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July, 2015



Robust Auction Design Under Multiple Priors
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ABSTRACT

ROBUST AUCTION DESIGN UNDER MULTIPLE
PRIORS

Çağıl Koçyiğit

M.S. in Industrial Engineering

Advisor: Prof. Dr. Mustafa Ç. Pınar

July, 2015

In optimal auction design literature, it is a common assumption that valuations

of buyers are independently drawn from a unique distribution. In this thesis, we

study auctions with ambiguity for an environment where valuation distribution is

uncertain itself and introduce a linear programming approach to robust auction

design problem. We develop an algorithm that gives the optimal solution to the

problem under certain assumptions when the seller is ambiguity averse with prior

set P and the buyers are ambiguity neutral with a prior f ∈ P . Also, we consider

the case where the buyers are ambiguity averse as the seller and formulate this

problem as a mixed integer programming problem. Then, we propose a hybrid

algorithm that enables to achieve a good solution for this problem in a reduced

time.

Keywords: robust optimization, auction design, mechanism design, ambiguity

aversion.
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ÖZET

GÜRBÜZ İHALE TASARIMI

Çağıl Koçyiğit

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Mustafa Ç. Pınar

Temmuz, 2015

İhale tasarımı literatüründe yapılan genel bir varsayım, alıcıların satılan ürüne

verdikleri değerlerin bağımsız olarak tek bir dağılımdan geldikleridir. Bu tezde,

biz bu değerlerin bağlı olduğu dağılımın kendisinin de belirsiz olduğu varsayımını

yapıyoruz ve gürbüz ihale tasarımı problemini doğrusal programlama bakış

açısıyla çözüyoruz. Belli varsayımlar altında, satıcının doğru değer dağılımını

bilmediği, belirsizlikten kaçındığı ve alıcıların ise doğru değer dağılımını bildiği

çevre için, probleme en iyi sonucu veren bir algoritma geliştiriyoruz. Ayrıca,

alıcıların da belirsizlik karşıtı olduğu durumu da göz önünde bulunduruyoruz ve

bu problem için bir karışık tamsayı formülasyonu veriyoruz. Daha sonra, prob-

leme kısa bir süre içerisinde iyi bir sonuç veren, hibrit bir algoritma öneriyoruz.

Anahtar sözcükler : gürbüz, optimizasyon, ihale tasarımı, mekanizma tasarımı,

belirsizlik karşıtlığı .
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Chapter 1

Introduction

An auction is a process of selling a single/multiple goods. A common aspect of

auctions is that they collect bids from buyers and the outcome is the determi-

nation of an allocation rule specifying who gets the object and a payment rule

describing how much every bidder must pay. Determining the most profitable

auction rule is important because auctions have been used for a significant vol-

ume of economic transactions both in public and private sector [1].

In auctions, each buyer has a valuation -willingness to pay- assigned to goods on

sale. The major reason for holding auctions is the seller’s lack of knowledge about

these valuations. In optimal auction design literature, it is mostly assumed that

buyers’ valuations are independently drawn from a unique distribution. However,

in reality, it is more likely that there will occur some estimation errors and this

valuation distribution will be uncertain itself.

In this thesis, we study auctions for an environment where valuation distribu-

tion comes from a set of distributions P and introduce a linear programming

approach to robust auction design problem where a single object is sold to po-

tential buyers. To have a finite number of equations in our formulation, we let

the valuation distribution to be discrete as well as the set P . Moreover, we allow

ambiguity about valuation distribution. In the literature, it is showed that the
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decision makers mostly develop ambiguity averse behaviour [2]. In this study, we

consider the seller to be ambiguity averse in a way that she tries to maximize

the worst case expected revenue. Hence, we adopt a more realistic approach to

formulate auction design problem compared to the studies with unique valuation

distribution assumption.

The remainder of this thesis is organized as follows: Chapter 2 provides a litera-

ture review in auction design. Also, some important concepts related to our study

are introduced. In Chapter 3, we define robust action design problem when the

seller is ambiguity averse and the buyers are ambiguity neutral. Note that ambi-

guity neutrality of buyers leads them to give the same importance to all possible

realizations of the valuation distribution. We reformulate this problem as a linear

programming problem. Then, we develop an algorithm which gives the optimal

solution under certain assumptions. Moreover, we make analyses and conclusions

on the optimal mechanism derived from the algorithm. In Chapter 4, we intro-

duce robust auction design problem when the buyers are ambiguity averse too.

We give a reformulation of the problem as a mixed integer programming prob-

lem. To solve the given problem, we propose an algorithm which almost always

enables to achieve an optimal solution in a reduced time. We support our claim

by computational results. Finally, we give concluding remarks and extensions of

robust auction design problem in Chapter 5.

Contributions of this thesis are as follows:

1. In Chapter 3, we give a specific and applicable optimal mechanism for the

robust auction design problem with ambiguity averse seller and ambiguity neutral

buyers under certain assumptions, which is the only detailed optimal mechanism

in the literature to our knowledge. Our optimal mechanism is easy to understand

due to similarity to well-known Vickrey auction, and it is reasonable and fair

from participants’ perspective because only the winner makes a payment which

never exceeds his own bid.

2. In Chapter 4, the MIP formulation is new, to the best of our knowledge, as

well as the algorithm. With the MIP formulation, we allow robust auction design

problem with ambiguity averse seller and buyers to be trackable in a way that it

is solvable by Operations Research softwares. Also, to shorten the solution time,
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we propose an algorithm and prove that it is useful by computational results.
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Chapter 2

Literature Review

In this section, we give a literature review related to our work. For a more detailed

one, see [1]. Also, we recommend [3] as an introductory book.

Auction design entered the economics literature relatively recently. In 1961,

William Vickrey wrote the first game theoretical analysis of auctions [4]. This

was the first occurrence of well-known second price sealed-bid auctions in which

buyers simultaneously report sealed bids to the seller, the highest bidder wins the

object and pays second highest bid. Today, second price sealed-bid auctions are

also called Vickrey auctions.

Myerson, in 1981, came up with the Revelation Principle [5].

The outcomes resulting from any equilibrium of any mechanism can be repli-

cated by a truthful equilibrium of some direct mechanism.

By the Revelation Principle, Myerson concluded that restricting attention to only

direct mechanisms, a mechanism where all the buyers report their true valuations,

does not cause loss of generality under certain assumptions [5]. Utilizing this re-

sult, he also showed that the second price auction with a reserve price is an

optimal mechanism to classical auction design problem when hazard function,

ratio of density function to survival function -one minus cumulative distribution
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function-, is monotone [5]. In classical auction design problem, there is a risk

neutral seller with a single good which she desires to sell to a number of risk

neutral buyers. Each buyer has a private valuation assigned to the good. Buy-

ers’ valuations are assumed to be independently drawn with respect to a unique

continuous distribution function over a finite interval.

In 1981, simultaneously, Myerson [5],and Riley and Samuelson [6] extended Vick-

rey’s results regarding expected revenue equivalence in different auctions and led

to the famous Revenue Equivalence Principle.

Given certain conditions, any auction mechanism that results in the same out-

comes (i.e. allocates items to the same bidders) also has the same expected rev-

enue.

Myerson also analyzed optimal auctions when the monotone hazard function and

symmetric buyers assumptions are relaxed [5].

When risk aversion is introduced to the auction design problems, the Revelation

Principle is not valid for most of the cases. For analyses of how risk aversion affects

the Revelation Principle and literature in risk aversion, we direct the reader to

[1]. In this thesis, we assume that the seller and the buyers are risk neutral.

Recently, Rakesh V.Vohra [7] published a paper showing the close relation be-

tween linear programming and auction design when valuations of buyers are dis-

crete. In this publication, he used standard results from linear programming to

solve a wide class of auction design problems. His work has been a motivation

for us to use linear programming in robust auction design problem.

Moreover, although auction problems have been widely studied in the literature,

results on robust auction design are somehow limited due to the complexity of

the problem. In [8], Gilboa and Schmeidler modeled ambiguity aversion using

maxmin expected utility (MMEU). In MMEU, decision maker is characterized by

a utility function and a set of priors and the chosen act maximizes the minimal

expected utility over the prior set. In this thesis, we follow their work to formulate

robust auction design problem.
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There have been a few studies on auction design allowing ambiguity in prior

distribution but most of them look at some specific auctions, such as first price

auction and second price auction, rather than an optimal auction [9], [10].

Bandi and Bertsimas studied optimal design for multi-item auction from a robust

optimization perspective but this study is slightly different from our work [11].

They define allocation and payment rule variables for all possible realizations of

the prior. In other words, they present an auction mechanism that is carried

out when the prior is realized while in our problem, the seller announces a single

allocation rule and a single payment rule before the realization.

Reference [12] is closer to our work. The difference from our approach is that

valuation distribution f is assumed to be continuous over a finite interval and the

prior set P is infinite. Under monotone hazard function assumption,in [12], it is

proved that when the seller is ambiguity averse and the bidders are ambiguity

neutral, an auction that fully insures the seller is in the set of optimal mechanisms.

In Chapter 3, we derive an optimal mechanism for robust auction design problem

and claim that this is the unique optimal mechanism. In fact, the mechanism we

observed does not fully insure the seller. Hence, the result of [12] is not valid for

our setting.

We also point out that, under certain assumptions some properties of optimal

mechanism were given in [12] when buyers are also ambiguity averse. Bose et al.

[12] showed that when the bidders face more ambiguity than the seller in a way

that buyers’ prior set contains the seller’s prior set, the seller can always increase

revenue by switching to an auction providing full insurance to all types of bidders,

and in general neither the first nor the second price auction is optimal.

In this thesis, we developed an algorithm which gives an applicable optimal mech-

anism for robust auction design problem when the seller is ambiguity averse and

buyers are ambiguity neutral. Some properties of the optimal mechanism to the

robust auction design problem was stated in the literature but such a detailed one

was never driven to the best of our knowledge. Also, we considered the case where

buyers are ambiguity averse too. We do not derive an optimal mechanism for this
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problem but we formulate the problem as a mixed integer programming problem

which is trackable. Then, we propose an algorithm which enables to solve this

problem in a reduced time. We think that our results will ease further studies for

robust auction design problem with ambiguity averse seller and buyers.
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Chapter 3

Auction Design Problem with

Ambiguity Averse Seller

3.1 Problem Definition

The environment of our problem consists of a single ambiguity averse seller with

prior set P and n number of ambiguity neutral buyers (agents) with a prior f ∈ P .

Note that ambiguity aversion occurs due to seller’s lack of knowledge about the

maximum amount each buyer is willing to pay, which we call valuation (type)

of agent. An agent of course knows his own valuation and he also believes that

others’ valuations are independently drawn from a finite set T with respect to

distribution function f . On the other hand, the seller has the knowledge of a

prior set P with finite number of distributions in it. The set P includes the true

valuation distribution function f . Both the seller and the agents are risk neutral.

In other words, they have linear utility functions.

The seller desires to sell a single good to the agents. Since the seller is ambiguity

averse, the objective is to maximize her worst case expected revenue.

To formulate this problem, we invoke the Revelation Principle and restrict our
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attention to only direct mechanisms in which agents simultanously report their

true valuations. Recall from Chapter 2, the Revelation Principle states that the

outcomes resulting from any equilibrium of any mechanism can be replicated by

a truthful equilibrium of some direct mechanism.

3.2 Formulation

Before problem formulation, let us give the notation. We use t ∈ T n to denote a

profile vector which is constructed by reports of all agents. The symbols a and

p are defined to be allocation and payment rule, respectively. The symmetry

assumption allows focusing on one agent, say agent 1. Therefore, we let a(i, t−1)

be the allocation to agent 1 and p(i, t−1) be the payment done by agent 1 when he

reports his type as i ∈ T and all other agents report t−1 ∈ T n−1. The probability

of agents having types that give rise to the profile t−1 is denoted by πf (t
−1) forall

f ∈ P . The number of agents with type i in profile t is shown by ni(t).

Interim (expected) allocations and payments are denoted accordingly:

Af (i) =
∑

t−1∈Tn−1 ai(i, t
−1)πf (t

−1) ∀f ∈ P,

Pf (i) =
∑

t−1∈Tn−1 pi(i, t
−1)πf (t

−1) ∀f ∈ P.

To clarify, Af (i) denotes expected allocation to agent 1 and Pf (i) is the payment

of agent 1 if he reports type i where f ∈ P .
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We face the following constrained maximization problem (opt1):

max
{
min
f∈P

∑
i∈T

fiPf (i)
}

(3.1)

s.t. iAf (i)− Pf (i) ≥ iAf (j)− Pf (j) ∀i, j ∈ T ∀f ∈ P (3.2)

iAf (i)− Pf (i) ≥ 0 ∀i ∈ T ∀f ∈ P (3.3)

Af (i) =
∑

t−1∈Tn−1

ai(i, t
−1)πf (t

−1) ∀i ∈ T ∀f ∈ P (3.4)∑
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n (3.5)

ai(t) ≥ 0 ∀i ∈ T, ∀t ∈ T n (3.6)

The objective of our problem is to maximize seller’s worst case expected revenue

(3.1). In other words, since the seller does not know which member of P is the

true valuation distribution function, she tries to maximize the minimum expected

revenue over f ∈ P due to ambiguity aversion.

Constraints (3.2) are called Bayes-Nash Incentive Compatibility (BNIC) con-

straints in literature. These constraints ensure that, for an agent, misreporting

the valuation will always result in expected utility which is less than or equal to

the one when the type is truthfully reported. Note that we are only interested

in direct mechanisms and, by BNIC, a risk neutral agent’s optimal strategy is to

truthfully report his valuation.

With constraints (3.3), each agent will choose to participate in the auction be-

cause he will gain a nonnegative expected payoff in every possible outcome of

profiles. This type of constraints is known as Individual Rationality (IR) con-

straints.

Constraints (3.4) satisfy the consistency between interim allocations and alloca-

tion rule variables. Obviously, constraints (3.5) and (3.6) ensure that at most

one good is allocated for each profile outcome and no agent receives a negative

amount.

Next, we associate shortest path problems with BNIC and IR constraints to

reformulate (opt1).
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3.2.1 Network Association

In this section, we follow Vohra’s approach [7] and benefit from shortest path

problems and duality theory.

Consider (3.2) and (3.3). They can be rewritten as follows:

iAf (i)− iAf (j) ≥ Pf (i)− Pf (j) ∀i, j ∈ T ∀f ∈ P (3.2),

iAf (i) ≥ Pf (i) ∀i ∈ T ∀f ∈ P (3.3).

For each f ∈ P , we can associate system (3.2) and (3.3) with the following

network:

Figure 3.1: Network of Valuations

In Figure 3.1, each vertex corresponds to a type in T . Dummy type of value 0

-with Af (0) and Pf (0) equal to 0 forall f ∈ P - is introduced to the network to

include IR constraints (3.3) to network association. There is a directed edge of

length iAf (i)− iAf (j) between every ordered pair of types (j, i).
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Now, consider the following shortest path problem from vertex 0 to m:

min
∑
i∈T

∑
j∈T

(iAf (i)− iAf (j))xji

s.t.
∑
j∈T

xji −
∑
j∈T

xij =


1 if i = m

−1 if i = 0

0 otherwise

xij ∈ {0, 1} ∀i, j ∈ T

We can let xij’s take continuous values and the optimal solution to the relaxed

shortest path problem will still be an integer solution due to totally unimodularity

property of feasible set. Note that we consider the relaxed shortest path problem

from this point.

For fixed interim allocation values, if we introduce Pf (i)’s to be dual variables

corresponding to each constraint of the shortest path problem then we observe

that (3.2) and (3.3) are the constraints of the dual problem. Hence, system (3.2)

and (3.3) is feasible if and only if the network has no negative length cycles. Oth-

erwise, the shortest path problem is unbounded, which leads the corresponding

dual problem to be infeasible.

Theorem 1. The system (3.2) and (3.3) is feasible if and only if interim alloca-

tions are monotonic, i.e., if i ≤ j, then Af (i) ≤ Af (j) for all f ∈ P .

For proof, see [7].

Moreover, note that to have no negative length cycles, the length of the edge from

i to i + 2 must be at least as large as the sum of the lengths of edges (i, i + 1)

and (i + 1, i + 2). This implies that Figure 3.1 includes all shortest paths from

vertex 0 to m.

Also, we observe that, in absence of negative cycles, the shortest path from vertex

0 to i gives the tightest upper bound for each Pf (i). Since the objective is to

maximize sum of Pf (i)’s with nonnegative multipliers, it is reasonable to set them

equal to their tighest upper bounds. Therefore, we can rewrite the objective as
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follows:

∑
i∈T

fiPf (i) =
∑
i∈T

fi

i∑
k=1

kAf (k)− kAf (k − 1) =
∑
i∈T

fi(iAf (i)−
i∑

k=1

Af (k − 1))

=
∑
i∈T

fiiAf (i)− (1− F (i))Af (i) =
∑
i∈T

fi(i−
1− F (i)

fi
)Af (i)

We let νf (i) = i− 1−F (i)
fi

.

Using the development so far, (opt1) can be reformulated as follows:

max
{
min
f∈P

∑
i∈T

fiνf (i)Af (i)
}

(3.7)

s.t. 0 ≤ Af (1) ≤ · · · ≤ Af (m) ∀f ∈ P (3.8)

Af (i) =
∑

t−1∈Tn−1

ai(i, t
−1)πf (t

−1) ∀i ∈ T ∀f ∈ P∑
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n

ai(t) ≥ 0 ∀i ∈ T, ∀t ∈ T n.

While the objective function takes a new form (3.7), monotonicity of expected

allocations (3.8) replaces BNIC (3.2) and IR (3.3).

Vohra’s [7] next step is to take out allocation rule variables and solve the prob-

lem only over interim allocations. However, we will take out interim allocations

instead because otherwise, we cannot really find a useful formulation to ensure

existence of a corresponding allocation rule.

3.2.2 The Reason for Projecting Out Expected Alloca-

tions

We shall take the same step as Vohra [7] and show his reformulation won’t ensure

feasibility of expected allocations in our problem. Vohra uses the following the-

orem to reduce the auction design problem without ambiguity to a polymatroid

optimization problem.
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Theorem 2. Border’s Theorem [7] The expected allocation A(i) is feasible if

and only if

n
∑
i∈S

fiA(i) ≤ 1− (
∑
i 6∈S

fi)
n ∀S ⊆ T

The proof follows from reformulating (3.4), (3.5) and (3.6) as a transportation

problem and standard maxflow-mincut characterization of feasibility [13]. Note

that in Vohra’s problem definition, it is assumed that buyers’ valuations depend

on a unique distribution function. Hence, (3.4), (3.5) and (3.6) refer to only one

f .

In our formulation, since expected allocations differ for each f ∈ P , we need to

write inequlities from Border’s theorem for all:

max
{
min
f∈P

∑
i∈T

fiνf (i)Af (i)
}

s.t. 0 ≤ Af (1) ≤ · · · ≤ Af (m) ∀f ∈ P

n
∑
i∈S

fiAf (i) ≤ 1− (
∑
i 6∈S

fi)
n ∀S ⊆ T ∀f ∈ P.

This formulation decomposes for each f ∈ P . The solutions from the decomposed

problems will yield several allocation rules which may not be implementable at

the same time. Hence, this approach does not answer our problem of maximizing

the minimum expected revenue.
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3.2.3 Final Form of the Formulation

We take out expected allocation variables and reformulate the problem accord-

ingly:

max
a

{
min
f∈P

∑
i∈T

fiνf (i)
∑

t−1∈Tn−1

ai(i, t
−1)πf (t

−1)
}

s.t. 0 ≤
∑

t−1∈Tn−1

a1(1, t
−1)πf (t

−1) ≤ · · · ≤
∑

t−1∈Tn−1

am(m, t−1)πf (t
−1) ∀f ∈ P∑

i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n

ai(t) ≥ 0 ∀i ∈ T, ∀t ∈ T n.

Introducing a new variable z, we can linearize this problem. Below, the final form

of the formulation can be found.

max
a,z

z (3.9)

s.t. z ≤
∑
i∈T

∑
t−1∈Tn−1

νf (i)ai(i, t
−1)πf (i, t

−1) ∀f ∈ P (3.10)

0 ≤
∑

t−1∈Tn−1

a1(1, t
−1)πf (t

−1) ≤ . . .

≤
∑

t−1∈Tn−1

am(m, t−1)πf (t
−1) ∀f ∈ P (3.11)∑

i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n (3.12)

ai(t) ≥ 0 ∀i ∈ T, ∀t ∈ T n (3.13)

This is a linear programming problem. Hence, it is easy to solve.

3.3 The Solution Approach

To derive an optimal mechanism to final formulation, we focus on the case where

there are two agents and the type distribution set is equal to P = {f , g}. Also,
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we assume that monotone hazard condition holds, which leads ν(i) to be non-

decreasing in i ∈ T . If we ignore monotonicity of interim allocations (3.11),

following two propositions and stated results in between hold.

Proposition 1. Optimal allocation rule satisfies a∗i′(i
′, j′) ≥ a∗j′(j

′, i′) for all

∀(i′, j′) ∈ T 2 such that i′ ≥ j′.

Proof. Let us show why this is the case by analyzing multipliers of ai′(i
′, j′) and

aj′(j
′, i′) in the objective function:

We aim to maximize z such that

z ≤
∑
i∈T

∑
j∈T

fiai(i, j)νf (i)fj (3.14)

z ≤
∑
i∈T

∑
j∈T

giai(i, j)νg(i)gj (3.15)

For arbitrary i′ and j′, (3.14) and (3.15) can be rewritten as

z ≤ ...+ fi′fj′ai′(i
′, j′)νf (i

′) + fi′fj′aj′(j
′, i′)νf (j

′),

z ≤ ...+ gi′gj′ai′(i
′, j′)νg(i

′) + gi′gj′aj′(j
′, i′)νg(j

′).

Assume i′ ≥ j′. Then νf (i
′)fi′fj′ ≥ νf (j

′)fi′fj′ and νg(i
′)gi′gj′ ≥ νg(j

′)gi′gj′ which

states a unit increase in ai′(i
′, j′) improves objective function by a larger quantity

compared to the same amount of increase in aj′(j
′, i′). Considering the constraint

ai′(i
′, j′)+aj′(j

′, i′) ≤ 1 and allocation variables being nonnegative, it is concluded

that ai′(i
′, j′) ≥ aj′(j

′, i′) ∀i′ ≥ j′ at optimal solution.

In fact, it is direct to see that this result is independent from the number of agents

participating in the auction and the number of distribution functions contained

in P . The interpretation is that, for a profile outcome, allocating the good to the

highest bidder is always more profitable if the monotone hazard condition holds.

Remark 1. By proof of Proposition 1, we can conclude that the optimal allocation

rule obeys a∗j′(j
′, i′) = 0 ∀(i′, j′) ∈ T 2 such that j′ ≤ i′ since increasing ai′(i

′, j′)

is always preferable to increasing aj′(j
′, i′) and their sum is upperbounded by 1.
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Proposition 2. If fi′νf (i
′) ≥ fj′νf (j

′) ∀(i′, j′) ∈ T 2 such that i′ ≥ j′ ∀f ∈ P ,

the optimal allocation rule fulfills the condition a∗i′(i
′, k) ≥ a∗j′(j

′, k) ∀i′ ≥ j′ .

Proof. Take arbitrary i′ and j′.

Case 1: i′, j′ < k then a∗i′(i
′, k) = a∗j′(j

′, k) = 0 by Remark 1.

Case 2: j′ < k then a∗i′(i
′, k) ≥ a∗j′(j

′, k) = 0.

Case 3: i′, j′ ≥ k

For arbitrary i′ and j′, (3.14) and (3.15) can be rewritten as

z ≤ ...+ fi′fkai′ [i
′, k]νf (i

′) + fj′fkaj′ [j
′, k]νf (j

′),

z ≤ ...+ gi′gkai′ [i
′, k]νg(i

′) + gj′gkaj′ [j
′, k]νg(j

′).

Note that it is assumed νf (i
′)fi′ ≥ νf (j

′)fj′ and νg(i
′)gi′ ≥ νg(j

′)gj′ . Since the

objective function multiplier of ai′(i
′, k) is higher in above equations, a unit incre-

ment in ai′ [i
′, k] leads to a greater improvement in objective function value than

a unit rise in aj′(j
′, k) would. With the fact that both ai′(i

′, k) and aj′(j
′, k) are

upperbounded by 1 (by remark 1), the result is proved.

Although we prove Proposition 2 for two agents and two distribution functions

case, it is obvious that this result is valid for the general case. For the implication

of Proposition 2, think of two profile outcomes where only highest bid differs and

all other reported types are identical. If the seller allocates the good to the highest

bidder which is the lowest in these two profile outcomes, she also sells the good

in case of the second profile outcome.

Proposition 3. If fi′νf (i
′) ≥ fj′νf (j

′) ∀(i′, j′) ∈ T 2 such that i′ ≥ j′ ∀f ∈ P

and hazard function is monotone, then optimal solution ignoring monotonicity

constraints is feasible to the final form of the formulation.

Proof. If fi′νf (i
′) ≥ fj′νf (j

′) ∀(i′, j′) ∈ T 2 such that i′ ≥ j′ ∀f ∈ P and hazard

function is monotone, the optimal allocation rule obeys a∗i′(i
′, j′) ≥ a∗j′(j

′, i′) and

a∗i′(i
′, k) ≥ a∗j′(j

′, k) for all ∀(i′, j′) ∈ T 2 such that i′ ≥ j′ by proposition 1 and 2.

Hence, it is direct to see that monotonicity constraints (3.11) are satisfied.
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Theorem 3. If all νf ’s corresponding to f ∈ P start taking non-negative values

from type i′ ∈ T such that

νf (i) ≥ 0 ∀f ∈ P ∀i ∈ T st. i ≥ i′

νf (i) < 0 ∀f ∈ P ∀i ∈ T st. i < i′

then optimal solution of the final formulation has the following structure:

a∗i (i, j) =


1 if i ≥ i′ ∧ i > j

0.5 if i ≥ i′ ∧ i = j

0 o.w.

∀(i, j) ∈ T 2

The proof follows from the following idea. If we project out allocation rule vari-

ables in (opt1) and decompose the observed formulation for each f ∈ P as ex-

plained before in this chapter, then we would obtain optimal interim allocations

for each decomposed problem which are feasible with respect to given allocation

rule in Theorem 3; see knapsack solution approach of Vohra [13] for solution of

decomposed subproblems.

In this case, i′ denotes the reserve price and the good is allocated with equal

probability to the highest bidders if the highest bid exceeds the reserve price.

To analyze optimal structure under different circumstances, we make the following

assumption. Note that this assumption does not cause loss of generality if the

hazard function and respectively ν are monotone.

Assumption 1. xf , xg ∈ T such that xf > xg and,

νf (i) is

nonnegative, if i ≥ xf

negative, if i < xf

νg(i) is

nonnegative, if i ≥ xg

negative, if i < xg

Assumption 1 is valid for Theorems 4, 5 and 6.
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We introduce the following inequality as a useful condition:

m∑
i=xf

i−1∑
j

νf (i)fifj +
m∑

i=xf

0.5νf (i)f
2
i ≤

m∑
i=xf

i−1∑
j

νg(i)gigj +
m∑

i=xf

0.5νg(i)g
2
i . (3.16)

Theorem 4. If condition (3.16) is met, the optimal solution is in the following

structure:

a∗i (i, j) =


1 if i ≥ xf ∧ i > j

0.5 if i ≥ xf ∧ i = j

0 o.w.

∀(i, j) ∈ T 2

Proof. We aim to maximize the minimum expected revenue over distributions

f and g. Solution a∗ gives the maximum expected revenue if distribution f is

known to be true valuation distribution[13]. Since maximum expected revenue

with respect to f is the minimum over set P in the case of (3.16), a∗ is an optimal

solution.

We also need the following:

m∑
i=xg

i−1∑
j

νf (i)fifj +
m∑

i=xg

0.5νf (i)f
2
i ≥

m∑
i=xg

i−1∑
j

νg(i)gigj +
m∑

i=xg

0.5νg(i)g
2
i . (3.17)

Theorem 5. When condition (3.17) is satisfied, the optimal solution has the

following form:

a∗i (i, j) =


1 if i ≥ xg ∧ i > j

0.5 if i ≥ xg ∧ i = j

0 o.w.

∀(i, j) ∈ T 2

Proof. Solution a∗ gives the maximum expected revenue for the distribution g

[13] which is the minimum in the case of (3.17).

Now, we propose an algorithm to solve the robust auction design problem with

ambiguity averse seller when (3.16) and (3.17) fail to hold.

19



Algorithm 1

1: Initialize:

x← xf

a∗i (i, j) =


1 if i ≥ xf and i > j

0.5 if i ≥ xf and i = j

0 ow.

∀(i, j) ∈ T 2

objf =

m∑
i=x

i−1∑
j

νf (i)fifj +

m∑
i=x

(0.5)νf (i)f
2
i

objg =

m∑
i=x

i−1∑
j

νg(i)gigj +

m∑
i=x

(0.5)νg(i)g
2
i

Γ = {(i, j) ∈ T 2|x ≥ i ≥ xg and i ≥ j}

Γ(i, j) =
vg(i)gigj
vf (i)fifj

∀(i, j) ∈ Γ

2: while Γ is not empty & objf > objg do
3: Determine (i′, j′) ∈ Γ st. Γ(i′, j′) = min

(i,j)∈Γ
Γ(i, j)

4: if i′ 6= j′ then
5: if νf (i

′)fi′fj′ + objf > νg(i
′)gi′gj′ + objg then

6: a∗i′(i
′, j′)← 1

7: objf ← objf + νf (i
′)fi′fj′

8: objg ← objg + νg(i
′)gi′gj′

9: else νf (i
′)fi′fj′ + objf ≤ νg(i

′)gi′gj′ + objg
10: a∗i′(i

′, j′)← objf−objg
νf (i′)fi′fj′−νg(i′)gi′gj′

11: Stop at the current solution.
12: end if
13: end if
14: if i′ = j′ then
15: if (0.5)νf (i

′)fi′fj′ + objf > (0.5)νg(i
′)gi′gj′ + objg then

16: a∗i′(i
′, j′)← 0.5

17: objf ← objf + (0.5)νf (i
′)fi′fj′

18: objg ← objg + (0.5)νg(i
′)gi′gj′

19: else (0.5)νf (i
′)fi′fj′ + objf ≤ (0.5)νg(i

′)gi′gj′ + objg
20: a∗i′(i

′, j′)← objf−objg
(0.5)νf (i′)fi′fj′−(0.5)νg(i′)gi′gj′

21: Stop at the current solution.
22: end if
23: end if
24: Exclude (i′, j′) from Γ
25: end while
26: Stop at the current solution.
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In initialization, Algorithm 1 fixes a∗ for profile outcomes in which both νf and νg

values of the highest bid reported are nonnegative and leads to an allocation rule

that allocates the good to the highest bidders with equal probability. All other

allocation variables take initial value 0. The algorithm calculates right hand side

values of (3.10) with the initial a∗ as objf and objg. If objf is lower than or equal

to objg then the algorithm stops at the current solution. Also, the algorithm

determines Γ(t) values for t profile outcomes such that νf is negative but νg takes

a value greater than or equal to 0 at the highest bid reported. If there is no such

t profile, the algorithm again stops at the current solution. Otherwise, from 2,

Algorithm 1 checks whether the objective value z can be improved. Starting from

minimum Γ(t) value over t profile outcomes as described before, the algorithm

changes a∗ in such a way that the highest bid in t wins the object and continues

with a profile giving the next minimum Γ(t) value until objf is equal to objg or

all allocation variables are set to their upperbound 1 forall t profiles.

Theorem 6. If neither (3.16) nor (3.17) hold, the Algorithm 1 gives an optimal

solution when νf (i)fi and νg(i)gi are non-decreasing in i ∈ T and hazard function

is monotone.

Proof. Assume that a∗ from the algorithm violates monotonicity of interim alloca-

tions. Then ∃i′ such that at least one of
∑m

j=1 a
∗
i′−1(i

′− 1, j)fj >
∑m

j=1 a
∗
i′(i

′, j)fj

or
∑m

j=1 a
∗
i′−1(i

′ − 1, j)gj >
∑m

j=1 a
∗
i′(i

′, j)gj holds. Note that fj and gj are posi-

tive ∀j ∈ T . Once we prove that a∗i′(i
′, j) ≥ a∗i′−1(i

′ − 1, j) ∀j ∈ T , this creates a

contradiction.

For arbitrary j′ ∈ T , consider Γ(i′, j′) and Γ(i′ − 1, j′). By assumption,

vg(i
′)gi′gj′ ≥ vg(i

′ − 1)gi′−1gj′ ≥ 0 and 0 ≥ vf (i
′)fi′fj′ ≥ vf (i

′ − 1)fi′−1fj′ . There-

fore, we should have Γ(i′, j′) ≤ Γ(i′ − 1, j′). Hence, the algorithm increases

a∗i′(i
′, j′) before a∗i′−1(i

′ − 1, j′).

If i′ 6= j′,

Case 1.1: a∗i′(i
′, j′) = 1. Then, a∗i′(i

′, j′) > a∗i′−1(i
′ − 1, j′).

Case 1.2: a∗i′(i
′, j′) =

objf−objg
νf (i′)fi′fj′−νg(i′)gi′gj′

≥0. Then, the algorithm stops so that

a∗i′−1(i
′ − 1, j′) = 0.
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Else if i′ = j′,

Since i′ − 1 < j′, the algorithm sets a∗i′−1(i
′ − 1, j′) = 0.

This proves that a∗ yields monotonic interim allocations.

The algorithm considers ai(i, j) values only if i > j and always assigns values

between 1 and 0. Therefore, a∗ is feasible.

Now assume that ∃a′ 6= a∗ such that it is feasible and gives z′ > z∗. Lets consider

the constraint on z.

z∗ ≤ µ∗
f + objf ∀f ∈ P

where ∑
j∈T

xg−1∑
i=1

νf (i)a
∗
i (i, j)πf (i, j) = 0 ∀f ∈ P

∑
j∈T

xf−1∑
i=xg

νf (i)a
∗
i (i, j)πf (i, j) = µ∗

f ∀f ∈ P

∑
j∈T

m∑
i=xf

νf (i)a
∗
i (i, j)πf (i, j) = objf ∀f ∈ P

The point a∗ follows the structure in Theorem 3 for profiles where highest type

is greater than or equal to xf or both reported types are less than xg. Therefore,

it is obvious that a∗ and a′ are equal for these profile outcomes.

Let’s first assume a∗ leads to µ∗
f + objf = µ∗

g + objg. Note that this is a stop

condition for the algorithm. In this case, if z′ > z∗, we have the folowing:

µ′
f + objf > µ∗

f + objf

µ′
g + objg > µ∗

g + objg

Then µ′
f > µ∗

f and µ′
g > µ∗

g should be satisfied so that we have:

µ∗
f =

∑
j∈T

xf−1∑
i=xg

νf (i)a
∗
i (i, j)πf (i, j) <

∑
j∈T

xf−1∑
i=xg

νf (i)a
′
i(i, j)πf (i, j) = µ′

f

µ∗
g =

∑
j∈T

xf−1∑
i=xg

νg(i)a
∗
i (i, j)πg(i, j) <

∑
j∈T

xf−1∑
i=xg

νg(i)a
′
i(i, j)πg(i, j) = µ′

g
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However, νf (i) < 0 and νg(i) ≥ 0 ∀i ∈ T such that xg ≤ i < xf . This creates a

contradiction to µ′
f > µ∗

f and µ′
g > µ∗

g.

Now assume µ∗
f + objf 6= µ∗

g + objg. If µ
∗
f + objf < µ∗

g + objg, obtained solution a∗

is optimal by Theorem 4. Otherwise, µ∗
f + objf > µ∗

g + objg. To let z′ > z∗, we

should have

µ′
g + objg > µ∗

g + objg

This requires µ′
g > µ∗

g. Note that Γ is empty in this case. Hence, a∗i (i, j)’s

∀(i, j) ∈ T 2 such that xg ≤ i < xf and i ≥ j are at their upper bound. One can

increase a∗j(i, j) values. However, this increase leads to same amount of decrease

in corresponding a∗i (i, j)’s which have a higher opportunity cost. This creates a

contradiction to existence of an optimal a′ and completes the proof.

Theorem 7. For a given allocation rule a∗,

p∗i (i, j) = ia∗i (i, j)−
∑
k<i

a∗k(k, j) ∀(i, j) ∈ T 2 (3.18)

is a corresponding payment rule.

Proof. Recall in section 3.2.1, we set expected payments to their tightest upper-

bounds:

Pf (i) = iAf (i)−
i−1∑
j=0

Af (j) ∀i ∈ T, ∀f ∈ P (3.19)

Also, by definition, we have:

Pf (i) =
∑
j∈T

pi(i, j)f(i)f(j) ∀i ∈ T, ∀f ∈ P (3.20)

Af (i) =
∑
j∈T

ai(i, j)f(i)f(j) ∀i ∈ T, ∀f ∈ P (3.21)

Now, (3.19) together with (3.20) and (3.21) gives (3.18).

We do not claim that p∗ in Theorem 7 is the unique optimal payment rule. In

certain cases, it is likely to have multiple payment rules consistent with allocation
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rule a∗. However, a∗ is the unique optimal allocation rule as it is seen in proof of

Theorem 6. We show that there is no such a′ providing a higher expected revenue

to the seller but it is also clear that any other allocation rule cannot lead to the

objective value resulting from a∗.

In the optimal mechanism, under assumptions of Theorem 6, only the highest

bidder has a chance to win the object. Also, an agent makes a payment only if

he gets the object and this payment does not exceed agent’s type. If xf denotes

a threshold in the optimal mechanism, for profile outcomes where the highest

bid exceeds or equal to xf , we observe a mechanism which resembles the Vickrey

auction. The highest bidder wins the object and pays an amount between the

second highest bid and his own bid. When the highest bid reported is less than

xf but bigger than or equal to xg, for certain profile outcomes -detected by the

algorithm-, the good is allocated to the highest bidder. The winner pays at most

what he reported. If reported types are less than xg, then the seller keeps the

object.

On the other hand, if we relax the assumption νf (i)fi and νg(i)gi being non-

decreasing in i ∈ T , a buyer who didn’t report the highest bid may have the

object for certain profile outcomes. In this case, the seller makes a payment to

the highest bidder.

In conclusion, we derived an applicable optimal mechanism for robust auction

design problem. Our mechanism does not require payments higher than what an

agent offered and only the winner makes a payment to the seller, which are rea-

sonable and fair from buyers’ perspective. Moreover, the mechanism we proposed

is easy to understand and it resembles the well-known Vickrey auction so that

the implementation will not lead to much increased complexity.
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Chapter 4

Auction Design Problem with

Ambiguity Averse Seller and

Buyers

4.1 Problem Definition

There is a single ambiguity averse seller with a single good which she wishes to

sell to n ambiguity averse buyers (agents). Each agent has a valuation(type)

assigned to the good and this is private information to the agent. Agents are

assumed to be symmetric and type of each agent is an independent drawn from

a finite set T according to a distribution function f . The seller and agents do

not know this distribution function f but they have the information that f is a

member of a set of distributions P which is common knowledge.

The objective of the problem remains identical to our setting in Chapter 3, and

it is to maximize the seller’s worst case expected revenue.

To formulate this problem, we again invoke the Revelation Principle and focus

on direct mechanisms.

25



4.2 Formulation

We use the notation given in Chapter 3. The robust auction design problem with

ambiguity averse seller and buyers is formulated as follows:

max
p,a

{
min
f∈P

∑
i∈T

f(i)
∑
j∈T

pi(i, j)f(j)
}

(4.1)

s.t. min
f∈P

{
i
∑
j∈T

ai(i, j)f(j)−
∑
j∈T

pi(i, j)f(j)
}
≥ 0 ∀i ∈ T (4.2)

min
f∈P

{
i
∑
k∈T

ai(i, k)f(k)−
∑
k∈T

pi(i, k)f(k)
}
≥ (4.3)

min
f∈P

{
i
∑
k∈T

aj(j, k)f(k)−
∑
k∈T

pj(j, k)f(k)
}

∀i, j ∈ T∑
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T 2 (4.4)

ai(i, j) ≥ 0 ∀i, j ∈ T (4.5)

pi(i, j) ≥ 0 ∀i, j ∈ T. (4.6)

For ease of notation, we give the formulation for the case where there are two

agents.

Individual Rationality constraints (4.2) ensure that each agent gains at least zero

payoff from participation. Incentive Compability constraints, which force agents

to truthfully report their types, are given as in (4.3) because the bidders consider

the worst case payoffs due to ambiguity aversion. No more than one unit of good

can be allocated by (4.4). Allocations and payments take nonnegative values by

(4.5) and (4.6).

This model can be reformulated as the following Mixed Integer Programming

(MIP) Problem:
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max z

s.t. z ≤
∑
i∈T

f(i)
∑
j∈T

pi(i, j)f(j) ∀f ∈ P (4.7)

i
∑
j∈T

ai(i, j)f(j)−
∑
j∈T

pi(i, j)f(j) ≥ 0 ∀f ∈ P, ∀i ∈ T (4.8)

Dij ≤ i
∑
k∈T

aj(j, k)f(k)−
∑
k∈T

pj(j, k)f(k) ∀f ∈ P, ∀i, j ∈ T (4.9)

Dij +Mbf (i, j) ≥ (4.10)

i
∑
k∈T

aj(j, k)f(k)−
∑
k∈T

pj(j, k)f(k) ∀f ∈ P, ∀i, j ∈ T∑
f∈P

bf (i, j) ≤ |P | − 1 ∀i, j ∈ T (4.11)

i
∑
k∈T

ai(i, k)f(k)−
∑
k∈T

pi(i, k)f(k) ≥ Dij ∀f ∈ P, ∀i, j ∈ T (4.12)∑
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T 2

ai(i, j) ≥ 0 ∀i, j ∈ T

pi(i, j) ≥ 0 ∀i, j ∈ T

bf (i, j) ∈ 0, 1 ∀f ∈ P, ∀i, j ∈ T

where M is a sufficiently large number.

Since we try to maximize z, it takes the value of minimum expected revenue over

f ∈ P by (4.7). Also, note that dummy variables Dij take the value of minimum

expected payoff over f ∈ P if an agent with true valuation i reports j by (4.9),

(4.10) and (4.11).

The high dimension of the problem is an important factor that makes this problem

hard to solve. The number of distributions in P leads to a large increase in

the number of constraints. Next, we introduce an algorithm for this problem

which usually enables to achieve optimal solution with a reduced version of the

formulation.
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4.3 A Hybrid Algorithm

Without loss of generality, assume P = {f0, f1, ..., fm}. Let P ′ be a subset of

P and MIP(P ′) is a reformulation of MIP in which set P is replaced by P ′. In

other words, we take a subset of distributions in P and eliminate constraints and

variables corresponding to remaining distributions.

According to our computational study, Algorithm 2 (almost) always gives an

exact solution to MIP formulation.

The algorithm starts by solving MIP only over one distribution function, f0.

Using the optimal solution obtained, rows 5 − 9 check whether the constraint

type (4.7) is satisfied by remaining distribution functions in P and determine

the most violated one. The distribution function which causes the most violated

constraint is added to P ′. Violation in Individual Rationality constraints (4.8)

is detected in 10 − 15. Again, detected distribution function is added to P ′ if

it is not already in it. Note that it is possible to observe identical distribution

functions from 5− 9 and 10− 15.

The algorithm doesn’t consider constraints (4.9) to (4.11) in MIP. The reason is

that it also updates right hand side of constraint (4.11) according to P ′. This

corresponds to the fact that Dij’s now take the value of minimum expected payoff

over f ∈ P ′ instead of f ∈ P if an agent with true valuation i reports j. This

causes a restriction rather than a relaxation.

From row 16 to row 25, the algorithm detects violation in constraint (4.12).

However, as the right hand side, observed Dij’s are not considered for previously

explained reasoning. The algorithm calculates the right hand side of each con-

straint as ICr
min(i, j), minimum expected payoff with observed optimal solution

values over f ∈ P if an agent with true valuation i reports j. Using these right

hand side values, the most violated constraint is determined and corresponding

distribution function is included in P ′.

If at least one distribution function is added to P ′, the algorithm repeats the
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Algorithm 2

1: Initialize:
P ′ = {f0}

2: while exit = false do
3: Set Pinitial = P ′

4: Solve MIP (P ′): power * denotes optimal solution
5: Set zmin = min

f∈P

∑
i∈T f(i)

∑
j∈T p∗(i, j)f(j)

6: Determine ḟ ∈ P st. zmin =
∑

i∈T ḟ(i)
∑

j∈T p∗(i, j)ḟ(j)
7: if zmin < z∗ then
8: Update P ′ = P ′ ∪ ḟ
9: end if

10: Set IRmin = min
f∈P,i∈T

i
∑

j∈T a∗(i, j)f(j)−
∑

j∈T p∗(i, j)f(j)

11: Determine f̈ ∈ P st.
12: IRmin = min

i∈T
i
∑

j∈T a∗(i, j)f̈(j)−
∑

j∈T p∗(i, j)f̈(j)

13: if f̈ 6∈ P ′ and IRmin < 0 then
14: Update P ′ = P ′ ∪ f̈
15: end if
16: Set
17: ICr

min(i, j) = min
f∈P

i
∑

k∈T a∗(j, k)f(k)−
∑

k∈T p∗(j, k)f(k) ∀(i, j) ∈ T 2

18: IC l
min(i) = min

f∈P
i
∑

k∈T a∗(i, k)f(k)−
∑

k∈T p∗(i, k)f(k) ∀i ∈ T

19: ICmin = min
i∈T,j∈T

IC l
min(i)− ICr

min(i, j)

20: Determine
21: ī ∈ T st. ICmin = min

j∈T
IC l

min(̄i)− ICr
min(̄i, j)

22: f̄ ∈ P st. IC l
min(̄i) = ī

∑
k∈T a∗(̄i, k)f̄(k)−

∑
k∈T p∗(̄i, k)f̄(k)

23: if f̄ 6∈ P ′ and ICmin < 0 then
24: Update P ′ = P ′ ∪ f̄
25: end if
26: if P ′ = Pinitial and min

i∈T,j∈T
ICr

min(i, j)−D∗
ij ≥ 0 then

27: Set exit = true
28: else P ′ = Pinitial and min

i∈T,j∈T
ICr

min(i, j)−D∗
ij < 0

29: Set Dmin(i, j) = min
i∈T,j∈T

ICr
min(i, j)−D∗

ij = ICr
min(̄i, j̄)−D∗

īj̄

30: Determine f̃ ∈ P st.
31: ICr

min(̄i, j̄) = ī
∑

k∈T a∗(j̄, k)f̃(k)−
∑

k∈T p∗(j̄, k)f̃(k)

32: Update P ′ = P ′ ∪ f̃
33: end if
34: end while
35: Stop at current solution
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process starting from row 3. If P ′ remains the same, it is concluded that observed

solution is feasible to original formulation. Since the algorithm also restricts the

problem, it may not be optimal. Therefore, this restriction is questioned by

looking at the difference between D∗
ij and ICr

min(i, j) for all (i, j) ∈ T 2. The

distribution function causing the highest difference is added to P ′ and the process

is repeated from 3 until no restriction or violation is detected.

In each step, the algorithm gives a bound to the problem but it is somehow

hard to determine if it is a lower or an upper bound because some constraints of

MIP formulation are relaxed while some are restricted. However, under certain

conditions, we can tell more about the bound observed. If P ′ remains the same

until row 25, previously observed solution is feasible to MIP. Therefore, it is a

lower bound for the problem.

The algorithm can be adjusted to obtain an upper bound for MIP formulation.

If |P | − 1 in constraint (4.11) is not updated depending on P ′ and remains the

same throughout the algorithm, then we observe an upper bound in each step.

It is reasonable to expect that the upper bound from adjusted algorithm will be

close to the upper bound from LP Relaxation of the problem because all binary

variables introduced to the MIP(P ′) will take value 1 until P ′ = P . In the LP

Relaxation, binary variables take fractional values when relaxed, and big M still

will be large enough to ignore Incentive Compability constraints.

4.3.1 A Numerical Example

We give the following numerical example to clarify how the algorithm works. Note

that there are two buyers in this example as well as in all instances we solved in

Computational Results.
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f0 f1 f2 f3 f4 f5 f6 f7 f8 f9

1 0, 12 0, 112 0, 088 0, 116 0, 095 0, 088 0, 078 0, 106 0, 071 0, 119

2 0, 18 0, 176 0, 144 0, 165 0, 169 0, 158 0, 164 0, 144 0, 157 0, 13

3 0, 2 0, 241 0, 245 0, 234 0, 225 0, 247 0, 244 0, 223 0, 213 0, 231

4 0, 23 0, 272 0, 261 0, 25 0, 242 0, 262 0, 245 0, 264 0, 27 0, 236

5 0, 27 0, 197 0, 26 0, 232 0, 266 0, 242 0, 267 0, 26 0, 286 0, 281

Table 4.1: Input of Numerical Example

In Table 4.1, each column represents a distinct distribution function in set P and

rows are valuations in T . (eg., according to distribution function f0, 0.12 is the

probability that an agent’s true valuation is 1)

MIP Formulation

objective value = 1.1678898913027

solution time = 8.594 seconds

Algorithm

P ′ = {f0}

4 : solve MIP(P ′) objective value = 1.1925000000000

solution time = 0.016 seconds

5-9: (4.7) is violated at f8

10-15:(4.8) is violated at f9

16-25:(4.12) is violated at f9

P ′ = {f0, f8, f9}

4 : solve MIP(P ′) objective value = 1.2155299999999

solution time = 0.125 seconds

5-9:(4.7) is violated at f1
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P ′ = {f0, f8, f9, f1}

4 : solve MIP(P ′) objective value = 1.1695663606954

solution time = 0.297 seconds

5-9:(4.7) is violated at f6

16-25:(4.12) is violated at f6

P ′ = {f0, f8, f9, f1, f6}

4 : solve MIP(P ′) objective value = 1.1678898913027

solution time = 0.578 seconds

The MIP Formulation is solved using CPLEX Studio 12.6.1 and the solution time

is 8.594 seconds while the algorithm solves the same problem in 1.016 seconds in

total.

4.3.2 Computational Results

In Table 4.2 and Table 4.3, each row corresponds to an instance result. Solution

times are given in seconds. |P | is the total number of distributions in set P and

|T | is the number of valuations. Recursion column shows how many times the

algorithm repeated itself to obtain the solution. |P ′| represents the final number

of distributions in set P ′. P sets belonging to instances grouped in double lines

are randomly generated within an (f0 ± ε) interval from the same given f0 and

ε. While randomizing input data, we ensure that distribution values do not take

negative values. Input data can be seen in Tables A.1 and A.2.

In almost all rows, we give the optimal objective value and total solution time for

MIP. However, for the values written in italic, as in row 14, we set a time limit

and observed the best integer solution within the allotted time.

Note that we used NetBeans IDE 8.0.1 and CPLEX Studio 12.6.1 for solving all

instances.
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From Table 4.2 and Table 4.3, we see that the hybrid algorithm for auction

design problem leads to time efficiency and obtains optimal solution for almost

all instances. Note that there are fractional differences between objective values

from MIP formulation and the algorithm in row 24, 32 and 40. However, this

observation does not create a counterexample to the claim that the algorithm

always gives the optimal solution because this deviation in numerical values may

occur due to tolerances in Java Programming Language.

Recursion and |P ′| have a marked effect on the improvement that our algorithm

brings. Consider instances 4 to 6. For solving row 6, the algorithm repeats itself

5 times and the final number of distributions included in P ′ is 7, when compared

to instances 4 and 5, very low. Hence, as expected, the reduction in solution time

by the algorithm is noticeably higher than rows 4 and 5 both in percentage and

net amount.

Total solution times seem to depend on all randomized distributions in P rather

than only given f0 and ε. For example, although P sets corresponding to instances

34 to 36 are randomized in a similar fashion, 36 has a huge solution time compared

to others. This difference is reduced for our algorithm solution time even though

recursion and |P ′| values of 36 are not the lowest in this sample. This tells us how

many times the algorithm repeated itself, and the final number of distributions

are not the only elements determining the time efficiency caused by the algorithm.

From this computational study, we cannot make a precise conclusion on the class

of problems for which the algorithm will be efficient. Even though the input is

randomized in a similar fashion, we observe significant differences in both MIP

solution time and the algorithm solution time. However, it can be concluded that

the algorithm effectively reduces the solution time in most cases.
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Chapter 5

Conclusion

In this thesis, we focused on the auction design problem with discrete valuations

for a single good when buyers’ valuation distribution comes from a set of distri-

butions P rather than being unique. Recall that we assumed both the seller and

the buyers are risk neutral.

In Chapter 3, we gave a formulation for robust auction design problem with an

ambiguity averse seller and n ambiguity neutral buyers. Then, we reformulated

the problem with the help of standard results from linear programming. Our

final model was linear. We developed an algorithm which gives the optimal

solution for the case where there are two buyers and and P consists two discrete

distributions under certain assumptions. In the optimal mechanism, the highest

bidders win the object with equal probability until the highest bid reported falls

under a threshold. Only the winner makes a payment and he pays an amount

between his own bid and second highest bid. Under the threshold, there may be

allocation to the highest bid for some profile outcomes and these are determined

by the algorithm.

Although there have been studies in the literature underlying few properties of

the optimal mechanism to robust auction design problem [12], a specific mech-

anism was never driven. The optimal mechanism we derived is both detailed
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and applicable. It is easy to understand because it resembles the well-known

Vickrey auction and it does not require payments which exceed the buyer’s offer.

Also, only the winner makes a payment, reasonable and fair from buyers’ per-

spective. Hence, the implementation of our study will not lead to much increased

complexity.

In Chapter 4, we analyzed the same problem when the buyers are also ambiguity

averse. This problem is known to be very complex and consequently the literature

is very limited [12]. We formulate the problem as a mixed integer programming

problem and to the best of our knowledge our formulation is novel. Then, we

propose an algorithm which enables to solve the problem in a reduced time.

Our computational results show that the algorithm leads to time efficiency and

achieves the optimal solution for most of the instances we solved.

There are several research directions arising from our study. In Chapter 3, while

deriving an optimal mechanism, we assumed that there are two distinct distribu-

tions in set P . Although, we proved our results for this environment, from our

emprical results, we observe that the optimal structure seems to be preserved for

the general case. Perhaps, under certain assumptions, it might be possible to

extend the set P . For example, necessary assumptions for including all convex

combinations of these two distinct distributions can be determined. Morever,

the effect of additional constraints such as budget constraints on the optimal

mechanism can be considered as a future work.

The optimal mechanism we achieved in Chapter 3, differs from the results of [12].

Our results can be extended to the continuos distribution case to analyze what

this difference is caused by in the future.

Throughout Chapter 3 and Chapter 4, we invoke the Revelation Principle holds

and formulate problems with only direct mechanisms. One can also consider

indirect mechanisms in an environment where ambiguity is introduced. In this

case, the optimal strategy of the buyers should be analyzed.

For the robust auction design problem with ambiguity averse seller and buyers,
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the structure of an optimal mechanism can be examined.
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Appendix A

Input Data

41



ε f0(1) f0(2) f0(3) f0(4) f0(5) f0(6) f0(7)

1 0,08 0,12 0,18 0,2 0,23 0,27
2 0,08 0,12 0,18 0,2 0,23 0,27
3 0,08 0,12 0,18 0,2 0,23 0,27

4 0,04 0,12 0,18 0,2 0,23 0,27
5 0,04 0,12 0,18 0,2 0,23 0,27
6 0,04 0,12 0,18 0,2 0,23 0,27

7 0,1 0,12 0,18 0,2 0,23 0,27
8 0,1 0,12 0,18 0,2 0,23 0,27
9 0,1 0,12 0,18 0,2 0,23 0,27

10 0,08 0,08 0,11 0,14 0,17 0,2 0,3
11 0,08 0,08 0,11 0,14 0,17 0,2 0,3
12 0,08 0,08 0,11 0,14 0,17 0,2 0,3

13 0,04 0,08 0,11 0,14 0,17 0,2 0,3
14 0,04 0,08 0,11 0,14 0,17 0,2 0,3
15 0,04 0,08 0,11 0,14 0,17 0,2 0,3

16 0,08 0,11 0,17 0,29 0,2 0,13 0,1
17 0,08 0,11 0,17 0,29 0,2 0,13 0,1
18 0,08 0,11 0,17 0,29 0,2 0,13 0,1

19 0,04 0,11 0,17 0,29 0,2 0,13 0,1
20 0,04 0,11 0,17 0,29 0,2 0,13 0,1
21 0,04 0,11 0,17 0,29 0,2 0,13 0,1

Table A.1: Input Data 1
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ε f0(1) f0(2) f0(3) f0(4) f0(5) f0(6) f0(7)

22 0,1 0,11 0,17 0,29 0,2 0,13 0,1
23 0,1 0,11 0,17 0,29 0,2 0,13 0,1
24 0,1 0,11 0,17 0,29 0,2 0,13 0,1

25 0,08 0,11 0,17 0,29 0,2 0,13 0,1
26 0,08 0,11 0,17 0,29 0,2 0,13 0,1
27 0,08 0,11 0,17 0,29 0,2 0,13 0,1

28 0,04 0,11 0,17 0,29 0,2 0,13 0,1
29 0,04 0,11 0,17 0,29 0,2 0,13 0,1
30 0,04 0,11 0,17 0,29 0,2 0,13 0,1

31 0,1 0,11 0,17 0,29 0,2 0,13 0,1
32 0,1 0,11 0,17 0,29 0,2 0,13 0,1
33 0,1 0,11 0,17 0,29 0,2 0,13 0,1

34 0,08 0,28 0,2 0,17 0,1 0,1 0,08 0,07
35 0,08 0,28 0,2 0,17 0,1 0,1 0,08 0,07
36 0,08 0,28 0,2 0,17 0,1 0,1 0,08 0,07

37 0,08 0,13 0,18 0,25 0,15 0,12 0,09 0,08
38 0,08 0,13 0,18 0,25 0,15 0,12 0,09 0,08
39 0,08 0,13 0,18 0,25 0,15 0,12 0,09 0,08

40 0,1 0,13 0,18 0,25 0,15 0,12 0,09 0,08
41 0,1 0,13 0,18 0,25 0,15 0,12 0,09 0,08
42 0,1 0,13 0,18 0,25 0,15 0,12 0,09 0,08

Table A.2: Input Data 2
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