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Abstract—In this paper, two closed and convex sets for blind de-
convolution problem are proposed. Most blurring functions in mi-
croscopy are symmetric with respect to the origin. Therefore, they
do not modify the phase of the Fourier transform (FT) of the orig-
inal image. As a result blurred image and the original image have
the same FT phase. Therefore, the set of images with a prescribed
FT phase can be used as a constraint set in blind deconvolution
problems. Another convex set that can be used during the image re-
construction process is the Epigraph Set of Total Variation (ESTV)
function. This set does not need a prescribed upper bound on the
Total Variation (TV) of the image. The upper bound is automat-
ically adjusted according to the current image of the restoration
process. Both the TV of the image and the blurring filter are regu-
larized using the ESTYV set. Both the phase information set and the
ESTYV are closed and convex sets. Therefore they can be used as
a part of any blind deconvolution algorithm. Simulation examples
are presented.

Index Terms—Blind deconvolution, epigraph sets, inverse prob-
lems, projection onto convex sets.

I. INTRODUCTION

wide range of deconvolution algorithms has been devel-
oped to remove blur in microscopic images in recent years
[1]-{17]. In this article, two new convex sets are introduced
for blind deconvolution algorithms. Both sets can be incorpo-
rated to any iterative deconvolution and/or blind deconvolution
method.
One of the sets is based on the phase of the Fourier trans-
form (FT) of the observed image. Most point spread functions
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(PSF) in x-y plane of microscopes are symmetric with respect
to origin. Therefore, Fourier transform of such functions do not
have any phase. As a result, FT phase of the original image and
the blurred image have the same phase. The set of images with a
prescribed phase is a closed and convex set and projection onto
this convex set is easy to perform in Fourier domain.

The second set is the Epigraph Set of Total Variation (ESTV)
function. Total variation (TV) value of an image can be limited
by an upper-bound to stabilize the restoration process. In fact,
such sets were used by many researchers in inverse problems
[13], [18]-[23]. In this paper, the epigraph set of the TV function
will be used to automatically estimate an upper-bound on the
TV value of a given image. This set is also a closed and convex
set. Projection onto ESTV function can be also implemented
effectively. ESTV can be incorporated into any iterative blind
deconvolution algorithm.

Another contribution of this article is that the ESTV set is ap-
plied onto the blurring functions during iterative deconvolution
algorithms. Blurring functions are smooth functions, therefore
their total variation value should not be high.

Image reconstruction from Fourier transform phase informa-
tion was first considered in 1980's [24]-[27] and total variation
based image denoising was introduced in 1990's [28]. However,
FT phase information and ESTV have not been used in blind de-
convolution problem to the best of our knowledge.

Recently, Fourier phase information is used in image quality
assessment and blind deblurring by Leclaire and Moisan [29],
in which phase information is used to define an image sharpness
index, and this index is used as a part of a deblurring algorithm.
In this article FT phase is directly used during the blind decon-
volution of fluorescence (FL) microscopic images.

The paper is organized as follows. In Section II, we review
image reconstruction problem from FT phase and describe the
convex set based on phase information. In Sections III, we de-
scribe the Epigraph set of the TV function. We modify Ayers-
Dainty blind deconvolution method by performing orthogonal
projections onto FT phase and ESTV sets in Section IV. We
present our experimental results in Section V and conclude the
article in Section VI.

II. CONVEX SET BASED ON THE PHASE OF
FOURIER TRANSFORM

In this section, we introduce our notation and describe how
the phase of Fourier transform can be used in deconvolution
problems.
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Fig. 1. (a) A 1-Dsignal z, (b) Gaussian filter A witho = 1.2, (c) filtered signal
y = h* x and, (d) FT phase of x and y obtained using an FFT with size 128.

Let z,[n1, n2] be the original image and h[nq, ns] be the blur-
ring function representing a slice of the 3-D point spread func-
tion. The observed image y is obtained by the convolution of &
with zg:

y[ni, ne] = hini, na| * xo[n1, nal, (1

where * represents the two-dimensional convolution operation.
The discrete-time Fourier transform Y of y is, therefore, given
by

Y(wl,wQ) = H(wl,u72)X0(’LL71,’LU2). (2)

When h[ni,ne] is symmetric with respect to origin
(h[n1,n2] = (0,0)) H(w1,ws) is real. Our zero phase assump-
tionis H (wy,wz) = |H (w1, w2)|. Blurring functions satisfying
this assumption includes Gaussian blurs and uniform discs.
Therefore, phase of Y (wy,ws) = [V (wy,ws)|eld<Y (w1w2)
and X, (wy, ws) = | Xo (w1, ws)|eF4Xe(w1:22)) are the same:

AY(wl, ‘LUQ) = AXO(wl, wg), (3)

for all (wy, wsy) values.

In Fig. 1, a one-dimensional (1-D) example is shown. The
original signal 2 is shown in Fig. 1(a). The signal ¥ is obtained
by convolving & with h, which is a Gaussian filter. FT Phase
plots of 2 and y are the same as shown in Fig. 1(d).

Based on the above observation the following set can be
defined:

Co = {x[ng, na]|£X (w1, w2) = L X (wi,wa)}, (4)

(a) (b) (©

Fig. 2. (a) noisy “Lena” image, (b) Phase only version of the “Lena” image,
and (c) phase only version of the noisy “Lena” image.

which is the set of images whose FT phase is equal to a given
prescribed phase £ X, (w1, w;). It can easily be shown that
this set is closed and convex in R™ x RV2, for images of size
N1 X Nz.

Projection of an arbitrary image z onto C4 is imple-
mented in Fourier domain. Let the FT of 2 be X (w1, wy) =
| X (wy, wy)|e?®1w2)  The FT X,, of its projection x, is
obtained as follows:

Xp(wl*wz) = |X(w17w2)| ej‘{Xa(whw2)7 (5)

where the magnitude of X, (w1, ws) is the same as the magni-
tude of X (wy,ws) but its phase is replaced by the prescribed
phase function £X,{ws,ws). After this step, ap[ni,ns] is
obtained using the inverse FT. The above operation is imple-
mented using the FFT and implementation details are described
in Section IV.

Obviously, projection of y onto the set Cy is the same as itself.
Therefore, the iterative blind deconvolution algorithm should
not start with the observed image. Image reconstruction from
phase (IRP) has been extensively studied by Oppenheim and his
coworkers [24]-[27]. IRP problem is a robust inverse problem.
In Fig. 2, phase only version of the well-known Lena image is
shown. The phase only image is obtained as follows:

v— F1 [C«eﬁﬁ(wlvwz)] (6)

where F ~![-] represents the inverse Fourier transform, C is a
constant and ¢(wy, ws) is the phase of Lena image. Edges of the
original image are clearly observable in the phase only image.
Therefore, the set Cy contains the crucial edge information of
the original image z,.

When the support of z,, is known, it is possible to reconstruct
the original image from its phase within a scale factor. Oppen-
heim and coworkers developed Papoulis-Gerchberg type iter-
ative algorithms from a given phase information. In [26] sup-
port and phase information are imposed on iterates in space and
Fourier domains in a successive manner to reconstruct an image
from its phase.

In blind deconvolution problem the support regions of z,, and
y are different from each other. Exact support of the original
image is not precisely known; therefore, Cy is not sufficient by
itself to solve the blind deconvolution problem. However, it can
be used as a part of any iterative blind deconvolution method.

When there is observation noise, (1) becomes:

Yo=Y +V, (7)
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where v represents the additive noise. We use bold face letters
and underlined bold face letters for /N dimensional vectors and
N + 1 dimensional vectors, respectively. In this case, phase of
the observed image is obviously different from the phase of the
original image. Luckily, phase information is robust to noise as
shown in Fig. 2(c) which is obtained from a noisy version of
Lena image. In spite of noise, edges of Lena are clearly visible
in the phase only image. Gaussian noise with variance ¢ = 30
is added to Lena image in Fig. 2(a). Fig. 2(b) is obtained from
the original Lena image and Fig. 2(c) is obtained from the phase
of noisy Lena image, respectively.

FTs of some symmetric blurring functions may take negative
values for some (wy, wa) values. In such (wy, ws) values, phase
of the observed image Y (w1, ws) differs from X (w1, w) by 7.
Therefore, phase of Y (wy, w2) should be corrected as in phase
unwrapping algorithms. Or some of the (wy, w5 ) values around
(w1, w2) = (0,0) can be used during the image reconstruction
process. It is possible to estimate the main lobe of the FT of the
blurring function from the observed image. Phase of FT coeffi-
cients within the main lobe are not effected by a shift of 7.

In this article, the set Cy will be used as a part of the iterative
blind deconvolution schemes developed by Dainty et al. [30]
and Fish et al. [31], together with the epigraph set of total vari-
ation function which will be introduced in the next section.

III. EPIGRAPH SET OF TOTAL VARIATION FUNCTION

Bounded total variation is widely used in various image de-
noising and related applications [18], [23], [32]-[35]. The set
Cggry of images whose TV values is bounded by a prescribed
number ¢ is defined as follows:

CESTV = {W : TV(W) § E}, (8)
where TV of an image is defined, in this paper, as follows:
Ny
TV(w) = Y [wli +1,5] = wli, j]]
i,j=1
No
+ ) wli g+ 1] = wi g 9
i,j=1

This set is a closed and convex set in RV * N2 Set Crgrv can
be used in blind deconvolution problems. But the upper bound
€ has to be determined somehow a priori.

In this article we increase the dimension of the space by one
and consider the problem in RN**~2+1 We define the epigraph
set of the TV function:

Costy = {w =", " [TV(w) <2}, (10)

where 7' is the transpose operation.

The concept of the epigraph set is graphically illustrated in
Fig. 3. Since TV (w) is a convex function in R¥*~2 then the
set CesTv is closed and convex in RV+*¥2+1 n (10) one does
not need to specify a prescribed upper bound on TV of an image.
An orthogonal projection onto the set CgsTy reduces the total
variation value of the image, as graphically illustrated in Fig. 3,
because of the convex nature of the TV function. Let v be an
N = N; x N, dimensional image to be projected onto the set

C wgd

TV(w) /

>
v

Fig. 3. Graphical representation of the orthogonal Projection onto the Epi-
graph Set of TV function (PES-TV), defined in (11). The observation vector
v =[vT,0] T is projected onto the set Cgsrv, which is the epigraph set of TV
function.

Cgstv . In orthogonal projection operation, we select the nearest
vector w* on the set Cggrv to v. The projection vector w* of
an image v is defined as:

*

w" =arg min HX*EHQ,

wCCESTV

(11)

where v = [v7,0]. The projection operation described in (11)

is equivalent to:
Vv W
0 TV(w)

where w* = [w*?, TV(w*)] is the projection of [v”", 0] onto
the epigraph set. The projection w* must be on the boundary of
the epigraph set. Therefore, the projection must be on the form
[w*T' TV(w*)]. Equation (12) becomes:

% = |y

It is also possible to use ATV{.) as a the convex cost function
and (13) becomes:

w= [Tv"l’;w

2

=arg min

. K
WECESTV

v = {TVVZ;*J

=arg min |v—w|*+TV(w)% (13)

weCEsTV

min
wECESTV

v —w||* + XN2TV(w)?.

(14)
The solution of (11) can be obtained using the method that we
discussed in [23], [36]. The solution is obtained in an iterative
manner and the key step in each iteration is an orthogonal pro-
jection onto a supporting hyperplane of the set Cgsrv .
In current TV based denoising methods [33] the following
cost function is used:

] = arg

w" = arg min

wECESTV

v — wl|® + \TV(w). (15)
However, we were not able to prove that (15) corresponds to
a non-expansive map or not. On the other hand, minimization
problem in (13) and (14) are the results of projection onto
convex sets, as a result they correspond to non-expansive maps
[51, [18], [32], [37]-[42]. Therefore, they can be incorporated
into any iterative deblurring algorithm without affecting the
convergence of the algorithm.
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IV. How TO INCORPORATE Cggrv AND Cy INTO A
DEBLURRING METHOD

In this section, we present our implementation to integrate
phase and TV based convex sets approach into Blind Ayers-
Dainty Method with Phase and ESTV sets.

One of the earliest blind deconvolution methods is the iter-
ative space-Fourier domain method developed by Ayers and
Dainty [30]. In this approach, iterations start with a z,[n] =
Zo[n1,n2], where we introduce a new notation to specify equa-
tions [n] = [n1, n2]. For example, we rewrite (1) as follows:

(16)

The method successively updates h[n] and z[n] in a Wiener
filter-like equation. Here is the ith step of the algorithm:

yln] = hln] * 2,[n].

1) Compute X;(w) = F{Z;[n]}, where F represents the FT
operation and w = (w1, wy), with some abuse of notation.
2) Estimate the blurring filter response using the following
equation
CYPM (8150
’Xl(w)’ +of ‘Hi(w)

5 (17)

where « is a small real number.
3) Compute h;[n] = F~{H;(w)}.
4) Impose the positivity constraint and finite support
constraints on h;[n]. Let the output of this step be h;[n].
5) Compute H;{(w) = F{hi[n]}.
6) Update the image

T
EYE P (18)

7) Compute #;[n] = F{X;(w)}.
8) Impose spatial domain positivity and finite support
constraint on 7;[n] to produce the next iterate ;11 [n].

Iterations are stopped when there is no significant change be-
tween successive iterates. We can easily modify this algorithm
using the convex sets defined in Section II and III.

In the proposed algorithm, the phase information is imposed
on the current iterate as follows:

o~
o~

Xi(w) = | Rifw)| 0, (19)
where £Y (w) is the phase of Y (w). This step is the projec-
tion onto the set Cy. We also introduce a new step to Ayers and
Dainty's algorithm as follows: project Z;[n] onto the set Crgrv
to obtain Z;11[n] as follows:

-~ . = 2
Tiy1[n] = arg ,,doin 1Zi[n] — 2:[n]||”.
;

(20)

Similarly the updated blur filter Y [n] is obtained by projecting
h;[n] onto the set Cgsrv as follows:

mmfmmw

iAAzn = arg min
[ } ghECESTV

2

Impose phase |Xi
constraint

2) Impose Fourier |

constraint ~
H;

3) |FE

h;

4) Impose blur

Impose image constraint
constraint
_ ﬁi
[ =
8) Impose EESJ
spatial domain
constraint

w1 '__3‘))

-TV

FFT

i| 6) Impose Fourier H;
e—!

constraint

Impose phase
constraint

Fig. 4. Flowchart of the proposed algorithm based on Ayers-Dainty method.
PES-TV stands for Projection onto the Epigraph Set of TV function.

The steps 1-8) will also change according to the proposed al-
gorithm. The flowchart of the proposed algorithm is shown in
Fig. 4.

Since the filter is a zero-phase filter in microscopic image
analysis h[ny, ny] = h[—ny, —na] = h[—ng, na] = h[ng, —ns]
this condition is also imposed on the current iterate in Step 4.

The term “support” refers to the extent of the image. Let us
assume that the 2D image is Ny x N. Its phase can be computed
by Ly X Ly DFT, where Ly > Ny and Ly > N,. Inverse FFT
may produce nonzero values outside the N; x N, region. In this
case we make the values of pixels outside the support region
(N1 x Ny region) simply zero.

Global convergence of Ayers-Dainty method has not been
proved. In fact, we experimentally observed that it may diverge
in some FL microscopy images. Projections onto convex sets are
non-expansive maps [42]-[44], therefore, they do not cause any
divergence problems in an iterative image debluring algorithm.

V. EXPERIMENTAL RESULTS

We first start with the example given in “http://www.
optinav.com/Iterative-Deconvolution.htm” [45], which is
linked by the EPFL 3D Deconvolution in microscopy web-page
“http://bigwww.epfl.ch/deconvolution/?p=bio”. In Fig. 5, the
original image is shown in part (a). The blurred image with a
Gaussian with ¢ = 6 is shown in Fig. 5(b). This image has a
PSNR = 24.05 dB. The image deblurred using the non-blind
method in [45] is shown in Fig. 5(c), PSNR = 22.43 dB.
We downloaded the restored image from [45]. The relatively
low PSNR value may be due to a shift of pixels. The restora-
tion result of ordinary Ayers-Dainty algorithm is shown in
Fig. 5(d) with a PSNR. = 24.86 dB. The restoration result of
the Ayers-Dainty method with phase information has a higher
PSNR = 24.91 dB (Fig. 5(e)). The white cable or stripe
on the ground is barely visible. This cable is not visible in
Figs. 5(b)—(d). Result of the Ayers-Dainty method and ESTV
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(a)

()

Fig. 5. (a) Example test image in [45], (b) Gaussian blurred image with & = 6
with PSNR = 24.05 dB. (c) The image deblurred by the non-blind deconvo-
lution method in [45]; PSNR = 22.43 dB, (d) Result of the Ayers-Dainty
algorithm; PSNR = 24.86 dB, (e) Result of the Ayers-Dainty and phase
information; PSNR. = 24.91 dB, (f) Ayers-Dainty and ESTV projection;
PSNR = 24.74 dB, (g) Ayers-Dainty with phase and ESTV projections;
PSNR = 25.18 dB. This is a sharp image but there are some ringing arti-
facts. (h) The restoration result of the non-blind approach based on phase only
iterations; PSNR = 24.58 dB. This is the only image clearly showing the
white cable or stripe on the ground and the two antennas are clearly visible.

projection is shown in Fig. 5(f) with PSNR, = 24.74 dB. The
restoration result of Ayers-Dainty method with phase and ESTV
projections is shown in Fig. 5(g) with PSNR = 25.18 dB.
This is a sharp image but there are some ringing artifacts. In

©)

Fig. 6. (a) DAPI stained cell nuclei image (100X) from Huh7 cells with best
possible focus: 2y and (b) another image with slight out of focus ;. The im-
ages x5 and i, are combined to obtain (c) the deblurred image using Gaussian
filtering based edge-enhancement together with phase and ESTV projections.

Fig. 5(h) the restoration result of a non-blind deconvolution
method using the phase only iterations is shown. This has a
low PSNR = 24.58 dB because the method did not produce a
good result on the sky but it is the only image clearly showing
the white cable or stripe on the ground and the two antennas
are clearly visible.

A. 3D Blind Deconvolution Examples

In this subsection we present 3D examples. We combined
two z-stack images to obtain a deconvolved image with clear
features. The image shown in Fig. 6(c) is the result of a 3D
edge enhancement algorithm together with FT phase and ESTV
projections. The first image, x; shown in Fig. 6(a) is obtained
by focusing the Nikon ECLIPSE Ti-S microscope. The image
x4 shown in Fig. 6(b) is obtained with a slight out-of focus.
These are the images of Huh7, human hepatocellular carcinoma
cells (ATCC), which were maintained in Dulbecco's Modified
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(a)

(b)

(©

Fig. 7. DAPI stained cell nuclei image (100X) from Huh7 cells obtained with
best possible focus: 2 and (b) another image with slight out of focus x,.
The images 2 and x, are combined to obtain (c) the deblurred image using
Gaussian filtering based edge-enhancement together with phase and ESTV pro-
jections.

Eagle's Medium (DMEM) (Invitrogen GIBCO), supplemented
with 10% fetal bovine serum (FBS) (Invitrogen GIBCO), 2 mM
L-glutamine, 0.1 mM nonessential amino acids, 100 units/mL
penicillin and 100 g/mL streptomycin at 37°C in a humidified
incubator under 5% COQO,.

Huh?7 cells were stained using CD133 seeded onto coverslips
(50000 cell/well) in 6-well plates and grown for 72 hours
until cells reached 80% confluency. Cells were fixed with cold
4% paraformaldehyde for 30 min at room temperature and
washed with 1xPBS. For blocking cells were incubated with
3% BSA-PBS-T(0.1%) for 90 minutes on a shaker at room

(®)

(©

Fig. 8. The Huh7 cells nucleus image (100x) obtained with best possible
focus: ¢ and (b) another image with slight out of focus z,. The images x5
and x4, are combined to obtain (c) the deblurred image using Gaussian filtering
based edge-enhancement together with phase and ESTV projections.

temperature. Primary antibody incubation was done using
human anti-CD133/2 (MACS cat.# 130-090-851) for an hour as
recommended by the manufacturer. Cells were washed 3 times
with 1xPBS for 5 minutes. Secondary antibody incubation
were done using Alexa-fluor 488 goat anti-mouse IgG antibody
(Invitrogen cat.# A11029, 1:1000) for an hour. After repeating
the washing step, counterstaining (DAPI) was done using
UltraCruz Mounting Medium (Santa Cruz cat.# sc-24941).
Time-lapse images of fluorescently stained cells were
taken using Nikon ECLIPSE Ti-S inverted microscopy and
NIS-Elements Viewer software. Cell nuclei images shown
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(2

(b)

©

Fig. 9. Immunofluorescense images of CD133 positive Huh7 liver cancer cells
with differential focus: (a) ¢ (top), (b) z, (middle). The images x; and x,
are combined to obtain (c) the deblurred image using Gaussian filtering based
edge-enhancement together with phase and ESTV projections.

in Fig. 6-8 were taken using 340-380 nm filter (duration: 1
minute, interval: 1 sec) under 150 ms exposure. CD133 positive
cell time-lapse images shown in Fig. 9 were taken using the
465—-495 nm filter (duration: 1 minute, interval: 1 sec) under
600 ms exposure.

The Gaussian filter based edge enhancement is achieved
using the following equation:

e =ay +cp(rg — h*ay) (22)

()

(©) (d)

Fig. 10. Sample fluorescent labeled mouse liver tissue images used in experi-
ments (a) Im-1, (b) Im-2 (¢) Im-3, and (d) Im-4 obtained from [47].

where h is a 2D Gaussian filter with ¢ = 5 and ¢, = 0.3 is the
high frequency component amplification coefficient. High fre-
quency components of z, is added onto the better focused image
2 ¢. After this step the edge-enhanced image x. is successively
projected onto the phase and ESTV sets in an iterative manner.
The image shown in Fig. 6(c) is obtained after 100 iterations.

Obviously, we cannot present PSNR values but the image
shown in 6(c) has clearer features compared to 6(a). After 100
iterations we did not observe any improvements in 6(c).

In Fig. 7 another restoration example is shown. In Fig. 8 a
third restoration example is shown. Clearly, axial information
positively contributed to the deblurring process in Figs. 6, 7 and
8.

In Fig. 9(a) and (b) two differentially focused immunofluo-
rescence z-stack images of CD133 positive Huh7 liver cancer
cells are shown, respectively. High frequency information from
the image x4 is combined with z; using (21) with ¢ = 10 and
¢, = 0.3. The image shown in Fig. 9(c) is obtained using suc-
cessive phase and ESTV projections after 20 set of iterations.
As aresult, blurred regions of z; are clearly visible in Fig. 9.

B. 2D Simulated Blind Deconvolution Using Ayers-Dainty
Method

The contribution of phase and ESTV sets to a blind decon-
volution problem is also evaluated using different fluorescence
(FL) microscopy images obtained at Bilkent University as a
part of a project funded by Turkish Scientific Research Council
and German BMBF to track the motility and migration of cells.
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TABLE 1
DECONVOLUTION RESULTS FOR FL MICROSCOPIC IMAGES BLURRED BY A GAUSSIAN FILTER WITH DISC SIZE 20 AND o = 5. PSNR (DB) VALUES ARE REPORTED

Image Initial | Ayers- | Ayers-Dainty | Ayers Dainty | Ayers Dainty | Method
PSNR | Dainty with Phase with ESTV Phase&ESTV in [16]
im-1 32.08 34.25 34.51 34.56 35.19 31.43
im-2 31.86 31.59 31.81 32.67 32.13 31.17
im-3 32.62 33.24 33.10 34.31 33.57 30.59
im-4 33.75 31.78 31.58 30.92 29.78 33.85
im-5 35.66 37.51 35.86 37.82 36.08 34.10
im-6 33.37 36.21 35.89 36.46 36.15 32.59
im-7 35.03 38.76 38.53 39.70 40.24 32.32
im-8 34.64 38.33 37.72 39.26 38.27 32.71
im-9 31.14 31.86 31.55 32.12 32.08 32.71
im-10 | 33.48 36.81 36.84 37.56 38.22 32.16
im-11 35.17 35.50 38.57 35.43 39.65 34.63
im-12 | 34.64 30.68 34.87 32.65 36.74 34.82
im-13 | 3535 36.52 38.00 37.05 39.10 32.26
im-14 | 36.44 36.41 37.84 36.98 38.57 33.32

(®)

(© (@

Fig. 11. Sample deblurring results for “im-7: (a) Original image, (b)
blurred image (Gaussian ¢ = 5); PSNR = 35.03 dB, (c) Image obtained
by Ayers-Dainty with Phase and ESTV sets; PSNR = 40.24 dB, (d)
Ayers-Dainty method; PSNR = 38.76 dB, (e) image obtained using [16];
PSNR = 32.32 dB. The blurring filter estimate for each case is shown in the
bottom right corner.

The contact inhibition phenomena as a result of cell migration
was first described in 1950s [46] in cultured cells which in-
dicated that cell migration and motility are under the control
of cell signaling. Cell migration and motility is a cellular ac-
tivity that occurs during various stages of the life cycle of a
cell under normal or pathological conditions. Embryonic de-
velopment, wound-tissue healing, inflammation, angiogenesis,

cancer metastasis are some of the major cellular activities that
involve cell motility.

We used a video object tracker to track cells in our research.
But the performance was very poor because the FL cell images
were very smooth. Therefore we decided to develop a blind de-
convolution method to obtain sharp cell images. After blind de-
convolution, cells have clear features and sharper edges which
can be used by video object trackers to track the motility of in-
dividual cells. In this application we do not have the z-stack im-
ages. We only have a slice of the FL image stack. The deconvo-
lution operation is performed only the current image slice. The
2D image sequence is obtained using upright fluorescence mi-
croscope Nikon Eclipse 50i. We did not use its widefield mode
but this microscope can be also used in widefield mode.

In order to evaluate PSNR we selected relatively sharp cell
images from FL images and we synthetically blurred them using
a 20 x 20 Gaussian filter with ¢ = 5. We also visually checked
the results of our algorithm on naturally blurred images. We
tested proposed method against blind Ayers-Dainty [30] to
observe the improvement. In Ayers-Dainty based methods,
we started by an impulse image in which only one component
was nonzero, as the initial guess. This way we ensured that all
the frequency components would have a nonzero magnitude
value. Furthermore we compared our method with another
blind deconvolution method proposed in [16], which achieve
deblurring by minimizing a regularization cost. Unfortunately,
this method did not produce successful results in FL images.

In Fig. 10, some sample images are shown that are used in
experimental studies. Ayers-Dainty method is compared with
its own extension using FT phase and ESTV sets.

For Ayers-Dainty based methods, we limited the number of
iterations to 300 and stopped the iterations when the estimation
difference of consecutive iterations became smaller than a pre-
scribed threshold. We have the results of standard Ayers-Dainty
method [30], Ayers-Dainty and ESTV set, Ayers-Dainty and
phase set, and the proposed Ayers-Dainty with phase and ESTV
sets. The comparison of the PSNR performances of these algo-
rithms is given in Table 1.

We also used blind deconvolution method proposed in [16] to
deblur FL microscopy images as shown in Table I. The PSNR
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Fig. 12. The deconvolution results for FL image downloaded from
[http://bigwww.epfl.ch/algorithms/mltldeconvolution/] (a) blurred image, (b)
deblurred by the blind deconvolution using phase information (the images
and the codes are provided in http://signal.ee.bilkent.edu.tr/BlindDeconvolu-
tion.html), (c) deblurred by Ayers and Dainty's algorithm, and (d) Deblurred
by Xu et al.'s algorithm [7], which has clear artifacts in blue channels.

performance of this algorithm is not as good as the Ayers-Dainty
method. Image deblurring results for “im-7” is shown in Fig. 11.

The bold PSNR values are the best results for a given image.
We observed that best blind deconvolution results are obtained
with Ayers-Dainty method using phase and ESTV set in gen-
eral in our FL image test set. The method described in [16]
cannot improve fine details of FL images as shown in Fig. 11 and
Table I. In the following web-page you may find the MATLAB
code of projections onto C4 and CrgTy and example FL images
which four of them are shown in Fig. 10. We have the Matlab
source codes together with more examples in our web-page:
http://signal.ee.bilkent.edu.tr/BlindDeconvolution.html.

In another set of experiments, we used the FL image shown in
Fig. 12(a) which is blurred by an unknown filter or captured with
a focus blur [48]. This image is deblurred using the blind decon-
volution by phase information and its output is compared with
Ayers and Dainty's and Xu et al.'s algorithm [7]. The deblurred
image using the blind deconvolution by phase information and
CrsTv, Ayers and Dainty's algorithm, and the Xu et al.'s algo-
rithm are shown in Fig. 12(b), 12(c), and 12(d), respectively.

Ayers and Dainty's method sometimes does not converge as
shown in Fig. 12(c). Xu et al.'s algorithm also diverges when
we select “default” option. It does not diverge when we select
“small” kernel option but the result is far from perfect as shown
in Fig. 12. The blue channel has clear artifacts. Sets C; and
CesTv can be also incorporated into Xu et al.'s method for sym-
metric kernels but we do not have an access to the source code.
We get the best results when we use Cy and Cggrv in a succes-
sive manner as shown in Fig. 12(b).

VI. CONCLUSION

Both FT phase and the epigraph set of the TV function are
closed and convex sets. They can be used as a part of itera-
tive microscopic image deblurring algorithms because blurring
functions can be assumed to be symmetric in x-y plane. Both
sets not only provide additional information about the desired
solution but they also stabilize the deconvolution algorithms.
It is experimentally observed that phase and ESTV sets signifi-
cantly improve the blind deblurring results of Ayers and Dainty's
method in FL microscopy images. They can also be used as a
part of non-blind deconvolution methods as well.
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