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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.
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ABSTRACT

H∞ BASED FILTERING FOR SYSTEMS WITH TIME

DELAYS AND APPLICATION TO VEHICLE

TRACKING

Mehmet Sami EZERCAN

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hitay Özbay

August 2007

In this thesis, the filtering problem for linear systems with time delay is studied.

The standard mixed sensitivity problem is investigated and the duality between

H∞ control problem and H∞ filtering problem is established. By using this

duality an alternative H∞ filtering method is proposed.

An optimum H∞ filter is designed for single output system. However the pro-

posed technique does not only work for single delay in the measurement but also

works for multiple delays in both state and measurement if the linear system has

more than one outputs with delay. For this case, different suboptimal filters are

designed.

This work also deals with an important aspect of tracking problems appearing

in many different applications, namely state estimation under delayed and noisy

measurements. A typical vehicle model is chosen to estimate the delayed state

and the performances of the designed filters are examined under several scenarios

based on different parameters such as amount of delays and disturbances.
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ÖZET

ZAMAN GECİKMELİ SİSTEMLER İÇİN H∞ TABANLI

KESTİRİM VE ARAÇ TAKİP PROBLEMİNE UYGULANMASI

Mehmet Sami EZERCAN

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Hitay Özbay

Ag̃ustos 2007

Bu tez kapsamında zaman gecikmeli dog̃rusal sistemler için kestirim problemi

üzerinde çalışılmıştır. Standart karışık hassasiyet problemi incelenmiş, burada

anlatılan H∞ kontrol problemi ile üzerinde çalışılan kestirim problemi arasında

benzerlik kurulmuştur. Bu benzerlik kullanılarak alternatif bir kestirim metodu

önerilmektedir.

Tek bir zaman gecikmesine sahip bir sistem için optimum süzgeç tasarlanmıştır.

Bununla beraber önerilen yöntem birden çok gecikmeli çıktısı olan sistemlerde

sadece ölçümde yer alan tek bir gecikme için deg̃il, hem konumda hem de ölçümde

yer alan birden fazla gecikme için çalışabilmektedir. Böyle bir durumda farklı alt

optimum süzgeçler tasarlanmıştır.

Bu çalışmada ayrıca birçok uygulamada da görülebilecek olan izleme problemi

yani gecikmeli ve gürültülü ölçümlerle konum kestirimi üzerine çalışılmıstır.

Örnek bir araç modeli seçilmiş ve gecikmedeki farklılık ve benzeri deg̃işik senary-

olarda, tasarlanan süzgecin performansı test edilmiştir.

Anahtar Kelimeler: Zaman gecikmeli sistemler, Konum kestirimi, H∞ süzgeç,

Araç takibi
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3.18 Estimation Error (z(t)− ẑ(t)) for the system with ε = 0.2 . . . . 38

3.19 γ1 + γ2 for Suboptimal Filter Approach . . . . . . . . . . . . . . . 39

3.20 z(t) − y(t) if the State has Time Delay in addition to that in

Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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Chapter 1

INTRODUCTION

In this thesis we consider H∞ filtering for systems with time delay. We use duality

between control and estimation problems to propose a new structure for H∞

based filters and apply to vehicle tracking under delayed and noisy measurements.

In this chapter we give an overview of existing literature on estimation and

filtering as well as on systems with delay and H∞ techniques.

1.1 Estimation & Filtering

Estimation is the calculated approximation of a result which is usable even if

input data may be incomplete, uncertain, or noisy. Estimation is defined as the

process of inferring the value of a quantity of interest from indirect, inaccurate

and uncertain observations, [21].

Some examples of estimation are:

• Statistical inference [40]

• Determination of the position and velocity of an aircraft (tracking) [35]
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• Application of control to a plant in the presence of uncertainty (parameter

identification, state estimation and stochastic control) [41]

• Determination of model parameters for predicting the state of a physical

system (system identification) [39]

• Determination of characteristics of a transmitted message from noise-

corrupted observation of the received signal (communication theory) [38]

• Determination of some parameters or characteristics of a signal or image

(signal processing) [37]

In general, estimation can be classified into two categories related to the

variable to be estimated.

• Parameter estimation for linear time invariant (LTI) systems

• State Estimation (Parameter estimation for time varying systems can be

cast into this framework)

While parameter estimators for LTI systems deal with a time invariant quan-

tity, state estimators are used in dynamic systems evolving in time and are more

general than parameter estimators. In this thesis we will deal with state es-

timaton which is illustrated by Figure 1.1. The only part of the system that

the estimator can access is the measurement which is affected by the measure-

ment noise where the other parts are fixed transfer matrices. Estimation can be

classified into three groups according to its nature and purpose [21]:

Filtering is the estimation of the current state of a dynamic system and

provides an estimate of the output based on all data up to the current time.

Prediction is the estimation of the state ahead of the observed data. Pre-

diction provides an estimate of the output at time k based on the data up to an

earlier time j < k.
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Figure 1.1: Estimation Problem in General

Smoothing is the estimation of the state behind of the observed data that

are ahead in time of the estimate. Smoothing provides an estimate of the output

at time k based on the data up to j > k.

Since we deal with real time estimation in this work we will use the term

filtering. Actually the filter is a procedure of looking at a collection of data taken

from a system or process. The term filtering mainly means that the process of

removing undesired signals from the system, namely filtering the noise out.

The main concerns for someone, who does estimation, are the following [21]:

• A basic model of the system has to be available with unknown states to be

estimated.

• Physical data are required to reduce the effect of measurement errors.

• In order to make the most accurate estimation, the residuals (difference

between observation and estimation) should be as small as possible but

one does not have control over this physical constraint.

1.2 Optimal Filtering

Optimal filtering is an innovative technique for detecting a signal against a back-

ground of noise or natural variability. While using optimal estimation techniques

3



someone has a model for some form of data that he or she observes or measures

and also has an error criterion to minimize. Optimal estimation makes the best

utilization of the data and the knowledge of the system and the disturbances

under the optimization of some criterion. On the other hand, optimal estimation

techniques can be sensitive to modeling errors and also computationally expen-

sive. So it is very important to have a clear understanding of the assumptions

under which an algorithm is optimal and also it is very important how these

assumptions relate to real world.

1.3 H∞ Optimal Filtering

In H∞ filtering, H∞ norm of the system which reflects the worst case gain of

system is minimized. One does not need the exact knowledge of the statistics

of the exogenous signals while designing an H∞ optimal estimator. This estima-

tion procedure ensures that the L2 induced gain from the noise signals to the

estimation error will be less than a prescribed γ level, where the noise signals

are arbitrary energy-bounded signals. In the H∞ setting, the exogenous input

signal is assumed to be energy bounded rather than Gaussian white noise. Figure

1.1 is the general scheme of estimation. H∞ filtering for such a system is made

performing the following expressions:

y1 = G1w

y = y1 + G2v

Exogenous signals w and v prevent handling the measurement correctly. So we

need to filter the measurement, y, with a filter denoted as F .

ŷ = Fy

Then the error between the output and estimated measurement is called esti-

mation error of which L2 norm over L2 norm of noise signals will be less than

4



prescribed γ.

e = Fy − y1 = (F − I)G1w + FG2v

γ = sup
‖e‖2

‖

 w

v


 ‖2

such that


 w

v


 6= 0.

1.4 Time Delay Systems

Time-delay systems appear naturally in many engineering applications and, in

fact, in any situation in which transmission delays cannot be ignored. Therefore,

their presence must be taken into account in a realistic filter design. Moreover,

stability and noise attenuation level guaranteed by filter design without consider-

ing time delays may collapse in the presence of non-negligible time delays. Time

delays arise in several signal processing related problems, such as, echo cancella-

tion, local loop equalization, multipath propagation in mobile communications,

and array signal processing.

Time delays often also appears in many control systems (such as aircraft,

chemical or process control systems) either in the state, the control input, or the

measurements. Unlike ordinary differential equations, delay systems are infinite

dimensional in nature and time-delay is, in many cases, a source of instabil-

ity. The stability issue and the performance of control systems with delay are,

therefore, both of theoretical and practical importance [36].

For a brief history of time delay systems, see [36] where it is mentioned that

the delay equations were first considered in the literature in the XVIII century.

Also it is mentioned in the same paper that systematic method study has began

and Lyapunov’s method was developed for stability of delay systems until 50’s in

XX century. Since 1950s, the subject of delay systems or functional differential

5



equations has received a great deal of attention in Mathematics, Biology and

Control Engineering.

Over the past decade, much effort has been invested in the analysis and

synthesis of uncertain systems with time-delay. Based on the Lyapunov the-

ory of stability, various results have been obtained that provide, for example,

finite-dimensional sufficient conditions for stability and stabilization. Departing

from the classical linear finite-dimensional techniques which apply Smith predic-

tor type designs, the new methods simultaneously allow for delays in the state

equations and for uncertainties in both the system parameters and the time de-

lays. During the early stages, delay-independent results were obtained which

guarantee stability and prescribed performance levels of the resulting solutions.

Recently, delay-dependent results have been derived that considerably reduce

the overdesign entailed in the delay-independent solutions. In the present issue,

new results are obtained for various control and identification problems for delay

systems. These results are based either on Lyapunov methods or on frequency

domain considerations.

In the next section we will focus on H∞ filtering for time delay systems.

1.5 State Estimation for Time Delay Systems

1.5.1 H∞ Techniques for State Estimation for Time Delay

Systems

Many different H∞ filtering techniques have appeared in the literature. All of

them try to develop methodologies which ensure a prescribed bound on L2 in-

duced gain from noise signals to filtering error [4]-[15]. In this scope following

Luenberger observer type filter is developed depending on a derived version of

6



bounded real lemma [5] and depending on a descriptor model transformation,

Park’s inequality, for the bounding of cross terms [6]. Some of them includes

polytopic uncertainties in all matrices [6], [10], [11]. Consider a dynamic system

as below:

ẋ(t) = Ax(t) +
m∑
i

Aix(t− hi) + Bw(t)

y(t) = Cx(t) +
m∑
i

Cix(t− hi) + Dw(t)

where x(t) is the state vector, y(t) is the measurement output vector, h is the

fixed, known delay and w(t) is the L2 disturbance vector (w ∈ L2[0,∞]). Luen-

berger type observer for the above system is given by the following dynamical

system:

˙̂x(t) = Ax̂(t) +
m∑
i

Aix̂(t− hi)− L(ŷ(t)− y(t))

ŷ(t) = Cx̂(t) +
m∑
i

Cix̂(t− hi)

where x̂(t) is the estimated state of x(t), ŷ(t) is the estimated output of y(t) and

L is the observer gain matrix. The estimated error, defined as e(t) = x(t)− x̂(t),

obeys the following dynamical system:

ė(t) = (A− LC)e(t) +
m∑
i

(Ai − LCi)(t− hi) + (B − LD)w(t)

Then the γ observer for this system is designed under the conditions:

1. limt→∞ e(t) → 0 for w(t) ≡ 0

2. ‖Tew‖∞ ≤ γ

where Tew is the transfer function from disturbance w to the estimation error e

and γ > 0. Now the problem is to reach L which is found by solving some set

of linear matrix inequalities (LMI) and algebraic riccati equations in [5]-[9] as

below:

L =
1

ε
P−1CT

7



where P is the solution of linear matrix inequalities or algebraic riccati equations.

Both instantaneous and multiple-time delayed measurements using the tech-

nique that re-organizes innovation analysis approach in Krein space is studied in

[12]. It also gives the results in terms of the solutions of Algebraic Riccati and

Matrix Differential Equations.

Full order and reduced order filters are designed for discrete time linear sys-

tems with delay [13], [14]. In order to design these type of filters LMI’s are used

similar to the ones in continuous time systems.

We should indicate that most of the above mentioned techniques involving

LMIs are suboptimal in the sense that the filter can be obtained under the

condition that the LMIs are solvable. In most situations the optimal performance

level cannot be achieved. Besides the frequency domain method proposed in

this paper, there are some time domain state-space based techniques leading to

optimal H∞ filters, see e.g. [17], [16]. In [16] a lifting technique is used to solve

the associated Nehari problem (see Chapter 2 below). In [17], Mirkin solves the

problem by parameterizing all solutions of the non-delayed problem and finding

the ones which solve the delayed problem. This approach involves solving Riccati

equations and checking a spectral radius condition. Among all available methods

for the solution of the H∞ suboptimal filtering problem under delayed and noisy

measurements, Mirkin’s approach [17] is the simplest. Moreover, his ”central”

filter’s performance can get arbitrarily close to the optimum.

1.5.2 Other Techniques for State Estimation for Time De-

lay Systems

Although H∞ filtering technique is widely used method for time delay systems,

some other methods are used up to now. Darouach developed linear functional

8



observers for systems with time delays in state variables both in continuous time

[22] and in discrete time [23]. Also similar approach is developed in [24] not for

single delay as in [22] and [23] but multiple delays in state variables. Motivated by

the previous works, similar but extended types of observers are developed [32].

Functional, reduced order and full order observers with and without internal

delays are considered. However only the delay in the state equation is considered

while designing observers. The observer converges, with any prescribed stability

margin, to any number of linear functionals when some conditions are met in

[33].

A robust observer is designed in [25] using LMI’s. In order to provide the

stability of observer it can be designed in two steps of which first step is to design

a linear feedback control [29]. Then two Luenberger type observers are designed

in the second step. Sufficient conditions are given in the form of Linear Matrix

Inequalities.

State observers for systems with nonlinear disturbances where the non-

linearities satisfy the Lipschitz conditions is considered in [34]. It is shown that

the observation error is globally exponentially stable.

H2 filtering for linear systems with time delays is issued in [26]-[28]. Since the

filtering problem for time delay systems problem is infinite dimensional in nature,

an attempt is made to develop finite dimensional methods that will guarantee a

preassigned estimation accuracy. They give the sufficient conditions in the form

of Linear Matrix Inequalities.

Kalman filter approach is extended to the case in which the linear system is

subject to norm-bounded uncertainties and constant state delay then a robust

estimator is designed for a class of linear uncertain discrete-time systems [30].

Estimation error covariance is guaranteed to lie within a certain bound for all

admissible uncertainties solving two Riccati Equations. In this framework [20]

9



discusses trade off between optimality and computational burden of the filter and

develops a method based on ”extrapolating” the measurement to present time

using past and present estimates of the Kalman filter and calculating an optimal

gain for this extrapolated measurement.

1.6 Thesis Contribution and Organization

In the remaining parts of the thesis, using the frequency domain representations,

we provide an alternative method to compute the H∞ optimum filter directly.

First, by using the duality between filtering and control, the problem at hand is

transformed to a robust controller design for systems with time delays. The skew

Toeplitz method developed earlier for the robust control of infinite dimensional

systems, [1], [2], [3], is used to solve the H∞ optimal filtering problem.

In Chapter 2, H∞ estimation problem is described in detail and duality be-

tween estimation problem and standard mixed sensitivity H∞ control problem

is given. The solution process that is used in this work is mentioned and some

number of approaches are developed for the solution. Chapter 3 includes vehicle

tracking problem definition with the reason why we have chosen this problem

as well as the illustrative examples and comparative results with the previous

methods. Chapter 4 concludes the work and proposes some future work.

10



Chapter 2

FILTERING VIA DUALITY

BETWEEN CONTROL AND

ESTIMATION PROBLEMS

In this chapter a solution for H∞ filtering problem is proposed establishing the

duality between control and estimation problems. First the system for which the

estimator will be designed is clarified and then the control problem is shortly

mentioned and the solution is given at last.

2.1 System Architecture

Consider the linear system in Figure 2.1 with multiple time delays in state and

output variables as described in (2.1), (2.2) and (2.3).

ẋ(t) = A0x(t) +
k∑

i=1

Aix(t− hi) + Bw(t) (2.1)

yj(t) = Cjx(t− hj) + Djvj(t) j = 1, . . . , l (2.2)

11
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Figure 2.1: Dynamic System Model for Estimation

z(t) = Lx(t) (2.3)

where x(t) ∈ Rn is the state vector, yj(t) ∈ Rp is jth output vector, z(t) is the

state variable to be estimated, w(t) and v(t) are process noise and measurement

noise respectively. Time delays hi and hj are assumed to be known. The matrices

A0, Ai, B, Cj, Dj and L are also known. Each sensor output available for filtering

is described in (2.2).

Assumption: All the sensors that give information about the state are iden-

tical. They have all same characteristics other than the delays that differ due to

the other factors such as distance and communication link properties. Therefore

we assume that hj > 0 for all j and Cj’s are same with each other and also with

L, namely:

C1 = C2 = C3 = ... = Cl = L = C (2.4)

Then (2.2) turns into;

yj(t) = Cx(t− hj) + Djvj(t) j = 1, . . . , l (2.5)

2.2 H∞ Filtering Problem

The term estimator is used for the function which gives the estimated value

that we look for. For the system above, we will design an estimator in order to

estimate z(t) and this estimator must minimize the estimaton error which is the

difference between estimate and the objective function, z(t). Transfer functions

12



in (2.1) and (2.2) are found as following: Taking the Laplace Transform of both

sides of (2.1) gives

sX(s) = A0X(s) +
k∑

i=1

e−hisAiX(s) + BW (s) (2.6)

where the Laplace Transform of x(t) is X(s) and of x(t− h) is e−hsX(s). Then

the transfer funcion from w to state x is

X(s) = R(s)BW (s) (2.7)

where

R(s) = (sI − A0 −
k∑

i=1

Aie
−his)−1 (2.8)

The transfer function to the output is found as below:

Yj(s) = Ce−hjsX(s) + DjVj(s) (2.9)

Using X(s) obtained from (2.7) turns (2.9) into

Yj(s) = Ce−hjsR(s)BW (s) + DjVj(s) (2.10)

In these type of systems, time delays in state and output prevent handling

the output directly. Due to the this fact we have to minimize the estimation

error corresponding to the estimate ẑ(t), which is mainly composed of a filter

affecting on the output y(t) and expressed in frequency domain as

Ẑ(s) =
l∑

j=1

Fj(s)Yj(s) (2.11)

Thus the estimation error is written and found by the following equations:

e(t) = z(t)− ẑ(t) (2.12)
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E(s) = Z(s)− Ẑ(s)

= LX(s)−
l∑

j=1

Fj(s)Yj(s) (2.13)

= LR(s)BW (s)−
l∑

j=1

Fj(s)(Ce−hjsR(s)BW (s) + DjVj(s))

Let us now assume that the measurement noise v is generated by a known coloring

filter Wv, i.e. V (s) = Wv(s)V̂ (s), where v̂(t) is an unknown finite energy signal.

Similarly, let w be an unknown finite energy signal. Then the estimation error is

E(s) = (I −
l∑

j=1

Fj(s)e
−hjs)P0(s)W (s)−

l∑
j=1

Fj(s)DjWvV̂j(s)

=
[

(I −∑l
j=1 Fj(s)e

−hjs)P0(s) −F1(s)D1(s)Wv . . . Fl(s)Dl(s)Wv

]




W (s)

V̂1(s)

...

V̂l(s)




=
[

(I − F(s)H(s))P0(s) −F(s)D(s)
]

 W (s)

V̂(s)


 (2.14)

where

P0 = CR(s)B, L = C

and

F(s) =
[

F1(s) F2(s) ... Fl(s)
]

D(s) =




D1(s)Wv 0 0 0

0 D2(s)Wv 0 0

0 0
. . . 0

0 0 0 Dl(s)Wv




H(s) =




e−h1s

e−h2s

...

e−hls




(2.15)

V̂(s) =
[

V̂1(s) V̂2(s) ... V̂l(s)
]T

D(s),D−1(s) are stable.

Fj(s)’s are the filters that will be designed to eliminate the effect of hj’s for each

sensor output. Dj’s are the are the weights associated with the noise vj.
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Then the L2 induced norm from external signals w and v̂ to the error e is

γ = inf
F∈H∞

‖
[

(I − F(s)H(s))P0(s) −F(s)D(s)
]
‖∞ (2.16)

Multi-input multi-output (MIMO) solution of filtering problem will be

reached via (2.16). However let us reduce it to a simpler solution which is Single-

input single-output (SISO) case

γj = inf
F∈H∞

‖ (1
l
− Fj(s)e

−hjs)P0(s) −Fj(s)DjWv ‖∞

= sup
v̂;w 6=0

‖ej‖2

‖

 w

v̂j


 ‖2

(2.17)

However multi output case brings a suboptimal solution in other words sum of

the optimal solutions for each output do not go to an optimal filter in general

solution because;

γopt ≤
l∑

j=1

γj.

Clearly the following two conditions must be satisfied in order to have a finite

γj:

Fj(s) is stable, and

(1
l
− Fj(s)e

−hjs)P0(s) is stable (2.18)

2.3 Mixed Sensitivity Control Problem

The standard mixed sensitivity H∞ control problem associated with a stable

plant P̃ shown in Figure 2.2 can be defined as follows.

Transfer functions from the disturbance w̃ to ỹ and ũ are:

Tw̃→ỹ = W1(1 + P̃ C̃)−1 (2.19)
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Tw̃→ũ = −W2C̃(1 + P̃ C̃)−1 (2.20)

The optimal H∞ controller design problem is:

minimize γ

subject to (P̃ , C̃) is stable, and
(2.21)

γ = ||T
w̃→




ỹ

ũ




||∞ (2.22)

In order to find the smallest γ following is solved as below in case all the variables

are constant (if not, transpose of that has to be solved):

inf
Q̃∈H∞

‖
[
W1(1− P̃ Q̃) −W2Q̃

]
‖∞ (2.23)

The free parameter Q̃ is obtained from the controller

C̃ =
Q̃

1− P̃ Q̃
Q̃ =

C̃

1 + P̃ C̃
.

The important point throughout this work is that the SISO result of the estima-

tion problem (2.17) is the same problem with (2.23) provided that the following

dualities are established:

W1(s) = P0(s)

W2(s) = −I

P̃ (s) = e−hjsD−1
j W−1

v (s)

Q̃(s) = Fj(s)DjWv(s)

(2.24)
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2.4 Solution

The problem of Section 2.3 can be solved using the technique in [1] where an

optimal controller is designed for the system in Figure 2.2 in the form of:

C̃opt(s) = Eγ0(s)md(s)
N0(s)

−1Fγ0(s)L(s)

1 + mn(s)Fγ0(s)L(s)
(2.25)

The plant P (s) admits a coprime inner/outer factorization of the form P (s) =

mn(s)No(s)/md(s) where md and mn are inner and No is outer. Set Eγo as

Eγo :=

(
W1(−s)W1(s)

γ2
− 1

)

Then define

Fγo = Gγo(s)

nl∏

k=1

s− ηk

s + ηk

where η1, . . . , ηk are the poles of W̃1(−s) and Gγo is minimum phase and deter-

mined from the spectral factorization

Gγo(s)Gγo(−s) :=

(
1− (

W2(s)W2(−s)

γ2
− 1)Eγo(s)

)−1

L(s) is composed of the form L(s) = L2(s)/L1(s) where L2(s) and L1(s) are the

polynomials which satisfy the interpolation conditions given in [1].

After deriving the controller expression it is easy to find dual filter equation that

we desire:

Q̃opt = C̃opt(1 + P̃ C̃opt)
−1

17



2.4.1 Suboptimal Approach-I

Reconsider the estimation error under the special case restriction that is,

v̂j = v̂i = v

E(s) =
[

(I −∑l
j=1 Fj(s)e

−hjs)P0(s) −F(s)D(s)
]

 W (s)

V̂(s)




where F(s), D(s) and V̂(s) are defined by (2.15). Let F̂j(s) = Fj(s)Dj(s)Wv

and F̃ (s) =
∑l

j=1 F̂j(s) Then first part of the above expression becomes

[
(I −∑l

j=1 F̂j(s)D
−1
j (s)W−1

v e−hjs)P0(s) −F̃ (s)
]

=
[

(I −D−1
1 (s)W−1

v e−h1sF(s))P0(s) −F̃ (s)
]

where

F(s) = F̂1(s) + F̃ (s)− F̃ (s) +
l∑

j=2

Fj(s)D1(s)D
−1
j (s)e−(hj−h1)s

Assume that h1 ≤ h2 ≤ . . . ≤ hl (If not, following operations can be modified

easily)

E(s) =
[

(I −D−1
1 (s)W−1

v e−h1sF̃ (s))P0(s) −F̃ (s)
]

 w

v




+
[

D−1
1 (s)W−1

v e−h1s(I −D1(s)D
−1
2 (s)e−(h2−h1)s)F̂2(s)P0(s) 0

]

 w

v




...

+
[

D−1
1 (s)W−1

v e−h1s(I −D1(s)D
−1
l (s)e−(hl−h1)s)F̂l(s)P0(s) 0

]

 w

v




Now the problem will be solved in steps:

1. minimize ‖ (I −D−1
1 (s)W−1

v e−h1sF̃ (s))P0(s) −F̃ (s) ‖∞ and find optimal

F̃ (s).
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2. minimize ‖W0 +D−1
1 (s)W−1

v e−h1s(I−D1(s)D
−1
2 (s)e−(h2−h1)s)F̂2(s)P0(s)‖∞

where W0 = (I −D−1
1 (s)W−1

v e−h1sF̃ (s))P0(s) and find optimal F̂2(s).

3. minimize ‖W1 +D−1
1 (s)W−1

v e−h1s(I−D1(s)D
−1
3 (s)e−(h3−h1)s)F̂3(s)P0(s)‖∞

where W1 = W0 + D−1
1 (s)W−1

v e−h1s(I −D1(s)D
−1
2 (s)e−(h2−h1)s)F̂2(s)P0(s)

and find optimal F̂3(s).

4. . . .

Step 1 is the dual problem of the work solved before so F̃ (s) is found easily.

Step 2 and subsequent ones are more complicated than first step. They will also

be solved by same technique, however some sort of extra works have to be done

in order to obtain a solvable minimization problem.

2.4.2 Suboptimal Approach-II

Reconsider the estimation error equation (2.14):

E(s) =
[

(I − F(s)H(s))P0(s) −F(s)D(s)
]

 W (s)

V̂(s)


 .

Above expression can be written as sum of l expressions:

E(s) =
l∑

j=1

[
(αj − Fj(s)e

−hjs)P0(s) −Fj(s)DjWv

]

 W (s)

V̂j(s)


 (2.26)

where
∑l

j=1 αj = 1

Each error expression namely the estimation error of jth output is solved in

order to find Fj(s) writing the L2 induced norm from exogeneous signals to error:

γj = inf
F∈H∞

‖ (1− α−1
j Fj(s)e

−hjs)αjP0(s) −Fj(s)DjWv ‖∞

= sup
v̂,w 6=0

‖ej‖2

‖

 w

v̂j


 ‖2

(2.27)
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Optimal γj can be found easily using the method developed by dual control

problem. However solving l-decoupled SISO H∞ optimization problem gives a

suboptimal solution since

sup
v̂,w 6=0

‖ej‖2

‖

 w

v̂j


 ‖2

≤
l∑

j=1

‖ (αj − Fj(s)e
−hjs)P0(s) −Fj(s)DjWv ‖∞

which means the sum of optimal γj’s for each output is larger than the optimal

γ of the complete problem.

γopt ≤
l∑

j=1

γj

Another problem about this type of sub-optimal solution is to determine αj’s.

Actually αj shows how the state affects the jth output. In other words it is related

in what proportion of the state the jth filter will estimate. At first sight it seems

that the output with smaller delay desires larger α ie. hi < hk ⇒ αk < αi.

This condition is clearly satisfied unless we discard Dj. Therefore we can say

that there should be a trade-off between αj’s that minimizes the sum of all. To

summarize the problem, it is required to solve the minimization problem which

is easier to solve than Approach-I:

minimize
∑l

j=1 γj

subject to γj = ‖ (αj − Fj(s)e
−hjs)P0(s) −Fj(s)DjWv ‖∞

∑l
j=1 αj = 1

In this chapter, we derived the formulae of the filter to estimate the state of

a linear system with time delay. Next section includes the illustration of these

derivations with many different situations on a vehicle tracking problem.
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Chapter 3

APPLICATION TO VEHICLE

TRACKING PROBLEM

In this chapter, filter design method developed in Chapter 2 is applied to a vehicle

tracking problem with delayed and noisy measurements. First the problem with

the dynamic model of the vehicle is described. Then various versions of the

problem are studied by varying some parameters such as amount of delay, number

of delays, uncertainties. Finally some methods from literature are used to solve

the same problem with comparative results.

3.1 Tracking Problem

The term ”tracking” is the estimation of the state of a moving object based

on remote measurements. This is done using one or more sensors located on

different locations [21]. Vehicle tracking is widely used for safety purposes or

military objectives such as determination of position and velocity of an aircraft.
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3.1.1 Moving Vehicle Model

The vehicle model to be given here will be used in all simulations performed in

this chapter. In order to obtain quick and clear results a simple vehicle model is

chosen. The linear dynamic equations determining the behaviour of the vehicle

are given as

ẋ(t) = Ax(t) + Bw(t)

y(t) = Cx(t) + Dv(t)

z(t) = Lx(t)

where x is the state of vehicle and composed of position, velocity and acceleration,

y is the output vector and z is the state element to be estimated which is the

position in our design. The signals w and v are process and measurement noise

respectively. The matrices A, B, C, D and L are:

A =




0 1 0

0 0 1

0 0 −ε


 B =




0

0

1




C = L =
(

1 0 0
)

D = 1

x =




p

v

a




p : position

v : velocity

a : acceleration

⇒ ẋ =




ṗ

v̇

ȧ




ṗ = v : velocity

v̇ = a : acceleration

Accordingly, rewrite the dynamic equations;



ṗ

v̇

ȧ


 =




0 1 0

0 0 1

0 0 −ε







p

v

a


 +




0

0

1


 w(t)

This seems like a constant velocity model, but it has a disturbance in the accel-

eration derivative. The parameter ε determines the effect of initial value of the

state, i.e.

ȧ + εa = w(t) Typically a(t) −→ a
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Figure 3.1: Process Noise w(t)

Output is the position with an unknown signal and it is the signal to be

estimated.

y(t) = p(t) + v(t)

z(t) = p(t)

The disturbance w(t), initial value of state and ε are the leading effects on

the movement of the vehicle. In order to see the maneuvers in the movement

w(t) is chosen as finite energy signal as in Figure 3.1 which leads the maneuvers

in Figure 3.3 which shows the vehicle behaviour in terms of its position in one

dimension. Initial value of state and ε parameter are arbitrarily chosen as x(0) =[
0 0 0

]T

and ε = 2 respectively. Additionally, different values of ε will be

illustrated. Also in all simulations band-limited white noise v̂(t) is used as the

measurement noise which is shown in Figure 3.2.

Our main objective throughout this work is to make an estimation of the state

of a system with time delays. However it is aimed in this section to describe the
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Figure 3.2: Measurement Noise v(t)
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Figure 3.3: Original Trajectory to be Estimated
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vehicle characteristics that will be used in simulations. That’s why the delay

issue has never been mentioned. Following sections include modified versions of

the dynamic system which is issued here. Main difference will be the delay that

will appear somewhere in the system.

3.2 Illustrative Examples and Simulation Re-

sults

Many different variations of vehicle tracking problem are illustrated in this section

to investigate the filter performance against different situations. Simulations were

performed by the help of MATLAB-Simulink. First, we will see how the amount

of delay affects the filter performance and try to find whether the filter has a

limitation in terms of delay amount. Then the ε parameter will be changed

in order to see how the different initial values of acceleration impact the filter

performance. It will be shown that the existence of delay in state variable does

not create difficulties for the solution.

In order to get comparable results of different situations all the simulations

were performed with dynamic system mentioned in previous section changing

the related parameter in each simulation. Moreover all the simulations are one-

dimensional and can be easily extended to 2 or 3 dimensional cases.
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3.2.1 Single Delay in Output

Delay in Output - Case 1

Consider the linear system defined in (2.1) and (2.2) with no delay in state and

only one delay in output. In this case we have

ẋ(t) = Ax(t) + Bw(t) (3.1)

y(t) = Cx(t− h) + Dv(t) (3.2)

In order to reach the error expression in Chapter 2, it is necessary to take the

Laplace transforms of (3.1) and (3.2) which are given in (3.3) and (3.5).

X(s) = (sI − A)−1B + W (s) (3.3)

Y (s) = CX(s)e−hs + DV (s) (3.4)

= C((sI − A)−1B + W (s)) + DV (s)

We know that z(t) = Lx(t) will be estimated by a filter denoted by F (s) and

L = C which is assumed previously. Then

E(s) = Z(s)− Ẑ(s) = LX(s)− F (s)Y (s) (3.5)

= LX(s)− F (s)(CX(s)e−hs + DV (s))

= CX(s)− F (s)e−hsCR(s)W (s)− F (s)DV (s)

= (1− F (s)e−hs)P0(s)W (s)− F (s)DWv(s)V̂ (s)

where R(s) = (sI − A)−1B, V (s) = Wv(s)V̂ (s) and P0(s) = CR(s). Then the

L2 induced norm is

γ = ‖(1− F (s)e−hs)P0(s) − F (s)DWv(s)‖H∞ (3.6)

Note that A, B, C and D matrices were given in Section 3.1.1: Delay in the

output is equal to 0.4 (h = 0.4) and ε is taken as 2.

P0(s) = CR(s) = C(sI − A)−1B
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=
[

1 0 0
]



s −1 0

0 s −1

0 0 s + 2




−1 


0

0

1


 (3.7)

=
1

s2(s + 2)

DWv(s) = 1 (3.8)

According to the optimal filter solution in Chapter 2, filter equation is:

F (s) = Eγ(s)md(s)
N−1

0 Fγ(s)L(s)

1 + e−0.4sFγ(s)L(s)(1 + Eγ(s))
(3.9)

Eγ(s) = (
1

γ2
P0(s)P0(−s)− 1) = −1 + γ2s4(s2 − 4)

γ2s4(s2 − 4)

with γopt = 1.1486. For the above numerical values Fγ(s) and L(s) are found as:

Fγ(s) =
nFγ(s)

dFγ(s)
=

s4 − 4s2

0.8706s4 + 4.086s3 + 6.108s2 + 3.263s + 0.8566

L(s) =
nL(s)

dL(s)
= −s2 + 2.326s + 0.662

s2 − 2.326s + 0.662

After some operations desired filter turns into

F (s) = (
e−0.4s − γ2s2dFγ

dL
nL

1 + γ2s4(s2 − 4)
)−1

= γ(1 +
γe−0.4s − 1− γ2s4(s2 − 4)− γ2s2dFγ

dL
nL

1 + γ2s4(s2 − 4)
)−1 (3.10)

If s2(s2 − 4) + dFγ0 and −1 + L0 = −1 + dL0

nL0
are used instead of γdFγ and L−1

respectively then the resulting filter turns into the form of

F (s) = γ
R1(s)

1 + R1(s)R2(s)
(3.11)

where R1(s) and R2(s) are Infinite Impulse Response (IIR) and Finite Impulse

Response (FIR) filters respectively, i.e. impulse response of R2 is zero outside
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the time interval [0 , 1]. For the above numerical values of the problem we have

R1(s) =
s2 + 2.326s + 0.662

s2 + 2.368s + 0.7603

R2(s) =
0.8706e−0.4s

s6 − 4s4 + 0.758

+
10−2(0.0074s5 − 0.09476s4 + 0.9289s3 − 6.965s2 + 34.83s− 87.06)

s6 − 4s4 + 0.758

The signal namely the position of the vehicle to be estimated z(t) is given

in Figure 3.3 of which maneuvered shape is provided by process noise w(t) in

Figure 3.1.

While Figure 3.4 shows the difference between output and original trajectory

(z(t) − y(t)), Figure 3.5 is the difference between the estimation and original

trajectory (z(t)− ẑ(t)). Figure 3.4 is the error in the output of the system. It is

clearly shown the effect of time delay and this delayed information needs to be

corrected. As a result, corrective effect of the filter is obviously seen in Figure

3.5.

Figure 3.5 shows that the filter successfuly eliminates the effect of time delay.

Since the problem is not just a simple noise elimination problem, noise in Figure

3.2 still remains at the output of filter.

Delay in Output - Case 2

The only difference in this case according to Case 1 is the time delay which is

used as h = 2 which leads γ to a greater value. γ = 2.4333 is found and Figure

3.7 is the estimation error of the filter which is designed to suppress the effect of

time delay seen in output error in Figure 3.6. Resulting filter used in simulations

is composed of following expressions which are placed into 3.11.

R1(s) =
s3 + 4.309s2 + 5.246s + 1.255

s3 + 4.814s2 + 7.234s + 3.213
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Figure 3.4: z(t)− y(t) for Case 1
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Figure 3.5: Estimation Error (z(t)− ẑ(t)) for Case 1
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Figure 3.6: z(t)− y(t) for Case 2

R2(s) =
0.411e−2s

s6 − 4s4 + 0.1689

− 0.1908s4 − 0.6158s3 + 0.6785s2 − 0.5263s + 0.2165

s5 − 1.997s4 − 0.01061s3 + 0.0212s2 − 0.04233s + 0.08456

We have obtained similar effect as in Case 1. Greater time delay causes larger

magnitude of error. However it can be said that the filter works successfully

against time delay.

Delay in Output - Case 3

Let h = 6 be the only difference for this case as in Case 2, then the resulting

filter expression is same with Case 1 and 2. Time delay has the largest value of

these three cases so does γ which we have γ = 9.086. Optimal filter in 3.11 has
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Figure 3.7: Estimation Error (z(t)− ẑ(t)) for Case 2

the following expressions:

R1(s) =
s3 + 4.171s2 + 4.685s + 0.6858

s3 + 5.846s2 + 11.36s + 7.341

R2(s) =
0.11e−6s

s6 − 4s4 + 0.0121

− 1.04s4 − 2.589s3 + 1.191s2 − 0.375s + 0.06484

s5 − 2s4 − 0.0007574s3 + 0.001515s2 − 0.003s + 0.006

Figure 3.8 and Figure 3.9 are the output error and estimation error respec-

tively, namely z(t)− y(t) and z(t)− ẑ(t).

Above three cases show that noise characteristics in terms of the noise mag-

nitude of the estimation error changes proportional to time delay and also to γ.

Actually, the infinite frequency response of the filter creates this effect. Since

|F (j∞)| = γ as derived in (3.11), magnitude of noisy components of the estima-

tion error signal increases with the increase in γ.
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Figure 3.8: z(t)− y(t) for Case 3
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Figure 3.9: Estimation Error (z(t)− ẑ(t)) for Case 3
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Figure 3.10: Measurement Noise associated with a High Pass Filter

Delay in Output with High Pass Characteristics Disturbance - Case 4

In order to reduce the effect of the measurement error which were seen in esti-

mation error in the above cases, we may consider using a weight Wv(s) which

generates v(t). Let h = 2 and DWv(s) = 10s+1
s+10

which shapes the measurement

noise in Figure 3.2 as in Figure 3.10. γ = 2.8245 is found for this case and

derivation of the filter is same as the above filters.

Figure 3.11 and Figure 3.12 are the output error and estimation error respec-

tively. In this case the noise seen at the output is amplified relative to earlier

cases however the filter succeeds suppressing the noise in partially in addition to

eliminating the effect of time delay.
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Figure 3.11: z(t)− y(t) for Case 4
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Figure 3.12: Estimation Error (z(t)− ẑ(t)) for Case 4
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Figure 3.13: Estimation Error (z(t)− ẑ(t)) for the System with Actual Delay is
1

What happens if the actual delay is different than the delay used in

filter design?

All the above filters were designed for exact value of delay. One can wonder what

will happen if the actual delay is not exactly same as the delay that the filter is

designed for. To illustrate this situation following simulations were performed.

Consider the problem in Case 2 which has 2 seconds time delay. However the

delay in the system is taken different than 2. Figure 3.13 and Figure 3.14 show

the cases where the time delays are 1 second and 3 seconds respectively.

From the figures it is clarified that the different delays in the system and

that for design can take the results further than the desired ones. Actually the

greater time difference between assumed (for what the filter is designed) and

actual delays cause greater error. So it can be said that the actual time delay
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Figure 3.14: Estimation Error (z(t)− ẑ(t)) for the System with Actual Delay is
3

has to be determined with maximum accuracy in order to get best performance

from the filter.

Change in ε-parameter

ε-parameter which determines how much the initial value of the state impacts

system dynamics is used as 2 in the above simulations. The next two simulations

will show the capability of filter against smaller and larger ε’s. While Figure 3.15

and Figure 3.16 show the output and estimation errors when ε = 0.2, Figure 3.17

and Figure 3.18 are the output and estimation errors when ε = 10 respectively.

In these simulations all the numeric values except than ε are same with the values

in Case 4.

Small ε creates poles near to the imaginary axis in P0(s) than it seems that

small ε leads the output somewhat different than the original state. However the

filter is able to track the original trajectory in both cases.
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Figure 3.15: z(t)− y(t) for the system with ε = 0.2
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Figure 3.16: Estimation Error (z(t)− ẑ(t)) for the system with ε = 0.2
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Figure 3.17: z(t)− y(t) for the system with ε = 10
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Figure 3.18: Estimation Error (z(t)− ẑ(t)) for the system with ε = 0.2
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Figure 3.19: γ1 + γ2 for Suboptimal Filter Approach

3.2.2 Multiple Delay in Output

Consider the dynamic system with two outputs with delay h1 = 0.4 and h2 = 2.

The solution method mentioned in Section 2.4.2 is applied onto this problem.

Corresponding parameters α1 and α2 related with h1 and h2 are searched between

[0, 1] with

D1Wv =
20s + 1

s + 5
D2Wv =

5s + 1

s + 0.8

in order to minimize γ1 + γ2.

Figure 3.19 is γ1 + γ2 versus α1 which shows that γ values corresponding to

α1 = 0 and α2 = 1 are the optimum values to form the suboptimal filter.

In fact, there may be some other examples for different values of h1, h2, D1,

D2 such that the optimal value of γ1 + γ2 is attained in the interval 0 < α < 1.

Figure 3.19 can be minimized anywhere which means γ1 and γ2 can take different

values in the interval [0, 1].
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3.2.3 Delay in both State and Output

Simulations up to now are very similar in terms of delay characteristics other

than the amount of delays. In this section we consider time delay in the state

in addition to one in the output. We expect that state delay will clearly change

the original trajectory. Therefore the change in state has a little effect on output

but no more effort will be needed since it does not disturb the general structure

mentioned and derived above. Case 4 of the previous section is repeated here by

adding one delay to the state. So new structure of (2.1)and (2.2) are as in (3.12)

and (3.13).

ẋ(t) = A0x(t) + A1x(t− h1) + Bw(t) (3.12)

y(t) = Cx(t− h2) + Dv(t) (3.13)

Choose

A0 = A1 =




0 1 0

0 0 1

0 0 −2


 , h1 = 1, h2 = 2, DWv(s) =

10s + 1

s + 10

Then P0 changes accordingly:

P0(s) =
(1 + e−2s)2

s2(s + 2 + 2e−2s)
and γ = 4.4089 are found.

We approximate P0(s) using high order Pade approximation so that this approach

work. Remaining part of the solution is performed same with the previous ones.

Resulting estimation error of the filter z(t)− ẑ(t) is shown in Figure 3.21 where

the error is in delayed state (z(t)− y(t)) is given in Figure 3.20.
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Figure 3.20: z(t) − y(t) if the State has Time Delay in addition to that in
Measurement
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Figure 3.21: Estimation Error (z(t)−ẑ(t)) if the State has Time Delay in addition
to that in Measurement
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3.3 Comparative Results

In this section the simulation results obtained with newly derived filter will be

compared to ones from the literature. Since Kalman Filter is best known method

for estimation purposes it will be illustrated first, then the method of Mirkin will

be applied to the same vehicle tracking problem because we expect similar results

to ours with his near optimal filter.

3.3.1 Kalman Filter Approach

Kalman Filter is the well known filtering method for Estimation applications. In

order to see how it behaves in case of existence of delay in the system we will

firstly discretize the continuous time linear system which is defined with (3.1)

and (3.2).

ẋ(t) = Ax(t) + Bw(t)

y(t) = Cx(t− h) + Dv(t)

Kalman Filter works with white process and measurement noise with zero mean

Gaussian distribution. Since the process noise shown with the Figure 3.1 is a

finite energy signal, it is needed to make simple modifications on this noise to

use it as the process noise for Kalman filter.

Write w(t) as below:

w(t) = xw(t) + n1

ẋw(t) = n2

where xw(t) is a finite energy signal with zero derivative and noises n1 and n2

are assumed to be white with identical zero mean gaussian distribution.
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The dynamic equations defined by (3.1) and (3.2) turns into the below expres-

sions:

˙̃x(t) = Ax̃(t) + Bw̃(t)

y(t) = Cx̃(t− h) + Dv(t)

where

x̃ =


 x

xw


 w̃ =


 n1

n2


 A =


 A B

0 0




B =


 B 0

0 I


 C =

[
C 0

]
.

Single Delay in Output Case is handled firstly to investigate and compare

the performance of two methods. Let sampling time be Ts and h À Ts then

h = NTs. When the differential equation is solved x(t) is found as

x̃(t) = eAtx̃(0) +

∫ t

0

eA(t−τ)Bw̃(τ)dτ

Writing this expression for x(tk+1) and x(tk) gives

x̃((k + 1)Ts)) = eATsx̃(kTs) +

∫ (k+1)Ts

kTs

eA((k+1)Ts−τ)Bw̃(τ)dτ

use w̃(τ) ≈ w̃(kTs) on τ ∈ [kTs (k + 1)Ts] then

x̃(k + 1) = Adx̃(k) + Bdw̃(k)

where Ad = eATs and Bd =
∫ Ts

0
eAτBdτ

(3.1) and (3.2) can further be written in discrete time as

x̃(k + 1) = Adx̃(k) + Bdw̃(k)

y(k) = Cx̃(k −N) + Dv(k)
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It is better to write in augmented state with below relations

x̃1(k) = x̃(k)

x̃2(k) = x̃(k − 1)

x̃3(k) = x̃(k − 2)

...

x̃N+1(k) = x̃(k −N)

x̄(k) =




x̃1(k)

x̃2(k)

...

x̃N+1(k)




=⇒ x̄(k + 1) =




x̃1(k + 1) = x̃(k + 1)

x̃2(k + 1) = x̃1(k)

...

x̃N+1(k + 1) = x̃N(k)




Ād =




Ad 0 . . . . . . 0

I 0 . . . . . . 0

0 I 0 . . . 0

...
...

...
. . .

...

0 . . . 0 I 0




B̄d =




Bd

0

...

0




C̄d =
[

0 . . . 0 C
]

D̄d = D

Augmented system equations are expressed as:

x̄(k + 1) = Ādx̄(k) + B̄dw̄(k)

y(k) = C̄dx̄(k) + D̄dv̄(k)

w(k) and v(k) are process and measurement noises assumed to be zero mean

Gaussian distribution with covariances Qk and Rk.

w̄(k) ∼ N(0, Qk)

v̄(k) ∼ N(0, Rk)

Since we do not have a restriction in terms of noise characteristics in H∞ solution

we do not use the exactly same noise used in H∞ filtering solution. Then Qk =

εkB̄dB̄
T
d and Rk = ρkI are used as covariance.
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Numerical Example

Case 1 of Section 3.2.1 is repeated in order to compare the performance of two

filters. Firstly it is needed to find new system dynamics. Sampling time Ts = 0.05

seconds and time delay h = 0.4 which results N = 8 are used. After necessary

calculations Ad and Bd are found as;

Ad =




1 0.05 0.0012 2· 10−5

0 1 0.0476 0.0012

0 0 0.9048 0.0476

0 0 0 1




Bd =
1

8




2T 2
s − 2Ts − e−2Ts + 1 2

3
T 3

s − T 2
s + Ts + 1

2
e−2Ts − 1

2

2(2Ts + e−2Ts − 1) 2T 2
s − 2Ts − e−2Ts + 1

4(1− e−2Ts) 2(2Ts + e−2Ts − 1)

0 8Ts




= 10−2




2· 10−3 2· 10−5

0.12 2· 10−3

4.7 0.12

0 0.05




Different Kalman filter updates are applied to each 25 seconds period of

original trajectory where the process noise w(t) of H∞ filter problem which is

shown by Figure 3.1 is either 5 or −5. The first 25 seconds period is handled

here and error of H∞ filter and Kalman filter in this interval are shown by Figure

3.22 and by Figure 3.23 respectively. Kalman Filter updates begin with initial

state
[

0 0 0 5
]T

.

Kalman Filter error according to Figure 3.22 seems better than H∞ filter

result. However Kalman filter needs to know exact time delay to form the state

space representation in discrete time and also time delay must be an integer

multiple of sampling time. Otherwise H∞ filtering method does not regard such
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Figure 3.22: Estimation Error (z(t) − ẑ(t)) for the Kalman Filter with initial
state with process noise information

restrictions on time delay. In addition to this, the main difference between two

methods is the statics of process noise. While H∞ filtering method works without

any information about process noise, Kalman filter takes it into account as seen

in above derivations and as the last element of initial state. Figure 3.24 is the

Kalman filter error in case that the initial state is
[

0 0 0 0
]T

in the interval

t ∈ [0, 25] which means there is no information about the signal, w(t), of Figure

3.1. Figure 3.25 shows Kalman Filter error in complete time duration where

process noise, w(t), is 5 and −5 consecutively. Thus, when there is no initial

condition information H∞ works better.

3.3.2 Mirkin’s H∞ Suboptimal Filter Approach

Extraction of dead-time estimators from parametrization of all delay-free estima-

tors is proposed in Mirkin’s method [17]. This approach enables a straightforward

reduction of various dead-time problems to a special one-block distance problem.
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Figure 3.23: Estimation error (z(t) − ẑ(t)) for t ∈ [0, 25] of Case 1 in Section
3.2.1

Also near optimal H∞ estimator is a generalized Smith predictor. In Figure 3.26

it is shown that delay is augmented to the plant P resulting in the design of an

unconstrained estimator for infinite dimensional system. Classical Nehari prob-

lem is solved during solution process of this problem. Solvability conditions are

applied on the problem to find Kh which is in the form of the Figure 3.27.

Numerical Examples

Case 1 in Section 3.2.1

Solution of this approach gets a central suboptimal filter. Basically the filter

elements Ga and Ja are found as following:

Ja(s) =
3.31s2 + 7.843s + 2.483

s3 + 4.826s2 + 6.85s + 2.483

Ga(s) =
e−0.4s

s6 − 4s4 + 0.5102
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Figure 3.24: Estimation Error (z(t)− ẑ(t)) for the Kalman Filter without process
noise information

− 4.42 10−5s5 − 5.56 10−4s4 + 5.44 10−3s3 − 4.08 10−2s2 + 0.2041s− 0.5102

s6 − 4s4 + 0.5102

Then the resulting filter is

Kh =
Ja(s)

1− Ja(s)Ga(s)

Suboptimal γ which is satisfied by suboptimal filter is found as ∼ 1.4 which is

larger than optimal γ which is 1.1486.

Figure 3.28 is the estimation error of the optimal and central suboptimal

filters together where the darker one with smaller amplitude is the result of

Mirkin’s method. It is seen that central suboptimal filter reduces the effect of

noise by the help of low pass filter characteristics. This is due to the gain of

the optimal filter at s = +∞, i.e., in Case 1 to 2 we have F (∞) = γ, which

means that the high frequency component of the noise is amplified/attenuated

by a factor of γ. Whereas the central suboptimal filter of [17] is always strictly
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Figure 3.25: Estimation Error (z(t)− ẑ(t)) for the Kalman Filter without process
noise information

proper, hence high frequency noise is always filtered. However avarage value of

estimation error of suboptimal filter is larger than that of the optimal filter where

average error values of optimal filter and suboptimal values are 2.611 and 4.076

respectively in the time period [0, 25] and −2.176 and −3.77 respectively in the

time period [26, 50].

Case 4 in Section 3.2.1

Necessary calculations have been performed as in above example to compare

with the another designed filter. Suboptimal γ ≈ 3 which is greater than optimal

γ which has been found as 2.8245. The expressions that form the estimator are

found as below:

Ja(s) = − 21.16s3 + 50.68s2 + 17.4s + 1.254

s4 + 10.32s3 + 26.56s2 + 24.77s + 12.55

Ga(s) =
0.051(s + 10)e−2s

s7 + 0.1s6 − 4s5 − 0.4s4 + 0.5102s + 0.05102
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Figure 3.26: Dynamic System for the Mirkin’s Approach
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Figure 3.27: Estimator to be Designed by Mirkin’s Approach

+
0.042s6 − 0.143s5 + 0.268s4 − 0.578s3 + 0.92s2 − 0.97s + 0.517

s7 + 0.1s6 − 4s5 − 0.4s4 + 0.5102s + 0.05102

Figure 3.29 shows the performance of the filters in comparison with previosly

designed filter. Similar to the previous graph, darker one with smaller bandwidth

is the result of Mirkin’s method. Similar to previous one, avarage error value of

Mirkin’s suboptimal filter is larger than the error of optimal filter where aver-

age error values of optimal filter and suboptimal values are 12.623 and 13.522

respectively in the time period [0, 25] and −11.05 and −11.44 respectively in the

time period [26, 50].

This chapter ends with these comparisons which make us confident with our

technique. It seems that the proposed filter makes successful state estimation for

time delay systems. One can find the main conclusions of this work as well as

probable future works on this study in the next chapter.
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Figure 3.28: Estimation Error (z(t)− ẑ(t)) for Case 1 with Mirkin’s Approach
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Figure 3.29: Estimation Error (z(t)− ẑ(t)) for Case 4 with Mirkin’s Approach
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Chapter 4

CONCLUSIONS

In this study, different aspects of filter design for time delay systems are discussed.

The goal is to eliminate the effect of time delay and noise as much as possible. The

advantages of H∞ filtering against time delay and noisy data are discussed. The

methods from the literature are considered. Also, the mixed sensitivity problem

for H∞ controller design is examined. The similarity between filtering and control

problems are realized and a duality between two problems is established. In this

framework, a novel approach was proposed to estimate the state of a linear system

with time delay in state variables or measurements. In addition to single output

case multi-sensor case with different delay and noise characteristics is discussed.

Some optimal and sub-optimal solution methods are proposed. The developed

method was applied on a vehicle tracking problem and the state of the vehicle is

estimated under noisy and delayed measurements. Different amounts of delays

are examined with successful results. Some advantages of the proposed method

in this work are:

The designed filter has a simple structure (3.11); one needs to compute the

performance level γ and two functions R1 and R2. In the examples, R1 is a

low order rational function whereas R2 is an FIR filter whose coefficients can
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be computed using the formulae in Chapter 2. This technique does not need to

solve any type of Linear Matrix Inequality or Algebraic Riccati Equation which

are proposed by all other techniques in previous works.

This method can also handle delays in the state equations. Here we have

approximated the state delay to obtain a quick solution. However an exact

solution is still possible by using the method proposed by [2]. This technique

does not assume any noise statistics.

A number of improvements can be made for this proposed technique. In multi-

delay case proposed method designs a suboptimal filter which is the combination

of many optimal filters. So, as a continuation of this study, multi delay case

solution can be upgraded to seek an optimal filter for the linear system. Also,

this approach can be used in other applications where estimation problems play

an important role, e.g. estimating the queue length of a network traffic in active

queue management, where many delayed measurements can be available to make

the estimation.
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[1] C. Foias, H. Özbay, A. Tannenbaum, Robust Control of Infinite Dimensional

Systems: Frequency Domain Methods, Springer-Verlag, London, 1996.
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[35] S. Ezercan and H. Özbay, H∞ Filter Design for Vehicle Tracking Under

Delayed and Noisy Measurements, IEEE Intelligent Vehicles Symposium,
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