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In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to

store patients’ complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large

size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges

facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of

genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compres-

sion, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval

on Encrypted and Compressed Reference–oriented Alignment Map) for the secure storage of compressed aligned genomic

data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g.,

variant calling). Comparedwith BAM, the de facto standard for storing aligned genomic data, SECRAMuses 18% less storage.

Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM

maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in

genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based

insteadof read-based, and (2) it allows randomquerying of a subregion fromaBAM-like file in an encrypted form.Ourmeth-

od thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data.

[Supplemental material is available for this article.]

While the generation of genome sequence data is no longer cost-
prohibitive, the unprecedented rate of data production presents
new challenges for data storage and management. For example,
the 1000 Genomes Project Consortium generated more data in
its first 6 mo than the NCBI GenBank database had accumulated
in its 21 yr of existence (Pennisi 2011). Sequence data are being
more routinely used for diagnostic purposes, which has raised con-
cerns regarding security and privacy. Until recently, it was stan-
dard in clinical genetics to screen only one or two genes for
mutations relevant to a specific disease, but high-throughput se-
quencing technologies have now made whole-genome or whole-
exome sequence data commonplace. These comprehensive se-
quence data setsmust then be securely stored and relevant variants
made available to various stakeholders in the healthcare system.
Preventing incidental leakage of personal data requires not only
encrypting data but also defining data access privileges and en-
abling selective retrieval of sequencing data. Although some
encryption solutions (e.g., in cramtools [www.ebi.ac.uk/ena/
software/cram-toolkit]) have been proposed, they remain straight-
forward applications of encryption standards and do not take into
consideration the aforementioned threat model. Addressing these
issues of security and privacy while minimizing storage costs will
be essential for the large-scale application of personal genomics
in research and clinical settings. Here, we describe a solution

that minimizes information leakage, stores the sequence data in
a lossless compressed format, and optimizes the performance of
downstream analysis (e.g., variant calling).

Since 2007, when the first high-throughput sequencing tech-
nologywas released to themarket, the growth rate of genomic data
has outpaced Moore’s law, more than doubling each year (www.
genome.gov/sequencingcosts/). Big data researchers estimate the
current worldwide sequencing capacity to exceed 35 petabases
per year (Stephens et al. 2015). For every 3 billion bases of human
genome sequence, 30-fold more data (about 100 gigabases) must
be collected to ensure sufficient coverage at each nucleotide.
More than 100 petabytes of storage are already used by the world’s
largest 20 biological research institutions; this corresponds tomore
than $1 million USD in storage maintenance costs if we consider
Amazon cloud storage pricing (https://aws.amazon.com/s3/
pricing/). This number continues to grow, and it is estimated that
2–40 exabytes of storage capacity will be needed by 2025 to store
hundreds of thousands of human genomes. To face this challenge,
more efficient approaches to genomic data storage are needed.

Current approaches for genomic data storage use different
methods for compression (Zhu et al. 2015). Before high-through-
put technologies were introduced, algorithms were designed for
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compressing genomic sequences of relatively small size (e.g.,
tens of megabases). These algorithms, such as BioCompress
(Grumbach and Tahi 1993), GenCompress (Chen et al. 2000),
and DNACompress (Chen et al. 2002), exploit the redundancy
withinDNA sequences and compress the data by identifying high-
ly repetitive subsequences. The latest sequencing technologies
pose new challenges for the compression of genomic data in terms
of data size and structure. Due to the high similarity of DNA se-
quences among individuals, it is inefficient to store and transfer
a newly assembled genomic sequence in its entirety, because
>99% of the data for two assembled human genomes are the
same. This has led to the approach of storing only differences
from a reference sequence (known as reference-based compres-
sion), such as the DNAzip algorithm (Christley et al. 2009).
Apart from entire assembled sequences, individuals’ sequence
data are typically organized as millions of short reads of 100 to
400 bases, as produced by state-of-the-art sequencing technolo-
gies. Each genomic position is usually covered by multiple short
reads. General-purpose compression algorithms, such as gzip
(www.gzip.org), are applicable to these data sets. For example,
the BAM format (Li et al. 2009), which remains the de facto stan-
dard for storing aligned short reads, is already highly compressed
by applying gzip compression to the data blocks.

Various advanced compression algorithms have been pro-
posed for high-throughput DNA sequence data (Quip [Jones
et al. 2012], Samcomp [Bonfield and Mahoney 2013], HUGO [Li
et al. 2014], etc.). Among larger data sets (e.g., The 1000
Genomes Project Consortium), there is an observable trend toward
using the highly compressed format CRAM (Fritz et al. 2011), a ref-
erence-based compression algorithm for aligned data. Most ad-
vanced algorithms also use variable-length encoding (VLC)
techniques, such as Huffman encoding and Golomb encoding,
to compress the metadata (read name, position, mapping quality,
etc.). Recently, researchers developed a cloud-computing frame-
work called ADAM (Massie et al. 2013), which uses various engi-
neering techniques (e.g., dictionary coding, gzip compression,
distributed processing) to reduce storage costs by 25% compared
with BAM. This scheme achieves significant (2×–10×) acceleration
in genomic data access patterns. A group of MIT researchers re-
leased a lossy compression algorithm called Quartz (Yu et al.
2015), which can discard 95% of quality scores without compro-
mising the accuracy of downstream analysis. Their method works
on the FASTQ file stage and can be plugged in as a preprocessing
step for the aforementionedmethods (and our solution) to achieve
a higher compression ratio. Our solution is a lossless compression
method that enables the user to completely reconstruct the origi-
nal data (BAM files). To our knowledge, there is no existing com-
pression solution that provides strong security and privacy
control, the issue we address in this article.

Because genomic information is highly personal, privacy has
become a major concern as these data become more widely gener-
ated, disseminated, and unwillingly exposed (Kahn 2011; vanDijk
et al. 2014). For example, coarse-grained encryption and access
control to genomic data could lead to incidental findings that doc-
tors often prefer to avoid (Ayday et al. 2013). Standard sample
de-identificationhas been proven insufficient for complete protec-
tion of genetic privacy (Erlich andNarayanan 2014). Establishing a
secure and privacy-preserving solution for genomic data storage is
urgently needed to facilitate the usage and transfer of sequence
data. For example, storing sequence data on a cloud is an attractive
option, considering the size and the required availability of the
data (Onsongo et al. 2014; Reid et al. 2014; Rilak et al. 2014).

However, access threats in this case are even more serious because
the data owner has to trust insiders on the cloud (e.g., the cloud ad-
ministrator or high-privileged system software). There is thus a
need to integrate encryption methods into compression solutions
for genomic data that are secure and privacy-preserving (Zhu et al.
2015). The closest example of such a solution (Ayday et al. 2013)
provides a privacy-preserving solution for storing BAM files, but
it does not provide an efficient method for compression.

For clinical or research purposes, the most valuable informa-
tion from human genomic data is the set of genetic variants that
are identified across the genome. Typically, sequence data are tak-
en as input for a pipeline and retrieved for downstream analyses,
for example, variant calling. Given this usage scenario, it is crucial
to have a storage format that is amenable to efficient downstream
analyses. For example, it is common practice to aggregate informa-
tion on a position from all short reads that cover the position (pile-
up); hence, it is desirable that the storage format organizes
information in thismanner. In addition, it is challenging to enable
selective retrieval of encrypted data because global encryption so-
lutions obfuscate index information. As we demonstrate in this ar-
ticle, our SECRAM solution is convenient not only for retrieval but
also for protection in that it enables the retrieval of specific infor-
mation about the genome without compromising the rest of it.

In this article, we present our genomic data storage solution
to address the challenges of compression, security, and retrieval.
SECRAM is a novel aligned data storage format that is (1) organized
in position-based storage that enables random queries anywhere
in the genome, (2) highly compressed through a combination of
reference-based and general data compression techniques, and
(3) encrypted with standard secure cryptographic techniques and
a fine-grained privacy control mechanism. By applying our solu-
tion, sequence data are securely protected in storage and can be ef-
ficiently retrieved for downstream analysis (e.g., variant calling)
without any access to unauthorized information. Below, we com-
pare SECRAMwith two state-of-the-art storage solutions, BAM and
CRAM, which are two of the most widespread formats for aligned
sequence data. Our major goal is to bridge the gap between com-
pression and protection of genomic data.

Results

The SECRAM framework is depicted in Figure 1, including transpo-
sition from read-based storage (BAM) to position-based storage,
compression, encryption, and retrieval (e.g., for variant calling).
Following sequence alignment to a reference genome, the data
are transposed, compressed, and encrypted. All these steps are
one-time operations for each individual file. Afterward, the
SECRAM format can be queried routinely for data retrieval. The
SECRAM source code is openly available at https://github.com/
acs6610987/secram and in Supplemental SECRAM Source.

Storage analysis

In Figure 2A, we show the compression performance of SECRAM
compared with BAM and CRAM for both paired and unpaired sim-
ulated data sets of different coverages and error rates (substitution,
insertion, anddeletion). Both the SECRAMandCRAMformats pre-
serve all information fromBAM files, including quality scores, read
names, and read-pair information. The number of bits per base is
calculated bydividing the size of the file by the total numberof bas-
es (roughly equal to reference length multiplied by the coverage).
Unsurprisingly, for all three formats, the average per-base storage
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cost decreases as the coverage increases. In contrast to CRAM,
SECRAM does not compress efficiently when the coverage is very
low (e.g., 1×) because of the storage overhead of encryption. Yet
as coverage increases (e.g., 10×), the benefit of compression be-
comes more pronounced, mitigating the storage costs of encryp-
tion. In the best case, for high-coverage unpaired data with a
0.01% error rate, SECRAM and CRAM have almost identical com-
pression ratios, both using nearly 4 bits/base. We also observed
that, in general, compression ratios are lower for paired data with
higher error rates because there ismore information (e.g.,metadata
andvariants) in thedata.ComparedwithBAM, SECRAMsaves18%
of storage on average when the coverage is higher than 10×; this
is slightly lower than CRAM, which saves 34% of storage but has
no privacy and security features. Figure 2B shows the average
storage costs on several randomly selected real data files from the
1000 Genomes Project repository (The 1000 Genomes Project
Consortium 2015) with an average coverage of 3×. We observed a
similar compression ratio as with simulated data in Figure 2A.

Runtime analysis

To assess the runtime efficiency of SECRAM, we considered the
performance of its six most important subprocedures: transposi-

tion, inverse transposition, compression, decompression, encryption,
and decryption. We ran experiments on simulated data sets with
a range of coverages and error rates. Figure 3A shows the runtime
breakdowns in percentages for different subprocedures relative to
total runtime, across four experiments. One important observa-
tion is that encryption and decryption are not bottlenecks in
the system, demonstrating that our implementation of security
does not come at the cost of efficiency. When coverage and error
rate are low, compression is slower than encryption and domi-
nates the runtime; this is because there is less information to en-
crypt, but it still takes time to compress the nonsensitive
information. When the error rate is higher, the encryption time
surpasses compression time, mainly because of order-preserving
encryption (OPE) on more positions, but the global runtime
does not change much even for a high error rate (1%). The high
coverage hinders (inverse) transposition more than compression
and encryption because the complexity of (inverse) transposition
is linearly dependent on the number of total bases. We also ob-
served that decompression is the most efficient subprocedure;
this is because the decompression dictionaries for some compres-
sion algorithms (e.g., Huffman encoding) are stored with SECRAM
and can be directly used, whereas compression has to build these
dictionaries.

Figure 1. SECRAM framework for compressed, encrypted storage of genomic data. (A) The sequencing read-based format used in BAM is transposed
into a genome position-based format (B). The read-based format can be reconstructed from the position-based format via reverse transposition. (C) The
position-based storage is compressed and decompressed using a reference-based compression technique. In the table, “S-G” stands for substitution with
base “G”, “D-3” stands for deletion of three bases, and “I-AT” stands for insertion of two bases “AT.” (D) The compressed position-based storage is en-
crypted to generate the final SECRAM format using order-preserving encryption (OPE) and traditional symmetric encryption (SE) scheme. “OPE
(POSITION)” represents the OPE ciphertext of POSITION, and “SE(VARIANT)” represents the SE ciphertext of VARIANT. Metadata are not encrypted
(e.g., quality scores, mapping quality, read name). The compressed format is recovered from the encrypted format by running the respective decryption
algorithms. Our encryption enables efficient selective retrieval. For instance, if a user wants to retrieve data in the range [10, 24], the database executes a
normal search between OPE(10) and OPE(24) based on the order-preserving property of OPE, and in the shown example, two positions, OPE(12) and OPE
(23), are returned.
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Figure 3B shows the runtime costs of conversion between
BAM and SECRAM on real data sets as used in Figure 2B. The con-
version from BAM to SECRAM consists of three procedures (trans-
position, compression, and encryption), whereas the conversion
from SECRAM to BAM encompasses the remaining three (inverse
transposition, decompression, and decryption). On average, to
process one megabyte of data, each procedure takes <0.25 sec; in
total, the conversion in either direction takes <0.5 sec. We should
emphasize that our current implementation is parallelizable (i.e.,
numerous data files or chromosomes can be processed in parallel).
For instance, a whole-genome BAM file of 100 gigabytes can be
converted to SECRAM in parallel with 24 threads (one thread for
each reference chromosome: 22 autosomes plus two sex chromo-
somes) in ∼1 h.

So far, we have analyzed the runtime costs of converting a
whole BAM file or a whole SECRAM file, which is a one-time
cost. For most applications, conversion is not necessary, but selec-
tive retrieval is crucial for efficiency. We designed this new format
so that laboratories need only to store the inherently encrypted,
compressed SECRAM files and develop analysis pipelines for ac-
cessing the data directly from these files. Therefore, it is critical
to evaluate the efficiency of the SECRAM format for data retrieval.
Figure 3C shows the average runtime performance of random ac-
cess of a data region of one megabase (the cost scales linearly
with the size of the region). The total time for the retrieval proce-
dure is <0.5 sec, which is efficient for real-time usage in any anal-
ysis pipeline. In traditional use, without any security measures,
data retrieval consists of at least three steps (random access, disk

reading, and decompression); decryption roughly doubles the runtime
overhead, which we believe to be acceptable, given the strong pri-
vacy and security features.

Security and privacy analysis

Two encryption schemes are used in SECRAM (for detailed expla-
nation, see the Methods). The symmetric encryption (SE) scheme
used in SECRAM provides semantic security that is a standard and
strong security guarantee in cryptography. OPE is less secure than
SE (see Discussion). In SECRAM format, information is organized
by genomic position. Therefore, during retrieval, the storage server
can search the encrypted data (due to the properties of OPE) to lo-
cate the exact range of data in the query. The stream cipher mode
enables the server to restrict the decryption key stream to only the
information within the query range; hence, private information
about other positions is protected from clients who send the que-
ry. This is in contrast to applying straightforward encryption tech-
niques to read-based data, which risks information leakage from
overlapping reads with each retrieval. Therefore, the position-
based storage used in SECRAM is crucial for its fine-tuned data pro-
tection and privacy control.

Real case study

We envision SECRAM as most useful when deployed for routine
clinical care. There are two phases that typically comprise the clin-
ical application of genomic data: (1) variant calling—a hospital
outsources a large volume of sequence data to the cloud and

Figure 2. Storage analysis of compression algorithms for genomic data. (A) Storage comparison on simulated data sets. It shows the average number of
bits per base (compression ratio) for three storage formats: BAM, CRAM, and SECRAM. The results are based on simulated data sets with different coverages
(from one to 50) and error rates (0.01%, 0.1%, 1%) for both paired and unpaired data. (B) Storage comparison on Chromosome 11 from the 1000
Genomes Project participants with an average coverage of 3×. Only SECRAM is an encrypted format, whereas both BAM and CRAM are in plaintext.
Both A and B show that the compression ratio of SECRAM is between that of BAM and that of CRAM.
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delegates variant annotation to a specialized bioinformatics com-
pany (e.g., Sophia Genetics); and (2) mutation querying—a clini-
cian in the hospital queries for hotspot mutations for precise
diagnosis of a patient. In the first phase, the hospital should re-
strict the company’s access to a predefined set of genes for variant
calling in order to respect patient privacy, whereas in the second
phase, a clinician should only access the genes that are related to
their area of specialty. Both phases require the property of selective
retrieval on encrypted sequence data on the cloud, ideally without
having the hospital frequently handle access control on data re-
quests. Typically, the data corresponding to a gene (or a set of
genes) are accessed twice, necessarily in the first phase of variant
calling and potentially in the second phase of mutation querying
if the clinician requires verification of raw sequence data.

As a case study, we evaluate the storage and retrieval perfor-
mance by using high-coverage sequence data in clinical care: spe-
cifically, the diagnosis of cystic fibrosis associated with the CFTR
gene (roughly between positions 117120017 and 117308719 on
Chromosome 7 of the reference sequence GRCh37). The sequence
data come from a public cell line (NA12878), based on a gene panel
that includes the CFTR gene. The maximum coverage is 10642×,
whereas the average coverage is 1035×. In addition, we compare

SECRAM with another solution that we call ARHMH2013 (Ayday
et al. 2013) that provides similar security and privacy properties
for BAM files. In Figure 4A, we observe a consistent compression
performance of SECRAM compared with the low-coverage results
in Figure 2; however, the ARHMH2013 approach does not scale
well with high-coverage data due to the lack of compression and
the overhead of encryption. In Figure 4B, we also see that
SECRAM performs very well in selective retrieval, namely, less
than twice the time needed when using nonencrypted CRAM.
We should emphasize that with SECRAM, one can query for a
small region of data, while standard encryption approaches neces-
sitate downloading the entire genome, making SECRAM more ef-
ficient as well as privacy-preserving.

Discussion

In this work, we present a novel, position-based, compressed, en-
crypted format for storing genomic data that enables selective
and secure retrieval of variant information. We demonstrate that
our solution compresses data more effectively than widely used
formats like BAM. Importantly, it offers a level of security not pos-
sible with existing standard storage formats, preventing the data

Figure 3. Runtime analysis of SECRAM system for storing and retrieving genomic data. (A) Runtime breakdowns on simulated data sets for the six
most important procedures in SECRAM: transposition, inverse transposition, compression, decompression, encryption, and decryption, relative to total
runtime (=100%). The experiments were repeated for four simulated data sets with low (1×)/high (50×) coverages and low (0.01%)/high (1%) error
rates. In all cases, the runtime cost of encryption/decryption is comparable with other necessary procedures, showing that enforcing security does not
result in significant performance overhead. (B) Conversion time on real data sets (same data sets as those in Fig. 2B). It shows the average conversion
time between the BAM and SECRAM formats on real data sets, running with a single thread on a machine equipped with Mac OS X Yosemite system
and 3.1-GHz Intel Core i7 processor. The black bars (transposition, compression, encryption) represent the three steps of conversion from BAM to
SECRAM, whereas the light gray bars (decryption, decompression, inverse transposition) represent the three steps of conversion from SECRAM to
BAM. Each step takes <0.25 sec per megabyte of data. (C) Retrieval time on real data sets (same data sets as those in Fig. 2B). It shows the average
runtime cost of retrieving data within a range of 1 million genomic positions. The actual data size corresponding to 1 million positions depends on the
coverage. Shown are experiments on real data sets from Figure 2B with a coverage of about 3× and a size of slightly >1 megabyte.
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leakage to which read-based formats are susceptible, without
slowing down data retrieval or analysis. We provide algorithms
for conversion to and fromBAM/read-based formats, compression,
decompression, encryption, and decryption.

Attacks against OPE

As described below, the ciphertext of OPE contains both order and
equality information about the underlying data. Therefore, if it is
assumed that an attacker has enough information, OPE-encrypted
data are vulnerable to some well-known attacks that exploit this
property, such as frequency analysis attacks (Boldyreva et al.
2011; Kolesnikov and Shikfa 2012; Naveed et al. 2015). However,
these frequency-analysis attacks would not be effective against
our scheme, because (1) positions are encrypted only once regard-
less of the coverage, because all information about each position is
clustered together in the transposition phase of SECRAM; (2) we
use different OPE keys for data from different individuals; and
(3) the underlying message in our adopted OPE scheme is usually
a subset of thewhole position space of genomic data, and itmatch-
es the requirement of the OPE scheme for message unpredictabil-
ity. Regarding the third reason, however, the level of data
protection depends on the data, more specifically, on the distribu-
tion of genetic variants and sequencing errors across the genome.
If average coverage and sequencing error rate are high enough such
that there is at least one different base from the reference genome
on almost every position, SECRAM protection with OPE will be
less effective. In this case, OPE would have to encrypt the whole
plaintext space and thus provide little protection. The compromise
of position information also leads to potential threats for the con-
tent encrypted by SE. For example, if positions are known and cov-
erage can be inferred from the encrypted content size, CNV (copy
number variation) analysis can identify deletions/insertions with-
out the need for the sequence itself, and other single-nucleotide
variants can be inferred by observing peaks of encrypted informa-
tion size on the compromised positions. Nevertheless, a counter-
measure would be to shuffle the OPE ciphertext (Ayday et al.
2013), which is essentially a second-level encryption and reduces
the efficiency of retrieval. An alternative countermeasure is to
add random padding to each position to obfuscate the size of en-
crypted content.

The purpose of adopting OPE as a
building block is to maximize the diffi-
culty of launching a successful attack
against the encryption schemewhile still
allowing for efficient retrieval fromtheci-
phertext. To enable efficient retrieval, the
order information must be observable
from the ciphertext, and under this
premise, OPE is the optimal available
solutionwith the best security guarantee,
as the database community has recog-
nized long ago (Agrawal et al. 2004).
We do not rule out the possibility that
there could be other variants of frequen-
cy-analysis attacks against the OPE
scheme adopted in this work; however,
there already exist several enhanced
OPE schemes (Chenette et al. 2015;
Kerschbaum 2015; Roche et al. 2016) as
potential replacements of the current
version. Another alternative to OPE

would be secure multiparty computation (SMC), for example,
SMC schemes based on homomorphic encryption. Considering
the high volume of data in the problem addressed here, however,
SMC would introduce a prohibitively high overhead to storage
and retrieval.

Lossy compression

In the open-source implementationofCRAM(www.ebi.ac.uk/ena/
software/cram-toolkit), multiple lossy compression options are
provided, such as removing read names and reducing the precision
of quality scores. These options are also made available in our sol-
ution. For instance,wenoticed that quality scores account formost
of the storage space. We provide a parameter to specify the preci-
sion of quality scores; the default option maintains the original
scores to allow exact reconstruction of the BAM file. A compression
algorithm calledQuartz (Yu et al. 2015) can be used to discard 95%
of quality scores without affecting the accuracy of downstream
analysis. Although their solution requires further validation, it in-
dicates that lossy compression is a possibility for reducing storage
requirements without jeopardizing the value of the data.

Datatype applicability

SECRAM is designed to be compatible with SAM/BAM files; hence
it enables, or is extensible to, a variety of sequence data that can be
handled by SAM/BAM. These include (but are not limited to) the
following:

• Multiple mapping. A read can be mapped to multiple align-
ments, for example, due to repetition. One of these alignments
is considered primary, whereas the other alignments are annotat-
ed as secondary andhave a link to the primary alignment. In BAM
files, the read bases and quality scores of secondary alignments
are set to “empty” to reduce the file size. SECRAMcan be extend-
ed similarly to nullify bases and quality scores of the correspond-
ing positions of secondary alignments and to include a link to
the primary alignment in the read headers (see Supplemental
Methods) of these secondary alignments.

• Long reads. Several high-throughput sequencing systems pro-
duce long reads (e.g., the Sequel system [http://www.pacb.
com/products-and-services/pacbio-systems/sequel/], with read

Figure 4. (A) Storage and (B) runtime on high-coverage clinical data. The data come from a public cell
line (NA12878), based on a gene panel that includes the CFTR gene, queried for diagnosing cystic fibro-
sis. The average coverage of these data is 1035×, containing more than 4 million reads of length around
300 bases. ARHMH2013 (Ayday et al. 2013) is a privacy-preserving solution on BAM files that does not
address the compression requirement. We observe a consistent compression performance of SECRAMon
high-coverage clinical sequence data. Moreover, querying for the CFTR gene on SECRAM takes less than
twice the time on the nonencrypted CRAM.
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length 10–15 kb), for which SECRAM’s prevention of read-based
information leakage is even more valuable. Similar to CRAM,
SECRAM is expected to have a slightly higher compression ratio
with longer reads, assuming the same coverage depth, because
there is less read information (e.g., read name).However, this im-
provement is modest because the majority of storage (>80% in
our data) is occupied by read bases and quality scores.

• RNA-seq data. RNA sequence data are stored in the same way as
DNA sequence data in BAM formats and hence can be processed
in essentially the same manner by SECRAM.

Methods

Transposition

Aligned genomic sequence data are typically stored by sequencing
reads (e.g., BAM, CRAM formats) (Fig. 1A). The first step of our sol-
ution is to organize the data by position instead of by read (Fig. 1B).
This is crucial because (1) it facilitates multiple downstream analy-
sis procedures, notably the variant calling pipeline, and (2) it al-
lows us to seamlessly combine compression and encryption
(fine-grained privacy control). The conversion between the two
formats is equivalent to a matrix transposition, when we consider
the index of the reads as one dimension and the position of the ref-
erence genome as the other dimension. If necessary, our format
can be inversely transposed to BAM without losing information;
this functionality makes our format compatible with several other
applications designed for a read-based format, such as visually dis-
playing reads that overlap with a specific genomic region. The
transposition algorithms (from BAM to SECRAM and from
SECRAM to BAM) are provided in Supplemental Methods.

Compression

Our algorithm takes advantage of several efficient compression
methods used in CRAM:

• Reference-based compression. As shown in Figure 1C, we use ref-
erence-based compression and store only the differences at each
position relative to that of a chosen reference sequence.

• VLC. This technique is used to further compress the differences
found in reference-based compression along with read metada-
ta, such as the mapping quality. Depending on the information
content, the most efficient encoding technique is selected, for
example, Huffman, Golomb, and Beta encodings (www.ebi.ac.
uk/ena/software/cram-toolkit).

• Block compression. After the previous compression phases, posi-
tions are grouped into blocks and compressed with gzip. Blocks
are gzipped separately, so that they can be decompressed inde-
pendently for fast random access. This phase is important for
the compression of information such as read name, quality
score, and other auxiliary text.

Encryption

SECRAM protects genomic data using secure SE techniques. To
provide fine-grained privacy control and avoid information leak-
age in data retrieval, our solution encrypts the variant informa-
tion for each position independently. We encrypt positions
with OPE (Boldyreva et al. 2011) to enable efficient retrieval of en-
crypted data without decryption. This is a critical feature to pre-
vent insider attacks on servers that store the encrypted data. We
encrypt other sensitive information (e.g., short read differences
relative to the reference) using conventional SE. Notably, encryp-
tion adds randomness to the data, which inevitably affects the

compression ratio. We explain the basics of these two encryption
schemes below.

Symmetric encryption

A SE scheme usually consists of an encryption and a decryption al-
gorithm. The encryption algorithm takes amessage and an encryp-
tion key to generate an encryptedmessage, namely, ciphertext. By
use of the ciphertext and a decryption key as input, the decryption
algorithm can generate the original message. In a SE scheme, the
decryption can only be successful when the encryption and
decryption keys are the same. To draw an analogy, the key in
this scheme is like a physical key that can be used to lock (encrypt)
and unlock (decrypt) a box containing a private message sent via
an insecure channel. The essential feature of the SE scheme fol-
lows: For the receiver to successfully unlock the box, the sender
has to share a key copy with the receiver.

In SECRAM, wemake use of the stream cipher mode (Lipmaa
et al. 2000) of SE, which is done in two steps: (1) By using the en-
cryption key, the data sender generates a random bit stream of
identical length to the data; and (2) the encryption is performed
via bitwise XOR of the streamwith the data. The decryption is per-
formed similarly: By using the decryption key, the ciphertext re-
ceiver first generates the bit stream as the sender does, and then
decrypts the ciphertext via bitwise XOR of the ciphertext with
the stream.

Order-preserving encryption

In a traditional SE scheme, to an observer who does not have the
encryption key, the ciphertext is indistinguishable from a random
bit stream. Therefore, the ciphertext does not reveal any useful in-
formation about the underlying data. OPE differs from traditional
SE, however, in that the OPE ciphertext reveals both the order and
equality information of the underlying data, namely, if m1≤m2,
then OPE(m1)≤OPE(m2).

To understand the encryption design of SECRAM, it is impor-
tant to understand the challenges of securing existing formats
(e.g., CRAM). Consider a straightforward, blockwise SE solution
for CRAM-formatted data (Fig. 5A). The problem is that the solu-
tion leaks information on other positions outside of the query
range during retrieval and decryption. As a block in CRAM usually
contains multiple reads, it is usually the case in practice that the
retrieved block reveals parts of reads outside of the query position
range (Ayday et al. 2013). Even if encryption is performed read-
wise, the possibility remains that a single read can leak informa-
tion on positions outside of the query range.

Figure 5B shows how encryption is applied in SECRAM, with
each block encrypted based on positions. We encrypt the position
informationusingOPE; the compressed sensitive content at the re-
spective positions, using SE. Therefore, during retrieval, our
scheme only outputs the sequence and metadata in the query
range without the risk of revealing any information about unde-
sired (or unauthorized) positions.

Metadata

The SECRAM format contains all necessary information to enable
reconstruction of the original BAM files. This is achieved with the
metadata field at each position. This field is not encrypted and
contains two categories of information: (1) quality scores and (2)
information about reads that begin at that position. The first cate-
gory is a numerical score (the phred-scaled base error probability:
−10 log10Pr{base is wrong}), while the second has a slightly more
complicated structure. For each read that begins at position P,
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themetadata for Pwill store the following information: read name,
read length, mapping quality, and pair information.

Selective retrieval

Indexing

The indexing of aligned genomic data is a map from positions to
file offsets such that, given queried positions, a data reader can

randomly access the file. Indexing is easy to implement in
SECRAM. Our index file contains a list of tuples of position and
file offset, where position is the genomic position of the first posi-
tion row in a gzip block, and file offset is the byte offset of a gzip
block in the compressed file. Hence, when we retrieve data for a
position, a binary search first locates the gzip block containing
the position, and then a linear search locates the position in
the block.

Figure 5. Solutions for encrypting genomic data. (A) A standard SE solution on CRAM-compressed data. It leads to potential data leakagewhen querying
specific genomic regions. The encryption is performed over each individual data block. As a block in CRAM usually contains multiple sequencing reads, it is
usually the case that the retrieved block will reveal reads or positions that are not in the query position range. (B) SECRAM encryption. Our solution encrypts
each block in SECRAM format based on positions. Position information is encrypted with OPE; the compressed content at each position, with SE. This en-
sures that only information corresponding to the query position range is retrieved and decrypted. “OPE(POSITION)” represents the OPE ciphertext of
POSITION, and “SE(VARIANT)” represents the SE ciphertext of VARIANT. Metadata are not encrypted (e.g., quality scores, mapping quality, read
name). Note that OPE preserves the order of the positions, namely, 23596 < 50723 < 71641 because 7 < 12 < 23, but SE encrypts the original message
to a random string, for example, from “S-G” to “jkljsdfoy4r5.”
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Locating sequence read information

In most cases, a query range is partially overlapped by some reads,
for example, when the starting position of a read is before the start-
ing position of a query. Because the metadata (read name, map-
ping quality, read flags, etc.) are stored only at the starting
position of a read, the server must trace back to that position after
locating the starting position of the query. Consider the query
range [P1, P2]. If the position row P1 contains any read that is not
complete in block Bi (specifically, it does not start at this block),
the storage server traces back to the previous block(s) and crops
the corresponding metadata fields for the incomplete reads of
row P1. As a block normally contains thousands of positions, the
server usually needs to look back to at most one previous block,
as long as the reads are not excessively long (e.g., in our experi-
ments, we use a block size of 50,000 positions). The server then re-
turns thesemetadata fields alongwith the complete sequence data
(only) within the query range.

Implementation

For processing BAM files and applyingVLC and block compression
techniques, SECRAM uses the open-source Java library, HTSJDK
(https://samtools.github.io/htsjdk/), designed for high-through-
put sequencing data. For encryption, SECRAM builds its security
solution based on the open-source Java library, Bouncy Castle
(https://www.bouncycastle.org/). Depending on the category of
information, SECRAM chooses appropriate compression methods
to achieve high compression ratio (Table 1).

Conclusion

Overall, our solution addresses the pressing issues of data storage
and security brought about by advances in sequencing technology
and the emergence of personal and clinical genomics. By bridging
the persistent gap between compression and security in the storage
of genomic data, SECRAM offers an effective balance between the
needs of researchers for efficient data analysis and the needs of in-
dividuals to maintain their genetic privacy. It will be important to
continuously reevaluate the standards of genomic data storage as

novel technologies are developed, security threats arise, and
more complex phenotypic analyses become possible. Integrative
solutions that carefully consider the use andmisuse of personal ge-
nomic data are essential for ensuring its secure, effective storage
and maximizing its utility in treating and preventing disease.

Software availability

SECRAM includes a software application implemented in Java, and
is open source at https://github.com/acs6610987/secram. It is also
available in Supplemental SECRAM Source.

Data access

Our simulated data set is available in Supplemental Simulated
Data. Our high-coverage data for cell line NA12878 are available
in Supplemental Data NA12878.
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