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Abstract—Lagrange interpolation of the translation operator
in the three-dimensional multilevel fast multipole algorithm
(MLFMA) is revisited. Parameters of the interpolation, namely,
the number of interpolation points and the oversampling factor,
are optimized for controllable error. Via optimization, it becomes
possible to obtain the desired level of accuracy with the minimum
processing time.

Index Terms—Lagrange interpolation, multilevel fast multipole
algorithm, translation operator.

I. INTRODUCTION

THE multilevel fast multipole algorithm (MLFMA) [1], [2]
requires translations to convert the radiated fields of the

basis clusters into incoming waves for the testing clusters. In
a matrix–vector multiplication, translations are performed be-
tween the clusters that are at the same level but far from each
other. Through the factorization of the Green’s function, transla-
tion operators are independent from the radiation and receiving
patterns of the basis and testing clusters, respectively [3]. To be
employed repeatedly, these operators are calculated and stored
in the memory before the iterations.

Since direct calculation of the translation operators requires
operations, where is the number of unknowns, pro-

cessing time for their setup increases rapidly and becomes sub-
stantial as problem size grows. As a remedy, a two-step com-
putation is suggested based on the interpolation of the transla-
tion operator [4]: First, the translation operator is expressed as a
band-limited function of a variable and it is sampled at
points with respect to this variable. Second, the operator is eval-
uated at the required points by interpolation from the previous
samples. With an efficient interpolation algorithm, processing
time for the calculation of the translation operators is reduced
to .

In [4], Lagrange interpolation was proposed to efficiently fill
the translation matrices for large problems. However, the pa-
rameters of the interpolation, namely, the number of interpola-
tion points and the oversampling factor, were fixed. With the
parameters fixed, the interpolation error is not controllable and
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the processing time is not minimized. In this paper, we revisit
the Lagrange interpolation of the translation operators and op-
timize the parameters of the interpolation to obtain the desired
level of accuracy with minimum processing time. The optimal
parameters are compared to the fixed parameters to demonstrate
the improvement obtained with the optimization.

II. LAGRANGE INTERPOLATION OF THE

TRANSLATION OPERATORS

A three-dimensional (3-D) translation operator between a
pair of basis and testing clusters at the same level can be written
as

(1)

where is the spherical Hankel function of the first kind, is
the Legendre polynomial, is the wavenumber, and is a unit
vector representing the angular directions. The centers of the
basis and testing clusters are separated by the vector , where

(2)

The summation in (1) is truncated at , where is the number
of multipoles required to accurately represent the spectral con-
tents of both the translation operator and the related radiation
and receiving patterns. Considering cubic clusters with edges
and using the excess bandwidth formula [5] for the worst case
scenario [6]

(3)

where is the desired number of digits of accuracy.
In Fig. 1(a), the truncation number is plotted with respect

to and for different values of the cluster size increasing
by a factor of two from to , where is the wave-
length. For any problem, corresponds to the size of the
clusters at the lowest level of the multilevel tree structure. On
the other hand, the size of the largest clusters depends on the
size of the problem. Fig. 1(a) demonstrates that grows rapidly
as the cluster size increases. For a fixed , however, increases
gradually with respect to and the variation is small for large .

Processing time required to calculate the translation operator
in (1) is measured on a 1.8-GHz 64-bit Opteron-244 processor.
In Fig. 1(b), the processing time is plotted with respect to the
same parameters as in Fig. 1(a). The values are given for a
single interaction between a pair of basis and testing clusters
while a typical problem requires the calculation of numerous
cluster–cluster interactions. Since , the processing
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Fig. 1. (a) Truncation number as a function of d and the cluster size a. (b) Pro-
cessing time to compute the translation function for a single cluster–cluster in-
teraction. In both figures, there are nine curves for different values of the cluster
size increasing by a factor of two from 0:25� to 64�. The lowest and highest
curves correspond to 0:25� and 64�, respectively.

time to evaluate (1) for a fixed is . In addition, the
number of angular directions is and the processing
time to evaluate (1) becomes for a cluster–cluster in-
teraction. For low levels of MLFMA, , which
is acceptable although the number of clusters in these levels is

. However, for the largest clusters of a problem,
and . Therefore, as becomes

large, the processing time required to calculate the translation
operators for a problem is dominated by the evaluations for
the high-level clusters, although the number of these clusters is

. In addition, the setup time for the translation matrix be-
comes dominant compared to the time required for other parts
of MLFMA, even the matrix–vector multiplications that can be
performed in time.

Defining the variable , the translation op-
erator can be expressed as a band-limited function of [4] as

(4)

Choosing an oversampling factor and sampling the op-
erator along from to at equally
spaced points ( represents the floor operation), i.e., at

and , the transla-
tion operator can be obtained by Lagrange interpolation at any
point as

(5)

where represents the translation function perturbed by the
interpolation error

(6)

and

Fig. 2. (a) Magnitude and (b) phase of the translation function with respect to
' for the case of a = 4�, d = 3, and DDD = x̂xx2a.

(7)

In (5) and (7), is the number of interpolation points employed
at each side of the target location .

III. OPTIMAL INTERPOLATION

Fig. 2(a) and (b) depicts the magnitude and phase of the trans-
lation operator, respectively, for two clusters separated by

, where . The number of accurate digits is 3 and
. We perform the direct calculation of the translation

operator, where the function is evaluated at the required points
by using (4). In the direction, there are sam-
ples that are equally spaced from to . In the direction,
there are samples (zeros of the Legendre polyno-
mial) and they are not equally spaced. Then, there are a total of

distinct directions to evaluate the transla-
tion operator. It should be noted that the transform from (1) to
(4) not only depends on , but also on the relative positions of
the clusters, i.e., it also depends on .
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Fig. 3. (a) Interpolation error and (b) processing time with respect to interpo-
lation parameters p and s for the translation function in Fig. 2.

Before the translation matrix is filled via Lagrange interpo-
lation, the parameters and must be determined. For fixed
values of and , we perform a scan over the and param-
eters to find their optimal values. Fig. 3(a) demonstrates the in-
terpolation error with respect to and for the case in Fig. 2.
The interpolation error is defined as

(8)

where and represents the sampling
points. The interpolation error decreases when or is in-
creased. In this case , which means that MLFMA com-
putes the interactions with three digits of accuracy. Thus,
pairs leading to larger than error are not allowable. In other
words, the error introduced by the interpolation of the transla-
tion operator should be adjusted according to the desired level
of accuracy.

This strategy yields a set of pairs satisfying the error
criterion. Optimization is completed by choosing the pair
with the minimum processing time. As shown in Fig. 3(b), pro-
cessing time (measured on a 1.8-GHz 64-bit Opteron-244 pro-
cessor) to evaluate the translation operator increases as or is

TABLE I
SPEEDUP OBTAINED BY USING THE OPTIMAL (p; s) PAIR FOR a � 4�

increased. Then, there exists an optimal pair satisfying the
desired level of accuracy with the minimum processing time. We
scan the parameters and for various values of and . All
possible values of according to the one-box-buffer scheme [6]
are also checked. In the end, we obtain the optimal values listed
in Table I with the corresponding speedup compared to the di-
rect calculation. We note that the values presented in Table I do
not depend on the computer platform. The optimal pairs
are valid for and they are found to be independent of

. For smaller clusters, such as or , the interpolation
does not lead to a significant speedup, and therefore, we prefer to
calculate these translations directly. In the case of much smaller
clusters, such as or , direct calculation is faster
than the interpolation for any pair satisfying the desired
accuracy.

Fig. 4(a) and (b) compares the optimal pairs to the fixed
values suggested in [4]. In Fig. 4(a), the interpo-

lation error is plotted with respect to the box size from to
and for different levels of accuracy, i.e., for and

corresponding to and relative errors,
respectively. In the optimized case, the error is always below
the desired level of accuracy. However, with fixed parameters,
the error is not controllable and is localized around . The
corresponding speedup is plotted in Fig. 4(b), where it increases
with increasing box size and decreases with increasing number
of accurate digits in the optimized case. This relationship is also
evident in Table I. Comparing Fig. 4(a) and Fig. 4(b), the fol-
lowing observations can be made.

1) For and , fixed satisfies the desired
level of accuracy but the optimal pairs provide higher
speedup.

2) For and , the fixed seems to give
higher speedup compared to the optimal pairs, how-
ever, the accuracy is not satisfied with the fixed parameters.

Based on these observations, we conclude that optimization is
essential to improve the interpolation of the translation operator.

IV. RESULTS

To demonstrate the overall improvement obtained with in-
terpolation, we present the results of a scattering problem in-
volving a conducting sphere of radius . This is a 1,462,854-
unknown problem solved by a parallel MLFMA implementa-
tion with seven levels. The problem is solved on a cluster of 32
2.6-GHz Pentium-4 Celeron processors. The box size is
for the lowest level and for the highest level. As an example,
if the number of accurate digits is set to 3, then takes values
from to . We use the one-box-buffer scheme and reduce the
number of translations by exploiting the symmetry [7]. During
the setup phase of the program, each processor checks all of its



ERGÜL AND GÜREL: OPTIMAL INTERPOLATION OF TRANSLATION OPERATOR IN MULTILEVEL FAST MULTIPOLE ALGORITHM 3825

Fig. 4. (a) Interpolation error and (b) corresponding speedup for different box
sizes from 4� to 64� and for d = 2; 3; 4; 5. (DDD = x̂xx2a).

cluster–cluster interactions to eliminate the unneeded transla-
tions.

In Fig. 5(a), processing time for the calculation of the trans-
lation operators is plotted with respect to . For both types of
calculations (direct and interpolated), the maximum is chosen
among the processing times spent by 32 processors. In Fig. 5(b),
the speedup obtained by the interpolation method over direct
calculation is plotted as a function of . The speedup is over

up to .

V. CONCLUSION

In this paper, we revisited the Lagrange interpolation of the
translation operator in 3-D MLFMA. We optimized the number
of interpolation points and the oversampling factor . In this
way, the error becomes controllable and the processing time re-
quired to satisfy the desired level of accuracy is minimized.

Fig. 5. (a) Processing time to compute the translation operators for a 1,462,854-
unknown sphere problem. (b) Speedup obtained with optimal interpolation com-
pared to direct calculation of the translation operators.
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