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1. Introduction

An inversion sequence of length n is an integer sequence e = e0e1 · · · en such that 0 ≤ ei ≤ i for 
each 0 ≤ i ≤ n. We denote by In the set of inversion sequences of length n. There is a bijection be-
tween In and Sn+1, the set of permutations of length n + 1. Given any word τ of length k over the 
alphabet [k] := {0, 1, · · · , k − 1}, we say that an inversion sequence e ∈ In contains the pattern τ if 
there is a subsequence of length k in e that is order isomorphic to τ ; otherwise, we say that e avoids 
the pattern τ . For instance, e = 010213211 ∈ I8 avoids the pattern 201 because there is no subse-
quence e jekel of length three in e with j < k < l and ek < el < e j . On the other hand, e = 010213211
contains the patterns 120 and 0000 because it has the subsequence − − −2 − 3 − 1− order isomor-
phic to 120, and the subsequence −1 − −1 − −11 order isomorphic to 0000. For a given pattern 
τ , we use In(τ ) to denote the set of all τ -avoiding inversion sequences of length n. Similarly, for a 
given set of patterns B , we set In(B) = ∩τ∈B In(τ ). Pattern-avoiding permutation classes have been 
thoroughly studied by researchers for more than forty years; for some highlights of the results, see 
(Kitaev, 2011) and references therein. A systematic study of pattern-avoidance for inversion sequences 
was initiated recently by Mansour and Shattuck (2015) for the patterns of length three with non-
repeating letters and by Corteel et al. (2016) for repeating and non-repeating letters. Martinez and 
Savage (2018) generalized and extended the notion of pattern-avoidance for the inversion sequences 
to triples of binary relations that lead to new conjectures and open problems. Many successfully 
studied research programs for permutations such as pattern-avoidance in terms of vincular patterns, 
pairs of patterns, and longer patterns have already been initiated to study for inversion sequences; 
for some recent results, see (Auli and Elizalde, 2021; Beaton et al., 2019; Bouvel et al., 2018; Cao 
et al., 2019; Chern, 2023; Duncan and Steingrímsson, 2011; Hong and Li, 2022; Lin, 2018, 2020; 
Lin and Fu, 2021; Lin and Yan, 2020; Mansour and Shattuck, 2022; Yan and Lin, 2020) and refer-
ences therein. In the context of inversion sequences, two sets of patterns B1 and B2 are considered 
Wilf equivalent if |In(B1)| = |In(B2)| for all n ≥ 0, that is, they have the same counting sequence. 
Note that there are thirteen patterns of length three up to order isomorphism; we denote them by 
P3 = {000, 001, 010, 100, 011, 101, 110, 021, 012, 102, 120, 201, 210}. Yan and Lin (2020) completed 
the classification of the Wilf-equivalences for inversion sequences avoiding pairs of length-three pat-
terns. They showed that there are 48 Wilf classes among 78 pairs; for a complete list of the classes 
with open cases in terms of enumeration, see Table 1 and 2 in Yan and Lin (2020). In this paper, we 
solve six open cases for such pattern classes: In(000, 021), In(102, 021), In(100, 012), In(120, 210), 
Wilf-equivalent In(011, 201) and In(011, 210), and Wilf-equivalent In(100, 021) and In(110, 021). Re-
cently, Testart (2022) also solved the following cases: In(010, 000), In(010, 110), In(010, 120), and the 
Wilf-equivalent pairs In(010, 201) and In(010, 210).

For simplicity of the notation, we leave curly brackets and use In(τ1, · · · , τm) instead of 
In({τ1, · · · , τm}) for a given set of patterns B = {τ1, · · · , τm} throughout the paper. We shall use an 
algorithmic approach based on generating trees to enumerate pattern-restricted inversion sequences. 
For some earlier results, in the context of pattern-restricted permutations, see (Vatter, 2008; Zeil-
berger, 1998) and references therein. In this paper, we present applications of our algorithm only for 
the class In(B) where either B includes a single pattern or a pair of patterns of length three. However, 
the method applies to other inversion sequences with various pattern restrictions; for an application 
of the method to a pattern of length four, see Mansour (2023). As we will see, the algorithm outputs 
either an accurate description of the succession rules of the generating tree for the given avoidance 
class or an ansatz based on which we can figure out the complete description of the generating tree. 
For most cases, we can use the kernel method (Banderier et al., 2002) to compute the generating 
functions and then obtain an exact enumerating formula for the corresponding pattern class or get 
a functional equation for the generating function. The latter case yields a procedure to calculate the 
coefficients of the generating function up to a given index.

We organize the paper as follows: In Section 2, we present our algorithm and demonstrate how 
it works on some examples such as B = {000, 001, 012} and B = {000, 001}. In Section 3, we con-
sider the open cases from single pattern of length three and obtain functional equations for the 
generating functions of In(100), and Wilf-equivalent In(201) and In(210). In Section 4, we obtain 
the generating trees for the classes In(000, 021), In(100, 021), In(110, 021), In(102, 021), In(100, 012), 
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In(011, 201), In(011, 210) and In(120, 210) by using our algorithm. Then we use the kernel method, 
obtain the corresponding generating functions, and determine the counting sequences for them. In 
the last section, we extend our algorithm to the restricted growth sequences; see the last section of 
the paper for definitions. We present explicit formulas for the generating functions for the number of 
restricted growth sequences of length n that avoid either {12313, 12323}, {12313, 12323, 12333}, or 
{123 · · · �1}.

2. An algorithm based on generating trees

Any set C of discrete objects with a notion of a size such that for each n, there are finitely many 
objects of size n is called a combinatorial class. A generating tree (see West, 1996) for C is a rooted, 
labelled tree whose vertices are the objects of C with the following properties: (i) each object of C
appears exactly once in the tree; (ii) objects of size n appear at level n in the tree (the root has 
level 0); (iii) the children of some object are obtained by a set of succession rules of the form that 
determines the number of children and their labels.

Note that any pattern over the alphabet [k] can be extended to an inversion sequence. Suppose a 
pattern τ = τ1 · · ·τm is given and let {0, 1, . . . , t} denote the set of all letters appeared in τ . We define 
Lτ to be the set of all inversion sequences θ(1)τ1θ

(2)τ2 · · · θ(m)τm such that the length of the inversion 
sequence θ(1)τ1θ

(2)τ2 · · · θ( j)τ j is minimal for each j = 1, 2, . . . , m. Note that some words θ( j)s might 
be empty. By the minimality condition on the lengths of θ(1), . . . , θ(m) , we have that the length of any 
pattern in Lτ is at most m + t . For instance, if τ = 021, then m = 3, t = 2, and Lτ = {0021, 0121}; if 
τ = 001, then m = 3, t = 1, and Lτ = {001}. Clearly, any inversion sequence e avoids B if and only if e
avoids L = ∪{τ∈B}Lτ . For any set of patterns B , we identify B with the set of patterns LB = ∪{τ∈B}Lτ .

For a given set of patterns B , let IB = ∪∞
n=0 In(B). We will construct a pattern-avoidance tree T (B)

for the class of pattern-avoiding inversion sequences IB . The tree T (B) is considered empty if no 
inversion sequence of arbitrary length avoids the set B . Otherwise, the root can always be taken as 0, 
that is, 0 ∈ T (B). Starting with this root which stays at level 0, the remainder of the tree T (B) can 
then be constructed in a recursive manner such that the nth level of the tree consists of exactly the 
elements of In(B) arranged in such a way that the parent of an inversion sequence e0e1 · · · en ∈ In(B)

is the unique inversion sequence e0e1 · · · en−1 ∈ In−1(B). The children of e0e1 · · · en−1 ∈ In−1(B) are 
obtained from the set {e0e1 · · · en−1en | en = 0, 1, . . . , n} by applying the pattern restrictions of the 
patterns in B . We arrange the nodes from the left to the right so that if e = e0e1 · · · en−1i and e′ =
e0e1 · · · en−1 j are children of the same parent e1 · · · en−1, then e appears on the left of e′ if i < j. See 
Fig. 1 for the first few levels of T ({012}). Note that the size of In(B) equals the number of nodes in 
the n-th level of T (B).
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Fig. 1. First four levels of T ({012}).

For a given set of patterns B , it plays an essential role to understand the nature of the tree T (B)

to enumerate the class IB = ∪∞
n=0 In(B). Let T (B; e) denote the subtree consisting of the inversion 

sequence e as the root and its descendants in T (B). In our arguments, it will be important to de-
termine if the subtrees starting from two distinct nodes e, e′ ∈ T (B) are isomorphic or not, that is, 
T (B; e) ∼= T (B; e′) in the sense of plane tree isomorphism. Lemma 2.1 provides an easy to check 
criteria for this task, for similar results, see Brändén and Mansour (2005).
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Lemma 2.1. Let t be the length of the longest pattern in B. We have that T (B; e) ∼= T (B; e′) for two inversion 
sequences e, e′ ∈ T (B) if and only if T 2t(B; e) ∼= T 2t(B; e′) where T m(B; e) denotes the finite tree corre-
sponding to the first m − 1 level of T (B; e).

Proof. Since avoiding B is equivalent to avoiding LB = ∪{τ∈B}Lτ in the set of inversion sequences, we 
assume that any pattern in B is an inversion sequence.

Let e, e′ ∈ T (B). Clearly, T (B; e) ∼= T (B; e′) implies T 2t(B; e) ∼= T 2t(B; e′).
Now, let us assume that T (B; e) � T (B; e′) as plane trees. We read the nodes of T (B; e) (resp. 

T (B, e′)) from top to bottom and from left to right and denote them as e j (resp. e′
j) with e0 = e

(resp. e′
0 = e′). Since T (B; e) � T (B; e′), there exists s ≥ 0 minimal such that (1) the number children 

of e j equals the number of children of e′
j , for j = 1, 2, . . . , s − 1, and (2) the number of children of es

does not equal the number of children of e′
s . By construction of T (B), for all j = 1, 2, . . . , s − 1, there 

exist letters pij, qij such that the inversion sequences ef j := ep1 j p2 j · · · pi j j and e′ f ′
j := e′q1 jq2 j · · ·qi j j

avoid B , while the inversion sequence efs := ep1 p2 · · · pis contains τ ∈ B; the inversion sequence 
e′ f ′

s = e′q1q2 · · ·qis avoids B and there exists a bijection α such that q j = α(p j), for all j = 1, 2, . . . , is .
Any occurrence of τ in efs can use at most t − 1 letters of f s . Thus, there is a subsequence 

g = pk1 · · · pkm of f s of minimal length m such that the word eg contains τ and m ≤ t − 1 but the 
word e′ g′ avoids B , where g′ = qk1 · · ·qkt−1 is a subsequence of f ′

s .
Since efs is an inversion sequence, then there exists an inversion sequence eg̃ ∈ Leg such that eg̃ is 

a subsequence of efs . Since each letter p j is mapped to the letter q j by α, we see that the sequence 
g̃ is mapped to g̃′ . Since g̃′ is a subsequence of f ′

s , we see that e′ g̃′ is an inversion sequence in Le′ g′ .
Thus, the inversion sequence eg̃ contains τ such that the length of g̃ is at most t + t − 1 and the 

inversion sequence e′ g̃′ avoids τ such that the length of g̃′ is at most t + t − 1. Hence, T 2t(B; e) �
T 2t(B; e′). �
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Fig. 2. First three levels of T ({000,021}) and T [{000,021}].

We define an equivalence relation on the set of nodes of T (B) as follows. Let v = v0 v1 · · · va and 
w = w0 w1 · · · wb be two nodes in T (B). We say that v is equivalent to w , denoted by v ∼ w , if 
and only if T (B; v) ∼= T (B; w). Note that Lemma 2.1 performs a finite procedure for checking v ∼ w . 
Define V [B] to be the set of all equivalence classes in the quotient set T (B)/ ∼. We will represent 
each equivalence class [v] by the label of the unique node v which appears on the tree T (B) as the 
left-most node at the lowest level among all other nodes in the same equivalence class. Let T [B] be 
the same tree T (B) where we replace each node v by its equivalence class label, see Fig. 2. That is, 
w is relabelled by v such that

• v ∼ w , and
4
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• either a < b or a = b such that, in the list of the nodes at level a in the tree T (B) from left to 
right, the node v does appear before the node w .

Next, we define an algorithm for finding T [B] for a given set of patterns B with 0 /∈ B . The algo-
rithm takes the pattern set B and an integer D as input and outputs a set of succession rules for the 
corresponding generating tree. As we run the algorithm, we use the set Q D and R to keep track of 
the equivalence classes that are obtained at set D and the deduced succession rules for the generating 
tree that are obtained up to step D , respectively. The details are as follows:

(1) We initialize the tree T [B] by the root 0, and define Q 0 = {0} and R = ∅.
(2) Let D be any positive integer.
(3) For all i = 1, 2, . . . , D ,

(3.1) for any w ∈ Q i−1, we denote the set of all children of w in T (B) by Nw . We denote the 
set of all children of all new equivalence classes at ith step by Mi = ∪w∈Q i−1 Nw . If Mi = ∅, 
then we stop the loop and go to (4).

(3.2) we initialize the set Q i (set of new equivalence classes at ith step) to be empty set. For 
each child w in Mi ,
(3.2.1) we find v ∈ ∪i−1

j=0 Q j , if possible, such that w ∼ v , where we use Lemma 2.1 to check 
that w ∼ v holds or not;

(3.2.2) otherwise, we add the equivalence class w to Q i .
(3.3) based on (3.2), we add the rule w � v1 v2 · · · vs to the set R , where v j is the label of the 

jth child of w , from left to right, in T [B].
(4) If we stop at (3.1), then we have the finite set of labels ∪i−1

j=0 Q j and finite set of succession rules 
R that specifies the tree T [B] with the root 0. In this context, B is called regular.

(5) Otherwise, we have set of succession rules R that specifies the tree T [B] with its root 0 up to 
level k(D) where k(D) is an integer depending on D . We could guess, if possible, all the set of 
succession rules of T [B] based on R , then use Lemma 2.1 to prove this claim. In case we fail 
to guess the whole set of the succession rules, then either we increase D or we say that our 
procedure does not lead us to determine all succession rules of T [B].

We will use the following fact throughout the paper: for any pattern collection B , T (B) ∼= T [B] (as 
plane trees) and the number of nodes at the nth level of the generating tree is equal to the number 
of inversion sequences of length n avoiding the patterns in B .

Example 2.2. Let B = {000, 001, 012}, we apply our procedure with D = 5 as follows: 

i Mi Comments Q i R

0 {0} ∅
1 {00,01} 00 � 0, 01 � 0, 01 � 00 {00,01} {0 � 00,01}
2 {010,011} 010 ∼ 00, 011 � v ∈ Q 0 ∪ Q 1 {011} {0 � 00,01, 01 � 00,011}
3 {0110} 0110 ∼ 00 ∅ {0 � 00,01

01 � 00,011, 011 � 00}.

Hence, the generating tree T [B] given by the algorithm has the following succession rules:

Root: 0, Rules: 0 � 00,01, 01 � 00,011, 011 � 00.

We want to find the generating function R(x) = ∑
n≥0 |In(B)|xn+1. We use Aw(x) to denote the 

generating function for the number of nodes in the subtree T (B; w). Hence, by the generating 
tree T [B], we have R(x) = x + xA00(x) + xA01(x), A00(x) = x, A01(x) = x + xA00(x) + xA011(x), and 
A011(x) = x + xA00(x). By solving for R(x), we obtain that R(x) = x4 + 2x3 + 2x2 + x.
5
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Example 2.3. Let B = {000, 001}. By applying our procedure with D = 5, we guess that the tree T [B]
is given by

Root: a0, Rules: a0 � b0a1, am � b0b1b2 . . .bmam+1 bm � b0b1b2 . . .bm−1,

where a0 = 0, am = 012 · · ·m, b0 = 00 and bm = 012 · · · (m − 1)mm for m ≥ 1. We will make use of 
Lemma 2.1 to verify the succession rules of the generating tree. Since other cases are very similar, we 
only show that the succession rule am � b0b1b2 . . .bmam+1 holds. Let v = 012 · · ·m, then the children 
of v in T (B) are 012 · · ·mj with j = 0, 1, . . . , m + 1. By using Lemma 2.1, we see that 012 · · ·m0 ∼ 00, 
012 · · ·mj ∼ 012 · · · ( j − 1) j j with j = 1, 2, . . . , m, and for j = m + 1 we have a new equivalence class 
012 · · ·m(m + 1). This verifies the succession rule am � b0b1b2 . . .bmam+1.

We aim at computing the generating function R(x) = ∑
n≥0 |In(B)|xn+1. We use Aw (x) to denote 

the generating function for the number of nodes in the subtree T (B; w). Let us define Bm(x) =
A012···m(x) and Cm(x) = A012···(m−1)mm(x), for m ≥ 1. Then, by the generating tree T [B], we obtain 
that R(x) = x + xA00(x) + xA01(x), A00(x) = x, and

Bm(x) = x + x2 + x(C1(x) + · · · + Cm(x)) + xBm+1(x),

Cm(x) = x + x2 + x(C1(x) + · · · + Cm−1(x)).

We define G(x, u) = ∑
m≥1 Gm(x)um−1, where G ∈ {B, C}. Hence, by multiplying the recurrence rela-

tions by um−1 and summing over m ≥ 1, we have

B(x, u) = x(1 + x)

1 − u
+ x

1 − u
C(x, u) + x

u
(B(x, u) − B(x,0)), (2.1)

C(x, u) = x(1 + x)

1 − u
+ x

1 − u
C(x, u) − xC(x, u). (2.2)

By solving (2.2) for C(x, u), we have

C(x, u) = x(1 + x)

(1 + x)(1 − u) − x
.

The equations of type (2.1) can be solved systematically using the kernel method (Banderier et al., 
2002). In this case, if we assume that u = x, then

B(x,0) = x(1 + x)

1 − x
+ x

1 − x
C(x, x) = x(1 + x)

1 − x − x2
. (2.3)

Hence, by comparing coefficients of xn+1, we obtain that |In(000, 001)| = F ibn+2, where F ibn is the 
nth Fibonacci number, that is, F ibn = F ibn−1 + F ibn−2 with F ib0 = 0 and F ib1 = 1.

3. Set of patterns B ⊂P3 with |B| = 1

As we discussed in the introduction, the first systematic study of pattern-avoiding inversion se-
quences was carried out for the case of a single pattern of length three in Corteel et al. (2016) and 
Mansour and Shattuck (2015). The results of these papers demonstrated that there are some remark-
able connections with pattern-restricted inversion sequences and other well-studied combinatorial 
structures. Some of the highlights of their results can be summarized as follows: the odd-indexed 
Fibonacci numbers count In(012), the large Schröder numbers count In(021), the Euler up/down num-
bers count In(000), the Bell numbers count In(011), and powers of two count In(001); for details see 
the above references. There are still no enumerating formulas for the avoidance sets In(100) and 
In(120), and Wilf-equivalent In(201) and In(210). For the enumeration of the pattern 010, see the 
recent preprint (Testart, 2022). In this section, we use this paper’s algorithmic approach and derive 
functional equations for the generating functions of the classes In(100) and In(201). For similar re-
sults in the context of pattern-restricted permutations, see Nakamura and Zeilberger (2013), Yang and 
Zeilberger (2020).
6
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3.1. Class In(100)

From now, we denote the constant word kk · · ·k of length d by kd , for any letter k and positive 
integer d. Our algorithm allows us to guess the generating tree T [{100}].

Theorem 3.1. The generating tree T [{100}] is given by

Root: a1, Rules: am � am+1bm,1 · · ·bm,m, bm, j � (bm, j−1)
jbm+1, j · · ·bm+1,m+1,

where am = 0m and bm, j = 0m j, for all 1 ≤ j ≤ m.

Proof. We proceed by using our algorithm. We label the inversion sequences 0 ∈ I0 by 0. Clearly, 
the children of 0m are 0m+1, 0m1, . . . , 0mm. Thus it remains to show that the children of 0m j are 
(0m( j − 1)) j(0m+1 j) · · · (0m+1(m + 1)). Let vi = 0m ji, we have that

• if i = 0, 1, . . . , j − 1, then vi ∼ 0m( j − 1) in T ({100}) (by removing the letter i and subtracting 1
from each letter bigger than i);

• if i = j, j + 1, . . . , m, then vi = 0m ji ∼ 0m+1i in T ({100}) (by replacing the letter j by 0),

which completes the proof. �
To study the generating function R(x) = ∑

n≥0 |In(100)|xn+1, we define Am(x) and Bm, j(x) to be 
the generating functions for the number of nodes in the subtrees T (B; 0m) and T (B; 0m j), respec-
tively. Let Bm(x) = ∑m

j=1 Bm, j(x) and Bm,0(x) = Am+1(x). Thus, from the generating tree’s succession 
rules, we get

Am(x) = x + xAm+1(x) + xBm(x), m ≥ 1,

Bm, j(x) = x + jxBm, j−1(x) + xBm+1, j(x) + · · · + xBm+1,m+1(x), j = 1,2, . . . ,m.

Then, we define the following bivariate generating functions: A(x, v) = ∑
m≥1 Am(x)vm−1, Bm(x,

u) = ∑m
j=1 Bm, j(x)um− j , and B(x, v, u) = ∑

m≥1 Bm(x, u)vm−1. Note that the system of recurrences 
can be written as follows:

A(x, v) = x

1 − v
+ x

v
(A(x, v) − A(x,0)) + xB(x, v,1),

B(x, v, u) = x

(1 − v)(1 − vu)
− xu

∂

∂u

B(x, v, u) − B(x, v,0)

u
− xu

∂

∂u

A(x, uv) − A(x,0)

uv

+ x
∂

∂v
(

v

u
(B(x, v, u) − B(x, v,0)) + A(x, uv) − A(x,0)

u
)

+ x

uv(1 − u)
(B(x, v, u) − uB(x, uv,1) − (1 − u)B(x,0,0))

− x

uv
(B(x, v,0) − B(x,0,0)).

By taking v = x into the first equation, we get the following result.

Theorem 3.2. The generating function 
∑

n≥0 |In(100)|xn+1 is equal to A(x, 0) that satisfies the following func-
tional equation:

A(x,0) = x + xB(x, x,1).

1 − x

7



I. Kotsireas, T. Mansour and G. Yıldırım Journal of Symbolic Computation 120 (2024) 102231
We can not solve this functional equation to obtain an explicit expression for the generat-
ing function. But the functional equation can be used to obtain the first n terms of the gen-
erating function A(x, 0) for any positive integer n. The first 24 terms are 1, 2, 6, 23, 106, 565, 
3399, 22678, 165646, 1311334, 11161529, 101478038, 980157177, 10011461983, 107712637346, 
1216525155129, 14380174353934, 177440071258827, 2280166654498540, 30450785320307436, 
421820687108853017, 6050801956624661417, 89738550379292147192, 1374073440225390131037, 
21694040050913295537753.

3.2. Class In(201) or In(210)

Based on the algorithm’s ansatz, we get the same succession rules for the generating trees of 
In(201) and In(210). The generating tree is given as follows (from now on we state the generating 
trees without proofs, since they can be handled similarly to the proof of Theorem 3.1):

Root: a1, Rules: am � am+1am+1bm,2bm,3 · · ·bm,m,

bm, j � am+3− jbm+3− j,2 · · ·bm+1, jbm+1, jbm+1, j+1 · · ·bm+1,m+1,

where am = 0m and bm, j = 0m j, for all m ≥ 1 and 2 ≤ j ≤ m.
This result implies the following corollary:

Corollary 3.3. |In(201)| = |In(210)| for all n ≥ 1.

For a bijection between these two classes, see Mansour and Shattuck (2015).
To study the generating function R(x) = ∑

n≥0 |In(201)|xn+1, we define Am(x) and Bm, j(x) to be 
the generating functions for the number of nodes in the subtrees T (B; 0m) and T (B; 0m j), respec-
tively. Let Bm(x) = ∑m

j=2 Bm, j(x). Thus,

Am(x) = x + 2xAm+1(x) + xBm(x), m ≥ 1, (3.1)

Bm, j(x) = x + xAm+3− j(x) + x
j∑

i=2

Bm+1− j+i,i(x) + x
m+1∑
i= j

Bm+1,i(x), 1 ≤ j ≤ m. (3.2)

Clearly, A1(x) = x + 2xA2(x).
We define the generating functions: A(x, v) = ∑

m≥1 Am(x)vm−1, Bm(x, u) = ∑m
j=2 Bm, j(x)um− j , 

and B(x, v, u) = ∑
m≥2 Bm(x, u)vm−2. Then by multiplying (3.1) by vm−1 and summing over m ≥ 1, 

we obtain

A(x, v) = x

1 − v
+ 2x

v
(A(x, v) − A(x,0)) + xv B(x, v,1). (3.3)

Note that A2(x) = (A(x, 0) − x)/(2x).
By multiplying (3.2) by um− j vm−1 and summing over 2 ≤ j ≤ m, we obtain

B(x, v, u) = x

(1 − v)(1 − vu)
+ x

u2 v2(1 − v)
(A(x, uv) − uv

2x
(A(x,0) − x) − A(x,0))

+ x

uv(1 − v)
(B(x, v, u) − B(x, v,0))

+ x

uv(1 − u)
(B(x, v, u) − uB(x, uv,1)) − x

uv
B(x, v,0).

Hence, by setting v = 2x into (3.3), we obtain the following functional equation for the generating 
function. For a similar functional equation, see Mansour and Shattuck (2015).
8
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Theorem 3.4. The generating function 
∑

n≥0 |In(201)|xn+1 is equal to A(x, 0) that satisfies the following func-
tional equation:

A(x,0) = x

1 − 2x
+ 2x2 B(x,2x,1).

By using the above theorem, we can obtain the first n terms of the generating function 
A(x, 0) for any positive integer n. The first 24 terms are 1, 2, 6, 24, 118, 674, 4306, 29990, 
223668, 1763468, 14558588, 124938648, 1108243002, 10115202962, 94652608690, 905339525594, 
8829466579404, 87618933380020, 883153699606024, 9028070631668540, 93478132393544988, 
979246950529815364, 10368459385853924212, 110866577818487410864.

4. Set of patterns B ⊂P3 with |B| = 2

Inversion sequences avoiding pairs of patterns of length three was first systematically studied 
by Yan and Lin (2020). They determined that there are 48 Wilf classes among 78 pairs and pro-
vided enumerating formulas for some of the classes; for a complete list see Table 1 and 2 in Yan 
and Lin (2020). In this section, we first obtain the generating trees corresponding to the classes 
In(000, 021), In(100, 021), In(110, 021), In(102, 021), In(100, 012), In(011, 201), In(011, 210) and 
In(120, 210) by using our algorithm. It will follow from the generating trees that classes In(011, 201)

and In(011, 210) are Wilf-equivalent, and In(100, 021) and In(110, 021) are Wilf-equivalent. Then we 
use the kernel method and determine the counting sequences for them, see Table 1. For some addi-
tional new results in this direction, see Testart (2022).

Table 1
Summary of the results.

B an = |In(B)| reference

(000,021) 1
2 (3an−1 + an − 3an+1 + an+2)

an = ∑n
k=0(−1)n−k

(n
k

)(2k
k

) Theorem 4.1

(100,021)∼(110,021) n2+n+6
2(n+3)(n+2)

(2n+2
n+1

)
Theorem 4.3

(102,021)
∑n

k=0
1

k+1

(2k
k

) − 1 − 1
6 n3 − 11

6 n + 2n Theorem 4.4

(100,012) (n+7)F ibn+15F inn+1+nF ibn+2
5 − 1 − (n+2

2

)
Theorem 4.10

(011,201)∼(011,210) functional equation for the generating function Theorem 4.11

(120,210) functional equation for the generating function Theorem 4.12

4.1. Class In(000, 021)

Let B = {000, 021}. When we apply our algorithm to the pattern class In(B), we obtain a generat-
ing tree that leads to an enumerating formula for this case.

We define r0 = 0, am = 0011 · · ·mm, bm = 0011 · · · (m − 1)(m − 1)m with m ≥ 0, and cm =
01122 · · ·mm, dm = 01122 · · · (m − 1)(m − 1)m with m ≥ 1. The generating tree T [B] is given by

Root: r0, Rules: r0 � a0d1, am � bm+1bm · · ·b0, bm � ambmbm−1 · · ·b0, m ≥ 0,

cm � amdm+1dm · · ·d1, dm � bmcmdmdm−1 · · ·d1, m ≥ 1.

This result follows from the following observations. We label the inversion sequences 0 ∈ I0 and 
00, 01 ∈ I1 by r0 and a0, d1, respectively. Thus, r0 � a0d1. It remains to show that the generating 
tree’s succession rules hold. Since the other cases are very similar, we will verify only the rule 
am � bm+1bm · · ·b0 for all m ≥ 0. Let e = e0e1 · · · en be any inversion sequence is labelled by am . 
So, by definitions, we have that T (B; e) ∼= T (B; am). On the other hand, the inversion sequence 
that labelled by am j = 0011 · · ·mmj where j = m + 1, m + 2, . . . , 2m + 2 (otherwise, am j does not 
avoid B). Moreover, (i) am(m + 1) = 0011 · · ·mm(m + 1) = bm+1; (ii) am(m + j) = 0011 · · ·mm(m + j); 
9
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the subtree T (B; am(m + j)) is isomorphic to the subtree T (B; bm+2− j) by removing the letters 
m + 2 − j, m + 3 − j, . . . , m and decreasing each letter greater than m by 2 j − 1. Thus, Lemma 2.1
gives the children of the node with label am are exactly the nodes labelled by bm+1, bm, . . . , b0, that 
is, am � bm+1bm · · ·b0 with m ≥ 0.

In order to find an explicit formula for the generating function for the number of inversion se-
quences in In(B), we define R(x) (respectively, Am(x), Bm(x), Cm(x), and Dm(x)) to be the generating 
function for the number of nodes in the subtrees T (B; 0) (respectively, T (B; am), T (B; bm), T (B; cm), 
and T (B; dm)), where its root is at level 0. Hence, by the rules of the tree T (B), we have

R(x) = x + xA0(x) + xD1(x), (4.1)

Am(x) = x + x
m+1∑
j=0

B j(x), m ≥ 0, (4.2)

Bm(x) = x + xAm(x) + x
m∑

j=0

B j(x), m ≥ 0, (4.3)

Cm(x) = x + xAm(x) + x
m+1∑
j=1

D j(x), m ≥ 0, (4.4)

Dm(x) = x + xBm(x) + xCm(x) + x
m∑

j=1

D j(x), m ≥ 0. (4.5)

We define A(x, u) = ∑
m≥0 Am(x)um , B(x, u) = ∑

m≥0 Bm(x)um , C(x, u) = ∑
m≥1 Cm(x)um−1, and 

D(x, u) = ∑
m≥1 Dm(x)um−1. Hence, (4.1)-(4.5) can be written as

R(x) = x + xA(x,0) + xD(x,0), (4.6)

A(x, u) = x

1 − u
+ x

u
(B(x, u) − B(x,0)) + x

1 − u
B(x, u), (4.7)

B(x, u) = x

1 − u
+ xA(x, u) + x

1 − u
B(x, u), (4.8)

C(x, u) = x

1 − u
+ x

u
(A(x, u) + D(x, u) − A(x,0) − D(x,0)) + x

1 − u
D(x, u), (4.9)

D(x, u) = x

1 − u
+ x

u
(B(x, u) − B(x,0)) + xC(x, u) + x

1 − u
D(x, u). (4.10)

By (4.7)-(4.8), we have

(1 − x)u − x2 − u2

u(1 − u − x)
A(x, u) = − x2

u(1 − x)
A(x,0) + x

(1 − u − x)(1 − x)
. (4.11)

In this case for the kernel method, if we assume that u = x2M(x), where M(x) = 1−x−
√

1−2x−3x2

2x2 is the 
generating function for the Motzkin numbers, see Sloane (1996, Sequence A001006), then we obtain

A(x,0) = xM(x)

1 − x − x2M(x)
= xM2(x).

By (4.11)

A(x, u) = x(ux + x2 − x)A(x,0) + u)

(1 − x)(u(1 − x) − x2 − u2)
= xM(x)(x2M(x) − u)

u2 + (x − 1)u + x2
. (4.12)

Thus, by (4.8)
10
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B(x, u) = x(1 + (1 − u)A(x, u))

1 − u − x
= xM(x)((u + x)x2M(x) − u + x2)

u2 + u(x − 1) + x2
. (4.13)

By substituting (4.9) into (4.10) with using (4.12)-(4.13), we obtain

((1 − x)u − x2 − u2)2

u(1 − u)
D(x, u) + x2((1 − x)u − x2 − u2)

u
D(x,0)

= xM(x)((x2 − x − 1)u2 + (x3 − 3x2 + 1)u + x4 + x2)

1 − u

+ x3M2(x)((x − 1)u2 + (x2 − x + 3)u + x3 + x2 + x − 2)

1 − u
. (4.14)

By differentiating this equation with respect to u and taking u = x2M(x), after some simple algebraic 
simplifications, we get

D(x,0) = x((x2 + 2x − 2)M(x) − x + 1)((1 − x)M(x) − 2)

(1 + x)(1 − 3x)
.

Hence, by (4.6), we obtain the following result.

Theorem 4.1. The generating function R(x) = ∑
n≥0 |In(000, 021)|xn+1 is given by

3x3 + x2 − 3x + 1

2x2
√

(1 + x)(1 − 3x)
− (1 − x)2

2x2

= x + 2x2 + 5x3 + 14x4 + 39x5 + 111x6 + 317x7 + 911x8 + 2627x9 + 7600x10 + · · · .

Moreover, by Sequence A002426 in Sloane (1996), we get for all n ≥ 1,

|In(000,021)| = 1

2
(3an−1 + an − 3an+1 + an+2),

where an = ∑n
k=0(−1)n−k

(n
k

)(2k
k

)
.

4.2. Class In(100, 021) and In(110, 021)

In this section, we will provide the rules for the generating trees T [{100, 021}] and T [{110, 021}]. 
The generating trees show that these two classes are equinumerous, and also lead to an exact enu-
merating formula. When we apply our algorithm to the class In(100, 021), we obtain the following 
rules for T [{100, 021}]:

Root: a0, Rules: am � am+1bmbm−1 · · ·b1, bm � cmbm+1bm · · ·b1, m ≥ 1,

cm � cm+1dmdm−1 · · ·d1e, dm � dm+1dm · · ·d1e, m ≥ 1,

e � d1e,

where am = 0m , bm = 0m1, cm = 0m10, dm = 0m102 and e = 0103. From a very similar argument 
presented in Section 4.1, it follows that the number of nodes at level n (the root is at level 0) in 
T [{100, 021}] is equal to the number of inversion sequences in In(100, 021).

Next, we will apply our algorithm to the class In(110, 021), and obtain the rules for the generating 
tree T [{110, 021}]:

Root: a0, Rules: am � am+1bmbm−1 · · ·b1, bm � cmbm+1bm · · ·b1, m ≥ 1,

cm � cm+1dmdm−1 · · ·d1e, dm � dm+1dm · · ·d1e, m ≥ 1,

e � d1e,
11
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where am = 0m , bm = 0m1, cm = 0m11, dm = 0m112 and e = 0113. The number of nodes at level n in 
T [{110, 021}] equals the number of inversion sequences in In(110, 021). From the above generating 
tree rules, we have that

Corollary 4.2. For all n ≥ 0, |In(100, 021)| = |In(110, 021)|.

As in the previous subsection, after translating the rules into a system of functional equations and 
then solving for 

∑
n≥0 |In(100, 021)|xn+1, we obtain the following result, the details are available in 

an earlier version of the present paper (Mansour and Yıldırım, 2022).

Theorem 4.3. The generating function R(x) = ∑
n≥0 |In(100, 021)|xn+1 is given by

(1 − 3x)2

2x2
√

1 − 4x
− (1 − 3x)(1 − x)

2x2
.

Moreover, |In(100, 021)| = n2+n+6
2(n+3)(n+2)

(2n+2
n+1

)
for all n ≥ 0.

4.3. Class In(102, 021)

Let B = {102, 021}. We will apply our algorithm to In(B) and characterize the generating tree T (B)

that leads to an exact enumerating formula for this class. We have that the generating tree T [B] is 
given by

Root: a0, Rules: am � am+1bmbm−1 · · ·b1, bm � cmbm+1dm · · ·d2e, m ≥ 1,

cm � cm+1cm+1, dm � f dm+1dm · · ·d1,

e � f d2e, f � f ,

where am = 0m , bm = 0m1, cm = 0m10, dm = 0m12, e = 0013, and f = 00130.
By similar techniques used in the previous cases, we obtain the following result. For more details 

on the proof, see Mansour and Yıldırım (2022).

Theorem 4.4. The generating function R(x) = ∑
n≥0 |In(102, 021)|xn+1 is given by

1 − √
1 − 4x

2x(1 − x)
− (2x2 − 2x + 1)(x3 − 2x2 + 3x − 1)

(1 − x)4(1 − 2x)
.

Moreover, |In(102, 021)| = ∑n
k=0

1
k+1

(2k
k

) − 1 − 1
6 n3 − 11

6 n + 2n.

4.4. Class In(100, 012)

Let B = {100, 012}. We start with the following lemmas.

Lemma 4.5. Let m ≥ 1. The generating function B(1)
m (x) for the number of words π ′ with n − 1 letters over 

alphabet {0, 1, . . . , m − 1}, n ≥ 1, such that 0mm0π ′ ∈ In+m+1(B) is given by x(1 + x)m−1 .

Proof. Clearly, any inversion sequence 0mm0π ′ ∈ In+m+1(B) can be decomposed as 0mm0 jπ( j) with 
j = 1, 2, . . . , m − 1. Note that the number of inversion sequences 0mm0 jπ( j) ∈ In+m+1(B) equals the 
number of inversion sequences 0 j j0θ( j) ∈ In+ j+1(B), where θ( j) is a word of length n − 2 over al-

phabet {0, 1, . . . , j − 1}. Hence, B(1)
m (x) = x + x 

∑m−1
j=1 B(1)

j (x), for all m ≥ 1. By induction on m, we 
complete the proof. �
12
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Lemma 4.6. Let m ≥ 1. The generating function B(2)
m (x) for the number of words π ′ with n − 1 letters over 

alphabet {0, 1, . . . , m}, n ≥ 1, such that 0mm0π ′ ∈ In+m+1(B) is given by x(1+x)m−1

1−x .

Proof. Similar to the proof of Lemma 4.5, we see B(2)
m (x) = x +xB(2)

m (x) +x 
∑m−1

j=1 B(1)
j (x), for all m ≥ 1. 

Then, by Lemma 4.5, we complete the proof. �
Lemma 4.7. Let m ≥ 1. The generating function B(3)

m (x) for the number of words π ′ with n − 1 letters over 
alphabet {0, 1, . . . , m − 1}, n ≥ 1, such that 0mmπ ′ ∈ In+m(B) is given by

(m + 1)x3(1 + x)m−2 − x(x2 − 2x − 1)(1 + x)m−2.

Proof. Similar to the proof of Lemma 4.5, we see B(3)
m (x) = x +xB(1)

m (x) +x 
∑m−1

j=1 B(3)
j (x), for all m ≥ 1. 

Define B(3)(x, u) = ∑
m≥1 B(3)

m (x)um . By multiplying the above recurrence by um and summing over 
m ≥ 1 with using Lemma 4.6, we obtain

B(3)(x, u) = xu(1 + x − u − 2ux)

(1 − u − ux)2
.

Then, by finding the coefficient of um , we complete the proof. �
Lemma 4.8. Let m ≥ 1. The generating function Bm(x) for the number of words π ′ with n − 1 letters over 
alphabet {0, 1, . . . , m}, n ≥ 1, such that 0mmπ ′ ∈ In+m(B) is given by

x((m − 1)x2(1 − x) + x + 1)(1 + x)m−2

(1 − x)2
.

Proof. Similar to the proof of Lemma 4.5, we see Bm(x) = x + xB(2)
m (x) + xBm(x) + x 

∑m−1
j=1 B(3)

j (x), for 
all m ≥ 1. By Lemmas 4.6 and 4.7, we complete the proof. �

When we apply our algorithm, we obtain the following generating tree.

Proposition 4.9. Let Tm(B) be the generating tree for all inversion sequence π = 0mmπ ′ that avoids 
{100, 012}. The generating tree T [B] is given by

Root: a1, Rules: am � am+1,T1,T2, . . . ,Tm,

where am = 0m with m ≥ 1.

Now, we are ready to find an explicit formula for the generating function

R(x) =
∑
n≥0

|In(100,012)|xn+1.

Theorem 4.10. The generating function R(x) is given by

R(x) = x(x6 − x5 − 3x4 + x3 + 3x2 − 3x + 1)

(1 − x)3(1 − x − x2)2

= x + 2x2 + 5x3 + 12x4 + 27x5 + 56x6 + 110x7 + 207x8 + 378x9 + 675x10 + · · · .

Moreover, by the sequence A001629 in Sloane (1996), for all n ≥ 0,

|In(100,012)| = (n + 7)F ibn + 15F inn+1 + nF ibn+2

5
− 1 −

(
n + 2

2

)
,

where F ibn is the nth Fibonacci number, see sequence A000045 in Sloane (1996).
13
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Proof. Let Rm(x) be the generating function for the number of nodes in the subtree T (B, 0m) of 
Proposition 4.9. Hence, Proposition 4.9 and Lemma 4.8 give

Rm(x) = x + xRm+1(x) + x
m∑

j=1

x(( j − 1)x2(1 − x) + x + 1)(1 + x) j−2

(1 − x)2
.

Define R(x, u) = ∑
m≥1 Rm(x)um−1. Then

R(x, u) = x

1 − u
+ x

u
(R(x, u) − R(x,0)) − (ux3 − ux2 + ux + u − 1)x2

(1 − u)(ux + u − 1)2(1 − x)2
.

Then by applying the kernel method with taking u = x, we obtain

R(x,0) = x(x6 − x5 − 3x4 + x3 + 3x2 − 3x + 1)

(1 − x)3(1 − x − x2)2
,

which completes the proof. �
4.5. Class In(011, 201)

Let B = {011, 201}. By applying our algorithm to In(B), we obtain the generating tree T [B] as 
follows:

Root: a1, Rules: am � am+1ambm,2 · · ·bm,m,

bm, j � (am+2− j)
2bm+3− j,2 · · ·bm, j−1bm, j · · ·bm,m,

where am = 0m with m ≥ 1 and bm, j = 0m j with 2 ≤ j ≤ m.
We define Am(x) and Bm, j(x) as the generating functions for the number of nodes in the subtrees 

T (B; am) and T (B; bm, j), respectively. Thus, the generating tree T [B], leads to

Am(x) = x + xAm+1(x) + xAm(x) + x(Bm,2(x) + · · · + Bm,m(x)), m ≥ 1,

Bm, j(x) = x + 2xAm+2− j(x) + x
j−1∑
i=2

Bm+1− j+i,i(x) + x
m∑

i= j

Bm,i(x), 2 ≤ j ≤ m.

Define A(x, v) = ∑
m≥1 Am(x)vm−1 and B(x, v, u) = ∑

m≥2
∑m

j=2 Bm, j(x)vm−2um− j . Then the above 
recurrence can be written as

A(x, v) = x

1 − v
+ xA(x, v) + x

v
(A(x, v) − A(x,0)) + xv B(x, v,1), (4.15)

B(x, v, u) = x

(1 − v)(1 − vu)
+ 2x

uv(1 − v)
(A(x, uv) − A(x,0))

+ x

uv(1 − v)
(B(x, v, u) − B(x, v,0)) + x

1 − u
(B(x, v, u) − uB(x, uv,1)). (4.16)

Then by taking v = x
1−x into (4.15), we obtain

Theorem 4.11. The generating function 
∑

n≥0 |In(011, 201)|xn+1 is equal to A(x, 0) that satisfies the follow-
ing functional equation

A(x,0) = x + x2

2
B(x, x/(1 − x),1).
1 − 2x (1 − x)

14
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Applying this theorem, we obtain the first 20 terms of A(x, 0) as 1, 2, 5, 15, 52, 202, 859, 
3930, 19095, 97566, 520257, 2877834, 16434105, 96505490, 580864901, 3573876308, 22426075431, 
143242527870, 929759705415, 6123822269373.

Here, we conjecture that |In(011, 201)| equals the number of set partitions of {1, 2, . . . , n} that 
avoid 3-crossings, see Sequence A108304 in Sloane (1996).

4.6. Class In(120, 210)

Let B = {120, 210}. By applying our algorithm to In(B), we obtain the generating tree T [B] as 
follows:

Root: a1,

Rules: am � am+1bm,1 · · ·bm,m, bm, j � bm+1, j · · ·bm+2− j,1bm+1, jbm+1− j,1 · · ·bm+1− j,m+1− j,

where am = 0m with m ≥ 1 and bm, j = 0m j with 1 ≤ j ≤ m. It is not hard to prove that this is indeed 
the generating tree T [B] by using Lemma 2.1.

We define Am(x) and Bm, j(x) as the generating functions for the number of nodes in the subtrees 
T (B; am) and T (B; bm, j), respectively. Thus, the generating tree T [B], leads to

Am(x) = x + xAm+1(x) + x(Bm,1(x) + · · · + Bm,m(x)), m ≥ 1,

Bm, j(x) = x + x
j∑

i=1

Bm+1− j+i,i(x) + xBm+1, j(x) + x
m+1− j∑

i=1

Bm+1− j,i(x), 1 ≤ j ≤ m.

We define A(x, v) = ∑
m≥1 Am(x)vm−1 and B(x, v, u) = ∑

m≥1
∑m

j=1 Bm, j(x)vm−1um− j . Then the above 
recurrence can be written as

A(x, v) = x

1 − v
+ x

v
(A(x, v) − A(x,0)) + xB(x, v,1), (4.17)

B(x, v, u) = x

(1 − v)(1 − vu)
+ x

uv(1 − v)
(B(x, v, u) − B(x, v,0))

+ x

uv
(B(x, v, u) − B(x, v,0)) + x

1 − v
B(x, uv,1). (4.18)

Then by taking v = x into (4.17), we obtain

Theorem 4.12. The generating function 
∑

n≥0 |In(120, 210)|xn+1 is equal to A(x, 0) that satisfies the follow-
ing functional equation

A(x,0) = x

1 − x
+ xB(x, x,1).

Applying this theorem, we obtain the first 20 terms of A(x, 0) as 1, 2, 6, 23, 102, 499, 2625, 
14601, 84847, 510614, 3161964, 20050770, 129718404, 853689031, 5701759424, 38574689104, 
263936457042, 1824032887177, 12718193293888, 89386742081688.

5. Restricted growth sequences

In the previous sections, we showed that our algorithmic approach based on generating trees 
can solve many enumerative questions for inversion sequences with pattern restrictions. This ap-
proach can be modified to include enumerative results for restricted growth sequences. A sequence 
of positive integers π = π1π2 · · ·πn is called a restricted growth sequence of length n if π1 = 1 and 
π j+1 ≤ 1 +max{π1, · · · , π j} for all 1 ≤ j < n. There is a bijection between these sequences and canon-
ical set partitions. A set partition of a set A is a collection of non-empty disjoint subsets, called blocks, 
whose union is the set A. A k-set partition is a set partition � with k blocks and it is denoted by 
15
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� = A1|A2| · · · |Ak . A k-set partition A1|A2| · · · |Ak is said to be in standard form if the blocks Ai are 
labelled in such a way that min A1 < min A2 < · · · < min Ak . The set partition � = A1|A2| · · · |Ak can 
be represented equivalently by the canonical sequential form (see Mansour, 2013) π1π2 . . . πn , where 
πi ∈ [n] = {1, 2, . . . , n} and i ∈ Aπi for all i. It is easy to verify that a word π ∈ [k]n is a canonical 
representation of a k-set partition of [n] in standard form if and only if it is a restricted growth se-
quence, see (Mansour, 2013) and references therein. Henceforth we identify set partitions with their 
canonical representations. We denote by Pn the set of all restricted growth sequences of length n, and 
denote by Pn,k the set of all restricted growth sequences of length n with maximal letter k. Similarly 
to In(B), we denote Pn(B) be the set of all restricted growth sequences that avoid all the patterns in 
B .

For a given set of patterns B , we will construct a pattern-avoidance tree T (B) for the class of 
pattern-avoiding restricted growth sequences PB = ∪n≥0Pn(B). In the case of restricted growth se-
quences we define the root to be 1 and the children of π1π2 . . .πn−1 ∈ Pn(B) are obtained from the 
set {π1π2 . . .πn−1 j | 1 ≤ j ≤ max{π1π2 . . .πn−1} + 1}.

As in Section 2, let T (B; π) denote the subtree consisting of the restricted growth sequence π as 
the root and its descendants in T (B). Then we define an equivalence relation on nodes π, π ′ of T (B)

whenever T (B; π) ∼= T (B; π ′) in the sense of plane trees. Thus, by taking generating trees T (B) for 
restricted growth sequences, our algorithm as described in Section 2 can be reduced to an algorithm 
for finding T [B], which is the same tree T (B) where we replace each node by its equivalence class 
label. For instance, if B = {1212}, our algorithm with D = 4 leads us to guess that the generating tree 
T [{1212}] is given by

Root: 1, Rules: 12 · · ·m � 1,12, · · · ,12 · · · (m + 1).

Note that by similar techniques as in the proof of Lemma 2.1, we see that Lemma 2.1 holds for the 
case of restricted growth sequences as well.

As in inversion sequences, in the next subsections, we present some applications to our algorithm 
for restricted growth sequences.

5.1. Pattern 1122

We say that two restricted growth sequences π and π ′ are equivalent if |Pn(π)| = |Pn(π ′)| for 
each n. In Jelínek and Mansour (2008), the authors showed that there are 5 different classes of avoid-
ing a pattern of length four, that is, 1231, 1212, 1122, 1112, and 1111. They also suggested formulas 
for all the classes except the class 1122. Our algorithm suggests the following result for the class 
1122.

Lemma 5.1. Let ak = 12 · · ·k and bk, j = 12 · · ·kj for j = 1, 2, . . . , k. Then, the generating tree T [{1122}] is 
given by

Root : a1, Rules : ak � bk,1bk,2 · · ·bk,kak+1, bk, j � bk,1 · · ·bk, jb
k− j
k−1, jbk, j.

Proof. We label the root by the restricted growth function a1 = 1 ∈P1. Clearly, the children of ak are 
bk, j with j = 1, 2, . . . , k and ak+1. Moreover, the children of bk, j are bk, j i ∼ bk,i with i = 1, 2, . . . , j, 
bk, j i ∼ bk−1, j (by removing the letters i) with i = j + 1, . . . , k, and bk, j(k + 1) ∼ bk, j (by removing the 
letters k + 1). This completes the proof. �

We can translate the tree rules to a system of equations for the corresponding generating functions. 
We can obtain the first terms of the sequence |Pn({1122})| as 1, 1, 2, 5, 14, 42, 133, 441, 1523, 5456, 
20209, 77186, and 303296.

5.2. Pattern {12313, 12323}
Based on the algorithm’s output, we obtain the succession rules of the generating tree T [{12313,

12323}]. We omit the details of the proof, since it is similar to the proof of Lemma 5.1.
16
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Lemma 5.2. Let ak = 12 · · ·k. Then, the generating tree T [{12313, 12323}] is given by

Root : a1, Rules : a1 � a1a2, ak � a2
2a3 · · ·ak+1, k ≥ 2.

Let’s define Ak(x) to be the generating function for the number of nodes in the subtree 
T ({12313, 12323}; ak), we have A1(x) = x + xA1(x) + xA2(x) and Ak(x) = x + 2xA2(x) + xA3(x) + · · · +
xAk+1(x). Hence,

A(x, v) = x

1 − v
+ x

1 − v
A2(x) + x

1 − v
A(x, v) + x

v
(A(x, v) − A(x,0)),

where A(x, v) = ∑
k≥2 Ak(x)vk−2. By taking v = 1−√

1−4x
2 , we obtain that

A2(x) = A(x,0) = 4x − 1 + √
1 − 4x

2(1 − 4x)
,

which leads to the generating function for the number of restricted growth functions of length n that 
avoid {12313, 12323} which is equal to

1 + A1(x) = 1

1 − x
+ x

2(1 − x)

(
1√

1 − 4x
− 1

)
.

Moreover, we also have the following result.

Lemma 5.3. Let ak = 12 · · ·k. Then, the generating tree T [{12313, 12323, 12333}] is given by

Root : a1, Rules : a1 � a1a2, a2 � a2
2a3 ak � a3

2a3 · · ·ak−1ak+1, k ≥ 3.

As before, Lemma 5.3 leads to the assertion that the generating function for the number of re-
stricted growth functions of length n that avoid {12313, 12323, 12333} is given by

1 + x(3 − 9x + √
1 − 2x − 3x2)

2(2 − 7x)(1 − x)
.

5.3. Pattern 12 · · ·�1

By applying our algorithm for the case T [{12 · · · �1}], we see that the generating tree T [{12 · · ·�1}]
is given by

Root : 1, Rules : ak � (ak)
k,ak+1, for k = 1,2, . . . , � − 2,

a�−1 � (a�−1)
�,

where ak = 12 · · ·k. We can easily verify this. We label the root by the restricted growth function 
1 ∈ P1. Clearly, the children of ak are ak j ∼ ak for j = 1, 2, . . . , k and ak+1, where k ≤ � − 2. Thus it 
remains to find the children of a�−1, which are a�−1 j ∼ a�−1 with j = 1, 2, . . . , � − 1 and a�−1� ∼ a�−1
(by removing the letter 1 because we avoid 12 · · · �1). This completes the proof.

To find a formula for the generating function 
∑

n≥1 |Pn({12 · · · �1})|xn , we define Am(x) to be the 
generating function for the number of nodes in the subtrees T ({12 · · ·�}; am). Hence, by the rules of 
T [{12 · · ·�1}], we have that Ak(x) = x + kxAk(x) + xAk+1(x) with k = 1, 2, . . . , � − 2, and A�−1(x) =
x + �xA�−1(x). By induction on k, we have

Ak(x) = x�−k(1 − (� − 1)x)∏�
j=k(1 − jx)

+
�−1−k∑

i=1

xi

∏k−1+i
j=k (1 − jx)

,

which implies the following result.
17
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Theorem 5.4. The generating function 
∑

n≥1 |Pn({12 · · ·�1})|xn is given by

x�−1(1 − (� − 1)x)∏�
j=1(1 − jx)

+
�−2∑
i=1

xi

∏i
j=1(1 − jx)

.
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