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Abstract. We study the contribution of confined phonons to the polaron energy in
guantum-well wires. We use a dispersionless, macroscopic continuum madel to
describe the phonon confinement in quantum wires of square cross section. The
polaron energy is calculated variationally incorporating the dynamic screening
effects. We find that the confined phonon contribution to the polaron energy is
comparable to that of bulk phonons in the density range N = 10*~107 cm~'.
Screening effects within the random-phase approximation significantly reduce the
electron-confined phonon interaction, whereas the correlation effects tend to

oppose this trend.

A great deal of effort has been expended on the study
of quasi-one-dimensional (Q1D) semiconductor structures
in recent years. In these systems, based on the
confinement of electrons, the carrier motion is quantized
in two transverse directions, and thus the charge carriers
essentially move only in the longitudinal direction. Interest
stems from fundamental and applied points of view,
because of mew physical phenomena involved and their
potential applications in high-speed optoelectronic devices.
Progress in fabrication techniques such as molecular beam
epitaxy and lithographic deposition has made possible the
realization of such Q1D systems [1].

The interaction strength of electrons with LO phonons in
low-dimensional structures is strongly affected by phonon
confinement, as well as by the changes in the electronic
wavefunction brought about by the confining potential.
Phonon confinement causes changes in the electron—
phonon interaction, modifying properties like scattering
and relaxation rates from those in the bulk phonon case.
Stroscio [2] has applied the dielectric continuum model to
describe the confined LO phonons in rectangular quantum
wires. Similar calculations using different models of a
quantum wire have also been performed [3]. A calculation
of confined and interface phonon scattering rates in finite
barrier, multisubband quantum wires was presented by
Jiang and Leburton [4]. A microscopic calculation for
rectangular wires has been reported by Rossi er al [5].

The energy and the effective mass of an electron in a
quantum wire including the subband effects were calculated
in the presence of electron—LO-phonon interaction by
Degani and Hip6lito [6]. The ground-state energy of the
Q1D polaron gas in a rectangular quantum-well wire has
been calculated by Campos et al [7} and very recently
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by Hai et al [8]. The latter group has investigated the
polaron energy in different quantum-well wire models
and the effects of screening. Coupling to phonons of a
Q1D electron-hole plasma was considered by Giiven and
Tanatar [9]. In most previous works, LO phonons have
been treated in the bulk, neglecting the phonon confinement
effects. The effects of phonon confinement in a quantum-
well wire were considered by Zhu and Gu [10], Degani
and Farias [11] and Li er al [12) using various models and
approximations. In the present calculation the electrons
are coupled to the confined phonon modes, and we are
interested in the combined effect of phonon confinement
and carrier screening, We note that the polaron energy is
not an observable quantity in itself, but the results of our
calculation will provide insight into the relative contribution
of the various LO phonon modes in quantum wires. Inelastic
light scattering measurements by Klein [13] suggest the
importance of confined phonon and interface modes.
Hot-electron energy-loss studies [14] offer the possibility
of distinguishing the phonon modes involved in polar
semiconductors of reduced dimensionality. Experimentally,
the more relevant problem of magnetopolarons, especially
in connection with cyclotron resonance measurements, has
been explored by different groups [15].

The purpose of this paper is to study the contribution
of confined phonon modes to the ground-state energy of
an electron—phonon system in QID structures, and in
particular to investigate the effects of screening. Phonon
confinement is treated within a macroscopic approach, one
in which electrostatic boundary conditions are used [2, 16].
Although the actual spectrum for phonon modes in confined
structures is more complicated than those described by the
macroscopic models, they lend themselves to simplified
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expressions and provide qualitative understanding. In the
electrostatic model, the standard boundary conditions are
applied to the electrostatic potential. This gives rise, for
the LO phonons, to travelling waves in the direction of
the wire and standing waves in the confined, transverse
directions. We employ a variational approach to estimate
the confined phonon contribution, and investigate the
effects of screening in various approximations.

For the Q1D system of electrons we consider a square
well of width ¢ with infinite barriers. This may be built,
for instance, by embedding a thin wire of GaAs in a
barrier material of AlAs. We restrict our attention to the
extreme quantum limit, where only the first subband is
occupied. This approximation will hold as long as the
subband separation remains much larger than the phonon
energy in quantum wires. Furthermore, we assume for
simplicity a complete confined phonon picture. In an
interesting work, Zhu and Chao [17] have shown that oaly
a fraction of the LO phonon modes are confined in the
quantum well,

We study the QID polaron gas using the Lee-Low-
Pines unitary transformation approach as introduced by
Lemmens et ol [18] and Wu et al [19] in applications
to 3D and Q2D systems. It is harder to incorporate
the screening effects (especially the dynamic screening)
within the perturbation theory approach [20], and thus
a variational method seems more suitable. Following
the usual procedure [6,7,18,19] of assuming that the
ground state may be written as a product of the phonon
vacuum state and ground-state wavefunctions of electrons,
and minimizing the energy with respect to the variational
parameter, we arrive at the ground-state energy of the
polaron gas:
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where the sum over the discrete labels is due to confined
phonons in two transverse directions, and the wavevector
g is along the wire direction. In the above expression,
S(g) is the static structure factor determining the screening
properties of the electron—phonon system. Setting S(g) =
1, in the unscreened limit, we recover the result from
perturbation theory for the polaron energy.

In the extreme quantum limit, when the electrons are in
the lowest subband, the Q1D electron—phonon interaction
matrix element for confined phonons in quantum-well wires
of infinite potential and square cross section is
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Owing to symmetry considerations [2, 16], in the electro-
static confinement model we sum only over the odd values
of m and n. We have taken dispersionless LO phonons in
the description of confined phonon modes, for simplicity.

The static structure factor S(g) is obtained from the
full frequency-dependent dielectric function &(g, ) by
integrating over all frequencies, and thus it inherently
carries dynamic information. For Q1D electron systems the
collective excitations (plasmons) have a strong wavevector
dependence without damping. Thus, along with the
single-particle excitations, plasmons have to be taken into
account explicitly in the calculation of S{g). We consider
the expression S(g) = Splg) + Sp(g), and use the
random-phase approximation (RPA) forms of the individual
contributions as given by Hai et al [8].

We illustrate our calculations of the confined phonon
contribution to the ground-state energy of a quantum
wire by choosing a GaAs system for which the relevant
parameters are m = 0.067 m., w o = 36.5 meV and the
coupling constant o« = 0.07.

In figure 1 we show the polaron energy of a quantum
wire with lateral widths L, = L, = a = 100 A. The
contributions of the electron-phonon interaction to the
ground-state energy of a polaron gas are plotted as a
function of the 1D carrier density N. The dotted and
broken curves are for the Hartree-Fock (HF) approximation
and RPA respectively. It is seen that the confined phonon
contribution is quite significant, especially at low densities.
Figure 2 shows the polaron energy as a function of the
quantum wire width a, for an electron density of N = 10°
em™!, The dotted and broken curves give the width
dependence using HF and RPA structure factors respectively.
A comparison of our results with the calculations of Hai
et al [8], who employed bulk phonons, indicates that
the polaron gas energy due to the confined phonons is
comparable to that of bulk phonons.

The static structure factor S(g), as set out in the
previous section, determines the screening properties of the
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Figure 1. Polaron energy due to confined phonons, as a
function of electron density A/, for a 100 x 100 A2 GaAs
quantum wire. The dotted and broken curves indicate HF
and RpPa respectively. The full curve represents the
Hubbard approximation.
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Figure 2. Polaron energy due to confined phonons, as a
function of quantum wire width a, for an electron density
N =10°% cm™'. The dotted and broken curves indicate HF
and RPA respectively. The thick full curve represents the
Hubbard approximation, whereas the thin full curve
corresponds to the unscreened limit.
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electron-phonon system. It has been known that the RPA,
although exact in the high density limit, fails to take the
short-range electron correlations into account properly in
the lower density regime. To improve the RPA, we introduce
the vertex coirections (io the dynamic susceptibility) in
the mean-field sense using the local-field corrections G(g).
A variety of many-body schemes exist to calculate G(g),
including the self-consistent field approach of Singwi et
al [21], which is known to yield good results in 3D and
2D calculations. We use the eguivalent of the Hubbard

approximation for G(g) in one dimension [21]:
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The physical nature of the Hubbard approximation is such
that it takes exchange into account and corresponds to
using the Pauli hole in the calculation of the local-field
correction between the particles. The local-field effects are
implemented in the calculation with the replacement of the
effective Coulomb interaction V{(g) by V(g)(1 — G(g)) in
the expressions for S(g).

The dependence of the confined phonon energy on
screening within the Hubbard approximation is illustrated
in figures 1 and 2 by the full curves. When the correlation
effects are included within the Hubbard approximation (full
curves), we obtain a slight increase in the magnitude of the
polaron energy. with respect to the RPA. We observe that, on
going from the HF approximation to the RPA, the screening
reduces the electron—phonon interaction appreciably as
the carrier density increases. The correlation effects,
on the other hand, when treated within the mean-field
model (i.e. Hubbard approximation) tend to increase the
electron—phonon interactions, giving rise to anti-screening.
Qualitatively similar results were found by Campos et af
[7] for bulk phonons in quantum-well wires, where they
used 'the self-consistent field approximation in S(g). As the
electron density becomes large, screening effects dominate
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and we observe that the HF, RPA and Hubbard approximation
curves in figure 1 become similar. In order to reliably
assess the importance of correlations beyond the RPA, better
approximations to the local-field factor G(g) could be
employed.

In the unscreened limit, i.e. S(g) = 1, the polaron
energy becomes
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The thin full curve in figure 2 indicates the unscreened
polaron energy due to confined phonons. -

It has been noted [22] that the static screening has a
stronger effect in the renormalization (of polaron energy
and mass) than the dynamic screening, because in the
static approximation only the long-time response of the
system is taken into account. Similar conclusions have been
drawn by Hai er al [8] in their calculation that takes the
dynamic screening effects into account for Q1D systems.
We have not attempted a perturbative calculation including
dynamical screening, but we expect the polaron energy E,
to increase in magnitude if such an approach is considered.

For the Q1D electron system we have used the
infinite barrier, square cross-sectional wire model. There
are various other models of the quantum-well wire
structures making use of parabolic confining potentials and
geometrical reduction of dimensionality {8]. The general
trends obtained here for the carrier density and screening
dependence should be valid irrespective of the details of
the model chosen. We have neglected the interface phonon
modes, which are expected to be appreciable only for
very narrow wires since they have exponentially decaying
amplitudes. The interaction of electrons in a Q2D structure
with interface and bulk LO phonons was considered by
Degani and Hipdlito [23]. They found that interface
phonons give a significant contribution to the polaron
energy and effective mass. Polaron effects due to interface
phonons in lateral quantum wires were considered by
Degani and Farias [11]. It would be interesting to include
the interface phonon modes in quantum wires, particularly
in the studies of electron relaxation processes.

In summary, we have calculated the polaron energy
in a Q1D GaAs quantum-well wire, using the confined
phonons. We have included the screening effects within
the RPA and Hubbard approximation. We find that the
approximate local-field corrections tend not to change the .
magnitude of the polaronic corrections significantly.
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