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ABSTRACT: In this report, we study the evolution of valence band (VB) structure during a
controlled amorphous to tetragonal transformation of ZrO, core—shell nanostructures fabricated from
electrospun nanofiber template (at 130, 200, and 250 °C). Shell-ZrO, was formed with atomic layer
deposition. X-ray diffraction and transmission electron microscopy are employed to unveil the
transformation of amorphous to crystalline structure of ZrO,. O 1s core-level spectra indicated
chemisorbed oxygen (Og;,) of almost invariant fraction for the three samples. Zr 3s level suggested that
the sample deposited at 130 °C has depicted a peak at relatively higher binding energy. Analyses on Zr
3d spectra indicated the presence of metallic-Zr (Zr™¢, 0 < ¢l < 4), the fraction of which decreases with
increasing template temperature. VB region is analyzed until ~64 eV below the Fermi level (Eg). The
region close to Er depicted features that are dissimilar to the literature. This discrepancy is explained on
the basis of the analyses from O 1s, Zr 3d, and Zr 4p levels including hybridization of orbitals from
chemisorbed species. These levels were analyzed in terms of peak characteristics such as spectral
position, area under the peak, etc. The results of this study would enhance the understanding of the
evolution of various bands in the presence of O¢, and changes to the crystallinity enabling the
functionalities that are not available in the single-phase ZrO,.
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B INTRODUCTION

Significant need for high-x materials leads to the research on the
crystallinity controlled synthesis”” and subsequent under-
standing of electronic structure of d-block metal oxides such as
ZrO, and HfO,.”"> These materials are, in general, used in the
form of relatively thicker films, however, capacitively equivalent
although better gate dielectrics (better potential barriers to both
holes and electrons).’ Often ZrO, and HfO, were discussed
together in the literature™” by giving their comparable properties
and characteristics. However, ZrO, is quite an interesting
material due to a range of application potentials."""" For
instance, yittria stabilized ZrO, is employed in thermal barrier
coatings8 (note the other lower valence stabilizers CaO, MgO),9
catalysis,"”"" etc. Band structure calculations on ZrO, suggest
that the three polymorphs (tetragonal,g’12 monoclinic,"” or
cubic”) show similar features, with minor differences in the width
of the band and the band gap.”'” Note the experimental band
gaps of ZrO, are in the range of 5—6 eV depending on the
synthesis'* and phase (tetragonal > monoclinic > cubic).’
Typically, as-deposited ZrO, thin film is amorphous'’ while
nanocrystallites are formed during a high temperature annealing
(~1000 K). However, deposition techniques such as atomic
layer, chemical vapor, physical vapor,'* etc., produce thin films of
varying quality and phase compositions. In these synthesis
techniques, the formation of intrinsic crystal defects such as
oxygen vacancies (Vy’s) and oxygen interstitials (O;’s) are
unavoidable. In cubic-ZrO,, low diffusion barriers for Vy’s and
O;s were identified within 2600—2980 K.'°™"® The formation
energy of V's is found to decrease in an unrecognized ZrO, due
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to tensile strain.'® Furthermore, the tensile strain transforms
ZrO, from cubic fluorite to the orthorhombic columbite.'®

Given the fact that the chemical and physical properties
includin§ the electronic structure are influenced by the synthesis
process,”'* we have studied the valence band (VB) and core-
level ionic states of Zr and O in tetragonal-ZrO, core—shell
nanostructures. Core—shell nanostructures were prepared by
combining electrospinning and atomic layer deposition (ALD),
where the former produces the core-polymer nanofiber
(template) while the latter forms conformal ZrO, coating. By
controlling the temperature of the template, a gradual transition
is evident from amorphous to tetragonal ZrO, at relatively higher
temperatures. Apart from this clear transition, the presence of
metallic Zr on the surface including V’s influenced the lattice
parameters and of course the electronic structure of ZrO,.
Significantly, chemisorbed ions on the surface and at the defect
sites (e.g, Vy’s) influenced the electronic structure consid-
erably."” The ZrO, and metallic-Zr homocombination together
with lattice strain can potentially vary the electronic structure
leading to various applications such as fast-ion conductors.'® We
may expect functionalities that are not available in the single-
phase ZrO,. Essentially, this study might help to unveil and
harness the influence of intertwined though crucial objects such
as crystallinity, defects, lattice strain, and chemisorbed species in
determining the electronic structure.
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B RESULTS AND DISCUSSION

Figure 1 shows the schematic diagram to fabricate core—shell
nanostructures. In step 1, the electrospinning process is
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Figure 1. Cartoon depicting the electrospinning and subsequent ALD
process to fabricate core—shell PES-ZrO, nanostructure at three
different substrate temperatures. TDMAZr, tetrakis (dimethylamido)
zirconium; and PES, polyether sulfone.

employed to prepare the nanofibers, which act as a template
and form the “core” structure. In step 2, ALD is employed for
three different substrate temperatures, 130, 200, or 250 °C. Refer
to the Experimental Section for the full description of these
processes. Scanning electron microscope images of the samples
are shown in Figure S1 for polyether sulfone (PES) nanofibers
along with the three core—shell ZrO, samples. We can see that
the structural integrity of the fibers was sustained after the ALD
process.'”

Transmission electron microscope (TEM) images of 130, 200,
and 250 °C samples are shown in Figure 2a—c, respectively.
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Figure 2. TEM images of core—shell PES-ZrO, nanofibers: (a) 130 °C,
(b) 200 °C, and (c) 250 °C.

Conformal and uniform coating can be observed for all samples.
Because the fiber structure did not disintegrate, the compatibility
between the ALD precursors and the polymer core is notable."”
The ZrO, shell thickness is ~400, ~20, and ~22 nm for 130, 200,
and 250 °C samples, respectively. For the set parameters, the
growth rates in the dynamic mode on planar Si are 1.02 and 0.98
A/ cycle at 200 and 250 °C (Ultratech/ Cambridge Nanotech
Inc.). A large deviation in the shell-thickness of the 130 °C

sample from others can be described as follows. Although the
precursors were purged as long as exposed, this duration is
insufficient at 130 °C. This results in relatively high residual
precursor molecules that react in the gas phase (CVD-like
growth). Consequently, a thicker ZrO, layer is observed for the
130 °C sample. In an ideal ALD process on planar substrates, the
duration of exposure should not affect the deposition rate.
However, in the case of substrates with a high surface area to
volume ratio, such as present, the deposition rate is limited by the
diffusion of precursor molecules, in which case, diffusion is
controlled by the purge time (lower value, less thickness).
Keeping this aside, we wish to explore the surface electronic
structure. Unless the thickness of the layer is in the quantum
confinement region,20 the surface nature is expected to be well
comparable across the above range of thicknesses by giving the
mean free path of the escaping photoelectrons. Furthermore, the
grainy nature of the coating increases with increasing temper-
ature. The 130 °C sample has a smooth texture, indicating largely
amorphous nature of the sample. As the substrate temperature
increases (200 °C), the grains start evolving, suggesting
formation of single crystals in various orientations. For the 250
°C sample, the density of grains is increased, which we will see to
corroborate with the results from X-ray diffraction (XRD).
XRD patterns from the three ZrO, samples are shown Figure
3a.It can be seen that the reflections correspond to the tetragonal
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Figure 3. XRD patterns for the three samples: (a) reflections are
annotated, which correspond to tetragonal lattice. * denotes the
diffraction peak from PES. (b) 20 region 28.5—37° is magnified
depicting the (101) and (110) planes and angular location in degrees.

phase of ZrO,. The phase diagram of ZrO, consists of three
stable polymorphs (tetragonal,”'> monoclinic,"”” or cubic”) at
atmospheric pressure depending on the growth condition.”
Although the most stable and preferential phase is monoclinic,
the tetragonal fhase has been observed in nanoparticles or
ultrathin films,'* which is the case here. For the 130 °C sample,
apart from a very broad peak corresponding to PES (denoted
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with *), the signature from (101) and (110) reflections can be
seen. When the substrate temperature is increased to 200 °C, the
above two peaks start to take shape in addition to (112) and
(211) reflections. A further increase in the temperature (250 °C)
shows well-defined and clearly distinguishable peaks when
compared to the other two samples (see the relative intensities of
the peaks). These results were well corroborated with the TEM
observations. A closer inspection of the 26 range 28.5-37°
(Figure 3b) suggests a shift of (101) and (110) reflections (130
°C derived sample is not considered for this analysis). The
feature that is seen between ~28—37° range is quite close to that
in the literature (see Figure 2a in ref 1 while noting the similarity
in the preparation). The angular positions of (101) and (110)
yield the following lattice parameters for tetragonal structure: a =
3.585 A, c = 5.091 A for 250 °C sample, while for 200 °C sample,
a=3.553 A and ¢ = 5252 A. As the substrate temperature is
increased, the a value is increased (~0.9%), while in contrast the ¢
value is decreased (~3%) with reference to the 200 °C sample.
Because of the relatively lower temperature growth, intrinsic
lattice defects can be expected during growth.

O 1s spectra along with peak deconvolution are shown in
Figure 4 for the three ZrO, core—shell samples. The spectral

nanostructures.””>* Furthermore, due to the relatively lower
temperature of the ALD growth process, the presence of the
—OH group is expected.

The Zr 3s spectral region is shown in Figure S2 for the three
ZrO, core—shell samples. The energetic positions are annotated
on the image and match with the literature.”> The spectral
positions of the peaks are as follows: 433.2, 432.6, and 432.8 eV
for 130, 200, and 250 °C samples, respectively. Zr 3s from ZrO,
appears at ~432.7 €V as noted in the literature.”” It is interesting
to note that the 130 °C sample has shown a peak at relatively
higher binding energy than the other two samples. The blue shift
of ~0.6 eV may be due to a slightly different/increased ionic
environment. Most probably this would have occurred due to the
H,O on the surface of the 130 °C samples. When the deposition
temperature increases from 200 to 250 °C, an increase (~0.2eV)
in the binding energy is apparent. This slight blue shift is
consistent with the results from O, densities from O 1s spectra,
which increase from the 200 to 250 °C sample. The fwhm”'
values decrease with increasing temperature of the substrate,
which suggests a well-defined hybridization in ZrO, lattice.

The Zr 3d spectral region is shown in Figure 5 for the three
ZrO, core—shell samples. The photoemission line majorly
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Figure 4. O Is spectra from the three core—shell ZrO, samples. The
spectral position (in V) and area ratio are annotated on the image, while

fwhm (in eV) is parenthesized.

positions (in eV) and area ratios were annotated on the image.
Shown in parentheses are fwhm”' values in V. The major peak
(~529.8 eV) corresponds to the tetragonally coordinated oxygen
in ZrO,”* It is notable that the fwhm®' of the O-peak
corresponding to ZrO, sustained its width (~1.4 eV) for all
deposition temperatures. The shoulder at the higher binding
energy region is explicit in all cases. This shoulder consists of a
second major peak centered between 5312 and S31.5 eV.
Furthermore, the ZrO, sample deposited at 130 °C depicted a
third peak at ~533.1 eV in contrast to the other two samples. The
peak centered at 531.5 + 0.1 eV is associated with O*™ ions (x <
2), while that at 532.5 + 0.1 eV is typically ascribed to —OH
groups, chemisorbed oxygen (Og,), or dissociated oxygen,””*
or oxygen in —CO.”*** The minor peak centered at ~533.1 eV
corresponds to oxygen in H,O.”” It is notable that the density of
this Oy, did not vary significantly across the three samples. The
peak position and fwhm”' values of O, are seen to increase as
the temperature of the template increases. The spectral positions
of all peaks match with that in the literature.> Ocyy in general,
occupies Vs on the surface of the lattice, while these defects are
found to enhance the catalytic activity, for example, in ZnO
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Figure 5. Zr 3d spectra from the three samples. The spectral position (in
eV) and area ratio are annotated on the image, while fwhm is
parenthesized (in eV).

depicted Zr 3d spin orbit splitting (3ds/, and 3d;,), the spectral
positions of which match that of the literature.”* The differences
in the chemical environment are, in general, reflected in the
characteristics of the doublet including splitting. Here, the
splitting remained constant for all samples, in contrast to their
characteristics (see fwhm™"). To appropriately compare the area
ratios across the three samples, we have taken the secondary ratio
(areayq, ,/areasy ) yielding 0.89, 1.35, and 1.27 for 130, 200, and

250 °C. These values suggest an almost increasing 3ds,,
contribution with substrate temperature, which is nothing but
an increasing degree of tetragonal coordination. This is
consistent with the results from the XRD and TEM. The spin
orbit splitting of 3d orbital is found to be ~2.4 eV in line with the
literature value of 2.38 eV, which was grown at 300 °C in ALD.°
Interestingly, all samples exhibit a shoulder at higher binding
energy than 3d;,. This shoulder is attributed to metallic
zirconium with Zr*, Il < 4.*° Reduced zirconium combined
partially with the oxidant during the ALD process.”® In ref 26, Ji
et al. employed a single peak in the deconvolution of 3d core
level. However, Zr atoms depict the spin—orbit splitting
irrespective of the oxidation state, that is, 3ds,, and
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3d;),.>*”*" Hence, it is appropriate to consider a doublet with
reference to this shoulder as shown in Figure S (denoted with *,
shaded peaks). The characteristics*' of the doublet from metallic
like-Zr (Zr*®) are tabulated in Table 1. We believe that absolute

Table 1. Characteristics of Peaks Denoted with “*” on Zr 3d
Core-Level (Zr*) Spectra in Figure 5

*3ds/, #3ds
peak peak
sample position area  fwhm position area  fwhm
(°C) (ev) ratio (ev) (eV) ratio (ev)
130 182.9 0.25 115 186.1 0.31 2.57
200 182.9 0.12 1.08 185.8 0.06 1.19
250 182.8 0.06 1.08 185.7 0.06 142

spectral positions of these peaks, however, cannot be attributed
to any specific ionic state, due to the finite uncertainty involved in
deconvolution in the background of complex envelop of density
of states. Hence, these peaks are referred to Zr¢, 0 < I¢1 < 4, with
varying (2.8—3.2 €V) spin orbit splitting. From Table 1, it is also
noted that the relative area ratio and fwhm”' appeared to
decrease as the temperature of the template increases. It has been
recently shown that the formation of Zr'¥, Zr**, and Zr** as
nonequilibrium oxidation states is possible in addition to Zr*" in
the stoichiometric ZrO,.”* Hence, assigning 0 < Il < 4 is
appropriate. Moreover, we would like to draw a similarity
between this metallic 3d doublet of Zr 3d with that of Zn 2p from
a d-block metal oxide, ZnO.?° In the case of ZnO, the presence of
such a high energy doublet is attributed to intrinsic defects such
as interstitial zinc. These defects were part of a cause for the
lattice strain in ZnO. However, in the present context, further
characterization is warranted to confirm the presence of Zr** in
the interstitial site as the latter can be a substrate effect. As
mentioned in the context of XRD, the lattice strain can be
attributed to the Zr*® in the interstitial sites. Furthermore, the
influence of deposition parameters (refer to the Experimental
Section) on a substrate of high surface area to volume ratio can be
reflected in the properties: for instance, (i) thickness of the ZrO,-
shell (Figure 2 and explanation therein), and (ii) effectiveness of
the reduction of Zr (presence of Zr™¢, 0 < Il < 4).

The VB region is shown from 64 to —5 eV in Figure 6. The
region from 64 to 40 eV consists of hybridized/deeper valence
states; for example, see the Zr 4s state as annotated on the image
at ~53 eV. Zr 4s seemed invariant for all samples within the
present energy resolution. The peak centered at ~30.8 eV is
attributed to Zr 4p, which is expected to be a clear doublet and
relatively sharp as seen by Sayan et al.° However, we did not
observe it to be as explicit as shown in the literature. In any case,
this peak is deconvoluted as a doublet for all samples. The spin
orbit splitting of 4p orbital is found to vary within 1.66—2.8 eV in
comparison with 1.57 eV (grown at 300 °C in ALD).° The larger
splitting would have originated from very different effects from
the crystal field. The peak centered ~21.9 €V consists of two
components, while the energetic position of the low energy
component is invariant for all cases. The higher energy
component is almost invariant (~21.7 €V) for 130 and 250 °C
samples, while for the 200 °C sample it has blue-shifted to ~23.1
eV. Valence edge regions that we have experimentally observed
are quite different from that of the literature.”® However, we have
deconvoluted into two peaks, which in fact turned out to be
majorly a single peak, while the second component is quite broad
and possesses almost a negligible area (denoted with * in Figure
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Figure 6. Valence band spectra from the three core—shell samples. The
spectral position (in eV) and area ratio are annotated on the image.

6) for the 130 and 250 °C samples. In contrast, the 200 °C
sample depicted the two peaks at ~4.9 and ~7.2 eV. In the
following, we have compared our results with those of
) s . 6 . 56
simulation” and experimental” profiles from literature.

We start our discussion with the profiles observed from the
literature (Figure 7a).”® Data curves (i), (ii), and (iii) were taken
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Figure 7. Selected region of the valence band: (a) data curves, (i), (i),
and (iii) were taken from ref 5, while (iv) and (v) were taken from ref 6;
and (b) magnified region of valence band spectra from the three
samples.

from ref 5 that resulted from LDA, GW,,, and G,W,, simulations,
respectively. Data curves (iv) and (v) were taken from ref 6,
which resulted from ab initio molecular dynamics (MD)
simulation and experiment, respectively. In this MD simulation,
ZrO, is modeled as amorphous material. The valence edge
regions of the present samples are magnified and shown in Figure
7b. The differences between Figure 7a and b are quite significant;
VB minima are estimated to be 2.19 eV for the 130 °C sample,
while it is 1.95 eV for the 200 and 250 °C samples. Apart from
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this, the Fermi edge is spanned®® for a relatively large energy
range, which is explained in the following. Importantly, the two
peaked feature (Figure 7a) originates from hybrid O 2p and Zr
4d orbitals with a theoretical and experimentally observed width
of ~5 eV.7" 1t is interesting to note that these features are
reproduced in the case of amorphous ZrO,, by theory and
experiment; see data curves (iv) and (v), respectively.” The
hybridization of oxygen (2p) and zirconium (4d) orbitals is
crucial for the double-peaked structure. However, the surface
composition influences the hybridization and subsequent
structure from the spectroscopic point of view. For example,
the Ogy, is seen for all samples (Figure 4), while a high energy
component is seen for the sample deposited at 130 °C.
Furthermore, we can see the metallic Zr of varying densities
(Figure S). The hybridized contribution from the metallic Zr,
chemisorbed oxygen, and ZrO, most probably caused the
broadening of the Fermi edge and less featured peak.

ZrO, is quite often discussed and juxtaposed with HfO, in the
context of electronic structure in the literature.”” Zr and Hf
belong to the same group in the periodic table, but what differs in
terms of the electronic structure is the f states. Furthermore,
these elements are often regarded as the two chemically most
similar homogenesis elements®’ due to the well-known
“lanthanide contraction”. In the context of dissimilarity, HfO,
is more ionic and exhibits stronger crystal field effects than ZrO,
by giving the relatively smaller spectroscopic electronegativity of
Hf (1.16 vs 1.32, ref 32).”*° HfO, together with ZrO, are
different from conventional sp semiconductors, especially with
the structure of CB, which exists between weakly correlated sp
systems and highly complex strongly correlated d and f electron
systems. Consequently, the similarity between ZrO, and HfO,
both in LDA and GW is quite interesting.’

B EXPERIMENTAL SECTION

Materials. Dimethylacetamide (DMACc) is used as a solvent
for PES. All chemicals were used as received from Sigma-Aldrich.
Tetrakis (dimethylamido) zirconium (TDMAZr) was procured
from Sigma-Aldrich, and HPLC-grade deionized water was used
in the ALD process.

Electrospinning. Uniform and bead-free PES nanofibers
were produced via electrospinning. Please refer to Figure 1 (top)
for the schematic diagram. The polymer solution consists of 45%
w/v of PES in DMAc. This mixture was stirred overnight at 60 °C
to obtain a homogeneous and clear solution. This solution was
taken in a syringe fitted with a metallic needle of ~0.8 mm of
inner diameter. The syringe with solution then was fixed
horizontally on a syringe pump (KD Scientific, KDS 101) with a
feed rate of 1 mL/h. A 15 kV high voltage is applied (Matsusada,
AU Series) between the metal needle and a grounded electrode,
which was kept at a distance of ~15 cm. Grounded electrode was
wrapped with an Al-foil to collect the fibers. The electrospinning
process was carried out at ~25 °C and 36% relative humidity in
an enclosed chamber.

ALD. The electrospun nanofibers were stabilized at ~130,
200, or 250 °C in a Savannah S100 ALD reactor (Cambridge
Nanotech Inc.). TDMAZr was heated to ~75 °C and stabilized
for 30 min prior to the depositions, whereas H,O was used when
at room temperature. Depositions were carried out using the
exposure mode (a trademark of Ultratech/Cambridge Nanotech
Inc.) in which dynamic vacuum is switched to static vacuum just
before each precursor pulse by closing the valve between the
reaction chamber and the pump, allowing the substrate to be
exposed to precursor molecules for a certain period of time (i.e.,

exposure time). This is followed by a purging period, where the
chamber is switched back to dynamic vacuum for purging of
excess precursor molecules and gaseous byproducts. N, was used
as a carrier gas at a flow rate of ~20 sccm. 200 ZrO, cycles were
deposited, where each cycle consists of the following steps: valve
OFF/H,0 pulse (0.015 s)/exposure (45, 10, S s) /valve ON/N,
purge (45, 10, S s)/valve OFF/TDMAZr pulse (0.2, 0.25,0.4s)/
exposure (45, 10, S s)/valve ON/N, purge (45, 10, S s).

Characterization. The morphologies of the samples were
investigated using a SEM (FEI-Quanta 200 FEG). A nominal §
nm Au/Pd alloy was sputtered onto the samples prior to the
observation under SEM. For TEM imaging (FEI-Tecnai G2
F30), the samples were dispersed in ethanol, and the suspension
was collected onto a holey carbon-coated TEM grid. XRD
patterns were recorded (26 = 10—80°) by employing a
PANalytical X'Pert Multi Purpose X-ray diffractometer with
Cu Ka radiation (A = 1.5418 A). The ionic states of the surface
elements were determined via XPS (Thermo Scientific, K-Alpha,
monochromatic Al Ka X-ray source, 400 um spot size, hv =
1486.6 V) in the presence of a flood gun charge neutralizer. For
the core-level spectra, pass energy and step size were 30 and 0.1
eV, respectively. Peak deconvolution of the photoelectron
spectra was performed through Avantage software. The number
of peaks is assigned in deconvolution depending on the
chemistry of the material; however, their characteristics are
allowed to vary.

H CONCLUSION

The core and valence level electronic structures of ZrO, core—
shell nanostructures deposited at three different template
temperatures were investigated. By varying the deposition
temperature, control of the crystallinity is harnessed where a
clear transition from amorphous to tetragonal ZrO, is evidenced.
The results of this study enhance the understanding of the
evolution of various bands in the presence of O, and changes to
the crystallinity. The presence and sustained fraction of Oy, is an
indication of surface reactivity and defects such as V5’s. The Zr 3s
level from 130 °C sample appeared to slightly blue shift from its
higher temperature counterparts, which might be due to surface
heterogeneity from Ogy, of various origins. Analysis on Zr 3d
indicated the presence of metallic-Zr (Zr™¢, 0 < Il < 4), the
fraction of which decreases with increasing template temper-
ature. On the other hand, the ALD parameters and characteristics
of the substrate might influence the properties. The region close
to Ep depicted features that are in contrast with the literature.
Analysis of the VB region evidenced various differences
attributed to complex hybridization of orbitals from chemisorbed
species based on the analyses from O 1s, Zr 3d, and Zr 4p levels.
The metallic-Zr on ZrO, homocombination can have potential
where the chemisorbed species including metallic-Zr determines
the structure of VB and the electronic properties. To resolve the
contribution of each of the components, a thorough computa-
tional study is perhaps useful.
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