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ABSTRACT

PREDICTIVE RESIDUAL SUM OF SQUARES 

COMPARED WITH J AND JA 

IN NONNESTED HYPOTHESIS TESTING

YENER KANDOGAN 

MASTER OF ECONOMICS 

Supervisor: Prof. Dr. Asad Zaman

May 1996

In nonnested hypothesis testing, J test suggested by Davidson and MacKinnon 

(1981) and JA test suggested by Fisher and McAleer (1981) are two common tests 

used to evaluate hypotheses. In this thesis, we first give the necessary background for 

J and JA tests in nonnested hypothesis testing and the literature survey on these issues. 

We then compare the performances of J and JA tests with Predictive Residual Sum of 

Squares method. Monte Carlo experiments are carried out to compare these tests in 

testing Quadratic versus Leontieff models and also Linear versus Log-Linear models, 

where we find that Predictive Residual Sum of Squares method has superiority over 

the other tests mentioned in terms of power. In the end, a real case study testing 

different consumption function theories for 1987-1995 period in Turkey is presented.

Key Words; Predictive Residual Sum of Squares, J test, JA test, nonnested hypothesis 

testing



ÖZET

İÇİÇE GEÇMEMİŞ HİPOTEZ TESTİNDE 

TAHMİNİ HATA KARELERİNİN TOPLAMI 

METODUNUN J VE JA TESTLERİ İLE KARŞILAŞTIRILMASI

YENER KANDOĞAN 

Yüksek Lisans Tezi, İktisat Bölümü 

Tez Yöneticisi: Prof. Dr. Asad Zaman

Mayıs 1996

İçiçe geçmemiş hipotez testinde Davidson ve MacKinnon (1981) tarafından

önerilen J testi ve Fisher ve McAleer (1981) tarafından önerilen JA testi sık kullanılan iki

testtir. Bu tezde ilk önce içiçe geçmemiş hipotez testinde kullanılan J ve JA testi için

genel bilgi ve bu konularda yapmış olduğumuz yayın araştırması veriliyor. Sonra J ve JA

testlerinin performansını tahmini hata karelerinin toplamı metodunkiyle karşılaştırılıyor.

İkinci dereceden modellerin Leontieff modeliyle, Logaritmik modellerin Lineer

modellerle test edilmesinde Monte Carlo deneylerini kullanarak bu test teknikleri

karşılaştırıldı. Bu deneyler sonucunda tahmini hata karelerinin toplamı metodunun diğer

testler karşısında güç bakımından üstün olduğu bulundu. Son olarak gerçek verileri
♦

kullanarak 1987-1995 dönemi Türkiyesi için değişik tüketim fonksiyonları teorileri test 

edildi.

Anahtar Sözcükler: Tahmini Hata Karelerinin Toplamı, J testi, JA testi, İçiçe Geçmemiş 

Hipotez Testi
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1. Why Comparing Models ?

Econometricians build models for two main purposes: estimation and 

inference. In such practices, a linear statistical model with parameters is generally 

assumed. This approach is consistent with the sampling process, by which the 

observations are drawn. Every applied econometrician has had the experience of 

estimating a regression model which at first glance, seemed to be satisfactory, but 

later turned out to be invalid. In practice, true statistical models are very rare. The 

nature o f economic data makes this situation inevitable. The right-hand side variables, 

that is, the explanatory variables are usually collinear. This is because of time-series 

data exhibiting the same trends, the same business cycles.

Then, a reasonable judgment is that most of the statistical models used by 

economists so far are invalid. This fact casts doubt upon the estimations and 

inferences that are being built on them. But, first the roots of the problem must be 

identified. What are the sources of misspecification yielding such judgment? How 

can they be detected? What are the ways of avoiding them? Actually, there are many 

reasons causing model misspecification. Omission of a relevant explanatory variable 

or misinclusion of some explanatory variables are two most likely reasons for model 

misspecification. To detect and avoid such defects, some variable selection procedures 

that includes both discrimination among nested alternative models and testing of 

separate (nonnested) models are developed to solve model misspecification problems.

At this point, a differentiation between nested and nonnested models needs to 

be done. Two statistical models are nested when one of them is a special case of the 

other, with some parameter restrictions. For example, Cobb-Douglas production 

function is nested within Constant Elasticity o f Substitution (C.E.S.) production 

function. Cobb-Douglas production function is a special case of Constant Elasticity 

of Substitution production function, obtained with some parameter restrictions. C.E.S. 

production function with unity elasticity of substitution reduces to a Cobb-Douglas 

production function. Two models are said to be nonnested when one of them can not 

be expressed as a special case of the other. Linear versus log-linear statistical models



constitutes an example of two nonnested models. Here, log-linear statistical models 

are actually multiplicative models or exponential models, linearized by taking 

logarithm of both sides. Clearly, linear models can not be obtained from log-linear 

models merely by some parameter restrictions.

Model misspecification, or rather, selection of a statistical model and 

nonexperimental model building are very old problems in econometrics. Many 

research efforts have been devoted in this area. As a result o f these researches many 

criteria, testing mechanisms, search processes and empirical rules came out to help the 

economists in selecting appropriate statistical models. These procedures and rules are 

discussed in recent articles or books of Gaver and Geisel (1974), Hocking (1976), 

Thompson (1978), Learner (1978), Amemiya (1980), Maddala (1981), White 

(1982,1983), MacKinnon (1983), Sawyer (1980), McAleer (1984) and Doran (1993) 

among others.

In this literature, some criteria and rules are suggested in adjusting a design 

matrix, more explicitly, in deleting or adding explanatory variables. In this 

framework, it is usual to appeal to economic theory for guidance in specifying 

econometric models. So, in all of these studies main emphasis is made on the 

importance of economic theory in forming explanatory variables matrix.

Economic theory helps a lot in narrowing the range of explanatory variables as 

well as in determining possible functional forms. It has much to offer the researcher in 

describing which economic variables should be considered and the direction of 

possible relationships between the variables. But theory rarely suggests one model to 

explain a particular phenomenon. Often there are rival theories, and even when there 

are not, a single theory may be compatible with several functional forms, or some 

handful of stochastic specifications. Besides, unfortunately, economic theory, treating 

most variables symmetrically, is of little help when the researcher is at the stage of 

quantitative analysis, where the appropriate functional form should be specified. 

When faced with several competing regression models, it is simply necessary to 

choose the model which is best. In order to do this an applied econometrician would
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use a model selection criterion. Of course, the econometrician usually does not know 

whether any of the competing models could conceivably be true. So, specification of 

each of the available models should be tested. Tests for heteroskedasticity, serial 

correlation, parameter stability and other criteria play important roles in this context. 

But, it should be noted that the tests mentioned above do not make use of the 

information that the model tested is only one of the several models to explain a certain 

phenomenon. Some of the rules or criteria in selecting between nested statistical 

models are:

-Orthodox (Classical) Hypothesis Testing Framework: F test. Mean Square 

Error Norm test,

-Residual Sum of Squares Rules: Coefficient of Determination: r 2. Adjusted 

Coefficient of Determination: R ^ ,  Amemiya’s Unconditional Mean Square Error 

Criterion: PC, Mallows Conditional Mean Square Error Prediction Criterion Cp,

-Information Criteria: Akaike Information Criterion AIC, Sawa’s Criterion 

BIC, Schwarz Criterion SC, Chow Criterion are some examples. The fundamental 

notion in this approach is the following. The information criterion seeks to incorporate 

in model selection the divergent considerations of accuracy of estimation and the best 

approximation to reality. Thus, use of this criterion involves a statistic that 

incorporates a measure of the precision o f the estimated a measure of the rule of 

parsimony in the parametrization of an econometric model. In this context, the 

adequacy of an approximation to the true distribution o f a random variable is 

measured by the distance between model of reality and the true distribution.

-Bayes Criteria: Jeffreys-Bayes Posterior Odds Ratio is an example for this 

approach. Gaver and Geisel (1974) developed a framework for using the posterior 

odds ratio and a basis for discriminating among models. Fundamentally, the posterior 

odds ratio depends on the prior odds ratio, the compatibility of the prior distributions 

and the maximum likelihood estimates. This criterion makes use of a ratio of the 

determinants of the two design matrices and a ratio of likelihoods. Consequently, a 

goodness of fit consideration results.



-Stein Rules: Basically, including some extraneous variables in the design 

matrix or excluding any of the important explanatory variables from the design matrix 

conditions the precision and the bias, with which the coefficients of explanatory 

variables are estimated. In bias-variance choice within Stein rule context, the data are 

used to determine the compromise between bias and variance and the appropriate 

dimension of the design matrix.

2. Comparing Nonnested Statistical Models

The primary concern of this thesis is the comparison of nonnested models. 

Cox, Atkinson, Quandt, Pesaran and Deaton, Davidson and MacKinnon, Fisher and 

McAleer worked on this area and they developed some tests, which are variants of 

likelihood ratio test. The initial work in this subject is done by Cox (1961). Then, 

Pesaran (1974) extended the researches by Cox to include the regression model and 

concentrated on the autocorrelated disturbance case. Thereafter, Pesaran with Deaton 

(1978) extended his early results so that there is no need for the assumption of 

linearity in the models. So, testing of competing nonlinear models can also be done. 

Afterwards, Atkinson (1970) suggested a procedure that combines the nonnested 

models into a general model, which constituted an important pace in nonnested 

hypothesis testing. Dastoor (1983) noted an inequality between Cox and Atkinson 

statistics. Fisher and McAleer (1981) modified the Cox test for linear regressions. In 

the mean time, Davidson and MacKinnon (1981) suggested processes for model 

specification testing, known as J test, which are linearized versions of Cox test. These 

are closely related to the nonnested model testing of Pesaran and Deaton (1978), 

named as JA test.

There are many cases in applied econometrics, where there is a need for 

testing nonnested hypotheses. At this point, let’s clarify a point. Since to each 

hypothesis, there corresponds a unique model, the terms hypothesis and model will be 

used synonymously. In nonnested hypothesis situations, one model can not be 

obtained from the other model by simply imposing some restrictions or by making 

some approximations. But what are the situations that nonnested hypothesis testing

10



will be needed? The following are some instances faced in applied econometrics, 

where nonnested models are appropriate:

-Functional Form Differences: In general, models with different functional 

forms can not be nested. Quadratic and Leontieff production functions provide an 

example to this case.

-Variable Definition Differences: For example, models may use different 

definitions for expected price or interest rate.

-Different Theories: In consumption function, models of different theories are 

examples for this case. Absolute Income Hypothesis, Relative Income Hypothesis, 

Permanent Income Hypothesis, Life-Cycle Hypothesis can be tested using nonnested 

hypothesis tests.

-Linear and Log-linear Models: Testing Cobb-Douglas production functions 

with additive or multiplicative error terms is an example for this case.

Despite many possible situations as above. Is nonnested hypothesis testing 

widely used in practical applications? In agricultural economics literature, for instance 

there are many applications, where one should include nonnested hypothesis testing as 

part of the general specification testing program, but it is not usually considered. 

American Journal of Agricultural Economics (1990-1991 issues) state out some 

important observations from applied research:

-Without any theoretical justification models are usually used in log-linear

form,

-A comparison between models with same dependent variables and different 

explanatory variables is usually made,

-Hypotheses with different functional forms are compared in an ad-hoc way.

Until recently, a misleading approach was subject to nonnested models. In 

this approach the primary emphasis was on discrimination rather than testing. That is 

a very deceptive point of view. Basically, model selection criteria are appropriate 

when one wishes to choose one out of a group of competing models. Here, the 

objective is to choose the best model, by explicitly trading of fit and parsimony in
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parametrization. Within that framework a best model was chosen depending on its 

performance or sample explanation. R^, R ^ and Akaike Information Criterion were 

mainly used for this purpose.

But, actually there are two fundamental differences between discrimination 

and testing. Since one best model is sought, the discrimination process will always 

lead to choosing a model. In testing framework, however, all of the models can be 

rejected as inadequate to explain the variations in the dependent variable. Also, in 

testing framework probabilities are attached to the misrejection of null hypothesis, 

whereas, in discrimination process, even though such probabilities exist, they are 

difficult to obtain.

On the other hand, nonnested hypothesis tests are tests of model specification. 

The only important difference between nonnested hypothesis tests and more classical 

procedures is that they rely on the existence of nonnested alternative models. 

Orthodox tests, in this respect ignore the availability of a nonnested alternative 

hypothesis. The results of applying such tests to two competing models may be that 

one model can be rejected while the other can not, but it may just, as well, be that both 

of the models , or neither model can be rejected. Thus testing each model against the 

evidence provided by the other can not allow the researcher to choose one of the 

competing models. What it can do is to provide evidence that one of the models or 

both of the models are misspecified.

It must again be stressed that, nonnested model tests are specification tests. 

They make use of alternative models. Using the information about the alternative, 

they test whether the null can correctly predict the performance of the alternative. In 

nonnested hypothesis case, there is a data system and a system of alternative models. 

Since alternative models are nonnested, they are unranked as to generality, in contrast 

to nested models. Nested models can be ranked among themselves, by the number of 

additional explanatory variables added to a core model. In normested case, each of the 

models is considered equally likely. Separate tests of each pair of hypotheses is made. 

In each case, a check is made to see whether the performance of one model is

12



consistent with the truth of the other model. This process is repeated for the truth of 

each available model. It is clear that in comparing two nonnested models, four 

outcomes are possible:

-Both of the hypotheses are rejected as inadequate,

-The first model is accepted and the second is rejected as inadequate,

-The second model is accepted and the first is rejected as inadequate,

-Both models are accepted.

Note that, the Discrimination Criteria should be used only with the last 

outcome, where both models are considered as adequate.

3. Preliminaries for J and JA tests

Suppose that we have two competing hypotheses HO and HI about a 

dependent variable y. Suppose further that the true data generating process o f у is also 

known. For clarity, lets assume data generating process to be:

Hq: y=XoBo + UQ where uo~N(0,ao^It)

Let the alternative model be of the form:

H ]: y^XjBi + uj where ui~N (0,ai2lt)

The parameters Bq and are known and the parameters Bj and, have 

to be estimated. Here, the estimated, is taken as a measure of model performance. 

The ability to predict model performance according to the data generating process of 

the dependent variable is a major concept in normested model testing, which is first 

used by Cox (1961). In the test for nonnested models implemented by Cox, a variant 

of Neyman-Pearson likelihood ratio test which compares the value of this test statistic 

with its expected value is used. The basic idea of this procedure is that one may test 

the validity of a null hypothesis about how a data set was generated, by comparing the 

observed ratio of the values of the likelihood functions for the null hypothesis and for 

some nonnested alternative hypothesis with an estimate of the expected value of this 

likelihood ratio if null hypothesis were true. If alternative hypothesis fits either better 

or worse than it should if null hypothesis were true, then null hypothesis must be

13



false. Сох considered the asymptotic distribution of a function of the generalized log 

likelihood ratio, in his procedure.

For the case where the data generating function o f у is not known, the method 

is similar, but with slight differences. In short, this procedure for this case works as 

follows: First one of the models is assumed to be the data generating process and the 

performance of the other model is predicted on the basis of first model. If the actual 

performance of the estimated, is close to its predicted performance, a

confirmation of the first model can be made. In contrast, if  the actual performance of 

the estimated, jg not close to its predicted performance, the first model will be 

rejected as inadequate. In determining the closeness of estimated performance to its 

predicted performance, significance level method is applied. A significant value for 

the test statistic suggests rejecting the first model. Here, it is crucial to note that 

rejecting the first hypothesis has no implications whatsoever on the adequacy of the 

other model.

So, in summary, two tests will be performed, where each model will have a 

chance of being assumed to be the data generating process. The outcome of these 

tests will determine whether the data is:

-consistent with the first model,

-consistent with the second model,

-consistent with neither models,

-consistent with both models.

As previously noted, when two models are tested against each other, there are 

four (even nine) possible outcomes (nine outcomes if one distinguishes between 

rejection in the direction of alternative model and rejection in the opposite direction). 

Therefore, interpreting the results of such a pair of tests may seem complicated. For a 

detailed discussion on this matter see Fisher and McAleer (1979). However, for 

practical purposes interpretation of results is not particularly difficult. If none of the 

models is rejected, the data does not allow us to say that either is false. If one model is 

rejected and the other is not, then the set of models that are worth further examination
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has been reduced in size. This is a quite useful outcome for practical purposes. At this 

point, it should be remembered that there may be many nonnested alternative models. 

Furthermore, if both models are rejected , then the set of models has been reduced in 

size even more. Indeed, if there are no models around, the applied econometrician 

should presumably invent some. In this particular situation, the signs of the test 

statistics may be useful. This is because, in such a case, the sign of tests statistics will 

tell us whether one should look for a model that combines features of both models 

rejected, or for a model that moves away from one of the models.

Furthermore, there is also another important remark that should be made. One 

should note that in the case of nonnested models, there are many alternative 

hypotheses. Therefore, rejecting one of the models as null hypothesis does not 

necessarily imply that the other model is acceptable.

Now, it is time to set out an important preliminary concept in J and JA tests: A 

convenient way of comparing nonnested models is to add another explanatory 

variable to the model being tested and examine the associated t-statistic. As noted 

earlier, the rejection of the first model does not imply anything about the adequacy of 

the other model, even if the added variable is derived from the other model. Then, the 

only implication of this is that the augmenting variable is correlated with the 

variable(s), which are incorrectly omitted from the first model. In this testing 

procedure the model is tested against a nonnested alternative. Since each of the 

models is drawn from the economic theory, there is good reason to believe that the 

augmenting variable is highly correlated with the incorrectly omitted variables in the 

first model.

4. J and JA tests

J test is a linear version of the test proposed by Cox. It has been suggested by 

Davidson and MacKinnon (1981). Lets assume two competing hypotheses:

Hq: y=XoBo + UQ where uo~N(0,ao^It)

H j: y=XiBj + uj where ui~N(0, a i 2ij)
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Assume that Xq and Xj are independent. An immediate way o f testing these 

models is to combine them in a composite form given as:

He: y^XoBo + XlB] + u

Then, an F test carried out to test whether Bq=0 or B i =0 will imply H] or Hq 

respectively. However, problems arise when power o f these test is considered: If  both 

Xq and Xj have large number of columns, that is, both models use numerous 

explanatory variables, then the degrees of freedom in the numerator of the F-statistic 

will be large, consequently the power will be diminished. Furthermore, if  the 

assumption of linearly independent Xq and X\  is relaxed in such a way that, Xq and 

X \  are highly collinear, then multicollinearity problem will arise. Then, the power of 

this test will be further reduced. With such a low power this test may fail to reject 

none of the models even if they are both inadequate.

Davidson and MacKinnon (1981) solved these problems by considering 

embedding the models by a more general way: by taking the weighted average of the 

models using a fixing parameter L:

y=(l-L)XoBo + LXiBi +u

Davidson and MacKinnon replaced the XiBj  by its estimate y=(I-M i)y, 

where M i=Xi(X/Xi)'' X /. Therefore, the above equation can be written as:

y=(l-L)XoBo + L y  + u

Since the estimate of y is asymptotically independent of the error term, 

Davidson and MacKinnon proposed to test if L equals to 0 to see if Hq is true by 

using a likelihood ratio or even a conventional t test. They named this process as J 

test.

An exponential type and constant elasticity of substitution type combination of 

deterministic components of the regression models could also be considered. For 

competing linear regression models, Davidson and MacKinnon (1980) conjecture that 

the various combinations yield similar results, but they recommend the linear 

combination for its simplicity. Therefore, a choice between the numerous ways of 

combination of models is a topic for further research.
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JA test suggested by Fisher and McAleer (1981) is in principle very similar to 

J test. Both J and JA tests use an artificial regression, which is obtained by 

augmenting the null hypothesis by a variable. This variable is obtained by some 

regressions using the alternative hypothesis as well. Since both of the tests are one 

degree o f freedom tests, their power is higher than the direct composition approach 

considered at the beginning. Pesaran justified this case in his studies (1982).

The difference between the J test and the JA test is that the augmenting 

variables added to the null hypothesis are different. In J test, X iB j  is replaced by (I- 

Mi)y. Thus, J test requires only two regressions. However, in JA test, X iB j  is 

replaced by (I-Mi)(I-Mo)y. Therefore, three regressions must be carried out for JA 

test. But, the advantage of JA test is that when the models in consideration are linear 

and the disturbances are normal, this test is exact. Even with small samples, this test 

produces tests of correct size. However, J test is not exact in this sense. With small 

samples, J test may reject a true model too often. In spite of this disadvantage of J test, 

Monte Carlo evidence proves that J test is a more powerful procedure compared to JA 

test.

Let’s at this point, state a deficiency of using J and JA tests. Of course, a 

statistical outcome could be the acceptance of the composite model. This is at the one 

hand and at the same time an advantage and a disadvantage o f using J and JA tests. In 

J and JA tests, the acceptance of the composite model is not possible. Thus, on the 

one hand, using J and JA tests has an advantage in that the composite model itself 

may not be conceiveable, whence one is not forced by the data to accept an 

inconceivalbe proposition. On the other hand, it has a disadvantage in the case where 

the composite model may have some hidden meaning. For example Cox (1961) points 

out that the combined model may lead to an adequate representation o f the data when 

both component hypotheses are false. That is, if the artificial model is in some sense 

closer to reality than either o f the component models, the fact that we can not accept it 

is an obvious drawback of using J and JA tests as numerical methods of identification.
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Although the exponential weighting of likelihood functions is naturally 

appealing, there are certainly other methods available for nesting alternative models 

within a more generally framework. This raises the interesting question of whether the 

concept of nonnested hypotheses is itself more than a thoroughly practical artifact. It 

could be argued, for example, that the reasonable competing hypotheses are just 

special cases of some more general system, special components of which are the 

individual null and alternative hypotheses. Therefore, consideration o f the form of 

nesting of the competing hypotheses may then be as important as the actual testing 

procedures themselves.

We are now in a position to spell out the simple steps in J and JA tests in 

testing two competing linear models;

Model 0: y=XoBo + uq 

Model 1: y=XiBi + u\

J test:

Null hypothesis is Model 0.

-Regress y on X], and get the predictions y l ,

-Regress y on Xq and y l  ,

-J-statistic is the t-value of the coefficient of y l .

Null hypothesis is Model 1.

-Regress y on Xq, and get the predictions y O ,

-Regress y on X j and y O ,

-J-statistic is the t-value of the coefficient o f yO .

JA test:

Null hypothesis is Model 0.

-Regress y on Xq to obtain predictions yO ,

-Regress yO on X j to obtain predictions yol  ,

-Regress y on Xq and y o l ,

-JA-statistic is the t-value of the coefficient of y o l .
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Null hypothesis is Model 1.

-Regress у on Xj to obtain predictions y l ,

-Regress y l  on Xq to obtain predictions y l  0 ,

-Regress у on Xj and 7 IO,

-JA-statistic is the t-value of the coefficient of 10.

The below are the steps that must be carried out for J and JA tests in testing 

competing linear versus log-linear regression models, which is suggested by Bera and 

McAleer;

Model 0: log y=XQB0 + uq 

Model 1: y=XiBl + uj

J test:

Null hypothesis is Model 0.

-Regress у on X 2, and get the predictions y l  ,

-Take the logarithm of y l , and get log y l ,

-Regress log у on Xq and log y l ,

-J-statistic is the t-value of the coefficient of log y l  .

Null hypothesis is Model 1.

-Regress log у on Xq, and get the predictions log y O ,

-Take the exponential of log y O , and get y O ,

- Regress у on Xj and y O ,

-J-statistic is the t-value of the coefficient of y Q .

JA test:

Null hypothesis is Model 0.

-Regress log у on Xq to obtain predictions log y O ,

-Take the exponential of log yQ to get y O ,

-Regress yO onXj  to obtain predictions yO l ,

-Take the logarithm of у 01 to get log у 01,

-Regress log у on Xq and log у 01 ,
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-JA-statistic is the t-value of the coefficient o f log y O l .

Null hypothesis is Model 1.

-Regress y on Xj to obtain predictions y l ,

-Take the logarithm of y l  to get log y l ,

-Regress log y l  on Xq to obtain predictions log ylO,

-Take the exponential of log ylO to get ylO,

-Regress y on Xj and /1 0 ,

-JA-statistic is the t-value of the coefficient of /1 0 .

5. Predictive Residual Sum of Squares Method

The primary purpose of this thesis is to compare the performances of 

Predictive Residual Sum of Squares method with J and JA tests, in nonnested 

hypotheses testing. All three methods will be compared according to their power. 

More explicitly, they will be judged in their ability to detect the inadequacies o f the 

models tested.

Predictive Residual Sum of Squares test, abbreviated as PRESS calculates the 

predictive performances of models. It has a simple procedure, but requires many 

regressions, as many as the number of observations. In each regression, one of the 

observations is omitted and regression is carried out using the remaining observations 

then, a linear model is fitted accordingly. Using the parameters and the coefficients of 

the resulting regression model, an estimate of the dependent variable is calculated. 

Since the actual value of the dependent variable for the omitted observation is known, 

using the regression results, the residual for this observation is calculated. This 

process is repeated for all of the observations. The squares of each residual are 

summed, thus, predictive residual sum of squares is obtained.

There are some problems arising in J and JA testing, which are solved with 

Predictive Residual Sum of Squares method. Turning now to several problems with 

these tests, first note that no complete ranking of the models being considered will be 

obtained with J and JA tests. For example, these tests may tell us to reject neither the 

null nor the alternative hypothesis. In this case, it is argued that the data do not reveal
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which model is false. However, the data can only tell us which model is in some sense 

more likely to be true. In this example, we would like to know which model is better 

and these tests, J and JA tests, do not answer this question. However, ranking is 

possible when predictive residual sum of squares method is used in nonnested 

hypothesis testing.

At the other extreme, J and JA tests might tell us to reject both the null and the 

alternative hypotheses. It certainly is desirable to know that both models are wrong. 

Yet, since all models are simplified abstractions from reality, we already know that 

both models are likely to be incorrect. Again, we want first to know which model is 

best. Second, if the best model is inadequate for our purposes, then we want to know 

in which direction to seek improvement. The J and JA tests do not provide such 

guidance, which predictive residual sum of squares method provides.

Moreover, note that J and JA tests are derived by nesting the nonnested models 

in some larger alternative. Since there are an infinite number o f such alternative 

composite models, how can we be sure that they would all give the same ranlcing in 

finite samples? Is there any reason to suppose that the particular composite model 

advocated here is in some sense optimal or more feasible? Consequently, at best these 

tests may tell us that something is wrong, but not in which direction to seek 

improvement.

In this research, a number of models will be tested differing in functional 

form (Quadratic versus Leontieff). Linear versus Log-Linear formulations will also be 

tested. In these tests, each time, one model will be the data generating process, that is, 

the true model. Afterwards, the power of each testing procedure will be computed. In 

the end, real data will be used in comparing different theories about the consumption 

function. By using the Predictive Residual Sum of Squares method, J and JA tests, all 

theories will be tested. Thus, the most appropriate model for the time period being 

considered in the real data will be chosen accordingly.
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6. Previous Researches on Po>ver Comparison of Nonnested Tests

Lets at this point give a brief summary of the previous researches carried on 

comparison of nonnested tests regarding of their powers. Here, there is some practical 

ambiguity.

Pesaran (1982) made a comparison of local power o f alternative tests of 

nonnested regression models. In this paper, he compared orthodox F test, Cox’s 

nonnested test and Davidson and MacKinnon’s J test. It is true that the Cox test will 

reject the null hypothesis with probability one asymptotically if the alternative 

hypothesis is true. Thus, the test may be said to be consistent. For proof see Pereira 

(1977). It is also easily established that all three procedures provide tests that have the 

correct size asymptotically and are consistent in the sense that the probability of 

rejecting the null hypothesis when a fixed alternative is true tends to unity as the 

sample size increases. Pesaran (1981) has shown that the F test and J test statistics 

will tend asymptotically to the same random variable with a non central Chi-squared 

distribution. However, all tests having similar asymptotic properties does not mean 

that these tests can be regarded as asymptotically equivalent as they may possess 

different asymptotic powers for local alternatives. In order to compare the asymptotic 

efficiency of these three tests, an examination of the local behavior of their power 

curve as the sample size increases is needed as pointed out by Pesaran (1982).

In Pesaran (1982), he shows that the asymptotic power of orthodox F test 

against local alternatives is strictly less than that of Cox‘s nonnested test or J test, 

unless the number of nonoverlapping variables of the alternative hypothesis over the 

null hypothesis is unity. In that case, all three test are asymptotically equivalent. The 

larger the number of nonoverlapping variables the more powerful the nonnested tests 

would be as compared to the orthodox F test, in large samples.

As previously stated, the orthodox F test and the nonnested tests (Cox and J 

tests) are asymptotically distributed as a non central Chi-square with the same 

noncentrality parameter, but with different degrees of freedom. It is this difference in 

the degrees of freedom of the orthodox F test on the one hand and the nonnested tests
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on the other that establishes the higher local power of the nonnested tests compared to 

F test. This result immediately follows from the property of noncentral chi-square 

distribution. It is shown by Das Gupta and Pearlman that the power function of 

noncentral chi-square test is strictly decreasing in its degrees of freedom. It is this 

property of non-central Chi-square distribution, with the help of which it can be 

concluded that nonnested hypothesis tests have higher local power compared to F test.

Complications arising from the nonnested, non linear regression case naturally 

lead to the use of test statistics which are large sample approximations. A difficulty 

with such approximations is that there usually exist many corresponding test statistics 

which are asymptotically equivalent. In a practical situation though, the actual 

calculated test statistics will differ numerically, yet all will have the same asymptotic 

distribution. For this reason, there is room for conflict in the inferences to be drawn 

from the results of the tests. In some of the nonnested cases examined by Fisher and 

McAleer (1981) it turns out that differences in numerical values of asymptotically 

equivalent tests may serve to guide the interpretation underlying the rejection of the 

hypothesis under test. Therefore , faced with a practical case, a careful researcher 

needs to carry out more than one nonnested test. Thus, he will be able to correctly 

interpret the results of tests.

Because of numerous alternative hypotheses, there will be practical problems 

in power measurements. Whether one would want to test a model against several 

alternative hypotheses simultaneously, in practice, is not clear. If one o f the 

alternatives is true, then highest power will be surely achieved by testing against that 

hypothesis alone. On the other hand, if none of the alternatives is true, testing against 

several of them jointly may have higher power than testing against each of them 

individually.

Now comes the comparison of F test and J test in small samples. In the case of 

small sample sizes the Monte Carlo results of Pesaran (1928) indicate that the Cox 

test tend to reject the true model far more frequently than it should and that this 

ovenrejection of true model becomes increasingly more serious as the number of
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nonoverlapping variables is increased relative to sample size. However, as the sample 

size is allowed to rise it is demonstrated that the estimates of both the size and the 

power of Cox type nonnested tests rapidly tend towards their values predicted by the 

asymptotic theory. In the case of medium and large sample sizes the Cox type 

nonnested tests are preferable to the orthodox F test and that the superiority of Cox 

tests steadily increases with the number of nonoverlapping variables as predicted by 

the asymptotic theory.

The F test will involve as many degrees of freedom as there are columns in the 

design matrix of the alternative hypothesis excluding the common parameters with the 

null hypothesis. In contrast, the J test will involve only one degree of freedom. This 

difference in degrees of freedom between F and J tests suggests that the J test will 

have higher power compared to F test. Since the critical value o f the F test statistic 

will be larger than that of J test statistic because there are more degrees o f freedom, J 

test must have higher power against the alternative hypothesis. On the other hand, if 

both the null and the alternative hypotheses are false, the F test might well have more 

power than the J test.

At this point, the possibility of somewhat pathological special case should be 

mentioned. Let X be the design matrix consisting of the data o f variables of null 

hypothesis excluding the common variables with the alternative hypothesis. Similarly, 

let Z be the design matrix consisting of the data of variables of alternative hypothesis 

excluding the common variables with the null hypothesis. Consequently, W will be 

the design matrix consisting of the data of common variables for the null and the 

alternative hypotheses. Suppose further that X and Z are orthogonal to each other and 

to W. Then it follows that the residual sum of squares will be identical, so that one 

degree of freedom test will not be valid, even asymptotically. In this situation, the Cox 

test as implemented by Pesaran and Deaton (1978) will de undefined. Thus, it can be 

concluded that nonnested hypothesis tests are not valid in the case of orthogonal 

models. All authors will have to make some regularity assumptions which rule out
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such possible situations. For an example, see Pesaran (1974). Of course, even in such 

a case, the Classical F test remains both valid and powerful.

Some research on power comparison of J and JA test is also done. Davidson, 

for example, carried out a Monte-Carlo study on this subject. He made his 

comparisons in different cases, varying the true model, alternative or null hypothesis. 

For the case where the null hypothesis is a linear regression model with nonstochastic 

regressors and normally distributed error terms, the JA test provides an exact 

nonnested hypothesis test as stated in MacKinnon (1983). Unfortunately, this does not 

mean that the other tests discussed above, which are valid only asymptotically, are 

obsolete. Preliminary Monte Carlo work by Davidson suggests that the JA test can be 

very much less powerful than the J test when neither null nor alternative hypotheses 

are true. Actually, in practice this situation is quite likely to occur. This is because 

every model is basically wrong. Models are reflections of reality. Each model usually 

suits to a particular case, reflecting only a part of the reality. Therefore, every model is 

wrong in some sense. Consequently, J test is more powerful than JA test in many 

situations. On the other hand, when the alternative hypothesis is true, the J and JA 

tests of the null hypothesis seem to be equally powerful.

The results of Fisher and McAleer (1981) and Godfrey (1982) for the JA test 

are also disappointing. The estimated probabilities of a Type 1 error are satisfactory 

but power considerations indicate that JA test is inferior to other tests when the 

number of nonoverlapping variables for the null hypothesis, the X matrix mentioned 

above, is larger than that for the alternative hypothesis, the Z matrix. Since the 

identity of the true model is not known in practice, this result suggests that the JA test 

should only be used if  both models under consideration have the same number of 

nonoverlapping variables.

The J test of Davidson and MacKinnon (1981), although it is simple to 

implement, has some sort of deficiency as well. Often it has too high a significance 

level with very large values, for example 20% being observed. The problem of finding
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adjusted J test which combine the ease of calculation with good small sample 

performance is clearly an interesting topic for further research.

7. Data Set

The models tested are as follows: Sample size is 20.

Quadratic:

y = l +  x + x2 + e e~N(0,s2);

Leontieff:

y = l + x  + xl/2 + e e~N(0,s2);

Linear:

y = 1 + X + e e~N(0,s2);

Logarithmic:

y = 1 + ln(x) + e e~N(0,s2);

In testing of Quadratic versus Leontieff models, the x variable is the square of 

a normal random variable. This is to prevent complex numbers that will come out of 

square root operation in Leontieff model.

In testing of Linear versus Logarithmic models, the x variable is the 

exponential of a normal random variable. This is again to prevent complex numbers 

that will come out of natural logarithm operation in Logarithmic model.

In power calculations, after generating the data according to the above 

description, they are estimated by Ordinary Least Square method, and these estimated 

values for the coefficients and the standard errors are used in generating the true and 

the alternative models’ data.

8. Power Comparisons

In comparing the power of each test, the following strategy will be applied. 

-Using Monte-Carlo experiments, fix the probability of type 1 error at 5%. 

Actually for each hypothesis assumed in turn, the level of significance is a subjective 

decision. The optimal level of significance for such test procedures requires further 

research. But, for simplicity 5% significance level is adopted here.
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For Predictive Residual Sum of Squares method, the PRESS values for the 

competing models are first computed. The ratio of PRESS for data generating process 

model to alternative model is taken. This ratio is compared with 1/k, where the 

constant k is set using Monte-Carlo experiments such that the probability o f rejecting 

the null hypothesis, which is true, is 5%. Here, null hypothesis is accepted if k times 

the PRESS for it is less than the PRESS for the alternative hypothesis.

For J and JA tests, fixing the probability of type 1 error is much simpler. Since 

J and JA tests are actually t-statistics, 5% critical t-values is easily found by looking 

at statistical tables. Of course, these critical values are asymptotically exact, but the 

true levels are also calculated during the Monte-Carlo experiments and they are found 

to be close to 5%. Therefore, this approach is satisfactory.

-After fixing the probability of type 1 error at the same significance level, the 

power of each test become comparable. In measuring the power, the alternative 

hypothesis will be the true model. But in generating the dependent variable data, the 

alternative hypothesis is made closest to the null hypothesis. So, in order to achieve 

this, first, the dependent variable values are calculated according to the null 

hypothesis without adding any error terms. Then, a regression of the calculated 

dependent variable on the alternative model is carried out. Dependent variable data are 

generated using this regression results, i.e. using the coefficients found and by adding 

the error terms. As a result of this approach, the probability of accepting the null 

hypothesis with 5% significance level, when the alternative hypothesis is true will 

have the highest possible value. Thus, the power of the test will be minimized. These 

minimized power of tests will be compared.

By swapping the status of null and alternative hypotheses, probabilities of tests 

leading to a Type 2 error can be estimated by calculating the proportions of times that 

the tests did not reject the false model. But, it must be stressed that when models are 

nested this approach to find the probability of Type 2 error will yield a satisfactory 

indicator of power. However, for nonnested hypothesis testing a more useful concept 

of power is the probability of making correct decision. More explicitly by the correct

27



decision, the probability of accepting the true model and the probability of rejecting a 

false model is meant. This approach is used in measuring the power of J and JA tests.

9. The Results

In the power plots, we see a clear superiority of predictive residual sum of 

squares method over J and JA tests.

When the standard error of the X variable is reduced, the performance of all 

tests become closer. But when the standard error of the x variable is increased the 

power o f PRESS increases significantly, while the power of J and JA tests are not as 

high as the power of PRESS.

In Quadratic versus Leontieff hypothesis testing, at high standard error of x 

variable, the power of JA is higher than J, where both are lower than that of PRESS. 

In Linear versus Logarithmic hypothesis testing, the power of PRESS is 

overwhelmingly higher than those for J and JA.

Figure 1; The Power of PRESS, J 
and JA, when true model is 

Quadratic

Figure 2; The Power of PRESS, J 
and JA, when true model is 

Leontieff
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Figure 3: The Power of PRESS, J 
and JA, when true model is Linear

Figure 4: The Power of PRESS, J 
and JA, when true model is 

Logarithmic

The following four figures show the effect of increases in sample size on the 

power of tests. As the sample size increases the dominance of the PRESS test over J 

and JA tests is preserved; PRESS still gives the highest power in each different 

standard error of the X variable. It can also be observed that as the sample size 

increases the powers of all tests increase as each standard error of X.

Figure 5: The Power of PRESS, J 
and JA, when true model is 
Quadratic, Sample Size:20
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Figure 6; The Power of PRESS, 
and JA, when true model is 
Quadratic, Sample Size:40

Figure 7: The Power of PRESS, 
and JA, when true model is 
Quadratic, Sample Size:80

Figure 8: The Power of PRESS, 
and JA, when true model is 
Quadratic, Sample Size:160

10. Nonnested Tests in Empirical Works

Empirical tests on nonnested hypothesis tests are very rare. Basically, 

nonnested hypothesis tests can be used in identifying model misspecifications. But 

first, let’s define what a useful model is.
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The followings are some conditions set by Hendry and Anderson (1977), 

Davidson (1978) and Hendry and Ungern-Stemberg (1981) which should be present 

in a useful model:

-data coherency,

-data admissibility,

-theory consistency,

-parameter constancy,

-valid conditioning,

-interpretable, parsimonious, orthogonal parameters of interest,

-encompassing contending explanations of the same phenomena.

In order to satisfy the first five conditions, the orthodox tests for 

autocorrelation, heteroskedasticity, parameter constancy become model selection 

criteria. This is because, if a model fails these tests, they are discarded immediately. 

There is no need for further subjecting the models to nonnested tests to detect a 

misspecification. Encompassing tests relieves information on how the model 

approximates the data mechanism. This is because, it may seem difficult to design 

sensible models to account for all results obtained in previous researches, whereas 

good approximations should be able to explain contending findings. If all contenders 

are nested special cases, encompassing is automatic, but if some are separate 

hypotheses, indirect inference is required, perhaps based on nonnested tests.

Actually, in many practical cases, a specification error that can be detected by 

a nonnested hypothesis test could also be detected by applying one of the many 

orthodox tests available for different types of model misspecification. 

Misspecification usually causes heteroskedasticity, serial correlation, failure of linear 

or nonlinear restrictions to hold, unstable parameter estimates, correlation between 

error terms or some other observable misbehavior of the model in consideration. 

These defects can be detected by classical tests. So in principle, applied 

econometricians may rarely need nonnested hypothesis tests to detect the above 

mentioned misspecified models.
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However, in practice, researchers are very inclined to test their models. Every 

applied researcher wants to form the best model in order to explain a certain 

phenomenon. Anything that forces them to tests their model a bit more rigorously is 

therefore highly desirable. So, when a researcher decides to make use of nonnested 

hypothesis tests, he is forced to recognize that there are usually many models around 

to explain the same phenomenon and that most of these models must be false. 

Consequently, he is obliged to estimate several nonnested alternative models, and to 

give each of them several chances to show that it is not true by confronting it with the 

evidence provided by the available data and the other models. Doing this must 

increase greatly the probability that the model finally selected will not be thoroughly 

false. If this is the only contribution of nonnested tests, it will be a very valuable one.

An empirical work in this area is the one done by Pesaran and Deaton (1978). 

They estimated five models of consumption behavior and tested them against each 

other. In this work, the models were deliberately kept very simple for illustrative 

purposes. Therefore, they can not be taken seriously. They all suffer from numerous 

econometric problems such that they could easily be rejected by orthodox tests 

without any further need for noimested hypothesis tests. One of the serious papers 

published in this context is the one of Deaton (1978). In this paper, two competing 

demand theories were tested against each other. Both models were rejected. Before 

1978, some unpublished work exists, but by and large it is fair to say that the literature 

on nonnested hypothesis testing had no impact whatsoever on empirical works in 

economics. But since then, this literature is improved by the researches done in 

Agricultural Economics.

11. Empirical Work: Turkish Consumption Function

A. Abstract

The aim of this section is to examine the consumption behavior in Turkey, by 

estimating three simple forms of consumption model: Absolute Income Hypothesis 

model. Relative Income Hypothesis model and Permanent Income Hypothesis model.
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Consumption pattern for the period 1987-1995(2) is considered. Yearly data is 

taken. During this period, Turkey experienced an unusual pattern of growth. The 

growth rate of GDP were very small in years 1988,1989,1991 very large in 1990, 

1992, 1993 and 1995 and negative very large in 1994. The high growth rate in 

population also critically affect the consumption pattern in Turkey. The growth in 

private consumption over this period was always less than the growth in disposable 

income, but followed the pattern closely at each year. These suggest that Turkish 

consumers' behavior fits better to absolute income hypothesis or relative income 

hypothesis, but Turkish consumers do not have a lifetime pattern of consumption as 

suggested by Permanent Income hypothesis.

B. Theoretical Framework

Absolute Income Hypothesis

This hypothesis is Keynes' contribution to consumption theory. It is a simple 

observation that consumption increases with income and that marginal propensity to 

consume is less than 1. At low levels o f income individuals tend to consume a large 

fraction o f their incomes and at higher income levels, a smaller fraction o f it is 

consumed cross sectional data is used in this model. The implied model is as follows.

Cf=a + bY(jt, where b is the marginal propensity to consume.

Here, the emphasis is on current disposable income as the principal 

determinant of consumption. This function reflects the observation that as income 

increases people tend to spend a decreasing percentage of income or conversely tend 

to save an increasing percentage of income. The behavior of consumer expenditure in 

the short-run over the duration of business cycle. Reasoning is that as income falls 

relative to recent levels, people will protect consumption standards by not cutting 

consumption proportionally to the drop in income and conversely, as income increases 

consumption will not rise proportionally.

This is usually taken to mean that the proportion of income consumed, average 

propensity to consume will tend to fall as income increases.
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Any theory of consumption has to be able to explain the short-run behavior of 

consumption. In other words, it has to show the average propensity to consume 

behaving in a contra cyclical manner over time, cross-sectional data, which shows that 

at any point in time higher income earners have a lower average propensity to 

consume than low-income earners and finally, the long-run constancy of the average 

propensity to consume. It has been felt by economists as early as 1950's that simple 

Keynesian function had been tested against the available evidence and had been found 

wanting. Therefore, the search for new theories began and it is to those we now turn.

Relative Income Hypothesis

Duesenberry's relative income hypothesis assumes that consumption is 

influenced by the consumer's relative income; both current income relative to previous 

income and current income relative other people's income. So, Duesenberry suggests 

that consumers' preferences are interdependent. The utility a consumer derives from a 

given bundle of consumer goods depends to some extent on what others around him 

are consuming. In this theory consumption is influenced by the "demonstration effect" 

of other people's consumption. This assumption leads to the result that the individual's 

average propensity to consume will depend on his position in income distribution.

A person with income below the average will tend to have a high average 

propensity to consume, because, essentially, he is trying to keep up to the national 

average consumption standard with a below-average income. On the other hand, an 

individual with an above-average income will have a lower average propensity to 

consume, because it takes a smaller proportion of his income to buy the standard 

basket o f consumer goods.

This provides an explanation to the short-run behavior consumption and the 

long-run constancy of average propensity to consume. As people learn more about 

the trend, they can increase their consumption proportionately to maintain the same 

ratio between their consumption and the national average
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This hypothesis suggests that consumption behavior depends on the ratio of 

current income to the previous peak level of income, over the business cycle, along 

with the current level of disposable income.

It is more difficult, he argues, for a family to reduce a level of consumption 

once attained than to reduce the portion of its income saved in any period. Actually, 

the shortcoming of this hypothesis arises from this assumption. It is the asymmetry 

suggesting that a current increase in income if it exceeds a previous peak, induces a 

new consumption standard immediately. Algebraically, Duesenberry's formulation is 

as follows:

Ct= a + bYdt + dY(jt-i 

Permanent Income Hypothesis

Another approach to the consumption function is the permanent income 

hypothesis, developed by Friedman in mid 1950's. This hypothesis is similar to 

Duesenberry's hypothesis in that both of them provides the basis for a consumption 

function which is not based merely on current income.

The basic notion underlying this hypothesis is permanent income, which is the 

income generated by the individual's total wealth. Moreover, it is the level of income 

that can be expected to persist in the long-run. Over the long-run, there are episodes of 

positive transitory income and episodes of negative transitory income, which average 

out to zero. This hypothesis suggests that the consumption is proportional to 

permanent income. Friedman further assumes that there is no relationship between the 

transitory consumption and transitory income.

So,

Cp=kYp

Y=Yp+Ytr

C=Cp+Ctr
Cov(Yp,Ytr)=0

Cov(Cp,Cp-)=0

Cov(Ctr,Ytr)=0
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According to Friedman, in booms more people will think that they are better 

than normal than will think they are doing worse than normal. For the economy as a 

whole, therefore, there will be positive transitory income. Unexpectedly, high income 

will have little impact on consumer views of their permanent income unless it lasts for 

several years. So, unexpected increases in income are therefore largely saved with the 

result that in boom, the average propensity to consume falls.

It can be seen Friedman is able to explain why the short-run consumption 

function is flatter with a variable average propensity to consume, while the long-run 

consumption function is steeper with a constant average propensity to consume. 

Booms usually cause average propensity to consume to fall.

To be operational, the permanent income hypothesis consumption function 

requires some means of measuring permanent income. A common procedure for this 

is to assume that permanent income is an average of past income with the most recent 

past weighted most heavily.

This simplification of Friedman's consumption function is made by Koyck. 

His methodology is as follows:

Yp-Ydt+eYdt-l+e2Ydt-2+-+e”Ydtn

C^=kYp, so,

Ct=kdenYt_n

eCj. 1 =kde^ Y 1, then

Ct-eCt_i=kYt Ct=kYt+eCt_i

C. Empirical Estimation

Each of the models considered are first subjected to a series of tests. These 

include tests for outliers, normality of errors, non linearity of regressors, structural 

stability and heteroskedasticity. Lets briefly discuss the results of these tests for each 

model.
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Keynes’ Model

The regression result is as follows:

Variable Estimate t-value RSS F

Const. 561.836 17.607 0.988 972.697 3629.681

Ydt 0.57 60.246

No outliers is found in this model. So, we do not need to revise our 

observations. Skewness and Kurtosis are found to be -3258 and 177190 respectively. 

Both are smaller than 5% critical values, which are 11823 and 1155699 respectively. 

The model is then tested for possible non linearity. DW statistic is 2.956, but this 

statistic just tests for first order serial correlation, so another test is implemented. An F 

test is conducted on the coefficients of non-linear terms added to the model (Y^t^). F 

statistic of this test is extremely small, 0.000276. this test yields that the data do not 

have any non-linear characteristic. Besides the t-statistic o f Y¿t^ is very small, leading 

to the same conclusion.

Structural stability is tested using Chow test. F-statistic associated with this 

test is 0.119, which leads to the conclusion that the structure of this model is stable. 

Then the model is tested for the presence o f heteroskedasticity. White test is used in 

order to do that. The F-statistic of this test is 2.718 with p-value 0.143. So, it can be 

concluded that asymptotically no heteroskedasticity is present. At least, OLS standard 

errors and the statistics are valid.

The above regression results show that the constant term is significant. The 

short-run marginal propensity to consume, which equals to long-run marginal 

propensity to consume in this model is 0.57.

Duesenberry's Model

The regression results are as follows:

SS F

Z8.748 1629.331

Variable Estimate t-value r 2

Const. 559.976 16.538 0.998

Ydt 0.56 24.460

Ydt-1 0.012 0.532
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No outliers are present for this model as well. Skewness and Kurtosis 

associated with this model are both smaller than the 5% critical values (1877<11997; 

197700<1070896 respectively). So, the errors in this model are normal as well. The 

OLS statistics are valid. DW statistic is 3.006. When the model is tested for non 

linearity, the data do not show any evidence of non linearity. The t-statistics 

associated with the nonlinear terms (Ydt^^Ydt-l^’̂ d t^ d t-l)  added to the model are 

all insignificant. Besides the related F-statistic is 0.0522, which is not significant at 

all. So, we can conclude that data show no non linearity.

Structural stability is tested again by Chow test. The associated F-statistic is 

0.575. So, the structure of this model is stable as well. Then, using White test, this 

model is tested for heteroskedasticity. The t-statistics of all terms in this test are very 

small. Besides, the over all F-statistic is 1.119. All of these findings suggest that 

heteroskedasticity is not present in the data. With this result of White test, one can 

conclude that OLS standard errors and test statistics are valid and can be safely used.

The above regression results show that the constant term is significant. The 

short-run marginal propensity to consume is 0.56, and the long-run marginal 

propensity to consume is 0.57, which perfectly suits to the Keynesian model of 

consumption.

Friedman's model

The regression results are as follows:

Variable Estimate t-value r 2 RSS F

Ydt 0.506 5.092 0.951 1117.307 361.028

Ct_i 0.322 2.314

When subjected to least mean square method, we find some outliers present 

with this model. This is largely due to the omitted constant term in this formulation. 

The test for normality of errors yields that errors in this model are normal with both 

Skewness and Kurtosis smaller than 5% critical values ( 92529<1637065;
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1.43318e8<7.31189e8 respectively). DW statistic is 2.398. In testing non linearity for 

this modefwe observe that t-statistics for non linear terms (Ydt^’Q - l^ ’^dtC t-l) зге 

very small. Besides, the f-statistic associated with this test is 0.045, which suggests 

that the data do not yield any evidence of non linearity.

Structural stability of this model is also tested using Chow test. F-statistic of 

this test is 2.74, which is small to reject the null hypothesis. So this test has structural 

stability. The model is tested for heteroskedasticity using the White test. F-statistic of 

White test is 0.513, which rejects null hypothesis heteroskedasticity. White test yields 

the result that OLS standard errors are valid. No heteroskedasticity is present 

asymptotically in the model.

The above regression results show that, this model yields the short-run 

marginal propensity to consume as 0.506 and the long-run marginal propensity to 

consume as 0.746, which is very different from the findings of other models. This 

may due to bad outliers found present in the model.

D. Conclusion and Results

In all of the regressions, except for the Friedman's model, short-run marginal 

propensity to consume were very close to long-run marginal propensity to consume. 

In fact, there is not a significant difference between these. Only in Friedman's model, 

the difference between long-run marginal propensity to consume and short-run 

marginal propensity to consume, is very large. And also the constant part of the 

regressions is very large and significant in each of the regressions, which contradicts 

to Friedman's argument about the consumption function.

So, we can say that Turkish consumption behavior is not in agreement with 

Friedman's argument. Besides, the predictive residual sum of squares method of 

evaluating the forecasting performance of models yields that the Turkish data for the 

period considered is not in much consistence with the Friedman's model.

Rather, the two other models by Keynes and Duesenberry are more 

appropriate for Turkish case. The results of regressions which are significant constant 

term and very close long-run and short-run marginal propensity to consume suggests
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that Absolute Income hypothesis model is the most appropriate model among models 

considered for Turkish data during 1987-1995.

PRESS for Keynesian Model 1730.87

PRESS for Duesenberry’s Model 2150.30

PRESS for Friedman’s Model 47549.25

The results of predictive residual sum of squares method is in accordance with 

the above result. Turkish consumption behavior for period 1987-1995 is best 

explained by Keynes' absolute income hypothesis.

To carry out J and JA tests to compare these three models, models should be 

taken two by two. That is, Keynesian model is compared with Duesenberry’s model, 

then it is compared with Friedman’s model, afterwards Duesenberry’s model is 

compared with Friedman's model.

Keynesian vs. J k D.of Fr. J d D. of Fr.

Duesenberry 0.5328 6 1.06x10'^ 5

Keynesian vs. J k D. of Fr. J f D. of Fr.

Friedman 0.4829 6 12.4056 6

Duesenberry vs. J d D. of Fr. J f D. of Fr.

Friedman -0.299 5 12.46 6

From the above table we see that, J test does not differentiate between 

Keynesian and Duesenberry’s models. Both models are accepted. However, when 

Keynesian model and Duesenberry’s model are compared with Friedman’s model, 

Friedman’s model is rejected in both tests.

Similar to J test, Ja test also requires two by two comparisons. The results are 

listed in the below table.
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Keynesian vs. Ja k D.of Fr. Jad D. of Fr.

Duesenberry 0.5328 6 1.06x10'^ 5

Keynesian vs. Jak D. of Fr. Ja f D. of Fr.

Friedman 0.4829 6 12.4056 6

Duesenberry vs. Jad D. of Fr. J a f D. of Fr.

Friedman -0.299 5 12.46 6

Note that the J and Ja statistics are the same. So, similar conclusions can be 

drawn for this test as well.
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12. Appendices 
Appendix lA

/* This program segment takes four inputs 
/* y 1 ,x 1, and y2, x2 and calculates the 
/* PRESS for the model of yl explained by xl 
/* and the PRESS for the model of y2 explained 
/* by x2

*!
*!
*/
*/
*!

/* This procedure calculates PRESS */
/* for the model of y explained by x */
proc (1) = findrss(y,x);
local ReSS,i,del,ya,xa,yi,xi,yfit,res,rs;
local vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat;
ReSS=0;
i=l;
do while i <= rows(y);

/* Omit 1 sample from the data set */
del=zeros(l ,rows(y));
del[i]=l;
del=del';
ya=delif(y,del);
xa=delif(x,dd);
/* Make OLS regression for the remaining observations */
{vnam, m,b,stb,VC,stderr,sigma, ex, rsq, resid, dwstat }=ols("",ya,xa); 
/* Calculate the residual sum of squares for the omitted observation 

yi=y[i]; 
xi=x[i,.]; 
yfit=xi*b; 
res=yi-yfit; 
rs=res*res;
ReSS=ReSS+rs;

i= i+ l;
endo;
retp(ReSS);
endp;

/* This procedure calculates the */
/* logarithmic scale PRESS for */
/* linear models for comparison reasons */
proc(l) = lfindrss(y,x);
local ReSS,i,del,ya,xa,lnxi,lnyi,lnyfit,res,rs;
local vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat;
ReSS=0;
i=l;
do while i<= rows(y);

/* Omit 1 sample from the data set */
del=zeros( 1 ,rows(y));
del[i]=l;
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del=del';
ya=delif(y,del);
xa=delif(x,del);
/* Make OLS regression for the remaining observations */
{vnam,m,b,stb,ve,stderr,sigma,ex,rsq,resid,dwstat} =ols("" ,ya,xa);
/* Calculate the residual sum of squares for the omitted observation 
/* Convert the observed values into logarithmic scale */

lnyi=ln(y[i]); 
lnxi=ln(x[i,.]); 
lnyfit=lnxi*b; 
res=lnyi-lnyfit; 
rs=res*res;
ReSS=ReSS+rs;

*/

i=i+l;
endo;
retp(ReSS);
endp;

/* Calculate the PRESS for both models */ 
proc(3) = press(yl,xl,y2,x2,k); 
local PReSSl, PReSS2,Ratio,accept; 
PReSS 1 ==fmdrss(y 1 ,x 1); 
PReSS2=fmdrss(y2,x2);

/* Print the results */
print "The PRESS for model 1 :"  PReSSl; 
print "The PRESS for model 2 :"  PReSS2; 
p rin t"";

/* Decide on the acceptance */ 
Ratio=PReSS 1 /PReSS2; 
if Ratio < K;

accept=l;
else;

accept=0;
endif;
retp(accept,PReSS 1 ,PReSS2); 
endp;
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Appendix IB
/* This program segment takes four inputs */
/* y 1 ,x l, and y2, x2 and performs the J */
/* test, first by taking the model yl against */
/* xl as the null hypothesis and then by taking */
/* the model y2 against x2 as the null hypothesis */
/* and by comparing the t-statistics of both */
/* models */

/* Since, this program compares linear versus 
/* linear models, the dependent variables y l, 
/* and y2 are the same.

*/
*/
*/

/* First null hypothesis is the first model */
/* so, first regress yl against x2 and get y lfit */
/* then regress y l against xl and ylfit */
/* J-statistic is the t value of the coef. of ylfit *!
proc(4) = J(yl,xl,y2,x2);
local vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat; 
local y 1 fit,xa,tstat 1 ,y2fit,tstat2,DF 1 ,DF2;
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",yl,x2);
ylfit=x2*b;
xa= xl ~ ylfit;
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",yl,xa); 
tstat 1 =b[cols(xa)]/stderr[cols(xa)];
DF1 =rows(y 1 )-rows(b);

/* Second, null hypothesis is the second model */
/* so, first regress y2 (y2=yl) against xl and get */
/* y2fit then regress y2 against x2 and y2fit */
/* J-statistic is the t value of the coef. of y2fit */
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",y2,xl);
y2fit=xl*b;
xa= x2 ~ y2fit;
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",y2,xa); 
tstat2=b[cols(xa)]/stderr[cols(xa)];
DF2=ro ws(y2)-rows(b);

/* print the J-statistics for both null hypotheses */ 
print "the J-statistic for null hypothesis of true model 1 tstat 1; 
print "the J-statistic for null hypothesis of true model 2:" tstat2; 
p rin t"";
retp(tstatl ,DF 1 ,tstat2,DF2); 
endp;
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Appendix 1C
/* This program segment takes four inputs */
/* y 1 ,x 1, and y2, x2 and performs the J */
/* test, first by taking the model yl against */
/* xl as the null hypothesis and then by taking */
/* the model y2 against x2 as the null hypothesis */
/* and by comparing the t-statistics of both */
/* models */

*/
*/

/* Since, this program compares log-linear versus 
/* linear models, the dependent variable yl is 
/* log of y2. That is the model y l,x l is in log-linear */ 
/* form and the model y2,x2 is in linear form. */

/* First, null hypothesis is the first model */
/* so, first regress exp. of yl against x2 and get ylfit*/
/* then regress yl against xl and log. of y lfit */
/* J-statistic is the t value of the coef. of log. of ylfit*/ 
proc (4) = LJ(yl,xl,y2,x2);
local vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat; 
local ey 1 ,ly2,y 1 fit,ly 1 fit,xa,tstat 1 ,y2fit,ey2fit,tstat2,DF 1 ,DF2; 
eyl=exp(yl);
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",eyl,x2);
ylfit=x2*b;
lylfit=ln(ylfit);
xa= x l ~ lylfit;
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",yl,xa); 
tstat 1 =b[cols(xa)]/stderr [cols(xa)];
DF1 =rows(y 1 )-rows(b);
/* Second, null hypothesis is the second model */
/* so, first regress log. of y2 against xl and get */
/* y2fit then regress y2 against x2 and exp. of y2fit */
/* J-statistic is the t value of the coef of exp. of y2fit */ 
Iy2=ln(y2);
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",ly2,xl);
y2fit=xl*b;
ey2fit=exp(y2fit);
xa= x2 ~ ey2fit;
{vnam, m, b,stb,vc,stderr,sigma, cx, rsq, resid, dwstat }=ols("",y2,xa); 
tstat2=b [cols(xa)]/ stderr [cols(xa)];
DF2=ro ws(y2)-rows(b);
/* Print the J-statistics for both null hypotheses */ 
print "the J-statistic for null hypothesis of true model 1:" tstat 1; 
print "the J-statistic for null hypothesis of true model 2:" tstat2; 
p rin t"";
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retp(tstat 1 ,DF 1 ,tstat2,DF2); 
endp;

Appendix ID
/* This program segment takes four inputs */
/* y 1 ,xl and y2, x2 and performs the JA test, */
/* first by taking the the model yl against */
/* xl as the null hypothesis and then by taking */
/* the model y2 against x2 as the null hypothesis */
/* and then by comparing the t-statistics of the */
/* related variables. */

/* First, null hypothesis is the first model */
/* so, first regress yl against xl and get y lfit */
/* then regress y lfit against x2 and get yl2fit */
/* finally, regress yl against xl and yl2fit */
/* JA-statistic is the t value of the coef yl2fit */ 
proc (4) =JA(yl,xl,y2,x2);
local vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat; 
local y 1 fit,y 12fit,xa,JA 1 ,y2fit,y21 fit,JA2,DF 1 ,DF2;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",yl,xl); 
ylfit=xl*b;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",ylfit,x2);
yl2fit=x2*b;
xa=xl ~ yl2fit;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",yl,xa); 
JA 1 =b[cols(xa)]/stderr[cols(xa)];
DF1 =rows(y 1 )-rows(b);

/* Second, null hypothesis is the second model */
/* so, first regress y2 against x2 and get y2fit */
/* then regress y2fit against xl and get y21fit */
/* finally, regress y2 against x2 and y21fit */
/* JA-statistic is the t value of the coef y21fit */
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",y2,x2); 
y2fit=x2*b;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",y2fit,xl);
y21fit=xl*b;
xa=x2 ~ y21fit;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",y2,xa); 
JA2=b[cols(xa)]/stderr[cols(xa)];
DF2=rows(y2)-rows(b);
/* print the JA-statistics for both null hypotheses */ 
print "JA-statistic for null hypothesis of model 1 JA l; 
print "JA-statistic for null hypothesis if model 2 :" JA2; 
retp(JAl,DFl,JA2,DF2); 
endp;

46



Appendix IE
/* This program segment takes four inputs */
/* y l,x l and y2, x2 and performs the JA test, */
/* first by taking the the model yl against */
/* xl as the null hypothesis and then by taking */
/* the model y2 against x2 as the null hypothesis */
/* and then by comparing the t-statistics of the */
/* related variables. */
/* Since, this program compares log-linear versus */
/* linear models, the dependent variable yl is */
/* log of y2. That is the model y l,x l is in log-linear */
/* form and the model y2,x2 is in linear form. */

/* First, null hypothesis is the first model */
/* so, first regress yl against xl and get y lfit */
/* then regress exp. of y lfit against x2 and get */
/* yl2fit finally, regress y l against x l and */
/* log. of yl2fit. JA-statistic is the t value of the */
/* coef o f log. of yl2fit */
proc (4) =LJA(yl,xl,y2,x2);
local vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat; 
local y 1 fit,ey 1 fit,y 12fit,ly 12fit,xa,JA1 ,y2fit,ly2fit,y21 fit; 
local ey21fit,JA2,DFl,DF2;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",yl,xl);
ylfit=xl*b;
ey 1 fit=exp(y 1 fit);
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",eylfit,x2); 
yl2fit=x2*b;
Iyl2fit=ln(yl2fit); 
xa=xl ~ lyl2fit;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",yl,xa); 
JAl=b[cols(xa)]/stderr[cols(xa)];
DF1 =rows(y 1 )-rows(b);

/* Second, null hypothesis is the second model */
/* so, first regress y l  against x2 and get y2fit */
/* then regress log. o f y2fit against xl and get */
/* y21 fit finally, regress y l  against x2 and */
/* exp. o f y21fit. JA-statistic is the t value of the */
/* coef of exp. of y21fit */
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",y2,x2); 
y2fit=x2*b;
Iy2fit=ln(ly2fit);
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",ly2fit,xl);
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y21fit=xl*b;
ey21 fit=exp(y21 fit);
xa=x2 ~ ey21fit;
{vnam, m,b, stb, vc,stderr,sigma,cx,rsq,resid,dwstat }=ols("",y2,xa); 
JA2=b[cols(xa)]/stderr[cols(xa)];
DF2=ro ws(y2)-rows(b);

/* Print the JA-statistics for both null hypotheses */ 
print "JA-statistic for null hypothesis of model 1 JAl;
print "JA-statistic for null hypothesis if model 2 JA2;
retp(JAl,DFl,JA2,DF2); 
endp;

Appendix 2A
/* This program sets the probability of type 1 */
/* error to 5% and measures the power of */
/* PRESS test *!

/*The data set is as follows */
/*The first model, y 1 ,xl is a Quadratic model */ 
/*The second model, y2,x2 is a Leontieff model */ 
/* For this case, both models are linear. */

xl0=ones(20,l);
/* Repeat the same procedure for different variances of x */
h={ 0.2 0.3 0.35 0.4 0.45 0.5 0.55 };
n=l;
do while n <= 7;
/* Generate the data set */ 
random=rndn(20,1 )*h[n]; 
xl l-random.*random; 
x l2 = x ll.* x ll; 
x l= x l0~ x ll~ x l2 ; 
xl3=sqrt(xll); 
x2=xl0~xll~xl3; 
b l={l 1 1};
y=xl*br+mdn(20,l)*0.05;
{vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat} =ols("" ,y,x 1); 
bl=b;
sigma l=sigma;
{vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat} =ols("" ,y,x2); 
b2=b;
sigma2=sigma; 
library; 
screen off;
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/* calculate the prob. of type 1 error */
k= l.4474753;
sumap=0;
z=l;
screen off; 
boot=zeros(2000,1); 
do while z <= 2000;

/* create y according to the null hypothesis */ 
i=l;
y 1 =zeros(rows(x 1), 1); 
do while i<=rows(xl); 
e=rndn( 1,1 )*sigmal; 
yl[i]=xl[i,.]*bl + e; 
i=i+l; 

endo; 
y2=yl;

{A,pressl ,press2}=press(y 1 ,xl ,y2,x2,k); 
boot [z, 1 ]=press 1 /press2; 
sumap=sumap+A;

z=z+l;
endo;
screen on;
boot=sortc(boot, 1);
print

/* Find the 95% critical value */ 
k=boot[1900,l]; 
screen off;

/* calculate the power of the PRESS */ 
z=l;
suma2p=0;

/* choose the b coefs of model 2, such that Ho is closest to HI */
/* so generate Y first using Ho, then regress it wit H2 and get */
/* b coefs for HI */ 

do while z <= 2000;
i=l;
y 1 =zeros(rows(x 1), 1); 
do while i<= rows(xl); 
yl[i]=xl[i,.]*bl; 
i=i+l; 

endo;
{vnam,m,b,stb,VC,stderr,sigma,cx,rsq,resid,dwstat}=ols("",yl,x2); 
i= l;
do while i <= rows(x2);
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e=rndn(l,l)*sigma2;
y2[i]=x2[i,.]*b+e;
H + 1 ;

endo;

yl=y2;
{A,pressl ,press2}=press(yl,xl ,y2,x2,k); 
suma2p=suma2p+A;

z=z+l; 
endo; 
screen on; 
screen off;
ptype2p=suma2p/2000; 
powerp= 1 -ptype2p;

/* Print out the results */
output file = outq on;
p rin t" the standard error is: ";;h[n];
p rin t" the power of press is : ";;powerp;
output off;
n=n+l;
endo;

Appendix 2B
/* This program sets the probability of type 1 */
/* error to 5% and measures the power of */
/* J-test */

/*The data set is as follows */
/*The first model, y l,x l is a Linear model */
/*The second model, y2,x2 is a Log-Linear model *l

xl0=ones(20,l);
/* Repeat the same procedure for different variances of x */
h= { 0.15 0.175 0.2 0.3 0.4 0.5 0.6 0.7 };
n=l;
do while n <= 8;
/* Generate the data set */ 
random=mdn(20,1 )*h[n]; 
xl l=exp(random); 
x l=xl0~xl 1; 
x l2= ln(xll); 
x2=xl0~xl2; 
b l= {l 1 };
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y=xl*br+mdn(20,l)*0.05;
(vnam,m,b,stb,VC,stderr,sigma,cx,rsq,resid,dwstat}=ols("",y,xl); 
bl=b;
sigma l=sigma;
{vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat}=ols("",y,x2);
b2=b;
sigma2=sigma;

library; 
screen off;

/* calculate the prob. of type 1 error */ 
sumaj=0; 
z=l;
do while z <= 2000;

/* create y according to the null hypothesis */ 
i=l;
y 1 =zeros(rows(x 1), 1); 
do while i<=rows(xl); 
e=rndn( 1,1 )* sigmal; 
yl[i]=xl[i,.]*bl + e; 
i=i+l; 

endo; 
y2=ln(yl);

{tstatl ,dfl,tstat2,df2}=LJ(y2,x2,y 1 ,xl); 
if abs(tstat2) >2.11;

accnullj=0;
else;

accnullj=l;
endif;
sumaj=sumaj+accnullj; 

z=z+l; 
endo; 
screen on;
ptype 1 j=(2000-sumaj)/2000; 

screen off;
/* calculate the power of J test */ 
z=l;
suma2j=0;

/* choose the b coefs of model 2, such that Ho is closest to HI */ 
/* so generate Y first using Ho, then regress it wrt H2 and get */ 
/* b coefs for HI */ 

do while z <= 2000; 
i=l;
y 1 =zeros(rows(x 1), 1);
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do while i<= rows(xl); 
yl[i]=xl[i,.]*bl; 
i=i+l; 

endo;
{vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat}=ols("",ln(yl),x2);
i=I;
do while i <= rows(x2); 

e=rndn( 1,1 )*sigma2; 
y2[i]=x2[i,.]*b+e; 
i=i+l; 

endo;

yl=exp(y2);
{tstat 1 ,df 1 ,tstat2,df2 }=L J(y2,x2,y 1 ,x 1); 
if (abs(tstat2) >2.11) and (abs(tstatl)<2.11);

accnullj=l;
else;

accnullj=0;
endif;
suma2j =suma2j +accnullj;

z=z+l;
endo;

powerj=suma2j/2000;
/* Print out the results */
output file= outli on;
p rin t" the standard error is : ";;h[n];
p rin t" the ptypel for j is : ";;ptypelj;
p rin t" the power for j is : ";;powerj;
output off;
n=n+l;
endo;

Appendix 2C
/* This program sets the probability of type 1 */
/* error to 5% and measures the power of */
/* JA-test */

/*The data set is as follows
/*The first model, y 1 ,xl is a Linear model

*!
*1

/*The second model, y2,x2 is a Log-Linear model */ 

xl0=ones(20,l);
/* Repeat the same procedure for different variances of x */ 
h= { 0.05 0.075 0.1 0.2 0.25 0.3 0.35 0.4 0.45 0.5 }; 
n=l;
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do while n <=10;
/* Generate the data set */ 
random=rndn(20,1 )*h[n]; 
xl l=exp(random); 
xl2=ln(xl 1); 
x l=xl0~xl 1; 
x2=xl0~xl2; 
b2={l 1};
y=x2*b2'+rndn(20,l)*0.005;
{vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat} =ols(" ",y,x 1); 
bl=b;
sigma l=sigma;
{vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat} =ols("" ,y ,x2); 
b2=b;
sigma2=sigma;

library; 
screen off;

/* calculate the prob. of type 1 error */

sumal=0;
suma2=0;
z=l;
do while z <= 2000; 
y2=zeros(rows(x2), 1); 
i=l;
do while i<= rows(x2); 
y2[i]=x2[i,.]*b2+rndn( 1,1 )*sigma2; 
i=i+l; 
endo;

yl=exp(y2);
{JA 1 ,DF 1, J A2,DF2} =L JA(y2,x2,y 1 ,x 1); 
if abs(JAl) > 2.11; /* tcrit for deg. of freedom under null */

accnull=0; 
else;

accnull=l;
endif;
sumal=sumal+ accnull;
z=z+l;

endo;
ptype 1 =(2000-suma1 )/2000;

/* choose the b coefs of model 2, such that Ho is closest to HI */ 
/* so generate Y first using Ho, then regress it wrt H2 and get */ 
/* b coefs for HI */ 
z=l;
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do while z<=2000;
¡=1 ;
y 1 =zeros(rows(x 1), 1); 
y2=zeros(rows(x2), 1); 
do while i <= rows(x2); 
y2[i]=x2[i,.]*b2; 
i=i+l; 

endo;
{vnam,m,b,stb, VC, stderr,sigma,cx,rsq,resid,dwstat} =ols("" ,exp(y2),x 1); 
i=l;
do while i <= rows(xl); 
y 1 [i]=x 1 [i,.] *b+rndn( 1,1 )* sigma 1; 
i=i+l; 

endo;

y2=ln(yl);
{JAl,DFl,JA2,DF2}=LJA(y2,x2,yl,xl); 
if (abs(JAl)> 2.11) and (abs(JA2)< 2.11); 

accnulI2=l; 
else;

accnull2=0;
endif;
suma2=suma2+ accnull2; 
z=z+l; 

endo;
power=suma2/2000;
/* Print out the results */
output file= out31o on;
p rin t" the standard error is : ";;h[n];
p rin t" the ptypel error is :";;ptypel;
p rin t" the power is :";;power;
output off;
n=n+l;
endo;
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