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ABSTRACT

SIGNAL DETECTION THEORY ANALYSIS OF
CATEGORY-BASED VISUAL SEARCH IN NATURAL

MOVIES

Osman Tutaysalgır

M.S. in Electrical - Electronical Engineering

Advisor: Tolga Çukur

August 2016

The human brain changes its inner hierarchy and connection strength between the

neurons in order to apprehend the real world. In visual search, It is thought that

the human brain changes the sensitivity of neurons in the favor of the attended

object. Here, we investigate these tuning shifts of the voxels in signal detection

theory perspective. Brain activities of human subjects were recorded while they

were watching a natural movie. To assess the attentional effect on the human

brain, the decoding procedure was employed on the BOLD responses and the

natural movie stimuli. Decoding procedure tries to predict the stimuli that form

the BOLD responses. In order to bridge the gap between the stimuli and BOLD

responses, logistic regression which is a classification algorithm is applied to form

models of the subjects’ brain. The model performances were assessed with d-

prime, ROC and AUC parameters.

Our results suggest that category-selective regions in the human brain boost

their detection performances further for the objects that they are not inherently

selective.

Keywords: Visual Search, Logistic Regression, D-prime, Receiver Operating char-

acteristic (ROC), Area Under Curve (AUC) .
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ÖZET

KATEGORİSEL GÖRSEL DİKKATİN SİNYAL
ALGILAMA TEORİSİ ILE İNCELENMESI

Osman Tutaysalgır

Elektrik - Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Çukur

Ağustos 2016

İnsan beyni, gerçek dünyayı anlamlandırabilme için kendi iç hiyerarşisini

ve nöronlar arasındaki bağlantı gücünü değiştiren bir yapıya sahiptir. Bu

doğrultuda, insan beyninin dikkat edilen nesneye göre nöronların hassasiyetini

değiştirdiği düşünülmektedir. Bu çalışmada voxellerde meydana gelen bu du-

yarlılık değişimleri sinyal algılama teorisi çerçevesinde ele alınacaktır. Deneklerin

beyin aktiviteleri, onlara bir video izletilirken kayıt altına alınmıştır. Dikkatin

beyin üzerindeki etkisini anlayabilmek için hem beyin hücrelerinin aktivite sinyal-

leri (BOLD) hem de videodaki objelere çözümleme (decoding) prosedürü uygu-

lanmıştır. Bahsedilen çözümleme (decoding) prosedürü beyin aktivitelerine neden

olan uyarıcıyı (stimuli) tahmin etmeye çalışmaktadır. Bu bağlamda, etki ve tep-

kiler arasındaki bağıntının kurulması amacıyla bir sınıflandırma algoritması olan

”logistic regression” ile deneklerin beyin modelleri oluşturulmaya çalışılmıştır. Bu

modellerin performansları d-prime, ROC ve AUC parametreleriyle hesaplanmıştır

ve değerlendirilmiştir.

Bu araştırma sonucu ortaya çıkan sonuçlara göre, insan beyninin kategori-seçici

bölgeleri görsel dikkatle birlikte seçici olmadıkları nesneleri algılayabilmek için o

nesnelerin seçiciliğini seçici oldukları nesnelere göre daha fazla arttırmaktadır.

Anahtar sözcükler : Görsel Dikkat, Logistic Regression, D-prime, ROC, AUC.
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Chapter 1

Introduction

The brain is a highly flexible organ that evaluates, transforms and modifies the

data from the sensors of the human body. It also governs many different tasks

related to cognition and perception. It is a network interconnection system that

consists of over 100 billion nerve cells. Although an individual nerve cell has lim-

ited capacity, the interconnection of this system controls not only motor muscle

movements such as walking but also fulfills feature specific, computationally ex-

pensive tasks such as categorization of seen objects. The human brain’s process

of understanding starts with the signaling pathways of several sensory organs,

the communication between the neural cells and their formation of the intercon-

nection system.

Vision is one of the most advanced features of a living organism. Most of our

perception of the real world is obtained from our eyes. Vision starts in the retina.

The retina converts analog real world signals into electrical ones [7]. Signals from

the retina are transmitted to the cerebral cortex (that is the outermost layer of

the brain) via neurons. This data first arrives at the primary visual cortex where

the basic shape and orientation of the object are identified. In the higher levels of

the processing, the brain combines information from several subregions to build

the perception. It also selects information about specific attributes to construct

short and long term memory [7].
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The human visual system carries out various tasks in order to apprehend the

surrounding world. Recognition is one of the most computationally expensive

and challenging task. To recognize an object, the brain needs to compare the

perceived object with countless possibilities and find the right match. Palmer et

al. [8] described the perception process such that the brain converts an object

into a reference plane. Size and orientation of the object seen in the reference

plane are compared with the objects stored in the memory. This model creates

an advantage on computational intensity in that only a few models need to be

stored in the memory and processed in order to recognize a particular object.

Olshausen et al [9] presented a mechanism to explain how objects are repre-

sented in visual areas. They tried to explain how attention and pattern recogni-

tion occur in the brain. According to their model, input and output relationship

between different brain regions are dynamical, changed with neural connections.

Also, the strength of these neural connections are modified without loss of spatial

and temporal resolution.

In earlier studies, researchers tried to evaluate the relationship between iso-

lated individual voxel responses and the the stimuli represented. These analyses

are not sensitive enough to decode information in certain aspects. These classical

methods select the voxels that show significant response to the experiment stim-

uli and take the average of their responses. Despite spatial averaging smoothing

the data, it blurs the dataset and might eliminate unique information. Further-

more non-significant voxels might convey stimuli-specific information, and this

information can’t be taken into account for processing [35, 36].

In another recent study [10], researchers investigated the attentional effect

on extracting categorical information. They proposed that visual search of a

particular object biases the processing in the favor of that object so that only the

attended object is represented in high-level cortical areas. In another study [11],

researchers tested whether task-relevant features of the attended category are

selected. According to their results, when subjects paid attention motion, they

found out that the acquired signal is bigger as subjects see moving faces instead of

moving houses in face-selective areas. Reddy et al [12] also showed that attention

2



removes the clutter effects and increases visual search performances under natural

viewing conditions.

In this thesis, we tested how attention changes tuning shifts of the category-

selective regions of the human brain. We used a signal detection theory perspec-

tive and modeled different areas of the brain as detectors of the target category.

Our results suggest that the detection performances of the category-selective re-

gions are the highest for objects for which they are not inherently selective.

Outline of the thesis is as follows: In Chapter 2, building blocks of the MRI

(magnetic resonance imaging), fMRI (functional magnetic resonance imaging)

and fMRI signal processing are briefly explained. In Chapter 3, we talk about

the human brain and its category-selective regions. In Chapter 4, methods used

in this study are elaborated. In Chapter 5, obtained results are presented and

explained.
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Chapter 2

Functional Magnetic Resonance

Imaging

As the information processing takes places in the brain, the energy required is

provided by the vascular system in the form of glucose and oxygen. Oxygen

is transmitted to the brain via blood. It appends to the hemoglobin molecules

in the blood. It changes the magnetic property of the hemoglobin. Functional

magnetic resonance imaging (fMRI) uses these alterations in the magnetic field

to form images of neural activity correlated with physiological changes. Contrast

based on neural activities is also known as the blood-oxygenation-level-dependent

(BOLD) contrast.

When oxygen molecules attach themselves to the hemoglobin, hemoglobin

molecules show the diamagnetic property. Diamagnetic materials have no mag-

netic moments when they are placed inside a magnetic field, thus they do not

effect the MR signals. Deoxygenated hemoglobin, on the other hand, shows

paramagnetic property, and it can be used as a contrast material for MR. This

phenomenon was first discovered by Seiji Ogawa, who was a research scientist at

Bell Laboratories [1].

Deoxygenated hemoglobin has a small T2 value that leads MR components
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on the transverse plane to decay faster and reduce the MR signal (underlying

physical phenomena are described in the appendix part). Although oxygenated

hemoglobin has no effects on the MR signal, neural activity related MR images

are collected with the help of the oxygen molecules. Whenever a neural activation

occurs in a brain region, the concentration of oxygenated hemoglobin molecules

increase more than that of the deoxygenated hemoglobin molecules. Therefore,

signal decrease due to the T2 effect is relatively reduced.

The MR signal triggered by neural activity is known as the hemodynamic

response. Neurons usually fire within milliseconds after the stimulus. But hemo-

dynamic responses start 1-2 seconds following the neural event and usually reach

their maximum within the following 5 seconds. After a few seconds, hemody-

namic responses fall below their baseline and refine to their initial state within

10 seconds.

Figure 2.1: A typical hemodynamic response. Measured BOLD activity starts
to increase two seconds after from beginning of the neural activity. It reaches its
maximum about 5s after the onset. After the neural stimulus ends, hemodynamic
response amplitude falls below a baseline and recovers its initial state. The figure
is reinterpreted from [1].

The spatial resolution of an MR image is defined as the separability of a voxel

from the nearby spatial location. It is dependent on several different factors re-

lating to the MR sequence and the machine. On the MR device, the field of

view parameter describes the total imaged size in 2 dimensions, and it is usually

expressed in centimeter. On the MR sequence, the total number of imaged voxels

is defined as sampling period on each frequency and phase encoding gradient. So,
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for example, a field of view of 25 by 25 cm and 125 samples on each encoding

gradient results in a 2mm x 2mm in 2-D. The third dimension that is needed to

construct the voxel is provided by the thickness of the slice that is formed with

the slice selection gradient [13].

Increasing the voxel size is beneficial for fMRI studies. SNR of fMRI signals

are dependent on the BOLD and if we decrease the spatial resolution by a factor

of 2, BOLD signals reduce by half so does the SNR value. The second effect of

increasing the voxel size is that time of acquisition decreases as we increase the

voxel size. This increase in the acquisition time causes images to suffer from T ∗2

effects and reduces the BOLD signal. On the contrary, increasing the voxel size

too much causes a decrease in discrimination performances [13].

Temporal resolution can be described as the ability to discriminate different

consecutive stimuli from the BOLD signals. fMRI can ensure a temporal reso-

lution that is on the order of a few seconds. Like spatial resolution, temporal

resolution is dependent on both the MR sequence and BOLD signal characteris-

tic. Repetition time of the MR sequence is the first parameter in constructing the

temporal resolution. Repetition time might change from 500ms to 3000 ms in a

typical MR experiment [1]. The second factor that effects the temporal resolution

is the hemodynamic response characteristic. As mentioned in previous sections,

BOLD responses last around 10 seconds to recover their original state. It is bet-

ter to sample the BOLD signals in a small interval because the smaller repetition

intervals help us better identify the BOLD response of a neural activity.

2.1 Statistical Analysis of FMRI Data

In a typical fMRI study, researchers need to find out how to deal with the inher-

ently noisy data coming from a complex spatiotemporal structure. To elucidate

the underlying reasons behind the fMRI data, scientists utilize statistics as a

valuable tool.
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fMRI is a noninvasive imaging modality that is used to unveil brain functions.

In a typical fMRI experiment, the researchers acquire a set of images (directly

measuring the blood oxygenation level in different parts of the brain) that are

related to the current task of the brain. This novel technique uncloaks the brain

actions and inner hierarchies which previously were very difficult to gather infor-

mation about. Stages of the systematics of neural connections and task-related

responses of the brain can now be understood with a simple noninvasive brain

scan.

In an fMRI study, researchers try to achieve information about several features

and actions of the brain. These comprise of task-related activation, hierarchies,

the cooperation of different parts of the brain and psychological state of the

subject [13]. However, the images that are acquired by a standard MRI machine

are inherently noisy and contain complex spatiotemporal structure. Scientists

try to clear data from unwanted noise and simplify the complicated data set to

achieve more meaningful results with the use of statistical properties.

Several components make an analysis of an fMRI study prone to errors: These

include head movement during the scan and inconsistency in data, including the

variability between or within the subjects during the time course of fMRI. The

analysis of the fMRI data is to deal with all these inherent problems, and remedies

for these problems can be grouped into several components. Correction of the

fMRI data set may be accomplished by [14]

• Fixing the spatial distortion on the data set

• Alignment of the images over the time course to get rid of the relative head

movement

• Alignment of the time sequence of slices and the subject to create a frame-

work so that the data can be used in group analysis

• Smoothing the data temporally and spatially to reduce the noise over the

relatively weak signals

7



After these steps, the data might be ready for the further analysis.

2.2 Data Acquisition

In this section, an overview of data collection is presented in a concise manner.

The data collected in an fMRI experiment is an aggregation of several MRI im-

ages. These images are obtained while the subject is carrying out an individual

task. As mentioned earlier, a subject is located inside an MRI machine. The

hydrogen atoms (H) in the body align with the magnetic field. A radio frequency

pulse is used to tip over the aligned H atoms from their initial position. Im-

mediately after the RF pulse, atoms that have been tipped precess from their

aligned point in a way that they induce a current in the receiver coils of the MRI

machine. The fully aligned slices in the brain can be altered via gradient coils

throughout the experiment to complete the full brain images as they change the

magnetic field over the brain.

The raw MRI images represent the spatial frequency of the proton densities of

the brain tissue. Different tissues in the body create distinct spatial frequencies.

Thus, they form a different contrasts on the reconstructed image. To acquire

meaningful images, k-space representation of the imaged tissue needs to be sam-

pled adequately. Different sampling schemes can be applied (uniform and non-

uniform) over the k-space. In the uniform sampling, uniformly distributed points

on the k-space are sampled, while in the non-uniform sampling, the k-space is

sampled with different trajectories. Each sampling scheme has different advan-

tages and disadvantages regarding resolution, SNR, and speed. Once raw data

are collected, the Fourier transform is applied to it. Using the Fourier transform

on the raw data creates actual images of the imaged tissue, since the raw data

only represents the spatial frequencies of the tissues.

Researchers scan subject’s brain while the subjects are performing certain

tasks. Extracting the BOLD (blood-oxygen-level dependent) responses from the

MRI images is quite challenging and the results are often indeterminable due to
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spatial and temporal changes in the imaged brain tissue, the variability of the MR

machine during the scan and physiological effects like breathing, head motion and

heart beats [1]. Preprocessing algorithms are applied to readily acquired images

in order to overcome these issues.

2.3 FMRI Noise Sources and Characteristics

2.3.1 Thermal and System Noise

MR imaging studies suffer from thermal noise related to the free motion of the

electrons inside the subject and the machine. During the slice selection and

excitation stages, the temperature inside the MR hardware increases, which in

turn causes the electrons to collide with the atoms more frequently and results

in unwanted current distortion inside the imaging machine. The same incident

happens to the receiver hardware of the device. As induced currents pass through

the receiver device, temperature increases, which results in more collision inside

the hardware and causes more distortion on the image. Besides the thermal

noise, another major type of noise is the MR system noise that is caused by the

unsteadiness and variability in the imaging hardware. Known causes for this type

of noises are [1]

• Static magnetic field inhomogeneities which in turn deteriorate the quality

of image,which can also disrupt the contrast and geometry of the image

because of the varying resonant frequency of the hydrogen atoms

• Instability of the gradient coils and their characteristics similar to the mag-

netic field inhomogeneities, which changes the shape and location of parts

of the image

• Off-resonance effects in the RF transmitter and receiver circuitries, and

drift in the magnetic field of the primary magnets, which result in inefficient

excitation and causes enormous decrease in image quality.
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2.3.2 Physiological Noises

The human body is not a stationary, inert object. Muscles interact with each

other, the respiratory system changes the position of the body and heartbeats

make small variations in the status of the body or subject may swallow or move

his/her head unintentionally. These minor changes create motion related artifacts

in MR signals. Even if we don’t take into consideration the intrinsic noise sources

of MRI hardware, these subject related movements create excessive degradation

in the fMRI signals. BOLD related signals in MR are relatively small compared to

the non-BOLD (anatomically) related signals. Since these variations are digitized,

artifacts due to problems mentioned above can be modeled and removed from the

digitized data if sampling is sufficient according to the Nyquist sampling rate.

2.4 Components of FMRI Preprocessing

The success and reliability of statistical processing algorithms depend on the

consistency of the raw fMRI data sets. The primary objective of the preprocessing

stage of the fMRI study is to ensure that the data is free from the artifacts causing

the problems as mentioned above. Preprocessing has several steps.

2.4.1 Quality Assurance

Quality assurance is the starting point of the data analysis. The first, most

important and easiest method in quality assurance is eye examination of the

raw data because many artifacts in the raw data can be seen with the naked eye.

There are several programs that can show time series images as an animation and

this way any scanner dependent distortion can be detected quickly. Furthermore,

researchers perform tests to ensure the statistical consistency of the raw data. No

further processing is done on the data without passing this stage in order to save

researchers from unnecessary work [13].

10



2.4.2 Slice Time Correction

In most standard MR scanners, data acquisition occurs in an interleaved manner,

which means that the collected data belongs to the different time instants. The

BOLD responses of adjacent slices would not be identical in consecutive slices

even if they are related to the same event. These gaps between acquisition times

form problems in data analysis. One remedy for this artifact is to interpolate

time during preprocessing. Through interpolation the MR signals are corrected

as if they are collected in the same instant so that the differences are minimized.

2.4.3 Head Motion Correction

Physical and mental status of the subject cannot be completely stable during

1-2 hour long sessions. Tasks that involve muscle movements, swallowing, and

respiration, are the underlying causes of head motion during experiments. Sev-

eral precautions (small breaks during a session to relieve subject, use of head

stabilizer) can be done during and before the scan to prevent head motion. Pre-

venting head movement is relatively easy compared to correcting it [1]. Although

cautions are made, head movements still occur during the sessions. Some types

of head movement only change the location of the voxel in the resulting images

and can be corrected with software tools while others transform the data into

meaningless throughputs.

Aligning consecutive images to a reference image is called co-registration. Since

the shape and the volume of the brain don’t change, the rigid body transform

can be used to align the images. In this transformation, a cost function is applied

to maximize the similarities between images. Six variables (x-axis, y-axis, z-

axis, roll, pitch, yaw) are formulated to shift the input images onto the reference

images as close as possible [13]. Once the alignment is successfully implemented,

co-registered images are spatially interpolated to reduce the noise that comes

with the co-registration and this procedure is applied to all acquired images.
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Co-registration is also used between functional and structural images. fMRI

images are relatively low-resolution images that only show a silhouette of the

brain. Structural brain images, on the other hand, show more anatomical details.

With structural images, the regions of interests in the brain can easily be located,

and activation patterns can easily be seen.

2.4.4 Spatial Normalization

Morphology of the brain across subjects is different from each other. These varia-

tions prevent us from an inter-subject analysis. Spatial normalization techniques

are types of co-registration that scale images to a normalized framework. Spa-

tial normalization algorithms determine the sizes of individuals brains and try to

compress or enlarge them to fit a known space. With this powerful tool, fMRI

signals of different subjects can be aggregated for group analysis and let us test

our hypothesis across subjects. A well-known and widely used method for nor-

malization framework is the Talairach space. This scheme was created by Jean

Talairach and imitated from the brain of an elderly woman [1].

2.4.5 Temporal and spatial smoothing

Temporal and spatial filtering are applied to the collected fMRI signals to increase

the functional SNR [1]. Functional SNR is a term that expresses the differences

between BOLD activities of ROI in two different conditions. In a nutshell, a func-

tional SNR value enables us to detect and differentiate states of the experimental

conditions.

Sampled data might be corrupted by physiological effects such as breathing

and heartbeats. These effects can be diagnosed by applying a physiological exam-

ination on the subject before the experiment (typical respiration rate for humans
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is around 0.2-0.3 Hz, and heart rate is 1-1.5 Hz). If we sample the data suffi-

ciently, we can eliminate these physiological variables through the use of appro-

priate filters without effecting the task-dependent BOLD signals. Rectification

of corruptions is also dependent on the experiment itself. If the experiment is

fast-event based this means that conditions change every 1-2 second. In this case,

the BOLD signals can be coupled with these unwanted effects, which makes re-

moving them much more challenging. Researcher need to take precautions before

the experiment. Another problem with the BOLD signals is the temporal corre-

lation between the time points of the experiment. These irregularities cause data

to become non-eligible to be used in statistical analysis and cause results to be

more erroneous [13]. The remedy for this is whitening (intentionally adding white

noise in) the data so that the temporal correlation between pairs is corrupted.

Spatial smoothing is applied in order to reduce the high-frequency component

in the fMRI data sets. There are several reasons to reduce the spatial frequency in

the data. Firstly, spatial smoothing blurs the images and increases the functional

SNR. Generally, activation in the human brain occurs in multiple voxels. Smooth-

ing data across voxels reduces susceptibility effects and minimizes unwanted noise

in the data set. Secondly, it decreases the variability and the mismatch that is

not adjusted with the spatial normalization. Most common method for spatial

smoothing is convolution with a Gaussian kernel [14]. The degree of smoothing

on the data set depends on the variance of the Gaussian kernel in that more voxels

are involved in the smoothing with a large width kernel. There are different mea-

sures to the required Gaussian kernel but in general starting from a twice-voxel

sized kernel and increasing from that start point is recommended because there

is a trade-off between the increase in the functional SNR and the attenuation

of the meaningful information. A Gaussian kernel with a smaller width has no

positive effects on SNR and a wider one diminishes the significant information on

the brain.
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Chapter 3

Human Brain and Vision Related

Parts

3.1 Brain and Its Structure

The brain is the main organ that is responsible for decision-making processes and

sensory information. It is located inside the skull. The human brain shares the

same structure as other mammals but, it has a more advanced cerebral cortex. It

reacts real world stimuli and interacts with the environment. It contains millions

of neuron cells, and each cell contributes to the transfer and the processing of

specific information gathered from the other organs in the body [7].

The brain is the central organ of the central nervous system and interacts

with the rest of the body via the spinal cord. It constitutes a centralized control

mechanism over the body. The way to control the body is forming muscles’ ac-

tivities through the spinal cord and releasing feature specific hormones. It also

processes sophisticated sensory inputs and integrates them to collect informa-

tion from the environment. From a neurologist’s point of view, the brain is the

biological computer that collects and processes information from the world.
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Brain consists of three main parts of which each one is responsible for a different

type of processing. Basic descriptions of the brain parts are as follows [15]:

• Cerebrum: Cerebrum is the most advanced and largest part of the brain.

It is located at the top of the brain. It comprises of two hemispheres

(right and left) and their cortices. Cerebrum carries out functions such

as triggering and coordination of movement, visual and audial processing,

learning and interpretation, sense of touch and emotion.

• Brainstem: The brainstem is adjacent to the spinal cord and can be

thought as the continuation of it. It structurally connects the cerebrum

and cerebellum to the spinal cord. The brainstem controls all the auto-

matic life dependent functions such as cardiac and respiratory systems.

• Cerebellum: Cerebellum is located under the cerebrum at the back of

the head. It plays important roles in the motor movements. The cerebel-

lum also coordinates some intentional actions such as speech, balance, and

coordination.

The first aim of this study is to understand the attentional effects of the human

visual system. Different subjects’ brains were scanned and stimuli related data

were collected while they were watching a movie. Evaluation of the attentional

effects was made on the category-selective and attention-related regions of interest

in the human brain. These category-selective and attention-related regions were

localized with the MR scans for different subjects, , the data from which were

used in this study. These regions of interest will be further explained in the

following sections.

3.2 Cerebrum and Its Subparts

The cerebrum is the largest and the most developed part of the human brain. It

includes two hemispheres each controlling opposite sides of the human body. The
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hemisphere on the right side is considered to control the creativity and artistic

skills. The other hemisphere is thought to relate to the arithmetic, comprehension

and writing abilities.

The surface of the cerebrum is called the cerebral cortex. Most of the compu-

tational processing takes place in this area of the brain. It has a structure with

folds that are called gyri and sulci which enhance its surface, therefore, increasing

its computational power. It is the most superior part of the brain and encom-

passes more than half of it. Nearly all of the interesting calculations (such as

thinking, perception, language processing, sensory information processing) occur

in this area. Cerebral cortex is directly involved with the sensory informations

and perception of the surrounding world. The cerebral cortex is subdivided into

four parts [15]:

• Frontal lobe: This part is found at the front of the brain. Its functions are

correlated with attention, concentration, short term memory, motivation,

and judgment. It also controls the daily activities like walking and plays a

role in speaking and writing skills.

• Parietal Lobe: The parietal lobe is adjacent to the frontal lobe , stretch-

ing towards to the end of the brain. The parietal lobe interprets sensory

information and integrates information coming from different locations in

the body. It is also responsible for the information about spatial and visual

perception. It plays important roles in language processing.

• Occipital Lobe: Occipital lobe is located at the rear of the brain behind

the parietal lobe. It is the primary visual processing center in the human

brain. It comprises of most of the visual processing regions.

• Temporal Lobe: Temporal Lobe is located beneath the other three lobes

towards to the brainstem. It interprets informations to reveal and organize

the long term memory. It is also responsible for language and comprehen-

sion.

In summary, the cerebral cortex performs most of the processing related to the
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sensory information and maintains cognitive functions of the human brain. Re-

gions associated with the visual system and attention are further explained in the

next sections.

3.2.1 Vision Related Regions

Discovery of the noninvasive imaging modality, specifically of the fMRI, facilitates

the study of the human visual cortex and therefore enhances the understanding

of the hierarchies of it. Two principles are employed to explain the visual cortex.

In the first model (called the hierarchical processing), an image is first expressed

in a local and conventional form. Through this stage of the processing, the

image is turned into a more complete and complex representation [16]. In the

second model, different properties of the visual scene are handled with parallel

hierarchical streams [17]. Both these themes are approved by several studies in

the fMRI researches.

In this thesis, not the whole human visual cortex, but only the human and

scene selective regions are described and assessed. The recent finding about these

areas for these two objects of interest are clarified. Attention-related regions in

the brain are also explained. List of the areas of interests and their role in the

higher visual system is as follows:

• FFA (Fusiform Face Area): This section, as its name indicates, is ac-

tivated with perception of faces. Kanwisher, et al. found that activation

pattern of this area six times greater when subjects passively watch human

faces [18].

• EBA (Extrastriate Body Area): This region is named to indicate that

it shows significantly higher responses for body parts than for inanimate

objects [19]. Kanwisher et al. also showed that this area shows relatively

higher responses to human body parts except for faces.

• MT (Middle Temporal Visual Area): This region responds more sig-

nificantly when the subject sees non-stationary objects. This area performs
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a significant role in the recognition of the motion. MT is also selective for

biological motion, meaning the region is activated when a subject views

walking people, hand and mouth movements of a person [20].

• PPA (Parahippocampal Place Area): Results in [21] indicates that

this region is processing the information about the spatial domain. They

reported that the PPA is responsible for scene recognition and also gives

more marked responses to familiar places.

• RSC (Retrosplenial Cortex): RSC is involved with the spatial naviga-

tion, memory related actions and scene processing in the brain [22]. Dam-

ages that occur on the RSC might result in significant memory loss and

navigation deficiency. In another study [23], It is stated that RSC is more

selective when the number of stable items in the scene is increased.

• TOS (Transverse Occipital Sulcus): This area is located on the dorsal

occipital-temporal cortex and is activated for construction and scene related

stimuli [24].

• RET (Retinotopic (Early Visual Areas)): Early visual areas are rep-

resented under the category of RET. In this area, a 2-D projection of the

3-D objects is demonstrated. Retinotopic mapping was introduced by the

research of Tootell et al. [25].

• LOC (Lateral Occipital Complex): This area is associated with the

recognition of an objects. LOC is considered the general purpose system

for object analysis and categorization [26].

• V7 This area responds strongly to the spatial attention. V7 also shows

robust activation in response to several different categories of stimuli[27].

• IPS (Intraparietal Sulcus): IPS serves as one of the visual attention

centers in the brain. This area is activated in directed attention regardless

of the stimuli presented [28].

• FEF (Frontal Eye Field): This section is responsible for the generation

and control of the eye movements and adjusting the visual attention [29].
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• SEF (Supplementary Eye Field): According to the work of Purcell et

all [30], SEF is the main region responsible for auditing the visual search

performance. This study also states that it has a minor effect on continuing

search behavior.

• FO (Frontal opperculum): This region is responsible for controlling the

activity of other brain areas to fulfill cognitive tasks such as attention [31].
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Chapter 4

Methods

In this work, we investigate the effects of attention on the responses of the hu-

man brain. Our experiment, preprocessing and methods to analyze the data are

explained in the following parts.

4.1 Subject

Five healthy male subjects took part in the experiment. Age of subjects were

between 25−30. All subjects had normal or corrected to normal vision, and they

all signed a consent form. The procedure of the experiment was approved by The

Institutional Review Board at the University of California Berkeley.

4.2 Stimuli

To understand the effects of attention, a natural movie clip was created using

10−20s long short clips without repetition. For each attention condition (human

or vehicle) 1800s of a natural film was created. Visual angle for the video was

24 ◦ x 24 ◦ and its resolution was 512x512. Each movie was created in a similar
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manner where only one of the attended objects appeared in the movie for 450s,

they co-appeared for 450s, and none of them appeared for 450s. Attended objects

appeared in immensely different sizes, shapes, visual angles, and positions. A

fixation point for the subjects (0.16 ◦ square) was located on the film and its

color was switched at 1 Hz to ensure its visibility. The resultant video was shown

to the subjects with a mirror and projector system during the scan.

4.3 Experiment

All experimental data were acquired at the University of California Berkeley, as

part of a previous study on visual attention [33]. This thesis reanalyzes that

dataset to address different neuroscientific questions than the previous study.

Each subject was scanned seven times to collect not only functional data but also

anatomical, functional localization and retinotopic mapping data in the original

experiment. The functional data was collected in one session. During this session,

six attention conditions each lasting 600s were performed by the subjects (three

runs for the human and three runs for the vehicle category objects). Subjects

were fixated to a point while they were seeking for a category of interests in

the movie. To stay alert during sessions, they pressed a button whenever the

attended object group was seen in the film. A cue word was shown before each

run to inform the subjects about the attended category. The attended category

was switched after each run and same with all the other runs. To create mutually

exclusive stimuli clusters, each type of stimulus (human, vehicle, both of them,

none of them) was randomly picked and evenly distributed within and between

the runs. The hemodynamic offsets between the voxel responses and the movie

stimuli were compensated by adding the last 10s of the film to the start of the

film of that run. The offset data were extracted from further processing. Subjects

passively watched 7200s of natural video in the other three sessions. These extra

sessions were not used in this study.
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4.4 MRI Data Acquisition

The MRI data acquisition took place in the University of Berkeley with a 3T

Siemens scanner with a 32-channel head coil. The MRI sequence for the functional

data was a T2 weighted gradient-echo echo planar imaging that was modified with

water-excitation RF pulse. Head motion was prevented by using a foam padding.

Sequence parameters was as follows: Slice number = 32, TR = 2s, echo time = 34

ms, flip angle = 74 ◦, voxel size = 2.24 x 2.24 x 3.5mm3, FOV = 224 x 224 mm2.

Anatomical data was collected with a T1 - weighted MP-RAGE sequence. The

parameters for anatomical scan were voxel size = 1 x 1 x 1 mm3 and FOV = 256

x 212 x 256 mm3. The anatomical and the retinotopic data for two subjects were

collected with a 1.5T MRI scanner. Retinotopic mapping data were collected

in four different sessions. Each session lasted nine minutes with various stimuli

(rotating polar wedges and widening and shrinking rings). Motor localizer was a

ten-minute scan. Each subject performed six different motor tasks (hand, mouth,

foot, speech, rest and saccade blocks). Middle temporal visual area (MT) was

localized with using four 90 seconds natural movie as stimuli. Category-selective

regions were extracted with six 4.5 minutes scans. Stimuli used in the visual

localization consisted of places, faces, animals, objects and human body parts.

Auditory cortex was localized with various types of sound stimuli [32, 33].

4.5 Data Pre-Processing

Non-Brain tissue was extracted from the brain tissue using the Brain Extraction

Tool (BET). Functional data between and within the runs was aligned to the first

functional image acquired from the subject. The alignment was done with the

Statistical Parameter Mapping Toolbox (SPM8). The BOLD responses arising

from button press task were identified and removed from further processing. The

cortical surface of the subjects was constructed with Caret5 software. Voxels

of the cortical surface were determined such that the voxels which is located

22



within the 4mm radius of the cortical surface were selected. To remove the low-

frequency drift (baseline wander) from the datasets, the Savitzky-Golay filter

(which uses the low-degree polynomial to smooth the data without distorting the

signals) was applied. No extra spatial and temporal smoothing was applied. The

datasets for each subject were normalized to become zero mean and unit variance

(z-score) in order to enable us to compare the results from different subjects

easily. No subjects’ data were transformed into known brain space. Instead, two-

dimensional flat-map representations were used. The data from the functional

localizer and the retinotopic mapping was used to identify the particular region

of interest (ROI) for each subject.

4.6 Category Model

WordNet Lexicon [34] database was used to label the object categories within

the natural movies. In this database, English words are not organized based on

their spellings but they are arranged with respect to their meanings and semantic

features. Conceptually related words are linked to each other within hierarchical

orders. The natural movie was labeled by three raters. Since the words are

connected in a hierarchical manner, the existence of any category in the movie also

denotes that its higher order classes also exists. It means that the presence of a

‘lorry’ also indicates the existence of following: ‘vehicle’, ‘conveyance’. The raters

labeled 604 different object categories in the film. 331 higher order categories of

these objects were also included. The stimulus matrix (category × time) for

further processing is composed of 1s and 0s (former indicates the presence, and

the latter represents the absence of the category of interest).

4.7 Model Fitting

In this work, we used the BOLD responses and the natural movie as inputs to

our system and tried to create a model that reveals the effects of attention on the
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human brain. As a starting point, we chose decoding routines as our modeling

procedure between the stimuli and the response. In other words, we first tried

to predict the stimuli that formed the obtained responses based on constructed

models. Secondly, some metrics were computed to evaluate the performance of

the model and clarify how attention effects decoding performance. Besides, these

procedures were applied to different regions of the brain to gather a complete set

of results on the visual attention.

Some alterations were done on both stimuli and the response data sets to

apply a decoding procedure successfully. Firstly, stimulus matrix (category ×
time course) was down-sampled by 2 to balance time points of the BOLD sig-

nals and the stimuli. Additionally, some changes were applied to the response

matrix to compensate for the hemodynamic shift. Originally, the response ma-

trix contained the responses of each voxel over the period of the experiment

(voxels× time course). We added shifted versions of the each voxel response as a

new column to the response matrix. The new matrix (4× voxels× time course)

contains the time slided version of each voxel response from 2s to 6s.

We modeled voxel responses as input and stimuli as output in order to create a

transformation model. We divided our datasets into training, cross-validation and

evaluation chunks to form and evaluate a model. Logistic regression algorithm

was applied on the training datasets to obtain the models of the brain. The per-

formance metrics were calculated on the cross-validation and the evaluation sets.

We repeated this procedure 1000 times with different training, cross-validation

and evaluation sets to create aggregations of the results and evaluate their sta-

tistical consistency.

4.7.1 fMRI Models

Decoding models use voxel responses to estimate information about the real world

(stimuli). Their complimentary operation is called encoding models that uses the

opposite relationship between stimuli and response. If we formulate the response

and the stimuli as probabilistic events, we can express our decoding and encoding
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models with these prior probabilities. Let

• P(r) be the probability of the voxel responses

• P(s) be the probability of stimuli that form the responses.

• P(r,s) be joint probability that r is the response, s is the stimulus

• P(r|s) be conditional probability of a formed response r given that stimuli

is present.

• P(s|r) be the conditional probability of stimuli was present given that re-

sponse is occurred.

variables represent the probabilistic events. Joint probability can be described

as the conditional probability of evoked response given stimuli times stimuli or

the conditional probability of stimuli given formed response multiplied by the

probability of response.

P (r, s) = P (r|s)P (s) = P (s|r)P (r) (4.1)

A decoding model can be modeled as the likelihood of stimuli given response

P(s|r) on the other hand an encoding model can be modeled as the likelihood of

BOLD response patterns given the stimuli present P(r|s). Using Bayes Theorem

these probabilities can be expressed with each others.

P (r|s) =
P (s|r)P (r)

P (s)
(4.2)

P (s|r) =
P (r|s)P (s)

P (r)
(4.3)

From these equation sets, we formulated our decoding procedure and tried to

model human brain with prior stimuli and response probabilities.

In our work, we used decoding models to assess attentional effects on the

human brain. We collected BOLD responses from each subject while they were

viewing the movie sets. These datasets have low SNR value and massive size.

25



Because of these inherent characteristics of the fMRI datasets, tremendous efforts

needs to be exerted on them to reveal any meaningful data.

Multivariate analysis leverages pattern recognition and, unlike the single voxel

analysis, uses a population of voxels as a whole to increase its sensitivity [37].

It also includes the responses of non-significantly sensitive voxels in the calcu-

lation and extracts substantial information. Multivariate analysis are used by a

majority of the decoding studies in this area [36]. This procedure can disclose

the information hidden in a set of data which is its advantage over conventional

spatial averaging type analysis [38, 39].

Decoding studies might also be used to decode mental and cognitive states

of the subject’s brain. Previously studies can only show which stimuli or task

activate which region of the brain entirely because of resolution constraints. By

increasing sensitivity using the multivariate analysis, decoding studies shows sig-

nificant improvements and can even detect sudden (2s−4s) changes in the mental

states.

The main advantage of multivariate analysis comes from representing the re-

sponses and the stimuli as high dimensional spaces [37]. Responses of the brain

and the stimuli are represented in these high-dimensional vector spaces, and every

component and property of stimuli or activity and voxel of interest are described

as new dimensions. If we measure the 1000 voxel over 900 s of time course, we

represent the response matrix with 900x1000 dimensional space. Similarly, the

stimuli pattern over the time course is formed and described with 1 × 900 di-

mensional space. Once these representation spaces are created, they may be ma-

nipulated with various mathematical tools to unveil substantial information and

differentiate the several mental states required for one task. Multivariate analysis

use machine learning algorithms and try to constitute a decision threshold that

discriminates differences between the cognitive states and the high dimensional

patterns [37].
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In terms of decoding and encoding, multivariate analysis may be considered

a manipulation and evaluation of the response and stimuli vectors on the hy-

perspace. Decoding can be evaluated in order to form a transformation matrix

that converts response patterns to stimuli patterns. Although cortical topogra-

phy and anatomical structure are the essential characteristics of brain responses,

these features are discarded. They can be evaluated with other analysis methods

such as searchlight [40].

In our work, we performed our analysis on different regions of the brain. Voxels

on each region were treated as a whole, and logistic regression algorithms were

applied to each of them separately. We began our analysis by splitting response

and stimuli matrices as training, test and evaluation subsets. These datasets were

entirely independent of each other. The decision threshold that determines the

presence of stimuli on a given response pattern was computed on the training

sets with different regression parameters for each subject. Best regularization

parameter was selected on the test set. Validation of the decision threshold and

regularization parameter was done on the evaluation set. Test and evaluation

data had no effect on the classifier to have a viable testing. We perform this

procedure on each subject for both of the attention conditions. The performance

of the classifiers was calculated with the d-prime parameter.

4.7.2 Signal Detection Theory and D-prime

Signal detection theory helps us to detect information and elucidate how deci-

sion is made under ambiguity. This method provides an invaluable mathematical

framework to probe the relationship between stimuli and response in psychologi-

cal studies. Consider the following example to come to a deeper understanding of

detection theory in psychological studies. A person is passively viewing the natu-

ral video while their BOLD responses are recorded. BOLD responses for different

objects are distinct from each other for a particular ROI. Because of the loss of

attention the subject could not recognize the object of interest and this creates

noise on the BOLD responses. If we try to determine the object using the data
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from the BOLD responses, the signal detection theory accounts those noises into

its calculation and try to formulate an optimal decision threshold. The threshold

might be used to resolve the presence of the object.

To explain detection framework, some basic terminology needs to be explained.

A complete picture can be described with 4 different metrics in detection theory.

The first metric for performance of a detector is the hit rate. Hit rate can be

explained as the proportion of the correct YES responses when stimuli is present

during the basic YES/NO trials.

Hit Rate =

∑
correct

Yes∑
target

(4.4)

It is obvious that a good detector performs with a high hit rate. But this met-

ric unfortunately is not enough to completely evaluate the performance of the

detector. This is because the hit rate disregards the information when there is

no stimuli presented during the trial. The hit rate depends solely on the correct

answers and does not account for the mistake. The second metric for the detector

is known as false alarm. The false alarm rate is the number of deceptive YES

answers when there is no stimuli present on the trial. False alarm rate can be

explained as follows:

False Alarm Rate =

∑
false

Yes∑
no target

(4.5)

The third metric in detection theory stands for misses in the signal trials. It

evaluates the performance of a trial with its wrong answers. It calculates the

ratio of the wrong responses on the signal trials (when stimuli are present on the

trial).

Miss Rate =

∑
false

No∑
target

(4.6)

The last metric of the detection theory calculates the correct differentiation of

the absence of the stimuli on the noise trials.

Correct Rejection Rate =

∑
correct

No∑
no target

(4.7)

These 4 metrics can be tabulated as follows:
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Yes Response No Response

Stimuli Present Hit Miss

Stimuli Absent False Alarm Correct Rejection

In detection theory, the metrics that are most commonly used are hit and false

alarm rate. Others might be though of a complement of the first two. Although,

these two metrics together might explain the behaviour of the detectors under cer-

tain conditions, one single quantity that stands for the sensitivity might be more

desirable. Signal detection theory uses both hit and false alarm rates to create

a concrete mathematical formulation for the detection process. It also provides

a metric for detectability useful for ambiguous decision-making processes. In the

signal detection framework, hit and false alarm rate is turned into significant

quantities.

Modeling trials as probabilistic events led us to utilize signal detection frame-

work. Simplest form of the model is the Gaussian model in which both distribu-

tions are the same but one of them is shifted to one side. We can model noise

and signal trials as follows:

Xn ∼ N(0, 1) (4.8)

Xs ∼ N(d′, 1) (4.9)

where N represents the Gaussian distribution

D-prime value explains the difference in the means the two identical Gaussian

curves. When the d-prime value is large, the two curves are well separated from

each other which is an indication of an acute detector of the conditions. Since we

model the trials as equal variance Gaussian models as above, the d-prime value

can be calculated from the hit and false alarm rates as follows [2].

d-prime = z(Hit Rate)− z(False Alarm Rate) (4.10)

Where z is inverse cumulative distribution of the normal Gaussian distribution.

Weak signals can be hidden because of the bias effects [41]. Here in our study

we directly measure the attention effect on the category selectivity of particular
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Figure 4.1: Signal and noise trial. The threshold value is selected to minimize
false alarm rate and maximize true positive rate for a given experiment. D-prime
value represents how far means of these two curves are located between each
other. This figure is adapted from [2].

brain regions. The d-prime metric enables us to measure bias-free statistical tests

on our datasets.

In our work, the signal detection theory connects response of the subjects to

the natural movie stimuli. Responses for both cases (when stimuli are present

and absent) can be considered as two separated (with different means) Gaussian

curves. We trained our model on the training sets for several regularization

parameters using logistic regression. D-prime value is calculated to assess model

performances. The best regularization parameter was selected in the trial. The

final d-prime value was found on evaluation sets. D-prime value on our experiment

shows us how particular ROI responds to a specific category and how its responses

change with the directed attention.

Another metric used to evaluate the performance of a classifier is the receiver

operating characteristic (ROC) plots. ROC curves illustrate the classifier perfor-

mance while the decision threshold is varied. ROC curves are plotted with the

false alarm rate located on the horizontal axis and the hit rate on the vertical axis

and show trade-off between these two metrics [42]. With this two-sided mapping,

the performance of the detector may easily be evaluated based on a single curve.

If the probability distributions of the signal and the noise trial are known, the

ROC curve can be plotted as the cumulative distribution function of both of the

distributions that are calculated from various decision thresholds to inf.

false alarm =
∫ inf

T
f0(x)dx (4.11)

hit rate =
∫ inf

T
f1(x)dx (4.12)
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On the ROC curve, the best possible outcome is the one in upper left corner

that indicates %100 hit rate and %0 false alarm rate. On a given trial if the

two Gaussian-shaped curves are well separated from each other, we might easily

choose an appropriate decision criterion to increase the hit alarm rate. A suitable

threshold changes ROC to take a shape of an upward bow like curve. On the other

hand, an entirely random classification might be located on the diagonal line [42].

Figure 4.2: ROC curve with different d-prime values. Discrimination between
the trials increases with the d-prime value. Different d-prime values yield various
ROC curves. This figure is reinterpreted from [3].

ROC curves are two-dimensional plots of the classifier’s performance on a given

trial. The area under the ROC curve is calculated to evaluate the performance

of classifier with a single value. The area under the curve (AUC) always takes

a value between 0 and 1 since probability distribution is used to calculate the

curve. Better classifiers constitute higher AUC values for a given trial. On the

other hand, a random classifier forms the diagonal line on the ROC curves and

its area is 0.5, so no practical classifier should have a value below 0.5.
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4.7.3 Logistic Regression

In our experiment, we are interested in the relations of input and output between

real-world stimuli and BOLD responses of the subjects. We were trying to find

a model of the subjects’ brains that enables us to classify information. Because

we modeled the natural movie as a binary variable, ‘1’ is the indication of the

presence of the object category. Classification is the name for this procedure and

its one of the cornerstones of statistics and machine learning algorithms.

In the previous parts, we modeled response and stimuli datasets as conditional

probabilities of one another. Since we are using decoding procedure we are using

P(s|r) as a starting point and any unknown parameter in the probability distri-

bution can be estimated with suitable estimators. In case of linear regression we

can approximately model stimuli as a function of response patterns.

hω(x) = ω0 + ω1x1 + ω2x2 + ... (4.13)

h(x) =
n∑
i=0

ωixi = ωTx (4.14)

Above formula ωi are weights that maps input to output variables, n is the

number of inputs, x represents input patterns and y represent the output. We

first assume that our stimuli datasets contains values of 1 and 0 so that we can

change our modeling function for logistic regression as follows:

hω(x) = g(yωTx) =
1

1 + e−yωT x
(4.15)

g(−yωTx) is known as the logistic function and take a value between 0 and 1 [4].

If we formulate our decoding assumption with a logistic function, formulation for

the decoding procedure becomes as follows:

P (s = 1, 0|r;ω) = hω(r) =
1

1 + e−sωT r
(4.16)

where ω represent the model parameters, s represents the stimuli, r represents

the response patterns

There are several ways to estimate the model parameters on the above equa-

tion. A common method is to use the maximum-posteriori (MAP) estimator [43].
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Figure 4.3: Sigmoid function. Our modeling function is changed to estimate the
binary classification [4].

The starting point in the MAP estimator is defining a prior probability. Let us

define a gaussian probability with zero mean and parametric deviation. Variance

parameter in the equation below is known as the regularization parameter and

accelerates the algorithm in high dimensional spaces [44].

P (ω) ∼ N(0, λ−1I) (4.17)

On a given response and stimuli dataset, we want to find model parameters ω that

maximize the likelihood function. Let’s model likelihood of m different training

samples

l(ω) = −
m∑
i=1

log(1 + exp(−siωT ri)) +
λ

2
ωTω (4.18)

For maximizing the above equation, we need to take the partial derivative with

respect to ω and find the point that maximizes the likelihood. There are sev-

eral iterative algorithms to find the parameter spaces but explanation for those

algorithms is beyond scope of this thesis.
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4.7.4 Searchlight Analysis

Searchlight analysis technique is easily applied to the multivariate analysis in

fMRI researches. Its aim is to identify and characterize informative areas on the

human brain. The important assumption underlying the searchlight analysis is

that adjacent voxels in the brain show similar brain activation patterns over time

courses of the trials. Searchlight analysis takes advantage of this assumption

and applies the multivariate analysis technique to the brain responses. With

the searchlight analysis we might answer the question of where the localization

occurs in the brain for specific stimuli and therefore how the spatial structure of

the human brain is connected [45].

Searchlight technique creates synthetic spheres, composed of several adjacent

voxels, for each voxel of the brain. Those groups of voxels might indicate the

pattern of interest far better than the voxelwise analysis [40].

In our procedure, we created circular spheres for each voxel on the cortical sur-

face of the subject’s brain. We again divided our data into training, evaluation

and test samples. We trained our model for each sphere with the logistic re-

gression and found the best regularization parameter that yielded better d-prime

values on the evaluation set. We repeated this procedure for two different atten-

tion conditions. In each attention condition, we decoded two separate categories

of object and found the differences of d-prime for each attention condition. The

difference in the d-prime value is visualized on the flat maps of the subject’s brain

which are the projection of a human brain on a flat surface.

4.7.5 Procedures

In this work, readily available data of responses from 5 different subjects and

stimuli were used. Data was collected at the University of Berkeley and used in

several studies [33, 32]. In this study, we applied preprocessing algorithms on the
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data to remove the unwanted noisy effects. Two attention conditions were per-

formed by the subjects in the original experiment. During the functional scan,

attention conditions were alternated for each category of objects and the sub-

jects were warned about the category of interests before each session. Originally,

stimuli datasets consisted of 1705 different category and action labels but in this

study, we extracted human and vehicle stimuli from the large datasets to apply

our procedures. Category selective areas (FFA, EBA, MT, PPA, RSC, TOS) and

attention control regions (IPS, FEF, SEF, FO) were extracted from functional

data of each subject for further processing. But some attention-related regions

were not analyzed in this study such as temporoparietal junction, precuneus, dor-

solateral prefrontal cortex and inferotemporal cortex. Attentional effects on the

response of the human brain were studied, and several performance metrics were

calculated for each category and subject.

On the modeling side, training data from the stimuli and the responses of each

subject were extracted from the original datasets in a way temporal correlation

between stimuli and response matrices maintained. Both response and stimuli

data were divided into chunks. The chunks were selected randomly to construct

the training dataset. Nearly %80 of the response data and its associative stim-

uli were used as the training dataset. Logistic regression routine was applied to

the training datasets with different regularization parameters. Before the logistic

regression method was used, areas of the brain that are related to vision and

attention were selected for both of the hemispheres for each subject. Responses

from the same regions from different hemispheres of each subject were aggregated

together and used to form the models. Voxels in each region of interest created a

cluster allowing each voxel to contribute to the modeling function of the logistic

regression. This way we took advantage of the benefits of the multivariate anal-

ysis. The logistic regression routine was applied to each subject and the region

of interests separately and thirteen different model parameters for each subject

were constructed.

The best regularization parameter and model were selected from the test set

and performance metrics were calculated on the evaluation sets for each region

of all subjects. Both datasets were chosen randomly like train datasets, and they
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were mutually-exclusive. D-prime values for different regularization parameters

were calculated for each region of each brain. To calculate the d-prime values,

hit and false alarm rates were obtained. Based on the findings from the test set,

regularization parameter and regression model that yield higher d-prime values

were applied to the evaluation set. Final d-prime values for each region of inter-

ests of each subject were calculated based on selected regularization and model

parameters.

This procedure was performed over 1000 times with original datasets. In each

iteration, subsets were reselected randomly, and they were guaranteed to be mu-

tually exclusive sets. Best regularization parameter and model were reselected

in each trial. The final d-prime value was calculated by taking the means of the

d-prime values of each case on the evaluation sets. Bootstrapping were applied to

the ultimate results of all of the subjects and statistical significance were assessed.

ROC curves and their AUC were calculated for different ROIs of each subject.

For each ROI, several regularization parameters were used to obtain best modeling

parameters. Optimal regularization parameters were obtained on the test sets for

corresponding ROIs of each subject. Based on those regularization parameters

optimum models were extracted on the evaluation set. False and true positive

rates that resulted from the model parameters were calculated. This algorithm

was iterated 100 times to retrieve a concrete result.

For searchlight analysis, voxels on the cortical surface of the brain were se-

lected. Cubes from the surrounding voxels were created for each selected voxel.

We modeled the stimuli separately for each of the created cubes, and each voxel

within the cube contributed to it. This mentioned procedure was applied to each

voxel and d-prime values were obtained. The findings for each voxel were plotted

on the flat map representation of each subject.
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Chapter 5

Results

As mentioned earlier, the subjects were viewing an aggregation of short movie

clips of 1800 s. Subjects were performing two attention conditions for distinct

categories of objects. Different brain regions were thought to be activated by

these two classes of objects in previous studies [19, 21, 18]. We collected brain

responses of these two sets of stimuli for different attention conditions in our case.

In the first graph below, we calculated the d-prime values for the human de-

coding performance when the subjects were attending to the human and vehicle

objects. That means we calculated two d-prime values for human, one for when

the subjects are attending to the human objects, and one for when the subjects

are attending to the vehicle. We differentiated these d-prime values to evaluate

the decoding performance improvement.

Above mentioned procedure was applied to the data each one of the subjects.

The aggregation of the d-prime values was obtained. The bootstrap method was

used in the collection of the d-prime values of the subjects and re-sampled 10000

times. Blue bars on the below graph show the mean of the bootstrapped d-prime

values for the different regions of interests and red lines on each bar show the

sample standard deviation of those re-sampled d-prime values.
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Although, all of the regions show improvement in d-prime values, regions re-

lated with attention (IPS, FEF, SEF, FO) shows relatively high performance

improvement on the decoding performances and all of the ROIs show statistically

significant results.

Figure 5.1: Decoding performance difference of the ‘Human’ object between at-
tended and unattended stimuli. This illustration was obtained by subtracting
the d-prime values of the ‘Human’ when subjects were attending and not at-
tending to the object of interest. All of the regions of the brain, whether they
are inherently selective to the ‘Human’ object or not, enhance their detection
performances with visual search. Error bars show standard deviation that was
calculated by bootstrapping d-prime values across subjects.

Table 5.1: Selected Regularization parameters for human decoding improvement
RET FFA EBA MT LOC PPA RSC TOS IPS V7 FEF SEF FO

Decod Human ‘TC’ 400 400 400 6400 400 6400 1600 1600 1600 1600 1600 1600 6400
Decod Human ‘SN’ 6400 6400 1600 6400 1600 400 400 1600 6400 6400 1600 400 6400
Decod Human ‘JG’ 1600 1600 6400 6400 1600 1600 6400 400 1600 6400 1600 1600 6400
Decod Human ‘AH’ 1600 1600 400 1600 1600 400 400 400 1600 1600 6400 400 6400
Decod Human ‘AV’ 1600 1600 1600 1600 1600 1600 400 400 1600 6400 400 400 400

In the above table, selected regularization parameters for decoding ‘human’

object is represented. Best regularization parameters were selected on the test

sets for each subject and ROI separately.
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In the second graph below, d-prime values for vehicle decoding case are calcu-

lated. We estimated the increase in the decoding performances by calculating two

distinct d-prime values when subjects are attending one of the object categories.

These two d-prime values were subtracted to assess the performance increase.

Similarly to the first graph, attention specific regions benefit more that the other

ROIs from the attentional effect and increases their decoding performances. Also,

all of the ROI in the brain boost their performances when they account for the

attentional effect.

Here, we have so far analyzed the attentional effect on the decoding perfor-

mances that were acquired while the subjects were attending the both of the

stimuli by turns. If we describe each ROIs as the detector of each category of

object, attention changes the tune of the detectors and increases their sensitivity.

Figure 5.2: Decoding performance difference of ‘Vehicle’ object between attended
and unattended stimuli. This graph is calculated by subtracting obtained d-prime
values from the subjects’ two conditions (attending or not attending the category
of interest). All of the regions benefit from the visual search and increases their
detection performances.
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Table 5.2: Selected Regularization parameters for vehicle decoding improvement
RET FFA EBA MT LOC PPA RSC TOS IPS V7 FEF SEF FO

Decod Vehicle ‘TC’ 1600 1600 1600 1600 400 400 400 400 1600 6400 400 400 1600

Decod Vehicle ‘SN’ 1600 400 400 400 1600 1600 1600 1600 1600 1600 400 100 400

Decod Vehicle ‘JG’ 6400 400 100 400 1600 400 1600 400 400 6400 400 400 400

Decod Vehicle ‘AH’ 6400 1600 1600 400 1600 1600 1600 1600 6400 1600 1600 400 1600

Decod Vehicle ‘AV’ 6400 1600 400 1600 6400 400 1600 400 1600 1600 400 400 100

In the above table, regularization parameters that were for decoding ‘vehicle’

object is shown. Best regularization parameters were selected on the test sets for

each subject and ROI separately.

In the third graph below, we differentiate the two obtained two d-prime values

for each ROIs from the previous figures. Obtained results are bootstrapped and

their means are shown as blue bars, and their standard deviations are shown as

red lines. Finding for the final results can be stated as follows:

• FFA is inherently sensitive to faces. When we analyse decoding perfor-

mances of this region, it can be clearly seen that its vehicle decoding per-

formance increases more than its human decoding performance.

• EBA is selective for the human body and body part. It shows the same

characteristic with FFA.

• MT is responsible for detecting biological motions like human walking. Its

vehicle decoding performance benefits more from attention than its human

decoding performances.

• Areas innately selective for places and scene processing (PPA, RSC, TOS)

show the opposite relation to the face discriminating areas. Their human

decoding performances are enhanced by the attentional effect.

• Attention-related areas (IPS, FEF, SEF, FO) are divided into two cate-

gories. IPS and FEF increase their human decoding performances with the

attention. SEF and FO seem as if they benefit more in case of the vehicle

attention, but their results are not significant.
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• Object-sensitive ROIs (LOC and V7) increase their human sensitivity more

than any other object. However, the results regarding the LOC are not

significant; they show the same characteristic.

• Position-selective region (RET) shows insignificant results and can’t be eval-

uated.

Our results suggest that attending to an object boosts the detection performance

most significantly in brain regions that are not inherently sensitive to that object.

Figure 5.3: Decoding differences between two object categories. This graph illus-

trates the decoding sensitivity changes over attention in different ROIs. This plot

is acquired by subtracting the Fig:5.1 from Fig:5.2. ‘Human’ and ‘Scene’ selective

areas shows different characteristics. Human selective areas take advantage of the

visual search of ‘Vehicle’ more than the visual search of ‘Human’. Scene selective

areas tend to show the opposite relation.

In our second analysis, we analyze the decoding performance by calculating

the ROC and the area under the ROC. As we did in the d-prime calculation,

we divided response and stimuli data of ‘vehicle’ and ‘human’ objects for three
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mutually exclusive datasets with different sizes. After that, we implemented logis-

tic regression routine with several distinct regression parameters on the training

datasets. Models were formed for each RO of the subjects with the constraint of

regularization parameters and the best model was selected. This algorithm was

iterated for 100 times for selected ROIs. To calculate the ROC curve and the

area under it, we aggregated the selected stimuli, the response datasets, and best

model parameters and found the true and false positive rates to obtain the ROC

for each subject.

ROC curves represent how well the model estimates the outcome variables.

Upper bowed shaped curve depicts a successful estimator and the degree of the

success can be understood from the form of the figure. In the below graphs,

we visualized four different ROC curves for each subject and each ROI. Object

and human selective areas were picked from the ROI list, and its outcomes were

demonstrated. In each graph, first two letter represent the subject’s initials,

consecutive two letters indicates the following:

• HH stands for decoding Human when attending Human case

• VH stands for decoding Human when attending Vehicle case

• VV stands for decoding Vehicle when attending Vehicle case

• HV stands for decoding Vehicle when attending Human case

Our previous findings are supported by these results. Attending to an object

and decoding that particular object in that datasets increases the performance

of the model performances in general. Model performances are improved more

in the vehicle attention cases for human selective ROIs, and the exact opposite

occurs in the human attention case for scene selective ROIs.

In below graphs, the first column demonstrates the ROC curves of attend-

ing and decoding the same object category. The second column in each ROI

demonstrates the decoding performances without the attention for that object

category.
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For PPA, although some discrepancies is found, attention increases the detec-

tion performances of the human objects across the subjects. In RSC and TOS, all

of the subjects benefit more from attention on human detection and our previous

findings are supported with the ROC graphs.

For the human selective ROIs, visual search enhances the detection perfor-

mances of the vehicle objects more from the BOLD signals. For FFA, all of the

subjects gain advantage in the favor of the vehicle object category. In spite of

some discrepancies, EBA and MT increase their performances further for the

vehicle object detection across the subjects.

Our second analysis of the ROC curves was performed by calculating the area

under the curves and trying to estimate the improvement in sensitivities for dif-

ferent object and ROIs. The areas under four different ROC curves for each ROI

of each subjects were calculated, and their averages were found. Acquired mean

values from various subjects were aggregated and bootstrapped over ten thousand

times. Human and vehicle decoding improvements and their standard variations

were calculated and plotted.
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Figure 5.4: Area under the curve graph in group analysis, horizontal axis repre-

sents the decoding improvement in ‘Human’ object with attention, vertical axis

represents the increase in ‘Vehicle’ object decoding with attention. Scene selec-

tive areas enhance their areas under the ROC curves to a greater extent on visual

search of ‘Human’ objects. Human selective regions tends to show the opposite

relation.

In figure 5.4, the human and vehicle decoding sensitivity increases were plotted

on the horizontal and vertical axes respectively. These sensitivity increases are

calculated with the area under the previously found ROC curves. The red line on

the graph was plotted on the diagonal line meaning human, and vehicle detection

is the same. Anything above the red line stands for better vehicle detection.

Results can be interpreted as follows:

• Inherently face-selective ROIs such as FFA, MT, and EBA upsurges their

vehicle detection performances when the attention is applied while viewing

the natural movie.

• PPA, RSC, and TOS are known to be more responsive to the spatial domain
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and scene processing. These ROIs benefit more from attention in human

detection cases.

• Attention specific ROIs like SEF, IPS, FEF and FO increases their perfor-

mances on both object categories. These results are consistent with our

previous findings.

Figure 5.5: ROC curve for subject ‘TC’ with selected ROIs. FFA, EBA and

MT selected as human selective ROIs and PPA, RSC, TOS selected as object

selective ROIs. Horizontal axis represents the false positive rate and vertical axis

represents the true positive rate.
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Figure 5.6: ROC curve for subject ‘SN’ with selected ROIs. FFA, EBA and

MT selected as human selective ROIs and PPA, RSC, TOS selected as object

selective ROIs. Horizontal axis represents the false positive rate and vertical axis

represents the true positive rate.
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Figure 5.7: ROC curve for subject ‘JG’ with selected ROIs. FFA, EBA and

MT selected as human selective ROIs and PPA, RSC, TOS selected as object

selective ROIs. Horizontal axis represents the false positive rate and vertical axis

represents the true positive rate.

47



Figure 5.8: ROC curve for subject ‘AH’ with selected ROIs. FFA, EBA and

MT selected as human selective ROIs and PPA, RSC, TOS selected as object

selective ROIs. Horizontal axis represents the false positive rate and vertical axis

represents the true positive rate.
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Figure 5.9: ROC curve for subject ‘AV’ with selected ROIs. FFA, EBA and

MT selected as human selective ROIs and PPA, RSC, TOS selected as object

selective ROIs. Horizontal axis represents the false positive rate and vertical axis

represents the true positive rate.

In our third analysis, we created small cubes around the voxels on the cortical

cortex to understand the attentional effect on the whole brain map. Each cube

consisted of 27 voxels to use the advantages of the multivariate analysis. We

conducted our analysis on each cube separately. Obtained results were attained

to the central voxel. Response and stimuli data were separated into training,
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test and evaluation subgroups. The training set consisted of nearly 80 percent of

response and stimuli data, and was used to obtain model parameters. Logistic

regression algorithm was used again in this analysis to acquire parameters with

different regularization parameter. Those model parameters were evaluated on

the test set. The best model was selected to obtain the final value from the

evaluation set. The d-prime metric was calculated for the assessment of the

model parameters. Four different d-prime metrics were calculated. Two of these

were for the decoding human when the subject was attending to the human object

and the vehicle object. Others were computed for the vehicle decoding case when

subjects were attending human and vehicle objects.

3-D human cortical cortex is transformed in 2-D in below graphs. Each sub-

ject’s brain was specially scanned and transformed. Regions of the brain were

extracted from functional localization scans. Those regions were represented in

the flat map representation. In below graphs, the d-prime value of human and

vehicle decoding were subtracted from each other and shown on the maps. Blue

regions in the figures show that improvement on vehicle decoding is stronger than

human decoding. Red areas indicate a relationship that is the exact opposite.

Findings in our third analysis can be summarized as follows:

• FFAs in nearly all subjects increase their vehicle decoding performance to

a larger extent with attention. Majority of the voxels of different subject

responses are similar and support our findings.

• Vehicle sensitivity of region EBA is enhanced more than the human sensi-

tivity with attentional effect. It is the most robust region across all subjects.

This supports our previous findings.

• The decoding performances for the vehicle is increased in area MT with

attentional effect except some discrepancies on one subject. Although re-

gion MT is inherently selective for human detection and biological motion,

it benefits from vehicle attention more than human attention.

• Results from part PPA indicate sensitivity increases more on the human

object. Responses of two subjects have some deviation within the region,
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but the majority of the voxels from these subjects enhance their decoding

performances to a greater extent in the human case. Findings are consistent

and tuning of the detectors shift toward human object further.

• Attention effects region RSC in a similar manner like the other scene sen-

sitive regions. The sensitivity of the voxels within this area increases more

for the human when the attention is taken into account. One of the sub-

ject shows some discrepancy and several of its voxels reveal a contrasting

relationship with attention but the other subjects gain more from human

attention.

• In region TOS, results are relatively poor with respect to other ROIs. The

results from one of the subjects are consistent with our previous findings.

Results of the other subjects are changeable within the region and can not

be evaluated clearly.

51



Figure 5.10: Flatmap representation of subject ‘TC’, red areas represent increase

in human detection performance with attention, blue areas represent sensitivity

enhancement in vehicle detection with attention.
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Figure 5.11: Flatmap representation of subject ‘SN’, red areas represent increase

in human detection performance with attention, blue areas represent sensitivity

enhancement in vehicle detection with attention.
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Figure 5.12: Flatmap representation of subject ‘JG’, red areas represent increase

in human detection performance with attention, blue areas represent sensitivity

enhancement in vehicle detection with attention.
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Figure 5.13: Flatmap representation of subject ‘AH’, red areas represent increase

in human detection performance with attention, blue areas represent sensitivity

enhancement in vehicle detection with attention.
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Figure 5.14: Flatmap representation of subject ‘AV’, red areas represent increase

in human detection performance with attention, blue areas represent sensitivity

enhancement in vehicle detection with attention.
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5.1 Conclusion

We modeled neural populations in the human brain as target detectors during

category based visual search. We applied decoding procedure on the neural re-

sponses and natural movie stimuli using logistic regression algorithm. We cal-

culated several performance metrics for the decoding procedure. We found that

category-selective areas in ventral-temporal show greater attentional improve-

ment in detection of objects, for which they are not inherently selective for. This

finding also strongly suggests that the human brain dynamically alters neural

tuning to enhance target representations broadly across the brain at the expense

of behaviorally-irrelevant items.

Attentional changes in detection of task-irrelevant objects and actions can be

examined as a future work. But this result remains open questions whether spatial

and feature-based attention also operates through similar neural mechanisms that

dynamically redefine neural tuning profiles.
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Appendix A

Appendix

A.1 MRI: Magnetic Resonance Imaging

Magnetic resonance imaging is a noninvasive imaging modality [1] that enables

us to monitor human body. Various body parts including the spinal cord, brain,

chest, lungs, ankles, and feet can be visualized, and problems can be detected

without any physical invasion of the human body. MR (magnetic resonance) also

enables us to obtain metabolic information and gives rise to invaluable possi-

bilities in the physiological studies. It has some advantages over other imaging

methodologies such as CT (computed tomography) or PET (positron emission

tomography). The most significant benefit of MR over other imaging techniques

is that MR does not use ionizing radiation or radioactive traces and thus it does

not induce any known health risks on the human body. Although MR requires

sophisticated and expensive hardware for reliable images, it has impressively bet-

ter soft tissue contrast and spatial resolution than other imaging techniques. The

goal of this chapter is to explain the fundamental physical and mathematical

principles that underly MR.
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A.2 MRI Physics

The building block of MR relies on the physical principles of the atomic nuclei

that consist of protons, neutrons, and electrons. The proton and the neutron are

located in the center of the nucleus. The proton is considered to have a positive

charge while the neutron is neutral. An electron that has negative charge exists in

the spherical shells around nuclei. Under normal conditions, protons spin around

their axis because of thermal energy and this spinning results in spin angular

momentum which is expressed as:

S = h̄I (A.1)

where h̄ is Plank’s constant and I is the spin operator.

Angular momentum creates a current loop on the surface of the nucleus,

thereby forming a magnetic dipole moment on the atomic nucleus when it is

located inside a magnetic field.

µ = γS = γh̄I (A.2)

where γ is the gyromagnetic ratio that is unique to each different atomic nucleus.

The magnetic dipole moment and the angular momentum of particles are the

foundations of the NMR (nuclear magnetic resonance). The Magnetic dipole

moment of particles that have an even number of protons and neutrons is nearly

zero. Therefore, they cannot be used in the MR studies. A nucleus that has an

odd number of protons might be utilized in MR applications such as H and C.

Static magnetic field (B0) and radio frequency field (RF ) are used to handle the

NMR phenomenon in an MR study [6].

Under normal conditions, particles spin randomly and their magnetic dipole

moments might cancel each other. To remove this cancellation effect, atoms

are exposed to a static magnetic field (B0), and they align with the direction

of the magnetic field. Thereby magnetic dipole moments can’t eliminate each

other and elicit net magnetization moment (M) of the whole volume in the B0

direction. By convention, the z-axis is called the longitudinal axis, and x-y axis is
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called transverse axis in a typical MR study [5]. The net magnetization vector is

fundamental to the NMR, but we cannot quantify it under the equilibrium state.

RF signal is applied to the particles to rotate away from their equilibrium state

to the transverse plane.

When the directions of the B0 and M are different, precession occurs on the

particle, which results in a net torque on the particle. Torque also equals the

derivative of the angular momentum (S). Equations are as follows:

τ = µ×B0 (A.3)

dS

dt
= µ×B0 (A.4)

Above equation also results in the following when we multiply both sides with γ

:
dµ

dt
= µ× γB0 (A.5)

If we try to evaluate above equation on the whole volume, we obtain the net

magnetization vector (M).
dM

dt
= M × γB0 (A.6)

Net magnetization vector (M) is the sum of the magnetization of the whole par-

ticles within a material. The magnetization vector continues its rotation around

the z-axis. The frequency of this rotation unique to different atoms and is known

as the larmour frequency. The solution for the above equation points the same

results that M vector precesses with the larmour frequency [6].

When the RF field is applied, the net magnetization vector is tipped by some

angle from its equilibrium state. This procedure is known as excitation. After the

excitation, the magnetization vector that has been tipped, continues its rotation

while it tries to align with the B0 field again. This precession creates a small

electro-magnetic force (EMF ), and EMF can be detected by the gradient coils

tuned to the larmour frequency. The amplitude of the EMF depends on the

excitation angle. Supposing the particles are completely tipped on the transverse

plane (i.e., 90 ◦ tip from the longitudinal plane), it generates the maximum EMF

on the gradient coils [1].
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After the excitation, transverse magnetization vector (Mxy) starts to decay.

Meanwhile, the longitudinal vector (Mz) eventually starts to align with the B0.

The realignment of the M vector is called relaxation. Spin relaxation does not

continue for a long time and usually lasts a few seconds. T1 and T2 time constants

are associated with the Mz and Mxy vectors during the realignment of the net

magnetization vector.

The relaxation of the longitudinal component behaves according to the follow-

ing equation:
dMz

dt
= −Mz −M0

T1
(A.7)

Solution for the above differential equation is as follows:

Mz = M0 + (Mz(0)−M0) exp−t/T1 (A.8)

where

Mz longitudinal magnetization vector

M0 is the net magnetization vector before excitation

Mz(0) the longitudinal magnetization right after excitation

T1 spin-lattice time constant, expressing a return to the equilibrium state.

T1 is the called spin-lattice time constant and expresses a revival of the mag-

netization vector on the z-axis. It can easily be seen in the equations that Mz

reaches M0 when time proceeds to infinity. T1 value is dependent on the static

magnetic field and increases as the magnetic field increases. For a 90 ◦ excitation

pulse, above equation can be rearranged as follows since Mz(0) = 0

Mz = M0(1− exp−t/T1) (A.9)

the relaxation on the transverse plane can be expressed with the following

equation
dMxy

dt
= −Mxy

T2
(A.10)

For a 90 ◦(Mxy = M0) excitation, the solution is as follows:

Mxy = M0 exp−t/T2 (A.11)
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where

Mz is the transverse magnetization vector

M0 is the net magnetization vector before excitation

T2 is called the spin-spin time constant and expresses the decrease in the trans-

verse magnetization vector. Spins in the material are phase coherent right after

the excitation. As the time passes the coherence between the spins disappear, and

they gradually become out of phases. This phenomenon is called transverse re-

laxation. The transverse relaxation is caused by spin-spin interactions and static

magnetic field inhomogeneity. We can see in the equation that as time passes,

the transverse magnetization gradually becomes insignificant.

T2 decay is faster than the T1 decay and consequently, time is limited when

collecting MRI data on the excited particles. In order to obtain a high resolution

and fine-grained anatomical data, many excitation pulses are used in a typical

MRI study.

Equation A.7 and A.11 are called the Bloch equation, are combined to describe

the NMR. In the Bloch equation, the excitation and relaxation of the magnetiza-

tion vector, the MR signal formed on the receiver coils and the T1, T2 effects are

described in a single equation.

dM

dt
= γM ×B0 +

1

T1
(M0 −Mz)−

1

T2
(Mx +My) (A.12)

where

γ = gyro-magnetic ratio

T1 = transverse relaxation time constant

T1 = longitudinal relaxation time constant

M0 = initial magnetization before excitation stage
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A.3 Image Formation

Particles precess with different frequencies as they are exposed to a distinct mag-

netic fields. The improvement that makes MR imaging possible is the spatially

variable magnetic field that are superimposed on one another. The basis for the

image formation in the MR studies lies on that fact and first introduced by the

Lauterbur in 1972 [5]. As Lauterbur demonstrated, the MR signal in 3-D volume

is divided into subcomponents. Each of them is exposed to a magnetic field that

has modulated strength in the longitudinal direction and thereby precesses at

different frequencies. Images can be acquired with a fine tuned receiver hardware

that is adjusted to the larmour frequency.

Direct three-dimensional imaging is computationally expensive and slower to

acquire images of an object. Also, 3-D imaging is not applicable to the functional

imaging of the brain [1]. The common first step is to reduce the dimension of the

object to the 2-D space. By changing the slices with slice selection gradients, we

might form images of a 3-D volume.

A systematic way to acquire MR image formation might be divided into three

routine procedures, since we cannot expect to receive images with modulating the

magnetic field randomly. First, a slice of a 3-D object is selected with the slice

selection gradient field along with the RF pulse. The slice selection gradient field

usually changes along with the longitudinal direction, is applied to the object in

order to ensure that only the slice of interest is precessing with the same frequency

of RF pulse. So, only the particles within the selected slice absorb the RF signal

and are tipped on the transverse plane. After the RF pulses, particles within

the selected slice contribute to the MR signal. When the designated part of the

object is selected, phase and frequency encoding gradients are used to resolve a

2-D image.

In the real world, we cannot create discrete bands of frequencies, and therefore

cannot form discrete tipped angles on the magnetization vector as seen on the

left of Figure: A.1. Instead, we form a continuous frequency band on the slice
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Figure A.1: Slice selection: Hydrogen atoms are tipped with slice selection gra-
dient. Hydrogen atoms within the selected slice are tipped right after the RF
pulse. In the left pane, the magnetization vector points toward a discrete set of
angles. In the real world, however, particles are exposed to a slightly different
magnetic field and therefore form continuous bands of tipped angles. This figure
is adapted from [1].

(illustrated on the right Fig: A.1). The excitation requires that the RF pulse is

coherent with the larmour frequency range. The remedy for the selection problem

is that if we know the static magnetic and the gradient field and the slice location

correctly, we might form an RF pulse with desired frequencies. Furthermore, we

might alter the thickness of the slice with the bandwidth of the RF pulses.

Instantly after the excitation pulse, magnetization vectors on the transverse

plane experience T1 and T2 decay. Both of these result in a loss of the MR

signal. Because of the instant decay in the MR signal, following the slice selection,

another gradient field needs to be applied instantly to the object. Other gradients

provide a change in frequency for the particles and thereby information on the

2-D slice.

When we excite a slice, particles in that slices show precession with a known

frequency. However, we cannot obtain a fine-spatial resolution from this because

the whole slice contributes to the MR signal. Lauterbur tried to solve this reso-

lution problem and constructed an experiment for it [1]. In this experiment, he
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used two physically separated vials on which he applied variable magnetic fields.

The magnetic fields applied on the vials were different. Since the particles within

the vials were exposed to a different magnetic field, they precessed with distinct

frequencies. This procedure was later called frequency encoding. MR signals con-

structed after frequency encoded gradients also have transverse relaxation but the

only difference is that slower oscillations (caused by the frequency encoded gra-

dient) are superimposed on the higher oscillations (caused by the static magnetic

field). With the help of signal processing algorithms, variable oscillations might

provide us with information about the positions and fill rate of the vials. In

summary, physical differences of the vials are encoded on the frequency of the

collected MR data but only in one dimension.

Frequency encoding gradients provide information only in one dimension. Cre-

ating a fine-grained two-dimensional image requires a second spatial gradient field,

applied on the other axis, which is known as phase encoding. The fundamental

goal of using spatially different gradient fields is to collect a distribution of the

particles on the 2-D plane. For example, if we apply a frequency encoding gra-

dient on the x-axis and use two different amplitude phase encoding gradients on

the y-axis, we obtain two different MR signals that change vertically due to the

variable gradient field on the y-axis. The distribution of the spins across the 2-D

plane is acquired by changing the phase encoding gradient, and this distribution

might be used to estimate the characteristic of the object. The different ampli-

tude phase encoding gradient is constructed through iterated excitation of the

sample.

In figure A.2, After the RF and slice selection gradient, all particles on the

slice are precessing with the same frequency, and they are all in-phase within

the slice. The phase encoding gradient field is turned on, and the phase of the

spins linearly increases as we move along in upper y direction. After switching

off the phase encoding gradient, frequency encoding gradient is turned on. This

magnetic field modulates the precession frequency of the particles on the x-axis.

As we keep exciting the same slice with different phase encoding gradients, we

create a distribution densities of the spin across x and y-directions.
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Figure A.2: A sample MR sequence. The RF and the slice selection gradient

excite a 2-D plane in a 3-D volume. After the excitation phase, phase and fre-

quency encoding gradients are applied. Frequency and phase encoding gradients

constitute a sufficient k-space coverage. Sampling occurs at the same time as the

frequency encoding gradient. This illustration is adapted from [5].

A.3.1 Bloch Equations

Effects of the static and gradient magnetic fields can be explained mathematically

with Bloch equations. In the previous parts, we explained that the static magnetic

field B0 aligns the particles and creates a net magnetization vector along with

its direction. Above we include new magnetic fields to change the magnetization

vector and therefore clarify spin densities over the 3-D space. Bloch equations

can be solved with the additional phase and frequency encoding gradients. At

this point we can write the Bloch equations for the sake of clarity as follows [6]:

dM

dt
= γM ×B +

1

T1
(M0 −Mz)−

1

T2
(Mx +My) (A.13)

where B contains both static and gradient field vectors.

We can arrange above equations as follows:

dMx

dt
= My.γB −

1

T2
(Mx) (A.14)

dMy

dt
= Mx.γB −

1

T2
(My) (A.15)
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dMz

dt
= −Mz −M0

T1
(A.16)

Above equations clarify the net magnetization vector over time. As explained

in the previous parts, transverse magnetization undergoes to decay with T2 time

constant, and longitudinal magnetization recovers with the T1 time constant.

Solutions for the longitudinal magnetization (A.16) and transverse magnetiza-

tion (A.14-A.15) are as follows:

Mz = M0 + (Mz(0)−M0) exp−t/T1 (A.17)

Mx = (Mx(0) cosωt+My(0) sinωt) exp−t/T2 (A.18)

My = (My(0) cosωt−Mx(0) sinωt) exp−t/T2 (A.19)

We can write the transverse magnetization vector in complex form:

Mxy = Mx + iMy (A.20)

Mxy = (Mx(0) + iMy(0)) exp−t/T2(cosωt− i sinωt)

= Mxy(0) exp−t/T2 exp−iωt
(A.21)

Particles exposed to gradient fields that are oriented on the x, y and z axes

during the excitation and relaxation period and magnetic field B over temporal

and spatial locations can be formulated as follows:

B(t) = B0 +Gx(t)x+Gy(t)y +Gz(t)z (A.22)

Precession frequency (ω = γB) is dependent on the gyro-magnetic ratio and mag-

netic field. If we write the magnetic field (A.22) into the transverse magnetization

(A.21) and integrate over time, we have the magnetization vector with respect to

the time interval.

Mxy(x, y, z, t) = Mxy0(x, y, z) exp−t/T2 exp−iγB0t exp−iγ
∫ t

0
(Gx(τ)x+Gy(τ)y+Gz(τ)z)dτ

(A.23)

In above equations, the transverse magnetization vector is explained with the

initial magnetization vector Mxy0, the T2 decay effect, the phase value caused by

static magnetic field B0 and the aggregated gradient effects.
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In a typical MR experiment, every excited particle contributes to the signal.

The MR signal can be explained in the following manner.

S(t) =
∫
x

∫
y

∫
z
Mxy(x, y, z, t)dxdydz (A.24)

S(t) =
∫
x

∫
y

∫
z
Mxy0(x, y, z) exp−t/T2 exp−iω0t exp−iγ

∫ t

0
(Gx(τ)x+Gy(τ)y+Gz(τ)z)dτ dxdydz

(A.25)

Equation A.25 represents the connection between the measured signal and the

magnetization vectors. The e−iω0t term explains the modulation and The e−t/T2

term indicates the decay of the MR signal. These terms do not comprise spatial

location and we may ignore them for the sake of clarity. After removing them,

we come up with a more meaningful MR signal equation.

S(t) =
∫
x

∫
y

∫
z
Mxy0(x, y, z) exp−iγ

∫ t

0
(Gx(τ)x+Gy(τ)y+Gz(τ)z)dτ dxdydz (A.26)

However, the equation A.26 explains the collected MR signal in 3-D, while 3-D

imaging is computationally expensive and susceptible to hardware defects [5].

The slice selection gradient enables us to obtain the signal in the 2-D domain and

the equation A.26 changes into a simpler and more meaningful form. The slice

selection gradient excites a slice of the 3-D volume and no particles outside that

slice generate an MR signal.

S(t) =
∫
x

∫
y
Mxy0(x, y) exp−iγ

∫ t

0
(Gx(τ)x+Gy(τ)y)dτ dxdy (A.27)

The selected slice is formed by the amplitude of the gradient, bandwidth of the

excitation field and the center frequency of the excitation pulse. Slice thickness is

defined by the bandwidth of the excitation field and slice location is determined

by the amplitude of the gradient and the center frequency of the RF field. The

whole object is scanned with successive changes to the slice location, achieved

by sliding the center frequency over the z-axis. Magnetization vector after slice

selection can be calculated by integrating whole vector over the slice width on

the z axis.

M(x, y, t) =
∫ z0+δz

z0−δz
M(x, y, z, t)dz (A.28)

Although we change the equation A.26 to the equation A.27 after the slice selec-

tion, this equation is still hard to interpret. To form a better understanding of

73



the MR signal, MR researchers constitute a k-space notation in MRI studies [6].

it shows frequency components of the magnetization vector in a new 2-D axis.

The k-space notation represents the gradient fields as the time integral of each

gradient field multiplied by an appropriate constant.

kx =
γ

2π

∫ t

0
Gx(τ)dτ ky =

γ

2π

∫ t

0
Gy(τ)dτ (A.29)

If we put above equation on the A.27, we end up with a known equation that rep-

resents the relationship between image and k-spaces. The signal we acquire from

the MR machine is basically a 2-D Fourier transform of the magnetization vector.

Inverse Fourier transform converts the acquired signal to a spatially meaningful

image.

S(t) =
∫
x

∫
y
Mxy0(x, y) exp−i2πkx(t)x−i2πky(t)y dxdy (A.30)

To construct an informative image from the signals, we used gradient fields to

cover the whole k-space. The gradient fields are used to control the sampling path

in the k-space. By commuting the strength of the gradient, we might regularly

sample whole k-space. The phase encoding gradient is used to select a different

ky row, and the frequency encoding gradient gradually changes the precessing

frequency on the kx line. The MR signal is sampled within sequence to construct

a meaningful image.

Figure A.3: An MR sequence and its k-space coverage. If we use number 1 of the
phase encoding gradient, we will cover the line 1 on the k-space. By changing the
Gx gradient, we shift from the middle to the left and from the left to the right of
the k-space and sample as we use the Gx gradient. The figure is adapted from [6].
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