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Thomas–Fermi screening of a moving surface charge
I. O. Kulik
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The dynamical screening effects in the skin layer of a metal are investigated. The electric charge
density near the metal surface induced by a moving charged body outside the metal is
screened at the Thomas–Fermi length if the velocity parallel to the surface is smaller than the
Fermi velocity. Crisis of screening is found at the velocity approaching the Fermi velocity,
which results in the electric field penetration inside the metal at large distances, and in the
distortion of the electric field distribution outside the metal. The energy dissipation from
a moving charged body as a function of the velocity has a pronounced singularity near the Fermi
velocity. © 1997 American Institute of Physics.@S1063-777X~97!01208-5#

1. INTRODUCTION

Macroscopic charge cannot exist inside a metal. Upon
introduction into a metallic sample, any external charge con-
centrates near its surface in a thin layer, whose characteristic
thickness is1,2

lTF5@4pe2N~«F!#21/2, ~1!

the so-called Thomas–Fermi screening length, which is typi-
cally of the order of a few angstroms.@N(«F) is the density
of electronic states at the Fermi energy,«F .#

If the external charge is fixed in space, the emerging
Coulomb potential will be screened inside the metal at the
same distance. Along the surface, charge density can be lo-
calized within some area, and can be translated parallel to the
surface without changing its shape. It is tempting to consider
the surface charge, which is generated due to the motion of a
charged body in vacuum near the metal surface, as a separate
entity, and to investigate the effects related to its dynamical
behavior. At the velocity smaller than the Fermi velocity, the
nonlinearity in the response to an external perturbation may
occur if the former approaches the phonon propagation ve-
locity, which results in phonon emission followed by extra
energy release from the surface sheet. In the case of fast
motion with a velocity greater than the Fermi velocity, the
oscillatory potential emerges in the wake behind the charged
body ~e.g., an ion moving in a metal!, which can trap con-
duction electrons in the wake-bound state.3,4 At a velocity
approaching the Fermi velocity, the charged body wake is at
‘‘resonance’’ with the conduction electrons, which accounts
for the singularity of the dissipation in the surface sheet and
for the stopping power of body motion. In the case of motion
of a charged body outside the metal, this results in the non-
linear interaction between the external moving charge and
the induced charge near the surface. The dependence of drag
force and power dissipation on the velocity is nonlinear and
possibly nonmonotonic.

The information concerning the electron states in metal,
which can be obtained in the corresponding experiments, is
similar to that found from the conventional conductivity
measurements except that~1! it is directly related to the re-

laxation processes and mechanisms very near the metal sur-
face;~2! the nonlinear output is expected in the linear ampli-
tude regime~small charges and fields! since the nonlinearity
may be concerned with the large velocity of collective mo-
tion rather than with the drift velocity of electrons.

In the present paper we investigate the dependence of
the charge distribution inside the metal and the electrostatic
potential outside the metal, on the velocity of the surface
sheet motion produced by a charged body~known as the
‘‘tip’’ ! outside the metal moving parallel to the metal sur-
face. It is shown that the surface charge follows the tip mo-
tion adiabatically only if the velocity of motion is much
smaller than the Fermi velocityVF . A velocity greater than
VF causes a crisis of the Thomas–Fermi screening, which
results in the nonlinear charge penetration deep into the
metal and in the distortion of the screening electric field in-
side and outside the metal.

The questions considered can have relevance to scanning
tunneling microscopy,5 to the effects of charge quantization
in small metallic electrodes,6 to ballistic electron transport in
narrow metallic constrictions and point contacts,7,8 and to
general aspects of ‘‘fermiology,’’ i.e., Fermi surface recon-
struction in metals, since the dynamical screening effects in
the surface sheet depend essentially on the topology and
shape of the Fermi surface. The interaction of a moving sur-
face charge with phonons can be viewed as a kind of ‘‘sur-
face spectroscopy’’ of conduction electrons in metals.9

Another type of experiment involves charged ion motion
inside a metal3 or a traversal of the interface between metal
and vacuum.4 If the velocity of ion motion approachesVF

from above, the wake-bound state of an electron and stop-
ping power for ion motion reveal a singularity in the limit
V→VF . In the case of small velocity, the surface charge
follows the external perturbation adiabatically, allowing for a
semiclassical description of the interaction of external elec-
tric field and the induced charge. Important difference be-
tween the caseV @ VF andV < VF is that semiclassical ap-
proximation may present a reasonable approximation of the
problem.

After the discussion of the validity of different approxi-
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mations ~semiclassical or random-phase!, which are appli-
cable to the problem of dynamical screening in Sec. 2, we
investigate in Sec. 3 the dynamical screening in a two-
dimensional metal with a cylindrical Fermi surface since it
most clearly illustrates the theoretical method adopted by us
and the origin of the velocity-dependent anomaly predicted.
In Sec. 4, similar effects are considered for a three-
dimensional metal with a spherical Fermi surface. Energy
dissipation and drag force induced in a moving body are
calculated in Sec. 5, followed in Sec. 6 by the discussion of
the physical aspects of the surface charge dynamics and pos-
sible realization of its fast motion in metals.

2. SEMICLASSICAL APPROXIMATION FOR A DYNAMICAL
SCREENING

Linear response of a degenerate electron gas to a time-
and space-dependent electric potential

f~r ,t !5E dk

~2p!3 E
2`

` dv

2p
fkv exp~ ikr 2 ivt !

is described by the quantum kinetic equation10 ~assuming\
5 1!

~v2«p1k/21«p2k/2! f kv
1 1efkv~ f p2k/2

0 2 f p1k/2
0 !50,

~2!

where f p
0 is the unperturbed electron distribution function

(exp@(«p 2 m)/T# 1 1)21, and f kv
1 is the first order cor-

rection to f kv(p). ~Assuming that the velocity of motion is
much less than the light velocityc, we can ignore the mag-
netic field effects and eliminate the vector potential A, leav-
ing only a scalar potentialf.!

Equation~2! results in the Lindhard formula~e.g., see
Ref. 1! for the relation between the electric displacement and
the electric field

Dkv5Ekv14pPkv5e~k,v!Ekv ,

where rkv 5 2(4p)21ikPkv is the external charge den-
sity, and

«~k,v!511
4pe2

k2 E 2dp

~2p!3

f p1k/2
0 2 f p2k/2

0

v2«p1k/21«p2k/22 id
.

~3!

At v 5 0, the dielectric function within the random-phase
approximation~RPA! @Eq. ~2!# is

e~k!511
kTF

2

k2 L~x!, L~x!5
1

2
1

12x2

4x
lnU11x

12xU, ~4!

wherex 5 2k/kF . At small k, the kinetic equation~2! re-
duces to a semiclassical~SA! Boltzmann kinetic equation for
the distribution functionf (p,r ,t), and Eq.~3! reduces to an
expression for the dielectric function

e~k!511kTF
2 /k2, ~5!

which is equivalent to~1! with kTF 5 1/lTF .
To clarify the difference between various approxima-

tions, let us consider the screening of the electrostatic poten-
tial produced by a charged plane immersed inside the metal.

The scalar potential in a metal emerging from an external
electric charge uniformly distributed with the densitys in a
planez 5 0 is

f~z!52sE
2`

` exp~ ikz!

k2e~k!
dk. ~6!

It reduces to an exponential dependencef(z)
5 f(0) exp(2 kTFuzu) within the SA. Within the RPA, by
introducing a parameter

a5S kTF

2kF
D 2

~7!

we obtain

f~z!5E
0

` cos~2kFzx!

x21a f ~x!
dx. ~8!

For typical metals,a falls within the interval

0.3,a,1 ~9!

@a is related to the most commonly used quantity2 r s

5 r 0 /a0 , wherea0 is the Bohr radius, andr 0 is the average
distance between electrons, sincea 5 p21(4/9p)1/3 r s

5 0.1659r s .#
The normalized potential distributionf(z)/f(0) as a

function of 2kFz is shown in Fig. 1a for variousa. However,
since it is nonexponential~power-like and oscillating with a
periodp/kF

1 at largez!, f(z) is very small in the region in
which, within the SA, it decays exponentially. If replotted as
a function of kTFz 5 z/lTF , all the dependences
f(z)/f(0) at differenta fall nearly into a single line~Fig.
1b!. The screening radius,

r̄ 5E
0

`

f~z!dz/f~0!, ~10!

within 10% accuracy equals the Thomas–Fermi screening
length in the interval ofa from 0 to 1. This has an implica-
tion that the semiclassical approximation, which is not exact,
nevertheless gives a reasonable estimate of screening. We
will use the approximation which can be used to trace the
dynamical screening effects in metals. The solution proves to
be quite complex even within the SA, and it would become
intractable in the RPA scheme11 sincek in Eq. ~2! must be
considered as an operatorid/dz. In any case, the validity of
SA is indeed guaranteed as long asa is small ~9!.

3. THOMAS–FERMI SCREENING IN A TWO-DIMENSIONAL
METAL

Consider the metallic semispace in the vicinity of a
charged tipT moving parallel to the metal surface with a
velocity V ~Fig. 2!. We shall investigate the steady-state dis-
tribution of electrons in a momentum spacef (r ,p,t) and the
electrostatic potential distributionf(r ,t) inside and outside
the metal with the assumption that they make a self-similar
configuration which depends on the relative coordinatex
2 Vt.

In a semiclassical approximation, charge densityr is ex-
pressed in terms off as
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r52eE dp

~2p\!3 ~ f 2 f 0!, ~11!

where f 0 is the equilibrium Fermi distribution. The scalar
potential can be found from the Poisson equation

¹2f14pr50, ~12!

and f satisfies the Boltzmann equation

] f

]t
1v

] f

]r
2e¹f

] f

]p
52 v̂~ f 2 f 0!, ~13!

in which v̂ is an electron collision operator. The self-similar
distributions off andf are

f 5 f 01xw~x2Vt,y,p!] f 0 /]«p , f5f~x2Vt!. ~14!

The charge density in a metal atT 5 0 is

r52eN~«F!^xw&, ~15!

where^...& denotes averaging over the Fermi surface.
We ignore scattering of electrons inside a metal, which

is expected to be a good approximation if the electron mean
free path is much larger than the Thomas–Fermi screening
length, but include the scattering of electrons at the surface
with the help of the diffuse boundary condition that intro-
duces a diffusivity coefficientq(0 , q , 1). Requiring
that the electron current be zero at the metal surface,12 we
can write the boundary condition in case of a cylindrical
Fermi surface directed along they axis in the form

x2w5~12q!xw1
q

2 E
0

p

xw sin wdw, ~16!

where q is the diffusivity coefficient of the metal surface,
andw is the angle between the direction of electron momen-
tum and surface.

In the Fourier representation with respect to the surface
coordinatesx, y, the equations forfk andxwk are~below we
drop for clarity the indexk!

k2f2d2f/dz2524peN~«F!^xw& ~17!

and

@n1 ikx~VF cosw2V!#xw1VF sin w
dxw

dz

5eVFS ikx cosw1sin w
d

dzDf. ~18!

Although we are considering a clean metal~collision fre-
quency v→0!, a ‘‘trace’’ of the electron scattering~v510!
should remain in order to ensure a proper analytical behavior
of the electron distribution inside a metal asz→`.

In the case of zero velocity,V 5 0, Eq. ~18! gives xw

5 ef, thus resulting in an exponential distribution off
inside the metal

f5f~0!exp~2kTFz! with kTF5AlTF
221kx

2. ~19!

FIG. 1. Normalized potential distribution inside a metal at various values of
a as a function of 2kFz ~a! andkTFz ~b!. 1—a 5 0.2; 2—a 5 1.1; 3—a
52.0.

FIG. 2. Schematic diagram of a charged tip (T) moving parallel to the metal
surface with a velocityV. Surface charge~a dashed line! accumulates near
the metal surface and moves with the same velocity.w is the angle of
incidence of the electron.
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We shall use below the dimensionless units such that\
5 1, e 5 1 andN(«F) 5 1, VF 5 1, whereVF is the Fermi
velocity. Thus, representingxw in the form xw 5 f
1 uw , we obtain

S 2kx
21

d2

dz2Df5f1^uw& ~20!

and

S igw1
d

dzDuw5
ikxV

sin w
f, ~21!

where

gw5
k~cosw2V!2 iv

sin w
, v510. ~22!

The solution of Eq.~21! is

uw5Aw exp~2 igw!1
ikxV

sin w E
0

z

f~z8!exp@2 igw~z

2z8!#dz8, ~23!

from which it follows thatf(z) can be obtained with the
Laplace transform

fp5pE
0

`

f~z!exp~2pz!dz,

giving for the space dependence off at z . 0

f~z!5
1

2p i Ea2 i`

a1 i`

dpepz

3
pf~0!1f8~0!1*2p

p ~dw/2p!Aw /~p1 igw!

p22kx
22S~p!

,

~24!

whereS(p) is a function

S~p!511kxVE
2p

p dw

2p

1

kx~cosw2V2 i0!2 ip sin w
.

~25!

Integral ~24! is taken in a complex planep along a vertical
line which is situated to the right of all singularities~poles
and branching lines! of the integrand~Fig. 3!. The solution
depends upon the analytical properties ofS(p) which will be
discussed below, and is different atV , 1 ~velocity smaller
than the Fermi velocity! and atV . 1.

The requirement thatf(z) derived from ~24! behaves
regularly atz→` establishes the relation betweenf~0! and
f8(0) ~prime denotes derivative with respect toz! and thus
allows the solution of the Poisson equation outside the metal,
which for clarity we also represent in the form of a Poisson
integral:

f5
1

2p i Ea2 i`

a1 i`

dpe2pz
pf~0!2f8~0!24pQe2ph

p22kx
2 ,

z,0, ~26!

where for simplicity it is assumed that the tip is a point
chargeQ located at a heighth above the metal surface. Re-

quirement thatf(z) in ~24! should properly behave atz→
2 ` allows us to find the potential provided that the value of
the ratiof8(0)/f(0) is specified by the solution of the Pois-
son equation inside the metal.13

Evaluation of the integral~24! at V , 1 gives

f~z!5f~0!e2p0z1E
2p

p e2p0z2e2 igfz

p0
21gw

2 Aw , ~27!

wheref8(0) is related tof~0! according to

f852p0f~0!2E
2p

p dw

2p

Aw

p01 igw
. ~28!

This is a consequence of the vanishing exp(p0z) terms in
f(z), wherep0 is the pole of the denominator of the inte-
grand of Eq.~24!.

Substitution of Eq.~27! into ~23! gives

uw5Aw exp~2 igw!1
kxV

sin w F f0

gw1 ip0
@exp~2p0z!

2exp~2 igwz!#

1E
2p

p dw

2p

Aw8

p0
21gw8

2

exp~2 igw8z!2exp~2 igw8z!

gw2gw8
G ,

~29!

where

f05f~0!1E
2p

p dw

2p

Aw

p0
21gw

2 . ~30!

The positive values ofw(0 , w , p) correspond to elec-
trons reflected from the surface and the negative values of
w( 2 p , w , 0) correspond to electrons arriving from
the bulk of the metal. The quantityAw in Eq. ~29! satisfies at
w , 0 the same relation~16! asxw does. For positivew, the
exponents exp(2 igw) taken with the finite value of v in-
crease exponentially inside the metal and therefore should
cancel themselves out. This condition gives the relation,
which is valid at2 p , w , 0:

FIG. 3. Path of integration in Eq.~24! for V , 1 ~a! and V . 1 ~b!.
Integrals along broken lines cancel each other becauseS(p) at V , 1 has
the same value on both sides to the left and to the right of the imaginary
axis.
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Aw5
kxV

sin w F f0

gw1 ip0

2E
2p

p dw8

2p

Aw8

~p0
21gw8

2
!~gw2gw8!

G . ~31!

This relation closes the set of equations necessary for the
determination of the field distribution inside the metal. Com-
bination of Eq.~24! with the boundary condition forAw re-
sults in an integral equation forAw in the domain 0, w
, p

L̂Aw1
kxV

sin w E
0

p dw8

2p

1

p0
21gw8

2 S Aw8
gw1gw8

1
L̂Aw8

gw2gw8
D

5
kxV

sin w

f0

gw2 ip0
, ~32!

wheref0 is taken from Eq.~30!, and L̂ is the operator of
diffusive reflection

L̂Aw5~12q!Aw1
q

2 E
0

p

Aw sin wdw. ~33!

Once solved, Eq.~32! can be used to find the ratiof8/f at
the metal surface, which is our goal in solving self-
consistently for the field distribution inside and outside the
metal.

Let us evaluatep0 and S(p). Consider separately the
casesV , 1 andV . 1.

Expression~25! can be reduced to an integral along the
unit circle z 5 exp(iw) in the complex planez,

S~p!511 R dz

2p i

2kxV

~kx2p!z222~kxV1 i0!z1kx1p
.

~34!

At V , 1, the poles of the denominator in the integrand,

z1,25~kxV1 iv6A~kxV1 iv!21p22kx
2!/~kx2p!,

lie either inside or outside the unit circle and therefore the
integral is equal to zero~except for Rep 5 0!. We therefore
have

S~p!511
i

~12V2!1/2

d~p!

d~0!
, V,1. ~35!

The poles of the denominator of the integrand in Eq.~24! are
6 p0 , where

p05A11k2. ~36!

Typical values ofuku are of the order of the inverse dis-
tance from the tip to the metal surface, which is assumed to
be much larger than the Thomas-Fermi screening length
lTF , and thereforeuku is much smaller than the characteristic
momentumkTF @kTF 5 (4p)1/2 in dimensionless units#.

In the caseV . 1, the behavior ofS(p) is quite differ-
ent. At the real axisS(p) is

S~p!512
ukxuV

@p21kx
2~V221!#1/2, V.1. ~37!

This function has branching points at the imaginary axisp
5 6 iq0 , where q0 5 kx(V

2s 2 1)1/2. At the real axis,
the denominator of the integrand of Eq.~24! has two pairs of
poles6 p1 and6 p2 . For example, in the caseky 5 0 the
equation for the poles

p25kx
2112

ukxuV
@p21kx

2~V221!#1/2 ~38!

gives two values forp . 0:

p5p15kx , and p5p2512
1

2
kxV,ukxu!1. ~39!

The first pole signals that the electric field distribution
breaks the Thomas–Fermi barrier and penetrates into a metal
to distancesukxu21 of the order of the tip-to-surface distance,
which is much larger thanlTF . This, however, is not an
equilibrium charge distribution.

With the two polesp1,2, the potentialf(z), which is
derived from Eq. ~24! by integration along the contour
shown in Fig. 3b has two exponentially increasing terms
exp(p1z) and exp(p2z), and also the nonsingular terms exp
( 2 p1z), exp(2 p2z), exp(6 iq0z), and exp (2 igwz), where
q0 5 kx(V

2 2 1)1/2. Elimination of singular contributions
results in the number of equations which is larger than the
number of variables. This means that the only admissible
solution in this case is a trivial one,Aw 5 0, uw 5 0, f0

5 0. We thus find thatf(0) 5 f8(0) 5 0, which is
inconsistent with the equation for the potential value outside
the metal@Eq. ~26!#. In fact, if f(0) 5 f8(0) 5 0 ~note
that these quantities are functions ofk! in some domain ofk,
then in this same domain the potential will become infinite at
largez. We conclude, therefore, that there is no regular so-
lution for f(z) if the velocity of the tipV is greater than the
Fermi velocity.

This means that the solutionf(z) does not existin the
linear approximationin xw , and higher-order terms in the
electron distribution should be taken into account on the
right side of the Poisson equation~17!.

4. DYNAMICAL SCREENING IN A THREE-DIMENSIONAL
METAL

It can be assumed that the instability of the steady-state
motion of a surface sheet at high velocity found in the pre-
vious section is specific to the two-dimensional Fermi sur-
face. We shall see, however, that similar property is also
seen in a three-dimensional metal.

In a metal with a spherical Fermi surface, an equation
for the angular-dependent part of the electron distribution
analogous to~21! is

S igw1
d

dzDuw5
ikxV

sin u sin w
f, ~40!

whereu is a polar angle of the electron momentum at the
Fermi surface, andgw is a quantity

gw5
kx~sin u cosw2V!1ky cosu2 iv

sin u sin w
. ~41!

The boundary condition of diffuse scattering atz 5 0 and
0 , w , p is
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u2w5~12q!uw1
q

p E
0

p

sin uduE
0

p

dwuw sin u sin w.

~42!

The dynamical screening is represented by a three-
dimensionalS-function analogous to~25!

S511E dV

4p

3
kxV

kx~sin u cosw2V!1ky cosu2 ip sin u sin w2 iv
,

~43!

wheredV 5 sinu du dw, which gives the potential distribu-
tion

f~z!5
1

2p i Ea2 i`

a1 i`

dpepz

3
f~0!1pf8~0!1*~dV/4p!@Aw /~p1 igw!#

p22k22S~p!
.

~44!

Evaluation of an integral~43! at ky 5 0 andV , 1 gives

S5

5
12

V

(12p2/kx
2)1/2 ln

V1(12p2/kx
2)1/2

Vp/kx1(12V2)1/2(12p2/kx
2)1/2,

p,ukxu,

12
V

(p2/kx
221)1/2Farcsin

(p2/kx
221)1/2

(p2/kx
2211V2)1/2

2arcsin
(12V2)1/2(p2/kx21)1/2

(p2/kx
2211V2)1/2 , p.ukxu.

~45!

At p 5 10, the function~43! is

S~p,V,h!512
V

2 E
21

1

dx
sgn~V2hx!

~~V2hx!2211x2!1/2 u~~V

2hx!2211x2!, ~46!

whereh 5 ky /kx . Recall that atp→`S equals 1, whereas
at p 5 0 it is smaller than unity and becomes negative at
largeV.

Looking for the poles of an integrand of Eq.~44! with
real axis,

p25kx
21ky

21S~p,V,h!, ~47!

we note that whenS0 5 S(p→ 1 0) is negative, there
always will be two rootsp1 . 0 andp2 . 0 of ~47! in the
certain domain ofk. This is seen from the graphical solution
of Eq. ~47!, as shown in Fig. 4. Therefore, in this domain of

FIG. 4. Poles of the denominator in Eq.~44! at ky 5 0 andV 5 0.9. ~a! large value ofkx (kx 5 0.8) corresponding to one polep0 ; ~b! small kx ~kx

5 0.4, two poles2 p1 ,p2!. Curve1—the dependencep2 2 kx
2, curve2—the dependenceS(p).
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wave vectors there will not exist any regular solution for the
electric field, and therefore there is a crisis of the Thomas-
Fermi screening. Let us specify the domain of the latter.

Evaluation ofS0(V,h) gives

S0

5

{
12

V

2~11h2!1/2 lnU12a1~~12a!22b2!1/2

11a2~~11a!22b2!1/2U,
V.h

12
V

2~11h2!1/2 ln

3
b2

@11a2~~11a!22b2!1/2#@12a1~~12a!22b2!1/2#
,

V,h,

~48!

where

a5V
h

11h2 , b25
11h22V2

~11h2!2 , h5
ky

kx
. ~49!

The functionS0(V,h) for differenth is shown in Fig. 5. The
smallest value ofV at which S0 is negative is achieved at
h 5 0, where

S0~V,0!512
V

2
lnU11V

12VU. ~50!

This expression is negative atV . Vc where Vc

5 0.8335 is the solution of an equation

Vc5tanh
1

Vc
. ~51!

Therefore, the instability of laminar flow occurs in a three-
dimensional metal at a velocity slightly smaller than the
Fermi velocity. Near the critical value ofV, the instability
takes place at a smallky-to-kx ratio. The smaller isukyu, the
stronger is the distortion from the unperturbedf(z) distribu-
tion. In effect, the large-ky Fourier components of the poten-
tial are virtually unaffected, whereas small the components
are depressed. This implies a change of the potential and of
the charge distribution inside a metal, which is shown sche-
matically in Fig. 6. The shape of the image of~symmetrical!
external charge in the surface sheet is compressed in the
direction perpendicular to the direction of motion and is
elongated in the opposite direction. At the same time, the
penetration depth of electric field inside the metal increases.
Near the critical velocity, the characteristic compression is

Dz2
lTF

~Vc2V!1/2. ~52!

The effect of potential redistribution strongly manifests itself
if the distance between the tip and the metal is of the order of
a few unperturbed Thomas–Fermi screening lengths.

Let us analyze the analytical properties ofS in the com-
plex planep. S(p) has a singularity along the imaginary axis
p 5 iq, which is in effect a manifestation of the existence of
the branching points of two-dimensionalS @Eq. ~37!#. In a
three-dimensional metal, maximal velocity of electron mo-
tion parallel to the metal surfaceVi 5 sinu may be smaller
than 1 atV , 1 in some range ofu. The functionS( iq)
attains different values when the imaginary axis is ap-
proached from the left and from the right, and remains ana-
lytical in the subspaces Rep , 0 and Rep . 0. The values
of S(p) to the left and to the right of the imaginary axis are

S6~ iq !511
V

2 E
0

p

duR6~v,q/kx!, ~53!

v5
V2h cosu

sin u
,

whereh 5 ky /kx , and

FIG. 5. Dependence ofS0 on V. Curves1, 2, and3 correspond toh 5 0,
0.5, and 1.0, respectively.

FIG. 6. Schematic diagram of the charge penetration inside a metal along
the metal surface~a! and along the cross-sectional plane~b!. Solid lines
correspond toV , Vc , and dotted lines correspond toV . Vc .
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R6~v !55
0, uvu,1

2
sgn~v !

~v2212x2!1/2, uvu.1,uxu,Av221

6
i sgn~vx!

~x22v211!1/2, uvu.1,uxu.Av221

~54!

wherex 5 q/kx .
We can now calculate from~24! the potentialf(z). In-

tegrating along the path shown in Fig. 7, we obtain

f~z!5f0 exp~2p0z!1E dV

4p
Zw exp~2 igwz!

1E
2`

` dq

2p
Xq exp~ iqz!, ~55!

where, as follows from the requirement thatf(z) vanish at
z→`, a relation betweenf~0! andf8(0) is

f8~0!52p0f~0!2E dV

4p

Aw

p01 igw
. ~56!

The coefficientsf0 , Zw , andXq in the expression~55! are

f05
2p0

D8~p0! Ff~0!1E dV

4p

Aw

p0
21gw

2 G , ~57!

Zw5
1

2 F 1

D1~ igw!
1

1

D2~ igw!GAw , ~58!

Xq5S 1

D1~ igw!
2

1

D2~ igw! D F ~ iq2p0!f~0!

2E dV

4p

q1 ip0

~p01 igw!~q1gw!GAw , ~59!

whereD(p) 5 p2 2 k2 2 S(p) is the denominator of an inte-
grand of Eq.~24!, which is appropriate for the 3d case.

Proceeding further in the same manner as in Sec. 2, we
calculate with the help of Eq.~55! the functionuw

uw5Aw exp~2 igwz!1
kxV

sin u sin w F f0

gw1 ip0

3~exp~2p0z!2exp~2 igwz!!

1E dV8

4p
Zw8

exp~2 igw8z!2exp~2 igwz!

gw82gw8

1E
2`

` dq

2p
Xq

exp~ iqz!2exp~2 igwz!

q1gw
G ,

whereAw is an arbitrary constant. Requiring that the terms
proportional to exp(2 igwz) cancel each other out atw . 0,
and using, atw , 0, the boundary condition~42!, we obtain

Aw5
kxV

sin u sin w F f0

gw1 ip0
1E dV8

4p

Zw8
gw2gw8

1E
2`

` Xq

q1gw
G ~60!

at2 p , w , 0, and

A2w5~12q!Aw1
q

p E
0

p

sin uduE
0

p

dwAw sin u sin w

5L̂Aw ~61!

at 0 , w , p, whereL̂ is a three-dimensional operator of a
diffuse reflection, which can be written in the form

L̂512q1q̂, ~62!

whereq̂ is an operator

q̂Aw5
q

p E dV1Aw sin u sin w ~63!

~dV1 means a solid-angle integration with a positivew!. It
follows also that the inverse operator is

L̂215
12q̂

12q
. ~64!

Combining Eqs.~57! and ~60!, we obtain an integral equa-
tion for Aw in the domain 0, w , p

L̂Aw2
kxV

sin u sin w H E dV18

8p
S Aw8

gw1gw8
1

L̂Aw8
gw2gw8

D
3S 1

D1~ igw!
1

1

D2~ igw! D
2E

2`

` dq

2p

q1 ip0

q2gw
E dV18

4p F Aw8
~p01 igw8!~q1gw8!

1L̂
Aw8

~p02 igw8!~q2gw8!
G J 5

kxV

sin u sin w F f0

gw2 ip0

1f~0!E
2`

` dq

2p

iq2p0

gw2 iqS 1

D1~ iq !
2

1

D2~ iq ! D G , ~65!

FIG. 7. Contour of integration for the calculation of the potentialf(z) @Eq.
~24!# in a three-dimensional metal.
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where D6( iq) is a value ofD(p) to the left/right of an
imaginary axisp 5 iq 6 0.

Equation~66! is valid atV , Vc when the linear regime
of the surface sheet motion is realized. In this case the solu-
tion for Aw , together with Eq.~56!, permits determination of
the effective boundary condition, i.e., the value of the ratio
f8/f at z 5 0.

5. ENERGY DISSIPATION IN A MOVING SURFACE SHEET

In this section we will consider the energy losses in a
surface sheet as a result of its interaction with the external
charge that pulls the sheet. The force acting on the sheet is

F5Er, ~66!

where the surface charge densityr is determined as (1/4p)
3(]f/]z)z50 , and Ex 5 2(]f/]z)z50 . The product
FxV 5 W gives the power dissipated in a metal. Integrating
with respect to space coordinatesx, y and performing the
Fourier transformation, we obtain

W5
V

4p E d2k

~2p!2 kxp0~k!ufk~0!u2 Im z~k!, ~67!

wherek 5 (kx ,ky). The quantityz~k! is the coefficient in
the boundary condition at the metal surface

f8~0!52p0~11z~k!!f~0! ~68!

@we dropped the indexk in fk(0) andfk8(0)#. Using Eq.
~56!, we obtain

z~k!5
1

p0
E dV1

4p
S Aw

p01 igw
1

L̂Aw

p02 igw
D /f~0!, ~69!

whereAw is found from the integral equation~66!.
In the case of absence of ay-dependence of the potential

~for example, for an infinite rod moving parallel to the sur-
face!, an expression for the rate of the energy dissipation per
unit length is

W5
V

4p E dkx

2p
kxp0~kx!ufkx

~0!u2 Im z~kx!, ~70!

wherez(kx) is found by settingky 5 0 in ~70!. In the case
of small uku, Eq. ~66! can be solved iteratively inkx :

Aw5Aw
01kxAw

11... . ~71!

In the lowest approximation we obtain

L̂Aw5
kxV

sin u sin w F 1

gw2 ip0

1E
2`

` dq

2p

p02 iq

q2gw
S 1

D1~ iq !
2

1

D2~ iq ! D Gf~0!,

~72!

where gw is determined in~41! with v 5 10. Typical
values ofq are on the order ofkx , i.e., much smaller than the
inverse Thomas–Fermi screening lengthkTF ~in the dimen-
sionless units we haveukxu ! 1!. We introduce the function

R~q!5
1

2i S 1

D1~ iq !
2

1

D2~ iq ! D , ~73!

where

D6~ iq !52k22q22S6~ iq !; S6~ iq !5S~ iq60!.
~74!

SettingS6( iq) 5 S1(q) 6 iS2(q), we obtain from~53!

S1~q!512
V

2 E
21

1

dx
sgn~V2hx!

~L~x!2q2/kx
2!1/2 u~L~x!

2q2/kx
2!, ~75!

S2~q!5
V

2 E
21

1

dx
u~L~x!!sgn~V2hx!

~q2/kx
22L~x!!1/2 uS q2

kx
2

2L~x! D sgnS q

kx
D , ~76!

wherex 5 cosu, andL(x) 5 (V 2 hx)2 1 x2 2 1. Ath 5 0, a
direct integration gives the following expression for the posi-
tive values ofq andkx :

S1~q!5H 12V ln
11~V22q2/kx

2!1/2

~12V21q2/kx
2!1/2, q/kx,V,

1, q/kx.V

~77!

and

S2~q!55
VS p

2
2arcsin

(12V2)1/2

(12V21q2/kx
2)1/2D , q/kx,V

VS arcsin
1

(12V21q2/kx
2)1/2

2arcsin
(12V2)1/2

(12V21q2/kx
2)1/2, q/kx.V.

~78!

The dependencesS1,2(q) at variousV and h are shown in
Fig. 8. An approximate value ofR(q) at ukx,yu ! 1 is

R~q!'
S2~q!

S1
2~q!1S2

2~q!
. ~79!

R(q) is an odd function ofq, which vanishes linearly at
small uq/kxu and which behaves at 1/q at uqu @u kxu.

The two terms on the right side of Eq.~73! represent the
contributions to the dissipation emerging from the main pole
p 5 p0 in the complex planep, and from the branching point
along the imaginary axis. The contributions toz~k!, z1(k),
andz2(k) prove to be of the same order of magnitude. Sub-
stitution of Eq.~73! into Eq.~70! at p0 ' 1 and smallkx @see
Eq. ~36!# gives

Im z1~k!5
kxV

12q E dV1

4p

22q2qgw
2

~11gw
2 !2 sin u sin w

2
kxV

12q E dV1

4p

1

11gw
2 E dV1

p

q

11gw
2

1
kxV

12q E dV1

4p

gw

11gw
2 E dV1

p

qgw

11gw
2 ,

~80!
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Im z2~k!5
kxV

12q E dV1

4p

3
~22q!R0~q!2qgwR1~gw!2gwR~gw!

~11gw
2 !sin u sin w

1
kxV

12q E dV1

4p

1

11gw
2 E dV1

p

3F2qR0~gw!1
q

2
gwR~gw!G

1
kxV

12q E dV1

4p

gw

11gw
2 E dV1

p

3FqR1~gw!1
q

2
R~gw!G , ~81!

where

Rn~x!5
1

p
V.p.E

2`

`

–
R~q!qn

q2x
dq. ~82!

Inspection of integrals in Eqs.~81! and ~82! shows that at
kx→0*dV1 /(1 1 gw

2) takes a constant value, whereas
*dV1gw /(1 1 gw

2) behaves askx ln(1/kx). This means that
the last term in Eq.~82! can be ignored at small value ofk.
The second term is of the order ofkx , whereas the first term
behaves askx ln(1/kx).

For orientation, we assume thatR(q) is Cq/(q2

1 a2), which gives from Eq. ~81! R0(q) 5 Ca/(q2

1 a2) and R1(q) 5 2Caq/(q2 1 a2). One can then
evaluate integrals in~82!. It appears that the last term in this
expression is of the same order of magnitude as the corre-
sponding term in Eq.~81!; therefore, it can be ignored. The
second term in Eq.~82! is proportional tokx ln(1/kx). Evalu-
ation of the leading~logarithmic! term in z2 requires the
knowledge of the functionsR0,1 at q 5 0. After some alge-
bra, we obtain

Im z~k!5kxV
12q/2

12q F ln
C1

kx
1m ln

C2

kx
G , ~83!

whereC1,2 ; 1 are complex functions ofV, h, andq andm
is a quantity

m5
2

p E
0

` R~x!

x
dx, ~84!

which is shown for different valuesV andh in Fig. 9.
Sincez is a small quantity (uzu ! 1), the field outside

the metal is almost equal to its value calculated for an ideally

FIG. 8. Dependences ofS1 ~upper curves! andS2 ~lower curves! on q. ~a!
h 5 0. Curves1, 2, and 3 correspond toV 5 0.3, 0.5, and 0.7;~b! V
5 0.7. Curves1, 2, and3 correspond toh 5 0, 0.2, and 0.4.

FIG. 9. Dependence ofm on V. Curves1, 2, 3, and 4 correspond toh
5 0, 0.2, 0.4 and 0.6.
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reflecting metallic surface (lTF 5 0). The power dissipated
due to the tip motion becomes~in the dimensionless units!

W.
V

4p E d2k

~2p!2 kx

ufk8~0!u2

p0~k!
Im z~k!. ~85!

In the dimensional units, the dissipated power is

W5
V2

4pe2N~«F!VF

12q/2

12q

3E d2k

~2p!2 kx
2ufk8~0!u2

3F ln
C̃1

ukxulTF
1m ln

C̃2

ukxulTF
G . ~86!

Assuming that the tip is a point chargeQ, we obtain an
estimate ofW valid atV ! Vc

W1.
V2Q2lTF

2

VFd4

12q/2

12q
, ~87!

whered is a distance between the tip and the metal surface.
At small d . lTF , this expression matches in order of mag-
nitude the loss of a charged particle that moves inside a
metal.

For a charged rod with a chargeQ per unit length, an
estimate of the loss per unit length is

W2;
V2Q2lTF

2

VFd3

12q/2

12q
. ~88!

The quantitym in ~84! increases dramatically atV near
the critical velocityVc . At a value ofV larger thanVc , the
linear regime of the surface screening breaks down. An
asymptotic behavior ofm nearVc

m.
1

uku21S0~V,h!
, uku!1, ~89!

whereS0→0 in the limit V→Vc(h). The functionVc(h) is
shown in Fig. 10.

Sharp resonances ofm versusV occur at a fixed values
of the momentakx andky . Dissipated powerW can be de-
termined by integration ofm in Eq. ~85! with respect tok.
Whether the dissipated powerW vs V will have similar sharp
resonances depends on the actual potential distribution at the
metal surface.

Let us consider as an example a point chargeQ at a
heighth above the metal surface giving atl→0

f~r !5QS 1

~x21y21~z2h!2!1/2

2
1

~x21y21~z1h!2!1/2D , ~90!

from which we have

fk8~0!54pQ exp~22ukuh! ~91!

and an infinite thin rod with the linear charge densityQ, for
which

f~r !5
Q

2
ln

x21~z2h!2

x21~z1h!2 ~92!

and, correspondingly

fkx
8 ~0!52pQ exp~22ukxuh!. ~93!

In the second case we then obtain

W;
W2~V!

S0~V,0!11/4h2 , h@1, ~94!

and in the first case

W;W1~V!E
0

` dh

~11h2!2

1

S0~V,h!1~11h2!/4h2 . ~95!

The dependences~95! and ~96! are shown in Fig. 11.

6. DISCUSSION

Dynamical interaction of a moving charge with a metal
surface reveals singularities in the dissipated power as a
function of the velocity of motionV. Depending on the to-
pology of the Fermi surface, the maximum of power dissi-
pation in the surface sheet occurs either at the Fermi velocity
or slightly below it. At the same value ofV, the electric field
begins penetrating the metal to a depth much greater than the
Thomas–Fermi length, thus breaking the Thomas–Fermi
screening barrier.

Crucial for the observation of such effects is the possi-
bility of realization of fast motion of a surface charge. This
can be achieved by propagating charged particles or small
charged bodies above and near the metal surface. The other
possibility may be in creating an electronically driven mo-
tion of a surface charge parallel to the metal surface. Con-
cerning the latter, we envisage a setup with an array of
equally spaced metallic electrodes near the bulk metal~Fig.
12a! biased periodically in time with the short electric pulses
of fixed polarity. This will create maxima in the surface
charge distribution in a metal moving between subsequent
locations in the metal surface with an average velocityV̄
5 Dx/Dt ~Dx is the distance between electrodes, andDt is

FIG. 10. Dependence ofVc on h.
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the interval between pulses!. The velocity of the order of the
Fermi velocityVF ; 108 2 106 cm/s can be easily obtained
with the corresponding choice ofDx andDt.

The other possibility is a motion of a charged soliton of
some kind in a semiconducting or a superconducting film
overlaying the metal~Fig. 12b!. For instance, in the case of
the Gunn effect in semiconductors, a moving charged soliton
is formed due to anN-shaped current-voltage characteristic
of the semiconductor.14 The size of the soliton in GaAs is of

the order of 10mm. The velocity of soliton motion can be
made quite large,V ; 107 cm/s. As a result of the interac-
tion of solitons with the induced surface charges in a metal,
the current-voltage characteristic of a semiconductor film
overlaying the metal attains a singularity atV near the Fermi
velocity of the metal.

Another possibility is propagating low-frequency
charged plasmons15–17 in a thin superconducting film in the
vicinity of a bulk metallic electrode.

It should be noted that the effect considered in this pa-
per, an additional dissipation related to the surface charge,
may have relevance to an evaluation of the quality factorQf

of an rf cavity, in particular, a superconducting cavity. At the
lowest temperature at which the power absorption due to the
electronic excitations in a superconductor is quite small~and,
therefore, Qf large!, a dissipation related to the surface
charge may contribute to the residual value ofQf attained at
the lowest temperature in a very high-quality cavities (Qf

; 1010).18
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15I. O. Kulik, Zh. Éksp. Teor. Fiz.65, 2016 ~1073! @Sov. Phys. JETP38,
1008 ~1974!#.

16J. E. Mooij and G. Schon, Phys. Rev. Lett.55, 114 ~1985!.
17O. Bulsson, P. Xavier, and J. Richard, Phys. Rev. Lett.73, 3153~1994!.
18D. M. Ginsberg and L. C. Hebel, In Superconductivity, Vol. 1, p. 193,

R. D. Parks~Ed.!, Marcel Dekker, New York~1969!.

This article was published in English in the original Russian journal. It was
edited by S. J. Amoretty.

FIG. 11. Normalized dissipationW/W1 ~curve1! andW/W2 ~curve2! as a
function of the velocityV at h 5 2.5.

FIG. 12. Schematic diagram of the electronically driven motion of a surface
charge.~a! Electric pulses switched periodically between metallic electrodes
near the metal surface;~b! Propagating solitons in the semiconductor layer
overlaying the bulk metal.
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