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The dynamical screening effects in the skin layer of a metal are investigated. The electric charge
density near the metal surface induced by a moving charged body outside the metal is

screened at the Thomas—Fermi length if the velocity parallel to the surface is smaller than the
Fermi velocity. Crisis of screening is found at the velocity approaching the Fermi velocity,

which results in the electric field penetration inside the metal at large distances, and in the
distortion of the electric field distribution outside the metal. The energy dissipation from

a moving charged body as a function of the velocity has a pronounced singularity near the Fermi
velocity. © 1997 American Institute of Physid$§1063-777X97)01208-3

1. INTRODUCTION laxation processes and mechanisms very near the metal sur-
face;(2) the nonlinear output is expected in the linear ampli-

_ l\(/jlacr_oscppm chargtlal_cannotlemst inside almﬁtal. UPoR de regime(small charges and fieliisince the nonlinearity
Introduction mtq ameta ICc Samp'e, any external charge C(.)n'may be concerned with the large velocity of collective mo-
centrates near its surface in a thin layer, whose characteris

hick L2 fon rather than with the drift velocity of electrons.
thickness | In the present paper we investigate the dependence of
Ae=[4me>N(eg)] Y2, (1)  the charge distribution inside the metal and the electrostatic

the so-called Thomas—Fermi screening length, which is typi_potential outside the metal, on the velocity of the surface

cally of the order of a few angstromd(eg) is the density fthe”et mo;qu ptrhoducetd Iby a-charged" blc(tely;)r\]/v n ast tlhe
of electronic states at the Fermi energy.. ] ip” ) outside the metal moving parallel to the metal sur-

If the external charge is fixed in space, the emergingace' It is shown that the surface charge follows the tip mo-

Coulomb potential will be screened inside the metal at th ion adiabatically only if the velocity of motion is much

same distance. Along the surface, charge density can be |GMaller than the Fermi velocity . A velocity greater than
calized within some area, and can be translated parallel to théF €auses a crisis of the Thomas—Fermi screening, which
surface without changing its shape. It is tempting to considefeSults in the nonlinear charge penetration deep into the
the surface charge, which is generated due to the motion of@etal and in t_he distortion of the screening electric field in-
charged body in vacuum near the metal surface, as a separ&id® and outside the metal. .
entity, and to investigate the effects related to its dynamical ~ 1he questions considered can have relevance to scanning
behavior. At the velocity smaller than the Fermi velocity, theunneling mwrpscop?,to the effects of charge quantization
nonlinearity in the response to an external perturbation majf Small metall.lc electrng%to ballistic glectron transport in
occur if the former approaches the phonon propagation velarrow metallic constrictions and point contatfsand to
locity, which results in phonon emission followed by extra 9eneral aspects of “fermiology,” i.e., Fermi surface recon-
energy release from the surface sheet. In the case of fagtruction in metals, since the dynamical screening effects in
motion with a velocity greater than the Fermi velocity, the the surface sheet depend essentially on the topology and
oscillatory potential emerges in the wake behind the charge@hape of the Fermi surface. The interaction of a moving sur-
body (e.g., an ion moving in a metalwhich can trap con- face charge with phonons can be viewed as a kind of “sur-
duction electrons in the wake-bound stifeAt a velocity ~ face spectroscopy” of conduction electrons in mefals.
approaching the Fermi velocity, the charged body wake is at  Another type of experiment involves charged ion motion
“resonance” with the conduction electrons, which accountsinside a metdlor a traversal of the interface between metal
for the singularity of the dissipation in the surface sheet andind vacuunt. If the velocity of ion motion approacheg:
for the stopping power of body motion. In the case of motionfrom above, the wake-bound state of an electron and stop-
of a charged body outside the metal, this results in the nonping power for ion motion reveal a singularity in the limit
linear interaction between the external moving charge an—Ve. In the case of small velocity, the surface charge
the induced charge near the surface. The dependence of drfajlows the external perturbation adiabatically, allowing for a
force and power dissipation on the velocity is nonlinear andsemiclassical description of the interaction of external elec-
possibly honmonotonic. tric field and the induced charge. Important difference be-
The information concerning the electron states in metalfween the cas¥ > Vi andV < V¢ is that semiclassical ap-
which can be obtained in the corresponding experiments, iproximation may present a reasonable approximation of the
similar to that found from the conventional conductivity problem.
measurements except thd) it is directly related to the re- After the discussion of the validity of different approxi-
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mations (semiclassical or random-phasevhich are appli- The scalar potential in a metal emerging from an external
cable to the problem of dynamical screening in Sec. 2, weslectric charge uniformly distributed with the densityin a
investigate in Sec. 3 the dynamical screening in a twoplanez = 0 is

dimensional metal with a cylindrical Fermi surface since it
most clearly illustrates the theoretical method adopted by us
and the origin of the velocity-dependent anomaly predicted.
In Sec. 4, similar effects are considered for a threey; reduces to an exponential dependence(z)
dimensional metal with a spherical Fermi surface. Energy— 4(0) exp(— «yglz]) within the SA. Within the RPA, by
dissipation and drag force induced in a moving body argntoducing a parameter

calculated in Sec. 5, followed in Sec. 6 by the discussion of

= expikz)
d)(Z):ZO' _w—kzmdk. (6)

the physical aspects of the surface charge dynamics and pos- _ _ [ KTF @
sible realization of its fast motion in metals. 2ke
we obtain
© cogq 2KgzXx)
2. SEMICLASSICAL APPROXIMATION FOR A DYNAMICAL d(z)= —————— dx. (8)
SCREENING o X“+af(x)
Linear response of a degenerate electron gas to a timé:-or typical metals falls within the interval
and space-dependent electric potential 0.3<a<1 (9)
B dk » dw ) ) [a is related to the most commonly used quaﬁting
$(r.)= 2m)3 ) . 27 Pro EXHIKT —iwl) = rq/ay, wherea, is the Bohr radius, ant is the average
. . o _ distance between electrons, sinee = 7 1(4/9m)3 r
is described by the quantum kinetic equatfofassuming = 0.1659.]
=1 The normalized potential distributiogb(z)/$(0) as a

function of Xz is shown in Fig. 1a for varioua. However,
) since it is nonexponentigpower-like and oscillating with a
period w/kg! at largez), ¢(z) is very small in the region in
which, within the SA, it decays exponentially. If replotted as

1 0 0\
(w=eprrtep—i2) fkoT €Pko(fo_ko= fpik2) =0,

Wherefg is the unperturbed electron distribution function
_ -1 1 - g '
(exf(ep — w)/T] + 1), andfi, is the first order cor- 5" nction  of ktez = zIh\yg, all the dependences

rection tof,,(p). (Assuming that the velocity of motion is #(2)/$(0) at differenta fall nearly into a single lingFig.
much less than the light velocity, we can ignore the mag- 1b). The screening radius

netic field effects and eliminate the vector potential A, leav-
ing only a scalar potentiap.)
Equation(2) results in the Lindhard formulée.g., see

Ref. 1) for the relation between the electric displacementand . . . .
the electric field within 10% accuracy equals the Thomas—Fermi screening

length in the interval otx from O to 1. This has an implica-
Dko= Ekot 4Py, = (K, 0)Ey,, tion that the semiclassical approximation, which is not exact,

r_=J°c¢<z>dz/¢<0>. (10
0

where p,, = —(4m) likP,, is the external charge den- nt_evertheless gives a rgasonaple estimate of screening. We
sity, and will use the approximation which can be used to trace the
, o o dynamical screening effects in metals. The solution proves to
s(kiw)=1+ 4me j 2dp forke— fooke be quite complex even within the SA, and it would become
' k? (2m)3 w—epiktepka—i6 intractable in the RPA scherffesincek in Eq. (2) must be

(3 considered as an operatal/dz. In any case, the validity of

At o = 0, the dielectric function within the random-phase SA is indeed guaranteed as longass small (9).

approximation(RPA) [Eg. (2)] is

2 2
KTF 1 1-x |1+X 3. THOMAS—FERMI SCREENING IN A TWO-DIMENSIONAL
6(k)=1+?2—L(X), L(X):E+Tlnm’ (4) METAL
wherex = 2k/kg. At small k, the kinetic equatior{2) re- Consider the metallic semispace in the vicinity of a

duces to a semiclassicg@A) Boltzmann kinetic equation for charged tipT moving parallel to the metal surface with a

the distribution functiorf(p,r,t), and Eq.(3) reduces to an velocity V (Fig. 2). We shall investigate the steady-state dis-

expression for the dielectric function tribution of electrons in a momentum spaide, p,t) and the
(k)= 1+ 12 /K2 ) electrostatic. potential distrit?utionjb(r,t) inside and outsi.de.

TR the metal with the assumption that they make a self-similar

which is equivalent td1) with xtg = 1M\ qf. configuration which depends on the relative coordinate
To clarify the difference between various approxima-— Vt.

tions, let us consider the screening of the electrostatic poten- In a semiclassical approximation, charge dengity ex-

tial produced by a charged plane immersed inside the metahressed in terms df as
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FIG. 2. Schematic diagram of a charged fip) (noving parallel to the metal
surface with a velocity/. Surface chargéa dashed lineaccumulates near
the metal surface and moves with the same velogjtyis the angle of
incidence of the electron.

¢(2)/4(0)

20 The charge density in a metal &t= 0 is

p=—eN(ep)(Xp) (15

b where(...) denotes averaging over the Fermi surface.

We ignore scattering of electrons inside a metal, which
is expected to be a good approximation if the electron mean
free path is much larger than the Thomas—Fermi screening
length, but include the scattering of electrons at the surface
with the help of the diffuse boundary condition that intro-
duces a diffusivity coefficien(0 < g < 1). Requiring
that the electron current be zero at the metal surfacee
can write the boundary condition in case of a cylindrical
Fermi surface directed along tlyeaxis in the form

4(2)/9(0)

ks

X—¢:(1_Q)X¢+gJO Xo sin (PdQD, (16)
where q is the diffusivity coefficient of the metal surface,
\ and ¢ is the angle between the direction of electron momen-
¢ 10 20 tum and surface.

2y In the Fourier representation with respect to the surface
coordinatex, y, the equations fos, andy . are(below we

FIG. 1. Normalized potential distribution inside a metal at various values ofdrop for clarity the index)
a as a function of Rz () andkrgz (b). I—a = 0.2; 2—a = 1.1; 3—«

—20. k?¢p—d?¢p/dZ?=—4meN(er){x,) (17
and
dp [v+iky(Ve cose—V)]x,+V sinqodX‘p
= — (f— x\VFE - F a5
p 2ef 2ah)? (f—"1o), (1)) ¢ dz
where f is the equilibrium Fermi distribution. The scalar _ - ; d
=eVg| ik, cose+sin ¢ —| ¢. 18
potential can be found from the Poisson equation Pl ¢ ? 4z ¢ (18)
VZ¢p+4mp=0, (12 Although we are considering a clean metabllision fre-
andf satisfies the Boltzmann equation quency v—>0)., a “trace” of the electron scatterln_g/=+0) _
should remain in order to ensure a proper analytical behavior
of ~of of of the electron distribution inside a metal &s>.
GV eve p —v(T=To), (13 In the case of zero velocityy = 0, Eq.(18) gives x,,

= e¢, thus resulting in an exponential distribution ¢f

in which vis an electron collision operator. The self-similar . .
inside the metal

distributions off and ¢ are
f=fot x (X—VLy,p)dfolde,, ¢=d(X=Vi). (14 b= p(0)exp—x7ez) With xre= 72 +KE. (19
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We shall use below the dimensionless units such that

= 1,e = 1andN(eg) = 1,V = 1, whereV is the Fermi
velocity. Thus, representing, in the form y, = ¢ v | ———]
+ u,, we obtain HE
it ]
( k2+— $=+(uy) (20 i}
u‘ A
10
and i N
)ik 21 '
el az/Y¢ sing (21) I
where a b
k(cose—V)—iv
R a— v=+0. (22 FIG. 3. Path of integration in Eq24) for V < 1 (a) andV > 1 (b).
Sin¢ Integrals along broken lines cancel each other bec&(ge atV < 1 has

the same value on both sides to the left and to the right of the imaginary
axis.

The solution of Eq(21) is

) ikyV [z .
U,=A, exp(—iy,)+ Sin g fo d(z")exd —iy,(z
~2')]dZ, 23) quirement that¢(z) in (24) shou_Id prop.erly behave at—

— oo allows us to find the potential provided that the value of
from which it follows that¢(z) can be obtained with the the ratiog’ (0)/¢(0) is specified by the solution of the Pois-
Laplace transform son equation inside the metal.

Evaluation of the integral24) atV < 1 gives

=pf°°¢(z>exrx—pz>dz,
0

7 @ PoZ— g i17¢?
o ¢(Z)=d>(0)e*poz+f 27 A 27
giving for the space dependencegfatz > 0 -7 Pot 7Y,
1 (atiw where ¢’ (0) is related top(0) according to
= z
H(2)=5 Ja_iw dpe® f A, )
¢'=—Pod0)— | oo (29

p¢(0)+¢> (0)+ [T (del2m)A,I(p+iy,)
p —k2 S(p) ' This is a consequence of the vanishing gxp( terms in
#(2), wherep, is the pole of the denominator of the inte-

. _ (4) grand of Eq.(24).

whereS(p) is a function Substitution of Eq(27) into (23) gives

de 1 K,V )

. X 0
S(p)=1+k Vj,,, 27 K (cose—V—i0)—ip sing" Up=A, eXp—17,)+ oo ¢ | v.+ipo [exp(=Po2)
(25 ’

Integral (24) is taken in a complex plang along a vertical —exp—iye2)]
line which is snyated to the right of gll smgularmésol_es ™ de A, exp—iy,z)—exp—iy,2)
and branching lingsof the integrandFig. 3). The solution 27 02+ 2 Yo Yor s
depends upon the analytical propertiesspp) which will be T ET PO Yy £

discussed below, and is different\at< 1 (velocity smaller (29
than the Fermi velocityand atv > 1.

The requirement tha#(z) derived from(24) behaves
regularly atz—oo establishes the relation betwee0) and = de A,
¢'(0) (prime denotes derivative with respectZpand thus bo=¢(0)+ ﬁw o m (30)
allows the solution of the Poisson equation outside the metal, 0" Te
which for clarity we also represent in the form of a PoissonThe positive values op(0 < ¢ < ) correspond to elec-

where

integral: trons reflected from the surface and the negative values of
o ey —ph o( — m < ¢ < 0) correspond to electrons arriving from
b= i a dpe Pz G 20) 2477Qe , the bulk of the metal. The quanti#y, in Eq. (29) satisfies at
2 Ja-ie pT—ky ¢ < 0 the same relatiofiL6) asy,, does. For positivep, the
2<0, (26) exponents exp(- iy,) taken with the finite value of v in-

crease exponentially inside the metal and therefore should
where for simplicity it is assumed that the tip is a point cancel themselves out. This condition gives the relation,
chargeQ located at a heightt above the metal surface. Re- which is valid at— 7 < ¢ < 0:
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kv oo This _function has branching2 points 32 the imaginary a;_xis
°"sing | yo+iPo = Ziqg, whereqy = k(V°s — 1)< At the real axis,
¢ the denominator of the integrand of E@4) has two pairs of
B fw d_go’ A, 31 poIesfi pfl artlﬁt plz. For example, in the cadg, = O the
.27 (p3+yi,)(7¢—7¢/) . equation for the poles

[kl V
This relation closes the set of equations necessary for the p2:k>2<+ 1- [pz+k2(:/2_1)]1/2 (39
determination of the field distribution inside the metal. Com- X

bination of Eq.(24) with the boundary condition foA, re-  gives two values fop > 0:

sults in an integral equation fok, in the domain 0< ¢ 1

< 7 p=p;=k,, and p:pzzl—zkxv,|kx|<1. (39
- KV (7do’ 1 Ay IiAW The first pole signals that the electric field distribution
LA+ sing Jo 2m p2+ 7’2’ Yot Vo + Yo~ Yeo! breaks the Thomas—Fermi barrier and penetrates into a metal

to distancesgk,| ~* of the order of the tip-to-surface distance,
B kyV g which is much larger thamg. This, however, is not an
" sing Yo—iPo’ (32) equilibrium charge distribution.
. . With the two polesp, ,, the potential¢(z), which is
where ¢, is taken from Eq.(30), andL is the operator of derived from Eq.(24) by integration along the contour

diffusive reflection shown in Fig. 3b has two exponentially increasing terms
A q (= exppP.2 and expp,z), and also the nonsingular terms exp
LA,=(1-q)A,+ > fo A, sin ede. (33 (= P12, exp(— p.2), exp(= iqez), and exp (- ivy,2), where

qo = k(V? — 1)Y2. Elimination of singular contributions

Once solved, Eq(32) can be used to find the rati¢’/ ¢ at results in the number of equations which is larger than the
the metal s’urface which is our goal in solving self- number of variables. This means that the only admissible

consistently for the field distribution inside and outside theSolution in this case is a trivial ondy, = 0, u, = 0, ¢o

metal. = 0. We thus find that¢$(0) = ¢'(0) = 0, which is
Let us evaluatep, and S(p). Consider separately the inconsistent with the equation for the potential value outside
casesV < 1 andV > 1. the metal[Eq. (26)]. In fact, if #(0) = ¢'(0) = 0 (note

Expression(25) can be reduced to an integral along the that these quantities are functionskofin some domain ok,
unit circlez = exp(g) in the complex plane then in this same domain the potential will become infinite at

largez. We conclude, therefore, that there is no regular so-

S(p)=1+ é dz 2k,V lution for ¢(2) if the velocity of the tipV is greater than the
(P)= 27 (ky—p)z2—2(k,V+i0)z+k,+p° Fermi velocity.
(39 This means that the solutio#i(z) does not existn the

linear approximationin x,, and higher-order terms in the
electron distribution should be taken into account on the

23 = (kV+iv: VKV +iv)2+ p2—k2) /(K= p), right side of the Poisson equatidh7).

At V < 1, the poles of the denominator in the integrand,

lie either inside or outside the unit circle and therefore the4. DYNAMICAL SCREENING IN A THREE-DIMENSIONAL
integral is equal to zer@except for Rgp = 0). We therefore  METAL

have It can be assumed that the instability of the steady-state
o(p) motion of a surface sheet at high velocity found in the pre-
S(p)=1+ (1-V3™ 50)’ V<1. (35  vious section is specific to the two-dimensional Fermi sur-

face. We shall see, however, that similar property is also
The poles of the denominator of the integrand in 24) are  seen in a three-dimensional metal.

*+ pg, Where In a metal with a spherical Fermi surface, an equation
for the angular-dependent part of the electron distribution
— 2
Po=v1+k~. (38 analogous tq21) is
Typical values oflk| are of the order of the inverse dis- d ik, V
tance from the tip to the metal surface, which is assumed to | iy, + g Y=snosng & (40

be much larger than the Thomas-Fermi screening length
Mte, and thereforék| is much smaller than the characteristic where 6 is a polar angle of the electron momentum at the

momentumxg [kt = (47)Y? in dimensionless units Fermi surface, ang,, is a quantity
In the caseV > 1, th_e behavior o8(p) is quite differ- K(sin 0 cos ¢ —V) +k, cos 6—iv
ent. At the real axiS(p) is Vo= - - . 41
sin 6 sin ¢
|kl V ” . _
S(p)=1-— . V>1. (379  The boundary condition of diffuse scatteringzat= 0 and
[P?+K(V2—1)]" 0<g¢<mis

654 Low Temp. Phys. 23 (8), August 1997 I. O. Kulik 654



F-i2; Sip)

_1 1
0 1 2
P

FIG. 4. Poles of the denominator in E@4) atk, = 0 andV = 0.9. (a) large value ofk, (k, = 0.8) corresponding to one pofg; (b) smallk, (ky
= 0.4, two poles— p;,p,). Curve 1—the dependencp? — kf, curve 2—the dependencg(p).

a (= . G . i
u_¢=(1—q)u¢+; fo sin 0d0f0 deu,, sin 6 sin ¢.
(42

The dynamical screening is
dimensionalS-function analogous t¢25)

S—lfdﬂ
)

KV
(SN 0 oS @— V) +K, COS6—ip SN 0 SiN g1V’
(43

wheredQ) = sin #dé d¢, which gives the potential distribu-

tion
_ 1 a+ioe 2
¢(Z)—ﬁ i dp
><<75(0)+p<75’(0)H(dQ/47T)[A¢/(IO+i%p)]

p?—k*=S(p)
(44)

Evaluation of an integral43) atk, = 0 andV < 1 gives

655 Low Temp. Phys. 23 (8), August 1997

represented by a three-

S:
( . v V+(1-p?/k2)12
(1 P2 " V ko + (1- VA (1 - p2IKk2) 2’
pP<|kul,

. Vv (PP 1)t
(p2lk>2<_1)1/2[arCS|n(p2/k)2(_1+V2)1/2
—arcsir‘(l_vz)llz(pZ/kX_1)1/2 P>k

\ (p2/k3_1+v2)1/2 ' x| *
(45
At p = +0, the function(43) is
Vo[t sgnV — 7x)
S(p,Vﬂ?)—l_ E Jildx ((V_ 77)()2_1_'_)(2)1/2 0((V
—7x)2—1+x?), (46)

wheren = ky/k,. Recall that ap— =S equals 1, whereas
atp = 0 it is smaller than unity and becomes negative at
large V.

Looking for the poles of an integrand of Eg4) with
real axis,

p?=kz+kj+S(p,V,7), (47)

we note that wher§, = S(p— + 0) is negative, there
always will be two rootg, > 0 andp, > 0 of (47) in the
certain domain ok. This is seen from the graphical solution
of Eq. (47), as shown in Fig. 4. Therefore, in this domain of

I. O. Kulik 655



wave vectors there will not exist any regular solution for the

electric field, and therefore there is a crisis of the Thomas- VC=tanhV—. (51
C

Fermi screening. Let us specify the domain of the latter.

So

f

\

Evaluation ofSy(V, ) gives

1

1—a+((1—a)2—32)1/2‘

V>7q

BZ

_2u+n%”“”1+a—q1+af—55ﬂ%

‘T a— (a2 BT a+ (1-a)?- B

V<n,

where

The functionSy(V, ) for different 5 is shown in Fig. 5. The
smallest value oV at which Sy is negative is achieved at
n = 0, where

This expression
= 0.8335 is the solution of an equation

FIG. 5. Dependence @, on V. Curvesl, 2, and3 correspond top = 0,

VI

—=1In

\Y
So(V,00=1—

2_1+772-—v2
A== 7?)? "

1-V

is negative aV

1+V

=
n k.’

> V. where V,

So

1.0

\\2\3

1

1.0

0.5, and 1.0, respectively.
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Therefore, the instability of laminar flow occurs in a three-
dimensional metal at a velocity slightly smaller than the
Fermi velocity. Near the critical value &f, the instability
takes place at a smélll-to-k, ratio. The smaller igk,|, the
stronger is the distortion from the unperturbgfz) distribu-

tion. In effect, the largds, Fourier components of the poten-
tial are virtually unaffected, whereas small the components
are depressed. This implies a change of the potential and of
the charge distribution inside a metal, which is shown sche-
matically in Fig. 6. The shape of the image(sfymmetrical
external charge in the surface sheet is compressed in the
direction perpendicular to the direction of motion and is
elongated in the opposite direction. At the same time, the
penetration depth of electric field inside the metal increases.
Near the critical velocity, the characteristic compression is

ATE
Az— W (52)

The effect of potential redistribution strongly manifests itself
if the distance between the tip and the metal is of the order of
a few unperturbed Thomas—Fermi screening lengths.

Let us analyze the analytical properties®in the com-
plex planep. S(p) has a singularity along the imaginary axis
p = iqg, which is in effect a manifestation of the existence of
the branching points of two-dimension&8I[Eq. (37)]. In a
three-dimensional metal, maximal velocity of electron mo-
tion parallel to the metal surfadg = sin @ may be smaller
than 1 atV < 1 in some range of. The functionS(iq)
attains different values when the imaginary axis is ap-
proached from the left and from the right, and remains ana-
Iytical in the subspaces Re< 0 and Rep > 0. The values
of S(p) to the left and to the right of the imaginary axis are

| vV o(n
Si(|q):l+§ fo doR.(v,q/ky), (53

V-7 cosé

1% "
sin 6

where = k,/k,, and

FIG. 6. Schematic diagram of the charge penetration inside a metal along
the metal surfacda) and along the cross-sectional plat®. Solid lines
correspond td&/ < V., and dotted lines correspond Yo> V..
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Y

FIG. 7. Contour of integration for the calculation of the poten#téf) [Eq.
(24)] in a three-dimensional metal.

0, lv]<1
sgr(v) .
Ro(o)={ =157 lv]>1]x|<\v*—1
i sgnvx)
imﬁ, |U|>l,|X|>\/UZ—1
(54

wherex = g/k,.
We can now calculate frorf4) the potential¢(z). In-
tegrating along the path shown in Fig. 7, we obtain

dQ .
$2)=do xii—pe2)+ [ 57, exii—iv,2)

+Jm qu i 55
55 Xa explia), (59

where, as follows from the requirement thafz) vanish at
z—, a relation betweerp(0) and ¢’ (0) is

dQ A,

¢'(0)=—pod(0)~ | Z o (56)
The coefficientspy, Z,, andX, in the expressioris5) are
_ 2po @ A,
¢°_—D’(po) {925(0)4‘[ ype m : (57
z 1 ! + ! }A (58
¢ 2|Dy(iy,) D_(iy,)|*
« _( 11 ) . 0
q— D+(|,y¢) D-(")/(p) (Iq p0)¢( )
dQ g+ipg
f 4w (Potive)(Aty,)| ¢ 59

whereD(p) = p? — k? — S(p) is the denominator of an inte-
grand of Eq.(24), which is appropriate for thedBcase.
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Proceeding further in the same manner as in Sec. 2, we
calculate with the help of E¢55) the functionu,,

®o
7¢+ip0

Ky
sin @ sin ¢

U,=A, exp(—iy,2)+

X (exp(—po2) —exp(—iy,2))

dQ’ exp(—iy,z) —exp —iy,2)
[y,
47T ’y‘p/_‘yq;/
» d exp(iqz) —exp —iy,z
+f dq exdigz) —exd ~iy,2)]
o 27 4 a+ v,

whereA,, is an arbitrary constant. Requiring that the terms
proportional to exp(- iy,2) cancel each other out at> 0,
and using, atp < 0, the boundary conditio®2), we obtain

Z,

b, [ 2,
y¢+|p0

T }(p )(p
I }(P

at— 7< <0, and

K,V
A,== -
¢ sin 6 sin @

(60)

A_wz(l—q)A¢+%f sinedef deA, sin 6 sin ¢
0 0

=LA, (62)

ato< o < m, whereL is a three-dimensional operator of a
diffuse reflection, which can be written in the form

L=1-q+4q, (62)
where(q is an operator

.. q . .

qA(P—; dQ A, sin 0 sin g (63

(dQ), means a solid-angle integration with a positige It
follows also that the inverse operator is

1-§

Sy
L 1—q (64)
Combining Egs.(57) and (60), we obtain an integral equa-

tionforA,inthe domain0< ¢ < 7

a kY f dQl [ A, LA,
¢ sin@sine 8T \ Vet Ve Vo= Vo
X( 1 N 1 )
D+(|'}’(p) D—(I’ycp)
_Joc ﬂq-ﬂpoj de,_ A<P’
—2 2m Q=Y J 47 [(Potive)(Qt ver)
_|_|: A(p’ :| _ ka d)o
(Po— 1Y) (A= Y1) sinfdsine | y,—ipg
= dgig—py[ 1
O] . 2zy, 4. Doaw)[ ©
. O. Kulik 657



where D.(iq) is a value ofD(p) to the left/right of an where
imaginary axisp = iq * 0. N N . L e
Equation(66) is valid atV < V. when the linear regime D.(ig)=—-k*=0°=S.(ia); S.(iq)=S(iq=0).

of the surface sheet motion is realized. In this case the solu- (74)
tion for A, together with Eq(56), permits determination of = SettingS. (iq) = S;(q) * iS,(q), we obtain from(53)
the effective boundary condition, i.e., the value of the ratio v (1 y )
#'lpatz = 0. _ __f Sgniv—7x
Si(q)=1 2 _1dX (A(X)—qzlki)llz O(A(X)
5. ENERGY DISSIPATION IN A MOVING SURFACE SHEET e (75)
X/

In this section we will consider the energy losses in a _ 2
surface sheet as a result of its interaction with the external g, (q)= v fl d 0(A£x)2)sgr(V 17/72)() ﬂz
charge that pulls the sheet. The force acting on the sheet is 2 (/K= A(x)) K

F=Ep, 66

’ - | 100 —A(x))sgr(ﬂ), (76

where the surface charge densitys determined as (1) Ky
X(dpldz),—9, and Ey = —(d¢ldz),—o. The product

wherex = cosf,andA(x) = (V — 7x)2+ x?— 1.Atp=0,a

F’.‘t\é =W gltv(;,\s the power d&gsm:zted n 2 metfal. Ir.]tegtrﬁtmgdirect integration gives the following expression for the posi-
with respect to space coordinatesy and performing the .\ . oc ofg andk,:

Fourier transformation, we obtain

2 2/1,2\1/2
\V; d?k 1+(Ve—q /kx)
- == 2 1-Vin Cglk, <V,
W= yps f (2m)2 KxPo(K)| ¢ (0)]% Im £(k), (67) S,(q)= (1-V2+qk3)1? x 77)
wherek = (ky,ky). The quantity{(k) is the coefficient in 1, a/ke>V
the boundary condition at the metal surface and
¢'(0)=—po(1+¢(k))p(0) (68) [ (a _ (1-V2)L2
[we dropped the indek in ¢ (0) and ¢,(0)]. Using Eq. v 2 ANV ke ™) Alkx<V
(56), we obtain
. 1
1 dQ A LA S(q)=4¢ V| aresin——5 57511
{(k)=— J - £ _+—21/14(0), (69 (1-V+a7k;)
Po 4w p0+|')/¢p Po— 1Y, . (1_\/2)1/2
whereA,, is found from the integral equatioi66). TSN TV gy Alkx=>V.
In the case of absence ofyadependence of the potential ' (78)

(for example, for an infinite rod moving parallel to the sur- . .
face, an expression for the rate of the energy dissipation pef ¢ dependences, ;(q) at variousV and » are shown in

unit length is Fig. 8. An approximate value &¥(q) at|ky,| < 1 is
V [ dk, ) S(q)
- _Z R(q)~= . 79
1= | 2o Kokl (017 Im (k) (70) @~ 2+ (79
where{(k,) is found by settingk, = 0 in (70). In the case R(q) is an odd function ofg, which vanishes linearly at
of small k|, Eq. (66) can be solved iteratively ik, : small|g/k,| and which behaves atdat|qg| >| k,].
A¢=A2+kxAi+... . (71) The two terms on the right side of E(f.3) represent the

contributions to the dissipation emerging from the main pole
In the lowest approximation we obtain p = po in the complex plang, and from the branching point
along the imaginary axis. The contributions k), ;(k),

L o= kXV_ 1_ and Z,(k) prove to be of the same order of magnitude. Sub-
Sin6 sine | v,~1Po stitution of Eq.(73) into Eq.(70) atpy ~ 1 and smalk, [see
N foo dq po—iq ( 1 1 ) 2(0) Eq. (36)] gives
% 2m =7, |D.(iq) D_(ig) ! i~ XY f A0,  2-9-q¥2
m = - -
(72) ! 1-qJ) 4w (1+y,)?singsing
where v, is determined in(41) with v = +0. Typical K,V aa, 1 dQ, g
yalues ofg are on the or_der dfx,_i.e., much smallerthan the - 1—q f 4 142 f T 1+ 92
inverse Thomas—Fermi screening lengtf: (in the dimen- ¢ ¢
sionless units we ha,| < 1). We introduce the function N kv f dQ, v, J' dQ. qy,
P=21 1D Ga)” D_(im))’ (80)
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FIG. 8. Dependences &, (upper curvesandS, (lower curve$ on g. (a)
n = 0. Curvesl, 2, and 3 correspond tov = 0.3, 0.5, and 0.7(b) V
= 0.7. Curvesl, 2, and3 correspond top = 0, 0.2, and 0.4.

KV [ dO.
Im {5(k)= f

1-q 47
X(Z_q)RO(Q)_q7¢R1(7¢)_ 7¢R( 74))
(1+5)sin 6 sin ¢

L kv f do, 1 fd(h
1-q ) 47 1+9]

aw

X

~ARo(7e)+ 3 VR(¥,)

N (Y f dQ, vy, fdQJr
1—q A 1+yi T
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FIG. 9. Dependence of on V. Curvesl, 2, 3, and 4 correspond toyn
=0,0.2,0.4 and 0.6.

X

ARu(7,)+ 5 R m}, 8D

where

1 = R n
Rn(x)=;V.p.J[_ (@) dg. (82

© q_X

Inspection of integrals in Eqg81) and (82) shows that at
ky—0fdQ, /(1 + yi) takes a constant value, whereas
JdQ, y,/(1 + y2) behaves ak, In(1/k,). This means that
the last term in Eq(82) can be ignored at small value kf
The second term is of the order kof, whereas the first term
behaves ag, In(1/k,).

For orientation, we assume thaR(q) is Cq/(g?
+ a?), which gives from EQ.(81) Ry(q) = Cal/(g?
+ a°) and Ry(q) = —Cad/(g®> + a?). One can then
evaluate integrals i82). It appears that the last term in this
expression is of the same order of magnitude as the corre-
sponding term in Eq(81); therefore, it can be ignored. The
second term in E82) is proportional td, In(1/k,). Evalu-
ation of the leading(logarithmig term in ¢, requires the
knowledge of the functionR ; atq = 0. After some alge-
bra, we obtain

1-qg/2
1-q

c c
In—2+pIn—2, (83)

Ky Ky

whereC, , ~ 1 are complex functions of, 7, andqg andu
is a quantity

Im £(k) =K,V

_Z fx R(X) d 84
e el (84
which is shown for different valueg and » in Fig. 9.
Since? is a small quantity [¢| < 1), the field outside
the metal is almost equal to its value calculated for an ideally
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FIG. 10. Dependence of. on 7.

reflecting metallic surfacexgr = 0). The power dissipated

due to the tip motion becomém the dimensionless unijts

v d’k [0

WZE 2m)? Ky 0o(K) Im (k). (85
In the dimensional units, the dissipated power is
V2 1—q/2
W= 2
4'7Te N(SF)VF 1_q
d%k
2 ’ 2
Xf (271_)2 kx|¢k(0)|
X|In ;-i- In i (86)
lkhre X7 ToINre]

Assuming that the tip is a point charg®, we obtain an
estimate ol valid atV < V.
V2Q2\2: 1-q/2

" TVed® 1-q° &7

Sharp resonances of versusV occur at a fixed values
of the moment, andk, . Dissipated poweW can be de-
termined by integration of. in Eg. (85) with respect tok.
Whether the dissipated powéf vs V will have similar sharp
resonances depends on the actual potential distribution at the
metal surface.

Let us consider as an example a point cha@et a
heighth above the metal surface giving at-0

1
¢(r):Q (X2+y2+(Z—h)2)1/2

1
T & ryir (zr ) (90)
from which we have
¢ (0)=4mQ exp(—2|k|h) (91

and an infinite thin rod with the linear charge densty for

which
Q x%+(z—h)?
$N= 5 N Ganye %2

and, correspondingly
1 (0)=27Q exp(—2|kh).
In the second case we then obtain
L W(v)
So(V,0)+1/4h?’

and in the first case

(93

h>1, (94)

= dg 1
W W V) f o (T+ 77 S(Voq)+ (1+ )R

The dependenceg®5) and(96) are shown in Fig. 11.

(95

6. DISCUSSION

Dynamical interaction of a moving charge with a metal
surface reveals singularities in the dissipated power as a
function of the velocity of motiorlV. Depending on the to-
pology of the Fermi surface, the maximum of power dissi-

whered is a distance between the tip and the metal surfaceyation in the surface sheet occurs either at the Fermi velocity
Atsmalld = \rg, this expression matches in order of mag- or sjightly below it. At the same value &, the electric field
nitude the loss of a charged particle that moves inside &egins penetrating the metal to a depth much greater than the

metal.
For a charged rod with a chardg@ per unit length, an
estimate of the loss per unit length is
W V2Q2\2. 1—q/2 -
The quantityu in (84) increases dramatically at near
the critical velocityV.. At a value ofV larger thanV,, the

Thomas—Fermi length, thus breaking the Thomas—Fermi
screening barrier.

Crucial for the observation of such effects is the possi-
bility of realization of fast motion of a surface charge. This
can be achieved by propagating charged particles or small
charged bodies above and near the metal surface. The other
possibility may be in creating an electronically driven mo-
tion of a surface charge parallel to the metal surface. Con-

linear regime of the surface screening breaks down. Arterning the latter, we envisage a setup with an array of

asymptotic behavior of. nearV,

1
P K=t (89

whereSy— 0 in the limit V—V (7). The functionV.(7) is
shown in Fig. 10.
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equally spaced metallic electrodes near the bulk m&tgl.

123 biased periodically in time with the short electric pulses
of fixed polarity. This will create maxima in the surface
charge distribution in a metal moving between subsequent
locations in the metal surface with an average velotity

= Ax/At (Ax is the distance between electrodes, ards
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the order of 10um. The velocity of soliton motion can be
made quite largey ~ 10’ cm/s. As a result of the interac-
tion of solitons with the induced surface charges in a metal,
the current-voltage characteristic of a semiconductor film
overlaying the metal attains a singularity\ahear the Fermi
velocity of the metal.

Another possibility is propagating low-frequency
charged plasmof¥*’in a thin superconducting film in the
vicinity of a bulk metallic electrode.

It should be noted that the effect considered in this pa-
per, an additional dissipation related to the surface charge,
may have relevance to an evaluation of the quality faGpr
2 of an rf cavity, in particular, a superconducting cavity. At the
lowest temperature at which the power absorption due to the
S electronic excitations in a superconductor is quite sig@alt,
therefore, Qs large, a dissipation related to the surface
charge may contribute to the residual valugXxfattained at
the lowest temperature in a very high-quality caviti€3; (

~ 100 18

*E-mail:kulik@fen.bilkent.edu.tr
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