
Medical Image Analysis 14 (2010) 1–12
Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier .com/locate /media
Automatic segmentation of colon glands using object-graphs

Cigdem Gunduz-Demir a,*, Melih Kandemir a, Akif Burak Tosun a, Cenk Sokmensuer b

a Department of Computer Engineering, Bilkent University, Ankara TR-06800, Turkey
b Department of Pathology, Hacettepe University Medical School, Ankara TR-06100, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 August 2008
Received in revised form 24 July 2009
Accepted 10 September 2009
Available online 19 September 2009

Keywords:
Gland segmentation
Image segmentation
Histopathological image analysis
Object-graphs
Attributed graphs
Colon adenocarcinoma
1361-8415/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.media.2009.09.001

* Corresponding author. Tel.: +90 312 290 3443; fa
E-mail addresses: gunduz@cs.bilkent.edu.tr (C.

bilkent.edu.tr (M. Kandemir), tosun@cs.bilkent.edu.
hacettepe.edu.tr (C. Sokmensuer).
Gland segmentation is an important step to automate the analysis of biopsies that contain glandular
structures. However, this remains a challenging problem as the variation in staining, fixation, and sec-
tioning procedures lead to a considerable amount of artifacts and variances in tissue sections, which
may result in huge variances in gland appearances. In this work, we report a new approach for gland seg-
mentation. This approach decomposes the tissue image into a set of primitive objects and segments
glands making use of the organizational properties of these objects, which are quantified with the defi-
nition of object-graphs. As opposed to the previous literature, the proposed approach employs the object-
based information for the gland segmentation problem, instead of using the pixel-based information
alone. Working with the images of colon tissues, our experiments demonstrate that the proposed
object-graph approach yields high segmentation accuracies for the training and test sets and significantly
improves the segmentation performance of its pixel-based counterparts. The experiments also show that
the object-based structure of the proposed approach provides more tolerance to artifacts and variances in
tissues.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Histopathological examination includes examining a biopsy tis-
sue under a microscope for the identification of tissue changes
associated with disease. In the current practice of medicine, this
examination is the most important tool for routine clinical diagno-
sis of a large group of diseases including cancer. However, as it
mainly relies on the visual interpretation of a pathologist, it may
lead to a certain level of subjectivity (Thomas et al., 1983; Andrion
et al., 1995). To help pathologists in diagnosis, and hence, to reduce
the subjectivity level, it has been proposed to use computational
methods that provide objective measures (Wolberg et al., 1995;
Thiran and Macq, 1996; Choi et al., 1997; Hamilton et al., 1997;
Esgiar et al., 1998; Spyridonos et al., 2001; Wiltgen et al., 2003;
Nielsen et al., 1999; Esgiar et al., 2002; Weyn et al., 1999; Keenan
et al., 2000; Demir et al., 2005; Gunduz-Demir, 2007). These
computational methods extract a set of mathematical features
(e.g., morphological (Wolberg et al., 1995; Thiran and Macq,
1996), textural (Hamilton et al., 1997; Choi et al., 1997; Esgiar
et al., 1998; Spyridonos et al., 2001; Wiltgen et al., 2003), fractal
(Nielsen et al., 1999; Esgiar et al., 2002), and structural (Choi
et al., 1997; Weyn et al., 1999; Keenan et al., 2000; Demir et al.,
ll rights reserved.
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2005; Gunduz-Demir, 2007)) from a tissue image for its quantifica-
tion and use these mathematical features to objectively measure
the degree of the tissue changes associated with a disease of the
interest. Different types of features might be necessary to quantify
the tissue changes as these changes show differences from one tis-
sue type to another as well as from one disease type to another. For
example, soft tissue tumors change the cell distribution in the tis-
sue whereas adenocarcinomas change the architecture of glands1

as well. To identify the latter type of neoplastic diseases, which cause
changes in gland architectures, the very first step is to segment the
tissue into its gland structures.

In literature, there are few studies that focus on the problem of
automatic gland segmentation for tissues that contain gland struc-
tures (Wu et al., 2005a,b; Naik et al., 2007; Farjam et al., 2007).
These studies make use of the fact that glands are characterized
by their luminal areas surrounded by epithelial cells; an example
of the histopathological image of a colon tissue is given in Fig. 1.
In order to capture this characterization, these studies first identify
the pixels of different classes (e.g., nucleus, stroma, and lumen
classes) and then form gland regions using this class information
of pixels. For example, in Wu et al. (2005a), nucleus pixels are iden-
tified applying a threshold to the intensities of pixels after they are
convolved with a composition of directional filters. The regions
1 Many types of tissues such as colon, prostate, breast, and lung include glands.
Neoplastic diseases that originate from these tissues cause structural and organiza-
tional changes in their glands.

http://dx.doi.org/10.1016/j.media.2009.09.001
mailto:gunduz@cs.bilkent.edu.tr
mailto:melih@cs.  
mailto:tosun@cs.bilkent.edu.tr 
mailto:csokmens@ 
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


Fig. 1. (a) A histopathological image of a colon tissue, which is stained with the routinely used hematoxylin-and-eosin technique, and (b) an individual gland of a colon tissue.

Fig. 2. Histopathological images of colon tissues, which are stained with the routinely used hematoxylin-and-eosin technique. All of the images are taken with the same
magnification and the same lightning conditions.

2 For interpretation of color in Figs. 1–9, the reader is referred to the web version of
this article.
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surrounded by these pixels are then determined as glands, pro-
vided that their areas are larger than a threshold. In another work
of the same authors (Wu et al., 2005b), nucleus and lumen pixels
are first determined also applying a threshold to their intensities.
Subsequently, large enough connected components of lumen pix-
els are identified as gland seeds and these seeds are then iteratively
grown until a barrier of nuclei chain is reached. In another work
(Naik et al., 2007), a Bayesian classifier is used to classify the pixels
into nucleus, lumen, and cytoplasm classes based on their intensity
values. Then candidate gland regions are defined as the connected
components of pixels for which the classifier outputs posteriors
greater than a threshold for the lumen class. Finally, false glands
are eliminated according to their sizes and the probability of their
surrounding pixels belonging to the cytoplasm class. In Farjam
et al. (2007), after clustering the pixels into nucleus, stroma, and
lumen classes based on their textural properties, the glands are ob-
tained excluding the regions containing nucleus pixels from those
containing stroma and lumen pixels.

These studies yield promising results for especially tissues in
which the glands appear in more regular structures showing less
variations. However, due to staining, fixation, and sectioning pro-
cedures, there is a considerable amount of artifacts and variances
in tissue sections, which may result in huge variances in gland
appearances. First, glands could be of different sizes, depending
on the orientation of the tissue at the time of sectioning. For exam-
ple, although they are taken with the same magnification, the
images shown in Fig. 2a–c have glands of different sizes. Further-
more, the improper orientation of the tissue produces tangential
sectioning, which results in glands of different sizes within the
same tissue image (Fig. 2d). Therefore, in false gland elimination,
it is almost impossible to find an area threshold that applies for
all images. Second, because of the density difference between the
glandular and connective tissue structures, the fixation and sec-
tioning procedures may result in large white artifacts on the
boundaries of the glands (some of these artifacts are shown with
red2 arrows in Fig. 2e and f). Considering only the pixel-based infor-
mation, it is more difficult to distinguish such white artifacts from
luminal regions. Third, the thickness of a tissue section and the
freshness of dye cause variations in the intensity distribution of a tis-
sue image. Moreover, stain fades in time. Therefore, a single thresh-
old value could not be found for all images to determine their
nucleus pixels. Even such a threshold is manually selected or auto-
matically determined (e.g., by the Otsu method (Otsu, 1979)) for
each image, the resulting nucleus pixels do not usually form a closed
component even after postprocessing the pixels (e.g., using mathe-
matical morphology (Serra, 1982)). Thus, it is rare to find continuous
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nucleus pixels that surround the luminal area. For example, although
it is more possible to find such nucleus pixels in the tissue shown in
Fig. 2g, it is much more difficult to find them for tissues shown in
Fig. 2h and i. Because of all these issues, using only the pixel-based
information leads to incorrect gland segmentations for especially tis-
sues with artifacts and variations.

In this paper, we report a new gland segmentation algorithm
that relies on decomposing the image into a set of primitive ob-
jects (nucleus and lumen objects) and then making use of the
organizational properties of these objects instead of using the pix-
el-based information alone. This object-based algorithm is a
three-step region growing approach. First, it constructs a graph
on all of its objects and determines gland seeds based on the fea-
tures extracted from this object-graph. Then, it constructs another
graph, this time on its nucleus objects, and uses this second ob-
ject-graph for growing the gland seeds. Finally, it determines
the final boundary of glands based on the locations of the nucleus
objects. After this region-growing process, false glands are elimi-
nated based on the cluster information of the grown regions.
Working with colon tissues of 36 different patients, our experi-
ments show that the region-growing process leads to 82.57% aver-
age segmentation accuracy on the test set and that this accuracy
increases to 87.59% after the false gland elimination step. These
results (both before and after false gland elimination) demon-
strate that the proposed object-based algorithm significantly im-
proves the segmentation performance of its pixel-based
counterparts. To the best of our knowledge, this is the first dem-
onstration of the use of object-graphs for the purpose of gland
segmentation.
3 Here a circular shape is particularly selected for the transformation as the borders
of tissue components typically comprise curves and circular shapes are found more
efficiently compared to for example elliptical shapes.
2. Object-graph approach

2.1. Overview

The proposed object-graph approach relies on modeling the
regular structure of glands. For this purpose, it decomposes a tissue
image into a set of objects, which represent different tissue compo-
nents, and uses the way that they distribute within the tissue in a
region-growing process to determine the locations of gland struc-
tures. Compared to pixel-based information, the use of object-
based information in a region-growing process yields more robust
segmentations as pixel intensities are expected to be more sensi-
tive to the noise that arises from the staining, fixation, and section-
ing related problems.

In Fig. 3, a schematic of the proposed approach is provided. In
this approach, an image is first decomposed into its tissue compo-
nents. Since it is very difficult to exactly locate the components,
they are approximately represented transforming the image into
a set of circular objects (nucleus and lumen objects). For the image
given in Fig. 1a, these circular objects are shown in the first step of
Fig. 3; here the nucleus and lumen objects are shown with black
and cyan, respectively.

After the transformation, gland segmentation is achieved by
making use of the organizational properties of these objects, which
are quantified with the definition of object-graphs. This gland seg-
mentation algorithm includes a three-step region growing process
(with the initial gland seed determination, gland seed growing, and
gland boundary detection steps) followed by false gland elimina-
tion. In initial gland seed determination, the lumen objects are di-
vided into two classes based on their organizational properties: the
‘‘gland” class corresponding to the lumen objects inside a glandular
region and the ‘‘non-gland” class corresponding to those outside a
glandular region. The lumen objects falling in the gland class are
identified as initial gland seeds. In the second step of Fig. 3, the
lumen objects that are considered as initial gland seeds are shown
in red whereas the other lumen objects are shown in green.

The initial gland seeds are grown to identify inner gland re-
gions. In region growing, one has to determine the locations where
the growing process is supposed to stop. The object-graph ap-
proach uses the nucleus objects to find these locations since the in-
ner gland regions are expected to be surrounded by nuclei. To this
end, it constructs another object-graph on the nucleus objects and
uses the edges of this graph (i.e., the pixels that correspond to
these edges) to stop the region growing process. The graph edges
used to stop region growing and the inner regions obtained with
this process are illustrated in the third step of Fig. 3. Subsequently,
the outer boundary is found by extending the inner region of a
gland to include the nucleus objects that are in its close proximity.
The outer gland boundaries are shown in the fourth step of Fig. 3.

After growing the seeds, the ones that do not show the charac-
teristics of a colon gland are eliminated. For a colon gland, its inner
part is expected to contain the luminal region of the gland and epi-
thelial cell cytoplasms whereas its outer part is expected to contain
epithelial cell nuclei. Thus, the proposed algorithm divides an iden-
tified gland region into its inner and outer parts and extracts a set
of features using their cluster information. Using these features,
false glands are eliminated in a supervised manner. The final gland
locations obtained after false gland elimination are shown in the
fifth step of Fig. 3. In the next subsections, the details of these steps
are explained.

2.2. Object definition

The proposed approach defines objects to represent tissue com-
ponents. In the definition of the objects, the ideal way would be to
identify different components (such as epithelial cell nuclei, epi-
thelial cell cytoplasms, stromal cell nuclei, and lumina) in the tis-
sue. However, this would require segmenting these tissue
components, which gives rise to more difficult segmentation prob-
lem. Therefore, instead of exactly determining their locations, we
approximately represent these components by transforming the
image into a set of circular primitives.3 In this work, two different
types of circular objects are defined: one for representing cell nuclei
and the other for representing lumina and epithelial cell cytoplasms
(herein referred to as ‘‘nucleus objects” and ‘‘lumen objects”, respec-
tively). For defining the circular objects, the ‘‘circle-fit algorithm”
that we propose in our previous work (Tosun et al., 2009) has been
employed.

2.2.1. Circle-fit algorithm
On a given set of pixels P ¼ fxig, the circle-fit algorithm locates

a set of circles iteratively. In the first step of this algorithm, each
pixel xi is assigned to the largest possible circle that includes only
the pixels of P and the pixel xi. In its second step, the pixels as-
signed to the same circle are connected and the connected compo-
nents smaller than an area threshold are eliminated. Then, for each
connected component with a size greater than the threshold, the
first two steps are iteratively repeated (considering only the pixels
of this component) until there is no change in the subsequent iter-
ations. Note that there will be no change, if the component is
circular.

In this work, the circle-fit algorithm is run twice for the given
pixels P. First, it is run on all pixels in P to find a set of circles.
Then, it is run again on the pixels that are in P but not belong to
any circles found in the first run. Finally, the circles found in the
first and second runs are merged. In Fig. 4, the result of the



Fig. 3. Overview scheme of the proposed method.

4 For the sake of simplicity, we refer the cluster that corresponds to lumen and
epithelial cell cytoplasm pixels as ‘‘lumen” cluster.

4 C. Gunduz-Demir et al. / Medical Image Analysis 14 (2010) 1–12
circle-fit algorithm is illustrated on a small image; in this figure,
the circles shown with red and yellow correspond to the circles
found in the first and second runs, respectively.

2.2.2. Image decomposition
For a given tissue image, the pixels are first quantized into three

clusters using the k-means algorithm. In this work, the number of
clusters is particularly selected as three since there are mainly
three color groups in the image of a tissue stained with hematox-
ylin-and-eosin. These colors are purple that correspond to nucleus
pixels, pink that corresponds to stroma pixels, and white that cor-
responds to lumen and epithelial cell cytoplasm pixels.
After color quantization, the circle-fit algorithm is run for the
nucleus and lumen4 clusters, separately. Before calling the circle-
fit algorithm, morphological operators are applied to the pixels of
each cluster to reduce the noise that arises from the incorrect
assignment of pixels in color quantization. This approach only con-
siders the nucleus and lumen clusters but not the stroma cluster
since the experiments demonstrate that the consideration of the
stroma cluster does not improve the performance of the system.
Thus, the stroma cluster is not considered for the sake of simplicity.



Fig. 4. The result of the circle-fit algorithm: (a) pixels in the given set are shown
with black and (b) circles found in the first and second runs are shown with red and
yellow, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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In our previous work (Tosun et al., 2009), such a transformation
is also used for segmenting a low-magnification tissue image into
its homogeneous regions, which consist of either cancerous or nor-
mal parts. For example, in Fig. 5a, one of such images and its seg-
mentation result obtained by the algorithm that is proposed in
Tosun et al. (2009) are shown.5 This previous work introduces a
new homogeneity measure that quantifies how uniform the circles
are distributed in size and in space. For each particular pixel, this
homogeneity measure is calculated over a window centered at this
particular pixel and then segmented regions are formed by connect-
ing pixels based on their homogeneity values. As opposed to our pre-
vious work, this paper proposes a scheme for segmenting a higher-
magnification tissue image into its gland structures. In this newly
proposed scheme, object-graphs are constructed on the circles of nu-
cleus and lumen clusters, for the first time, and these graphs are used
for gland segmentation. In Fig. 5b, one of such images and its seg-
mentation result obtained by the algorithm that is proposed in this
work are shown.
6 The growing process may cause some flooding problems for boundary glands
since an image usually includes only a part of a nucleus at the image boundaries and
2.3. Initial gland seed determination

An object-graph is constructed and the local features extracted
from this graph are used to determine the initial seed locations. In
the object-graph construction, nucleus and lumen objects are de-
fined as nodes and edges are assigned between each lumen object
and its N-closest lumen and N-closest nucleus objects. For each lu-
men object Li, the following set of local object-graph features is ex-
tracted, as illustrated in Fig. 6.

� The area of Li.
� The areas of the lumen neighbors of Li.
� The areas of the nucleus neighbors of Li.
� The lengths of the edges between Li and its lumen neighbors.
� The lengths of the edges between Li and its nucleus neighbors.
� The angles between the edges of the lumen neighbors of Li.
� The angles between the edges of the nucleus neighbors of Li.

These extracted local features are used by the k-means algo-
rithm to quantize the lumen objects into two clusters. These two
clusters are automatically associated with the ‘‘gland” and ‘‘non-
gland” classes using the observation that the lumen objects of
the gland class are usually larger than those of the non-gland class.
Thus, the average area for the first and the second cluster is com-
puted and the cluster that has the larger average area is associated
with the gland class and the remaining cluster is associated with
the non-gland class. Finally, the lumen circles classified with the
non-gland class are eliminated and the remaining lumen circles,
5 In Fig. 5a, the right region corresponds to the normal whereas the other two
regions correspond to the cancerous.
which are classified with the gland class, are identified as initial
gland seeds.

The intuition behind the use of local object-graph features for
the lumen object classification is that the relative spatial distribu-
tion of its closest objects to a lumen differs inside and outside the
glandular regions. For example, for a lumen object inside the glan-
dular region, its closest nucleus objects, which are expected to cor-
respond to epithelial cells, generally locate on one side of the
lumen object. On the other hand, for a lumen object outside the
glandular region, its closest nucleus objects, which are expected
to correspond to both epithelial and stromal cells, generally spread
homogeneously around the lumen object.

The graph constructed in this step is an example of an attrib-
uted graph, in which the nodes represent image primitives and
the edges represent the relations between these primitives. Attrib-
uted graphs have been shown to be effective in representing struc-
tural knowledge and have been used in many computer vision
applications including structural matching (Christmas et al.,
1995), similarity searching (Petrakis and Faloutsos, 1997), object
recognition (Sanfeliu et al., 2002; Ahmadyfard and Kittler, 2003),
object tracking (Tang and Tao, 2008), and face recognition (Luo
et al., 2006). These applications mainly rely on comparing the
attributed graphs of different structures with a graph matching
algorithm, which has high computational complexity (Jain and
Wysotzki, 2004). An object-graph can be considered as an attrib-
uted graph in the sense that its nodes correspond to circular ob-
jects (nucleus and lumen objects) and its edges represent N
closeness relation between these objects. Nevertheless, the task
of clustering the lumen objects into the gland and non-gland clas-
ses does not require any matching algorithms, and thus, it does not
suffer from the high computational complexity of these algorithms.
2.4. Gland seed growing

In order to find the inner regions of glands, the initial gland
seeds are grown employing another object-graph. This object-
graph is constructed considering the nucleus objects as nodes
and assigning edges between each node and its M-closest nodes.6

Starting from the initial seeds, regions are then grown until a graph
edge is encountered (i.e., until a pixel that is located on an edge is
found). The proposed approach uses the nucleus object-graph edges
rather than nucleus pixels to stop region growing. This is because of
the fact that nucleus pixels that surround a gland do not always form
a closed component and there could be gaps between these pixels.
Furthermore, due to the sectioning, fixation, and staining related
problems, the size of these gaps could be very large for some images.
The elimination of such gaps results in eliminating the inner regions
of smaller glands as well, and hence, these gaps could not be elimi-
nated by using the same method for all images (e.g., a morphological
dilation operator with the same structuring element). In contrast,
assigning edges between nucleus objects allows to define reasonable
barriers for region growing for even such images.

At the end of the region growing process, there may exist very
small regions. These regions are typically grown from small and
isolated lumen objects, which are incorrectly classified with the
gland class in the previous step. Such regions are eliminated apply-
ing a threshold to their areas. Since different images have glands of
different sizes, this threshold is selected as a function of the largest
region in the image (as the P percentage of the area of the largest
it is not always possible to define an object for such a nucleus. To avoid this problem,
for a graph node, four virtual nucleus objects are defined at the image boundaries
(left, right, top, and bottom boundary points, respectively) and these virtual objects
are considered in the selection of the M-closest neighbors of the node.



Fig. 5. (a) The segmentation of a low-magnification tissue image that is obtained by the algorithm that is proposed in our previous work (Tosun et al., 2009) and (b) the gland
segmentation of a higher-magnification tissue image that is obtained by the algorithm that is proposed in this work.
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Fig. 6. The illustration of local object-graph features for a single lumen object when N is selected to be 5.
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region). Furthermore, since there could be glands of different sizes
within the same image, it is preferred to select smaller values of P.
Note that false glands with larger sizes are to be eliminated in the
false gland elimination step.
2.5. Gland boundary detection

The gland boundaries are determined by including their nuclei
to the inner regions. For a gland, these nuclei are the objects that
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are in a close proximity with the inner region of this gland. To find
these objects, the inner region is dilated (by an amount in which
the largest nucleus object in the image could be located) and nu-
cleus objects any pixel of which is found in this dilated region
are considered.

After identifying the nucleus objects, their centroids are sorted
with respect to their polar angles that they make with the inner re-
gion centroid. This gives an ordered set of points (nucleus object
centroids), and hence, a simple polygon; i.e., the polygon which
is formed by connecting the centroids in the specified order. This
simple polygon may consist of some undesired concavities. To
eliminate such concavities, and thus, to obtain more accurate gland
borders, this polygon is simplified by connecting each centroid to
its k preceding and k succeeding centroids. As polygons are ob-
tained connecting the centroids of nucleus objects but not their ex-
act borders, the obtained regions are expected not to contain the
half of these nucleus objects. Therefore, each polygon is dilated
with the half of the largest nucleus circle in the image.
2.6. False gland elimination

Regions that do not correspond to true glands are eliminated.
For this purpose, a set of features is extracted to characterize the
regions and a decision tree classifier is trained in a supervised
manner. For feature extraction, each gland region is divided into
two: the outer part corresponding to epithelial cell nuclei of the
gland and the inner part corresponding to epithelial cell cyto-
plasms and lumina of the gland. The width of the outer region is
selected such that the largest nucleus object could fit in this outer
region. Then, using the cluster information that is obtained by the
k-means algorithm in the image decomposition step, the following
set of features is extracted:

� The area of the outer region.
� The percentage of the nucleus cluster in the outer region.
� The percentage of the stroma cluster in the outer region.
� The percentage of the lumen cluster in the outer region.
� The area of the inner region.
� The percentage of the nucleus cluster in the inner region.
� The percentage of the stroma cluster in the inner region.
� The percentage of the lumen cluster in the inner region.
Fig. 7. The visual results obtained by the object-grap
After extracting these features, each gland region in the training
set is labeled as ‘‘true-gland” or ‘‘false-gland”. Since it is necessary
to label gland regions lots of times (for parameter analysis), the
labeling process is semi-automated using the gold standard pro-
vided by our MD collaborator. To this end, the centroid of each
gland region is found and it is labeled with the true-gland class if
its centroid belongs to a true gland region in the gold standard.
Otherwise, it is labeled with the false-gland class. Once the deci-
sion tree classifier is trained on the training images, the rules gen-
erated by this classifier are used for false gland elimination of the
other images to obtain their final gland locations.

3. Experiments

The experiments are conducted on 72 microscopic images of co-
lon biopsy samples of 36 randomly chosen patients (two randomly
selected images for each patient) from the Pathology Department
archives in Hacettepe University School of Medicine. Each sample
consists of 5 lm-thick tissue section and is stained with the hema-
toxylin-and-eosin technique. The images of these samples are ta-
ken using a Nikon Coolscope Digital Microscope with 20�
microscope objective lens. These images are taken in the RGB color
space and then converted to the Lab color space for further pro-
cessing. The image resolution is 480 � 640.

In false gland elimination, a decision tree classifier is trained to
learn the rules for eliminating false glands. For this purpose, the
images are divided into the training and test sets. The training
set consists of 24 images of 12 patients and the test set consists
of 48 images of the remaining 24 patients. The samples in the
training set are used to train the decision tree classifier; the test
samples are not used in training at all.

In the proposed algorithm, there are five free model parame-
ters: (i) the area threshold in the circle-fit algorithm, (ii) N number
of the closest circles of a lumen object in initial gland seed deter-
mination, (iii) M number of the closest circles of a nucleus object
in nuclei graph construction, (iv) P threshold percentage to elimi-
nate small areas in gland seed growing, and (v) k number of the
connections between adjacent nucleus objects for polygon simpli-
fication. In the experiments, these parameters are selected as fol-
lows: the area threshold is 10 pixels, the number of lumen
neighbors N is 5, the number of nuclei neighbors M is 10, the small
h approach for the tissue images given in Fig. 2.



Table 1
For the object-graph approach, the average and the standard deviation of the
sensitivity, specificity, accuracy, and Dice similarity index percentages. These results
are obtained after applying a decision tree classifier to eliminate false glands.

Sensitivity Specificity Accuracy Dice index

Training set 83.43 ± 7.73 92.30 ± 5.78 88.00 ± 4.16 88.46 ± 4.62
Test set 85.80 ± 6.71 89.14 ± 10.40 87.59 ± 5.01 88.91 ± 4.63

Table 2
For the object-graph approach, the average and the standard deviation of the
sensitivity, specificity, accuracy, and Dice similarity index percentages. These results
are obtained before applying a decision tree classifier to eliminate false glands.

Sensitivity Specificity Accuracy Dice index

Training set 89.61 ± 4.28 65.09 ± 25.44 77.39 ± 14.99 81.73 ± 12.71
Test set 90.62 ± 5.44 72.80 ± 15.38 82.57 ± 8.36 85.59 ± 7.73
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object threshold P is 5%, and the simplification factor k is 5. The
selection of these parameters and their effects to the segmentation
results are further discussed in the next subsection.

In Fig. 7, the segmentation results of the proposed algorithm
(object-graph approach) are visually illustrated for the images gi-
ven in Fig. 2. These results demonstrate that the proposed ob-
ject-based algorithm leads to good segmentation results for all
these tissue images even though these images have high variations
and their glands appear in less regular structures. To quantitatively
measure the success of these segmentation results, the true posi-
tive, false positive, true negative, and false negative rates are calcu-
lated using the manual segmentation as the gold standard7 and
then the sensitivity, specificity, accuracy, and Dice similarity index
values are computed for each of the 72 images. In Table 1, the aver-
age and standard deviation of these values are reported for the
training and test set images. This table shows that the proposed
algorithm yields high accuracies of 88.00% and 87.59% for the
training and test sets, respectively. Moreover, it leads to Dice sim-
ilarity indices greater than 88% and sensitivity and specificity rates
greater than 83%.

To investigate the effects of the false gland elimination step, the
proposed algorithm is also run without applying a decision tree
classifier to eliminate false glands. In Table 2, the average sensitiv-
ity, specificity, accuracy, and Dice similarity index percentages that
are obtained in these runs are given for the training and test sets.
Here the results are provided for the training and test sets sepa-
rately for better comparison although there is no training involved
before applying the decision tree classifier. This table shows that
without having false gland elimination, the sensitivity increases
whereas the specificity, accuracy, and Dice similarity index de-
crease. Note that the number of positive pixels decreases after false
gland elimination because some of the identified glands are elimi-
nated. This decreases the true positive rate, and hence, the sensitiv-
ity. The Wilcoxon test with a significance level of 0.05 shows that
the results before and after false gland elimination are statistically
significant. The results in Table 2 demonstrate that false gland
elimination is one of the important steps of the proposed gland
segmentation algorithm, as in the case of previous approaches.
For example, in Wu et al. (2005b), after gland segmentation, false
7 The calculation of these rates is pixel-based. A pixel is considered as positive if it
is identified as a gland pixel by the gland segmentation algorithm, and as negative
otherwise. Therefore, the true positive rate (TP) is the number of positive pixels that
belong to a gland in the gold standard; the false positive rate (FP) is the number of
positive pixels that do not belong to a gland in the gold standard; the false negative
rate (FN) is the number of negative pixels that belong to a gland in the gold standard;
and the true negative rate (TN) is the number of negative pixels that do not belong to
a gland in the gold standard.
intestinal glands are eliminated if their surrounding nucleus pixels
are not wide enough. Similarly, in Naik et al. (2007), false prostate
glands are eliminated according to their sizes and the probability
of their surrounding pixels belonging to the cytoplasm class.

3.1. Parameter analysis

Next, the effects of each parameter to the segmentation perfor-
mance are investigated. For that, four of the five parameters are
fixed and the sensitivity, specificity, accuracy, and Dice similarity
index percentages are observed as a function of the other parame-
ter. In Fig. 8a–e, for each parameter, the average of these percent-
ages is presented for the test set.

The first parameter is the area threshold. In the circle-fit algo-
rithm, the components smaller than this threshold are eliminated;
thus, no circles smaller than this threshold exist in the image
decomposition. Smaller values of this threshold result in represent-
ing noise as a set of objects. This decreases the segmentation per-
formance. On the other hand, its larger values result in less number
of circles, which causes to have some missing object information.
This does not give a good representation of the image and de-
creases the performance too. To quantitatively understand the ef-
fect of this parameter, the experiments are repeated selecting the
area threshold as {5,10,15,20,25,30,35,40,45,50}. In Fig. 8a, the
results are shown for the test set.

The second parameter is the number of lumen neighbors N, This
parameter is used in initial seed determination, in which an object-
graph is constructed defining edges between each lumen object
and its N-closest lumen and N-closest nucleus objects. The local
object-graph features of the lumen object are then used to classify
it with either the gland or the non-gland class. The selection of
smaller values of this parameter results in features lacking distinc-
tive qualities, and hence, lowers segmentation performance. The
selection of larger values does not increase the overall perfor-
mance. However, when this parameter becomes very large, one
has the risk of observing ‘‘curse of dimensionality”, which typically
decreases the accuracy. With selecting this parameter as
{1,2,3,4,5,10,15,20,25,30}, the test results are shown in Fig. 8b.

The next parameter is the number of nuclei neighbors M, which is
used to construct an object-graph to stop the region growing pro-
cess. Smaller values of this parameter set less number of edges
(barriers) at which region growing stops. This results in flooding
of the regions and dramatically decreases the specificity, and thus,
the segmentation accuracy. Larger values of this parameter do not
change the accuracy too much. However, since more number of
edges narrows down their inner regions, the final glands are smal-
ler than expected for the larger values. This yields lower sensitivi-
ties but higher specificities. With selecting the number of nuclei
neighbors as {1,2,3,4,5,10,15,20,25,30}, the test results are
shown in Fig. 8c.

The fourth parameter is the small object threshold P, which is
used to eliminate smaller regions in gland seed growing. Here a re-
gion is eliminated if its area is smaller than the small object thresh-
old percentage of the largest gland region in the image. Increasing
this parameter results in eliminating more regions. This leads to
higher specificity but lower sensitivity values. In the experiments,
it is preferred to select a smaller value of this threshold to elimi-
nate only the very small regions; false glands with larger sizes
are eliminated in the false gland elimination step. The experiments
are repeated selecting its value as {0.000,0.010,0.025,0.050,
0.075,0.100,0.125,0.150,0.175,0.200}. The results for the test set
are shown in Fig. 8d.

The last parameter is the simplification factor k. It gives the de-
gree of simplification of a polygon, which is formed by connecting
the centroids of its nucleus objects. If this parameter is selected to
be 1, there is no simplification for the polygon. If it is selected to be
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the number of its nucleus objects, the simplification gives the
convex hull of the polygon. This may not provide the correct gland
borders since a gland is not necessarily convex. Thus, it should
be selected in between these values. In Fig. 8e, the results are
shown for the simplification factor being selected as {1,2,3,
4,5,6,7,8,9,10,11,12,13,14,15} for the test set. These results
show that the selection of this parameter affects the segmentation
performance less compared to the other parameters.

3.2. Comparisons

This work compares the proposed algorithm, which relies on
the use of object-graphs, with two previous approaches, both of
which rely on the use of pixel-based information. In the first of
these approaches (nuclei-identification based approach), the pixels
of epithelial cell nuclei are first identified and the area surrounded
by these identified pixels are then determined as in Wu et al.
(2005a). In the second approach (lumina-identification based ap-
proach), the pixels of luminal areas are first identified and then
the glands are obtained growing these identified pixels (Wu
et al., 2005b). These algorithms are explained and their results
are discussed in the following subsections.

3.2.1. The nuclei-identification based approach
The first step of the algorithm proposed in Wu et al. (2005a) is

to distinguish the pixels of epithelial cell nuclei from the other pix-
els by thresholding the image. For this purpose, the algorithm first
lowers the pixel intensities by applying a set of four directional fil-
ters (at the angles of 0�, 45�, 90�, and 135�) and selecting the lowest
output of these filters for each pixel; each filter is defined as a 2-D
Gaussian low-pass filter with standard deviations of rx and
ry ¼ 4rx. Then, the algorithm identifies the pixels with intensities
smaller than an intensity threshold as the pixels of epithelial cell
nuclei. Then, the algorithm dilates the identified nuclei pixels with
a circular structuring element (with a radius of R) and fills the areas
surrounded by these nuclei pixels. It finally identifies these areas as
glands, provided that their areas are greater than an area threshold.

In Wu et al. (2005a) for the images that are taken with a 20�
microscope magnification and that have a resolution of
480 � 640, the standard deviation rx and the radius R are selected
as 8 and 5, respectively. For each of these images, the intensity and
area thresholds are manually selected. In our experiments, the va-
lue of these parameters is selected according to the segmentation
performance obtained on the training set. In particular, all possible
combinations of the following parameter sets are considered: a set
of {16,32, . . . ,224,240} plus the value obtained by the Otsu method
(Otsu, 1979) for the intensity threshold; a set of {2,4,8,16} for the
standard deviation rx; a set of {3,5,7,9} for the radius R; and a set
of {0,500,1000,2500,5000,7500,10,000,12,500,15,000} pixels for
the area threshold. Considering the parameter set that leads to
the best sensitivity–specificity pair on the training samples, the
intensity threshold is selected as 144, the standard deviation rx

as 4, the radius R as 3, and the area threshold as 0.

3.2.2. The lumina-identification based approach
The second algorithm (Wu et al., 2005b) first thresholds the im-

age to identify the nucleus and lumen pixels. Then, it determines
the connected components of lumen pixels on which a round win-
dow (with a radius of R0) can be located as initial gland seeds. Next,
these initial gland seeds are iteratively grown dilating them with
another round window (with a radius of Ri); a seed pixel is dilated
if the round window centered at this pixel consists of only the lu-
men pixels. At the end of this iterative region growing process, the
seeds for which the growth does not converge after a maximum
number of iterations are considered as false glands and they are
eliminated. Each remaining seed is dilated with a round window
(with a radius of E) to find its surrounding dam and this seed is
eliminated if the thickness of the dam (the ratio of its nucleus pix-
els) is smaller than a thickness threshold. Subsequently, nucleus
pixels of the true glands are iteratively grown with a square struc-
turing element (with a size of a) and final gland boundaries are ob-
tained dilating these grown regions with a round window (with a
radius of E2).

In Wu et al. (2005b), for the images that are also taken with a
20� microscope magnification and that have a resolution of
480 � 640, the radii R0, Ri, E, and E2 are selected as 25, 4, 10, and
10, respectively. The square size a is selected as 3 and the maxi-
mum number of iterations is selected as 50. Similar to the previous
approach, the intensity and thickness thresholds are manually se-
lected for each image. In our experiments, the value of these
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parameters is selected according to the segmentation performance
obtained on the training set. Similarly, all possible combinations
of the following parameter sets are considered: a set of
{16,32, . . . ,224,240} plus the value obtained by the Otsu method
for the intensity threshold; a set of {10,25,50} for the radius R0;
a set of {2,4,8} for the radius Ri; a set of {5,10,15} for the radius
E; a set of {5,10,15} for the radius E2; a set of {3,5,7} for the square
size a, a set of {2.0,4.0,6.0,8.0,10.0} for the thickness threshold.
The maximum number of iterations is also selected as 50. Consid-
ering the parameter set that leads to the best sensitivity–specificity
pair on the training samples, the intensity threshold is selected as
112, the radius R0 as 25, the radius Ri as 8, the radius E as 10, the
radius E2 as 5, the square size a as 7, and the thickness threshold
as 2.0.

3.2.3. Results
For the training and test sets, the sensitivity, specificity, accu-

racy, and Dice similarity index of the nuclei-identification and lu-
mina-identification based approaches with the selected
Table 3
For the object-graph approach, the nuclei-identification based approach, and the lumina-id
specificity, accuracy, and Dice similarity index percentages obtained on the training set.

Sensitivity

Object-graphs (before FGE step) 89.61 ± 4.28
Object-graphs (after FGE step) 83.43 ± 7.73
Nuclei-identification 55.88 ± 28.48
Lumina-identification 47.24 ± 29.81

Table 4
For the object-graph approach, the nuclei-identification based approach, and the lumina-id
specificity, accuracy, and Dice similarity index percentages obtained on the test set.

Sensitivity

Object-graphs (before FGE step) 90.62 ± 5.44
Object-graphs (after FGE step) 85.80 ± 6.71
Nuclei-identification 53.77 ± 25.67
Lumina-identification 52.59 ± 32.88

Fig. 9. The visual results obtained by the nuclei-identificatio
parameter sets are reported in Tables 3 and 4. These tables also
present the object-graph results that are obtained both before
and after applying the false gland elimination step (FGE step).
The results demonstrate that the object-graph approach, both with
and without false gland elimination, improves the segmentation
accuracy as well as the Dice similarity index of the pixel-based seg-
mentation approaches, leading to high sensitivity and specificity
values. The Wilcoxon test with a significance level of 0.05 exhibits
that this improvement is statistically significant.

For both the nuclei-identification and lumina-identification
based approaches, the visual segmentation results for the images
given in Fig. 2 are also illustrated in Figs. 9 and 10, respectively.
These figures show that good segmentations are obtained for only
a few images. They also show that some segmentation results are
inconsistent with our previous intuitions, which are discussed in
the introduction; for example, it is expected that the nuclei-identi-
fication based approach yields better segmentation results for the
image given in Fig. 2g since the nucleus pixels of this image are ex-
pected to form closed components. Thus, for this image, the other
entification based approach, the average and the standard deviation of the sensitivity,

Specificity Accuracy Dice index

65.09 ± 25.44 77.39 ± 14.99 81.73 ± 12.71
92.30 ± 5.78 88.00 ± 4.16 88.46 ± 4.62
55.16 ± 32.47 56.34 ± 18.31 57.27 ± 19.71
92.70 ± 8.42 68.58 ± 12.75 56.12 ± 30.54

entification based approach, the average and the standard deviation of the sensitivity,

Specificity Accuracy Dice index

72.80 ± 15.38 82.57 ± 8.36 84.31 ± 9.76
89.14 ± 10.40 87.59 ± 5.01 88.91 ± 4.63
51.67 ± 33.64 53.24 ± 13.62 54.33 ± 19.69
87.48 ± 15.12 67.62 ± 17.17 59.04 ± 30.00

n based approach for the tissue images given in Fig. 2.



Fig. 10. The visual results obtained by the lumina-identification based approach for the tissue images given in Fig. 2.
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segmentation results in which different parameter sets are used
are also examined. Here it is observed that better segmentation re-
sults could be obtained when the parameter set is optimized
according to this image. However, this decreases the segmentation
performance for the others. This is also true for the other images.
When the parameter set is optimized for a particular image, the
segmentation performance of the two pixel-based approaches
(especially those of the lumina-identification based approach)
could increase for this particular image. However, the segmenta-
tion performances decrease for the others. This demonstrates the
difficulty of selecting a single parameter set (for the pixel-based
approaches) that would work for all images.
4. Discussions

In this work, we introduce an object-based approach for the
purpose of gland segmentation. This approach decomposes the tis-
sue image into a set of primitive objects and segments glands mak-
ing use of the spatial distributions of these objects, which are
quantified with the definition of object-graphs. In this work, the
experiments are conducted on the images of 72 colon tissues of
36 different patients. Experimental results demonstrate that the
proposed object-based approach yields high accuracies of 77.39%
for the training set and 82.57% for the test set and significantly im-
proves the segmentation performance of its pixel-based counter-
parts. Furthermore, with a false gland elimination step, these
accuracies increase up to 88.00% for the training set and 87.59%
Fig. 11. The visual results for the histopathological images that are ta
for the test set. These results show that the use of object-based
information, instead of using pixel-based information alone, leads
to more robust segmentations to imaging artifacts. This is attrib-
uted to pixel intensities being more sensitive to the noise that
arises from the staining, fixation, and sectioning related problems.

The proposed method is expected not to be sensitive with re-
spect to a particular microscope and to also work with images that
are taken from other microscopes. To examine this issue, some
images are taken with a camera mounted onto an Olympus BX51
Microscope. On these images, the proposed algorithm is run with-
out modifying any of its parameters and without changing the
rules of its decision tree. The segmentation results obtained on
these samples show that the proposed method could also work
for other microscopes. These segmentation results are visually
illustrated in Fig. 11.

The proposed algorithm provides an infrastructure for further
analysis of biopsies that include glandular structures. This infra-
structure allows us to locate glands on the tissue image and to
understand whether or not a gland deviates from its normal struc-
ture. To identify such glands, one method would be to extract a set
of mathematical features from each of the segmented glands and
to classify the glands using these mathematical features. Another
method would be to quantify the spatial relations of the seg-
mented glands extracting structural features; e.g., graphs or Voro-
noi diagrams could be defined considering each gland as a node
and then local features extracted for each node could be used to
classify the gland. Similarly, global features extracted for the entire
graph or the Voronoi diagram could be used to classify the entire
ken with a camera mounted onto an Olympus BX51 Microscope.
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tissue. As a future research work, we plan to investigate such fea-
tures for the purpose of gland classification.
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