type 9, Cluster Type 1

n/m 48 96 144

10 459,8 767,6 1415,8

25 1607,6 9416 17677,6

50 5292,4

Radius Type 9, Cluster Type 2

n/m 48 96 144

10 416 1530,4 1825,8

25 3613,2 12139 40375,8

50 12240,8

Radius Type 9, Cluster Type 3

n/m 48 96 144

10 361,4 635 1289

25 2857,6 6530,2 10849,6

50 4645

Radius Type 9, Cluster Type 4

n/m 48 96 144

10 443,8 871,4 1758,6

25 1962 5044,8 16104,8

50 9895,4

Radius Type 10, Cluster Type 1

n/m 48 96 144

10 204,8 223,4 198

25 272,6 403,2 343,6

50 310,4
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Radius Type 10, Cluster Type 2

n/m 48 96 144

10 222,2 229,4 291,8

25 402,4 516,6 441,4

50 417,6

Table A.4: Running Time, k = 3

Radius Type 1, Cluster Type 1

n/m 48 96 144

10 0,012 0,03 0,048

25 0,024 0,074 0,136

50 0,05 0,174

Radius Type 1, Cluster Type 2

n/m 48 96 144

10 0,014 0,028 0,05

25 0.228 0,078 0,144

50 0,05 0,16

Radius Type 2, Cluster Type 1

n/m 48 96 144

10 0,032 0,146 0,216

25 0,142 0,414 3,142

50 83,638 148618,604

Radius Type 2, Cluster Type 2

n/m 48 96 144

10 0,03 0,162 0,224

25 0,122 1,05 26,64

50 26,938 100031,708

Radius Type 2, Cluster Type 3

n/m 48 96 144

10 0,016 0,058 0,11

25 0,034 0,156 0,696

50 0,062 0,436

Radius Type 2, Cluster Type 4

n/m 48 96 144

10 0,08 0,224 0,812

25 0,356 2816,05 6,63

50 1018,926

Radius Type 3, Cluster Type 1

n/m 48 96 144

10 0,072 1,222 3,664

25 0,72 46,922 790,268

50 8,78

Radius Type 3, Cluster Type 2

n/m 48 96 144

10 0,142 1,212 5,94

25 0,944 68,65 594,536

50 7,104

Radius Type 3, Cluster Type 3

n/m 48 96 144

10 0,028 0,238 0,536

25 0,058 3,078 21,712

50 0,142

Radius Type 3, Cluster Type 4

n/m 48 96 144

10 0,22 2,944 14,782

25 4,878 599,596 21470,892

50 126,368
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Radius Type 4, Cluster Type 1

n/m 48 96 144

10 0,028 0,08 0,21

25 0,062 0,364 0,624

50 0,158

Radius Type 4, Cluster Type 2

n/m 48 96 144

10 0,048 0,174 0,308

25 0,13 0,536 0,956

50 0,234

Radius Type 4, Cluster Type 3

n/m 48 96 144

10 0,046 0,132 0,182

25 0,082 0,352 0,794

50 0,18

Radius Type 4, Cluster Type 4

n/m 48 96 144

10 0,028 0,106 0,174

25 0,118 0,27 1,276

50 0,114

Radius Type 5, Cluster Type 1

n/m 48 96 144

10 0,148 2,036 8,522

25 4,418 120,384 1430,75

50 66,078

Radius Type 5, Cluster Type 2

n/m 48 96 144

10 0,126 0,682 3,142

25 0,516 14,204 167,228

50 5,596
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Radius Type 5, Cluster Type 3

n/m 48 96 144

10 0,042 0,398 0,868

25 0,1 1,306 6,184

50 0,188

Radius Type 5, Cluster Type 4

n/m 48 96 144

10 0,252 1,494 5,578

25 2,042 141,1 1944,594

50 60,864

Radius Type 5, Cluster Type 5

n/m 48 96 144

10 0,152 1,244 2,288

25 0,566 25,9 136,64

50 7,242

Radius Type 5, Cluster Type 6

n/m 48 96 144

10 0,028 0,346 0,606

25 0,102 2,016 6,632

50 0,1

Radius Type 5, Cluster Type 7

n/m 48 96 144

10 0,128 0,79 2,48

25 0,96 20,96 157,88

50 3,214

Radius Type 6, Cluster Type 1

n/m 48 96 144

10 0,206 1,658 4,216

25 1,834 36,462 179,746

50 23,104

Radius Type 6, Cluster Type 2

n/m 48 96 144

10 0,336 2,66 4,746

25 6,218 125,856 782,528

50 48,434

Radius Type 6, Cluster Type 3

n/m 48 96 144

10 0,276 1,058 2,082

25 3,27 63,736 139,42

50 10,196

Radius Type 6, Cluster Type 4

n/m 48 96 144

10 0,166 0,732 1,834

25 2,696 54,066 350,178

50 7,306

Radius Type 7, Cluster Type 1

n/m 48 96 144

10 0,018 0,038 0,08

25 0,026 0,078 0,188

50 0,046

Radius Type 7, Cluster Type 2

n/m 48 96 144

10 0,022 0,044 0,08

25 0,032 0,09 0,178

50 0,05

Radius Type 8, Cluster Type 1

n/m 48 96 144

10 0,132 0,81 1,566

25 1,424 27,976 55,57

50 1,77
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Radius Type 8, Cluster Type 2

n/m 48 96 144

10 0,136 0,592 1,688

25 0,83 11,074 3497,314

50 1,348

Radius Type 8, Cluster Type 3

n/m 48 96 144

10 0,04 0,194 0,388

25 0,204 1,896 16,396

50 0,382

Radius Type 8, Cluster Type 4

n/m 48 96 144

10 0,33 1,334 2,714

25 1,104 28,336 1633,006

50 12,256

Radius Type 9, Cluster Type 1

n/m 48 96 144

10 0,13 0,402 1,198

25 0,558 8,026 23,496

50 2,04

Radius Type 9, Cluster Type 2

n/m 48 96 144

10 0,094 0,872 1,588

25 1,366 11,14 68,572

50 6,21

Radius Type 9, Cluster Type 3

n/m 48 96 144

10 0,104 0,304 1,038

25 0,976 4,968 14,502

50 1,936

Radius Type 9, Cluster Type 4

n/m 48 96 144

10 0,106 0,476 1,474

25 0,67 4,004 21,504

50 4,75

Radius Type 10, Cluster Type 1

n/m 48 96 144

10 0,058 0,132 0,162

25 0,094 0,334 0,442

50 0,116

Radius Type 10, Cluster Type 2

n/m 48 96 144

10 0,062 0,134 0,268

25 0,16 0,448 0,618

50 0,154


