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ABSTRACT

CAUSALITY ANALYSIS IN BIOLOGICAL NETWORKS

Özgün Babur

Ph.D. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Doğrusöz

January, 2010

Systems biology is a rapidly emerging field, shaped in the last two decades

or so, which promises understanding and curing several complex diseases such as

cancer. In order to get an insight about the system – specifically the molecular

network in the cell – we need to work on following four fundamental aspects:

experimental and computational methods to gather knowledge about the system,

mathematical models for representing the knowledge, analysis methods for an-

swering questions on the model, and software tools for working on these. In this

thesis, we propose new approaches related to all these aspects.

In this thesis, we define new terms and concepts that helps us to analyze

cellular processes, such as positive and negative paths, upstream and downstream

relations, and distance in process graphs. We propose algorithms that will search

for functional relations between molecules and will answer several biologically

interesting questions related to the network, such as neighborhoods, paths of

interest, and common targets or regulators of molecules.

In addition, we introduce ChiBE, a pathway editor for visualizing and ana-

lyzing BioPAX networks. The tool converts BioPAX graphs to drawable process

diagrams and provides the mentioned novel analysis algorithms. Users can query

pathways in Pathway Commons database and create sub-networks that focus on

specific relations of interest.

We also describe a microarray data analysis component, PATIKAmad, built

into ChiBE and PATIKAweb, which integrates expression experiment data with

networks. PATIKAmad helps those tools to represent experiment values on net-

work elements and to search for causal relations in the network that potentially

explain dependent expressions. Causative path search depends on the presence of

transcriptional relations in the model, which however is underrepresented in most
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of the databases. This is mainly due to insufficient knowledge in the literature.

We finally propose a method for identifying and classifying modulators of

transcription factors, to help complete the missing transcriptional relations in

the pathway databases. The method works with large amount of expression

data, and looks for evidence of modulation for triplets of genes, i.e. modulator -

factor - target. Modulator candidates are chosen among the interacting proteins

of transcription factors. We expect to observe that expression of the target gene

depends on the interaction between factor and modulator. According to the ob-

served dependency type, we further classify the modulation. When tested, our

method finds modulators of Androgen Receptor; our top-scoring result modula-

tors are supported by other evidence in the literature. We also observe that the

modulation event and modulation type highly depend on the specific target gene.

This finding contradicts with expectations of molecular biology community who

often assume a modulator has one type of effect regardless of the target gene.

Keywords: Computational biology, bioinformatics, systems biology, pathway in-

formatics, causality analysis.
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BİYOLOJİK AĞLARDA NEDENSELLİK ANALİZİ

Özgün Babur

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Doçent Dr. Uğur Doğrusöz

Ocak, 2010

Sistem biyolojisi son birkaç on yılda şekillenmiş, ve kanser gibi karmaşık

hastalıklara çözüm vadeden bir alandır. Sistem hakkında (daha spesifik olarak

hücresel ağlar hakkında) bir kavrayış geliştirebilmek için şu dört temel alanda

calışmalar yapmak gerekir: sistem hakkında bilgi toplamak için deneysel ve hesap-

sal metotlar, bilgiyi göstermek için matematiksel modeller, model hakkındaki

sorulara cevap bulan analiz yöntemleri, ve bütün bunlar üzerinde çalışmamıza

yardımcı olacak yazılım araçları. Bu tezde, bahsedilen bütün alanlarla ilgili yeni

yaklaşımlar sunuyoruz.

Bu tezde, pozitif ve negatif etkili yolaklar, akışyukarı ve akışaşağı ilişkiler, ve

süreç çizgelerinde uzaklık gibi terimler ve kavramlar tanımlıyoruz. Komşuluk,

ilgilenilen ağlar, ve ortak hedef ve ortak düzenleyiciler gibi biyolojik açıdan ilginç

sorulara cevap üretecek, çizge üzerinde fonksiyonel ilişkiler arayan algoritmalar

öneriyoruz.

Buna ek olarak, BioPAX çizgelerini görselleyen ve analiz eden ChiBE isimli

yazılımı sunuyoruz. Bu yazılım, BioPAX çizgelerini çizilebilir süreç çizgelerine

çeviriyor ve yukarıda bahsi geçen algoritmaları sağlıyor. ChiBE kullanıcıları Path-

way Commons veritabanını sorgulayabiliyor ve kendi ilgilendikleri süreçlere odaklı

çizge parçaları üretebiliyorlar.

Ayrıca PATIKAmad isimli bir mikrodizi veri analiz yazılımı geliştirdik, ve

mikrodizilerle biyolojik ağları entegre edecek şekilde ChiBE ve PATIKAweb

yazılım araçlarında kullandık. PATIKAmad sayesinde bu araçlar mikrodizi

değerlerini molekül düğümleri üzerinde gösterebiliyor ve ağ üstündeki ifadeler

arasındaki bağlantıları açıklama potansiyeline sahip sonuçsal yolakları ortaya

çıkarabiliyor. Sonuçsal yolakların analizi, modellenen biyolojik ağ üzerinde
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yazılım ilişkilerinin de modellenmiş olmasına dayanır. Fakat yazılım ilişkileri biy-

olojik ağ veritabanlarında olması gerekenin çok altında bulunmaktadır. Bunun

temel nedeni literatürde bu konuda görece daha az bilgi bulunmasıdır.

Son olarak, veritabanlarındaki eksik yazılım bilgisini tamamlama potansiye-

line sahip, yazılım faktörlerinin modülatörlerini tahmin eden ve sınıflayan bir

yöntem öneriyoruz. Bu yöntem çok sayıda mikrodizi verisini kullanarak modu-

latör - faktör - hedef gen üçlüleri arasında modülasyon ilişkisi arıyor. Modulatör

adaylarını yazılım faktörünün etkileştiği bilinen proteinler arasından seçiyoruz ve

hedef genin ifadesinin faktör ve modülatör arasındaki etkileşimden etkilenmesini

bekliyoruz. Gözlenen etki şekline göre modülatörleri ayrıca sınıflandırıyoruz.

Metodumuzu Androjen Reseptörü üzerinde denediğimiz zaman görüyoruz ki

yüksek puanlı modülatörler literatürdeki başka kanıtlarla da destekleniyor.

Bu araştırmada gözlediğimiz diğer bir olgu ise modülatörlerin etkisinin ve

sınıfının çoğunlukla hedef gene göre farklılık göstermesidir. Halbuki literatürdeki

çalışmalar modülatörleri genellikle hedef genden bağımsız tek tip etkiye göre (ak-

tifleştirici ve engelleyici) sınıflandırmaya çalışıyor.

Anahtar sözcükler : Biyoenformatik, Nedensellik analizi.
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ing their summer project. Recep Çolak worked on PATIKAmad during his se-

nior project. We shared an office with Alptuğ Dilek and Esat Belviranlı in the

last three years, and we have been in many encouraging discussions. Cihan
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Duygu, Sengör, Engin, and Özlem for their friendship, and Funda for her love,

and lastly, my family for being there when I needed.

viii



Contents

1 Introduction 1

1.1 Biological Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Transcription . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Expression Microarrays . . . . . . . . . . . . . . . . . . . . 8

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Work 11

2.1 Biological Pathway Ontologies . . . . . . . . . . . . . . . . . . . . 11

2.1.1 PATIKA Ontology . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 BioPAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 SBML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 SBGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Pathway Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Cytoscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



CONTENTS x

2.2.2 CellDesigner . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 PATIKAweb . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Reverse Engineering of Gene Regulatory Networks . . . . . . . . 25

2.3.1 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Probabilistic Models . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Information Theoretic Models . . . . . . . . . . . . . . . . 26

2.4 MINDY - Identifying Transcription factor modulators . . . . . . 27

3 Analysis of Process Description Graphs 28

3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Visualization of BioPAX Using Process Description Graph . . . . 30

3.3 Paths and Distances . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Querying Paths on a Network . . . . . . . . . . . . . . . . . . . . 33

3.4.1 BFS for Process Description Graphs . . . . . . . . . . . . 33

3.4.2 Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Paths of Interest . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.4 Graph of Interest . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.5 Common Stream . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.6 Inter-Compartment Paths . . . . . . . . . . . . . . . . . . 38

3.5 Expression Data on Pathways . . . . . . . . . . . . . . . . . . . . 39

3.6 Causative Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



CONTENTS xi

4 Discovering Modulators of Gene Expression 42

4.1 GEM Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Construction of Triplets . . . . . . . . . . . . . . . . . . . 46

4.1.2 Selection of Expression Data . . . . . . . . . . . . . . . . . 46

4.1.3 Discretization and Conditional Proportions . . . . . . . . . 47

4.1.4 Selection of Significant Triplets . . . . . . . . . . . . . . . 48

4.1.5 Significance of the Difference of Proportion Pairs . . . . . 50

4.1.6 Significance of γ . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.7 Category of Action . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Inferring Modulators of the Androgen Receptor . . . . . . 53

4.2.2 Comparison with MINDy . . . . . . . . . . . . . . . . . . 57

5 Tools 59

5.1 PATIKAmad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 ChiBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Knowledge Representation . . . . . . . . . . . . . . . . . . 64

5.2.2 Pathway Layout . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Compound Graphs . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusion 66



CONTENTS xii

Bibliography 68

A Features of ChiBE 79

A.1 Viewing and Editing Pathways . . . . . . . . . . . . . . . . . . . . 81

A.2 Pathway Operations . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Querying Pathway Commons . . . . . . . . . . . . . . . . . . . . 81

A.4 Querying Local Pathway . . . . . . . . . . . . . . . . . . . . . . . 82

A.5 SIF Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.6 Visualizing High-Throughput Data . . . . . . . . . . . . . . . . . 84

A.7 Availability and Components . . . . . . . . . . . . . . . . . . . . 84



List of Figures

1.1 Metabolic network example from KEGG database [46]. . . . . . . 2

1.2 Signaling network example from CSNDB database [74]. . . . . . . 3

1.3 Protein-protein interaction network from PATIKA database [28]. . 3

1.4 Genetic interaction network from DRYGIN database [52]. . . . . . 4

1.5 Idea of Central Dogma of Molecular Biology, drawn by Francis

Crick [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Sketches showing transcription of a gene. Top: RNA polymerase

recognizes the transcription initiation complex, formed by several

transcription factors and their binding proteins. Middle: RNA

polymerase starts transcription, reading the coding strand of the

DNA and synthesizing mRNA. Bottom: mRNA is synthesized

and RNA polymerase dissociated from DNA [80] . . . . . . . . . . 7

1.7 Steps of a microarray experiment . . . . . . . . . . . . . . . . . . 9

2.1 Basics of PATIKA ontology [23]. . . . . . . . . . . . . . . . . . . . 13

2.2 Demonstration of the use of homology abstraction in PATIKA on-

tology [23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

xiii



LIST OF FIGURES xiv

2.3 When the associated state is not certain, but a candidate set ex-

ists, incomplete states are used in PATIKA ontology for represent-

ing this information. T1 in the drawing is an incomplete state,

indicating either S1 or S1′ inhibits the reaction [23]. . . . . . . . . 14

2.4 Part of the data model of BioPAX Level 1. . . . . . . . . . . . . . 15

2.5 Part of the data model of BioPAX Level 3. . . . . . . . . . . . . . 15

2.6 Progress of BioPAX language as new levels are released [10]. . . . 16

2.7 A manually drawn pathway appeared in [42]. . . . . . . . . . . . . 17

2.8 Stimulation events in the neuro-muscular junction, drawn as a

SBGN Process Diagram [70]. . . . . . . . . . . . . . . . . . . . . . 19

2.9 SBGN entity relationship diagram describing the effect of a de-

polarization (dV) on the intracellular calcium, that binds to

calmodulin, that itself binds to the calcium/calmoduline kinase

II (CaMKII) [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Cytoscape pathway showing dissociation of CAV1 from a big com-

plex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 A screenshot of CellDesigner [14]. . . . . . . . . . . . . . . . . . . 24

2.12 PATIKAweb view of the pathway “Valine Catabolism”. . . . . . . 24

3.1 Sample process description graph with three different node types

and 5 different edge types. Direction of the edges without an ar-

row is from the state to the non-state node. Green edge is for

activation, while red edge represents inhibition. . . . . . . . . . . 30

3.2 PEPs in BioPAX level 2 graph are grouped according to their mod-

ifications and cellular locations during conversion. Each group is

represented with a unique state in the process description graph. . 31



LIST OF FIGURES xv

3.3 Reversible Conversion in BioPAX is represented with two transi-

tions in process description graph. . . . . . . . . . . . . . . . . . . 31

3.4 Desired distance labeling in a process description graph when

states are in focus of the traversal. Nodes and edges on the S1-S3

path is labeled according to the distance from S1 (upper labels,

forward distance), or distance from S3 (lower labels, backward dis-

tance). Distances are defined between states, however, there are

advantages of defining distance labels for all nodes and edges. For

instance, the sum of forward distance and backward distance of a

node or edge on the S1-S3 path is equal to the state-based length

of the path, which is 2. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Examples of two causative paths. Red state: upregulated, blue

state: downregulated. Transitions with label t are transcription

events. Red edge: inhibition, green edge: activation. . . . . . . . . 41

4.1 Left: GEM is based on a simple model of gene regulation. A mod-

ulator interacts with a transcription factor to affect the expression

of a target. Right: Initial hypotheses are generated by combin-

ing known protein-protein and protein-DNA interactions which are

then tested against a set of gene expression profiles. . . . . . . . . 44

4.2 Left: Samples are ranked and divided into 27 possible bins. Sam-

ples with middle values are discarded and frequencies from 8 “cor-

ner” bins are used for the rest of the analysis. Right: For each

combination of m,f states, proportions of t being high are derived

from frequencies. Pairwise differences of proportions provide esti-

mates for α and β values. . . . . . . . . . . . . . . . . . . . . . . 48



LIST OF FIGURES xvi

4.3 Classifying modulators using proportion differences: a) A triplet

can be represented as a vector 〈(αf , αm), (βf , βm)〉. The size of the

vector is proportional to γ. b) An example of logical-or case. c)

An example of too small γ. Most of the triplets fall into one of

these categories and are filtered out by GEM. 1-6) Representative

vectors for each category of action in Tables 4.1 and 4.2, drawn

assuming αm = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Target genes of the Androgen Receptor detected to be modulated

by CAV1. KLK3, also known as PSA, is upregulated as well as 4

other important tumor growth related genes. . . . . . . . . . . . . 54

4.5 Top modulators of Androgen Receptor: each box contains targets

affected by the modulator organized by categories of action and

color coded. If the modulator is listed in the review by Heemers et

al., it is noted next to the name of the modulator. Most modulators

have different effects for different targets and do not necessarily

follow the classification in the review. . . . . . . . . . . . . . . . . 56

5.1 Part of the Values Table, where experiment rows are filtered with

string “tnfrsf10” in ascending order, according to the log-ratio val-

ues. Any number of rows may be selected and used for executing

neighborhood or graph-of-interest queries. . . . . . . . . . . . . . 62

5.2 Part of a MAP Kinase pathway where two clusters are shown using

compound nodes. Loaded microarray values are shown with labels

and colors on nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 ChiBE views are organized in canvasses, each displaying one or

more BioPAX pathways. . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Dialog in which a paths-of-interest query is configured. User

searchs paths from CALM1 to CREB1 with a length limit of short-

est + 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



LIST OF FIGURES xvii

A.3 Result of the paths-of-interest query in Figure A.2, performed on

the “NGF Processing” pathway from Pathway Commons database. 83



List of Tables

2.1 A comparison of several popular pathway visualization tools [26]. 21

4.1 Interpretation of the categories of modulation. . . . . . . . . . . . 52

4.2 Inequality constraints that the category of modulation should sat-

isfy. “+” and “−” signs in the columns indicate significantly posi-

tive and negative values, respectively. Note that this categorization

is formulated for triplets for which the null hypotheses in Eq. 4.11

were also rejected. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Comparison of ChiBE and 4 other tools that support BioPAX vi-

sualization. Tools are compared in the aspects of automated layout

support, compound graph support, compartment visualization and

experiment data visualization. . . . . . . . . . . . . . . . . . . . . 65

A.1 BioPAX elements and their corresponding visual elements in ChiBE. 80

xviii



List of Algorithms

1 BFS(S, T , dir, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Neighborhood(S, dir, k) . . . . . . . . . . . . . . . . . . . . . . . 36

3 PoI(S, T , k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 PoI-Shortest(S, T , k) . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 GoI(S, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 CommonStream(S, dir, k) . . . . . . . . . . . . . . . . . . . . . . 38

7 InterCompartmentPaths(compartment 1, compartment 2, k) . . . 39

xix



Chapter 1

Introduction

1.1 Biological Pathways

Events happening in the cell has always been interesting to the scientific com-

munity since most of the diseases are related to malfunctioning of a component

or interruption of normal function by external factors, like chemicals or viruses.

Modeling of these events creates pathways, which can be diverse in structure and

the encoded information. Structure of pathways is generally affected from the

viewpoint of researchers, and the experimental methods that supply information

about the event.

There are some customary types of pathways such as metabolic, protein in-

teraction, signaling, gene regulatory, and genetic interaction networks. Today

there are various efforts to integrate these different representations and create a

standard representation.

Metabolic networks focus on enzymatic reactions, specifying substrates and

products. The identity of the enzyme itself can be unknown and reactants can

be generic, i.e. representing a set of molecules that have a common chemical

property (Figure 1.1). Reactions are generally discovered with biochemical assays,

performed in a test tube (in vitro). These assays can also identify several rate

1
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Figure 1.1: Metabolic network example from KEGG database [46].

constants of the reaction. When rate constants and molecule identities are known,

it is possible to simulate metabolic pathways on computer (in silico) [65, 12].

Signaling networks are the bridges between external signals and metabolic

events. Complexity of a signaling network increases with the complexity of the

associated organism. This kind of networks capture the signal flow between the

signaling molecules (Figure 1.2). Phosphorylation and de-phosphorylation of pro-

teins constitute a great deal of signaling events, performed by kinases and phos-

photases, detected with kinase assays.

Protein interaction networks are the simplest and the most popular type.

An edge between two protein nodes indicates an interaction (Figure 1.3). High-

throughput experiments, like yeast two-hybrid assays, provide massive amounts

of protein interaction data.

Gene regulatory networks capture the relation between genes in terms of the

regulation of expression. Edges in these directed networks indicate the activity

of the source gene affecting the expression of the target gene. These networks are

generally inferred using gene expression datasets [58].
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Figure 1.2: Signaling network example from CSNDB database [74].

Figure 1.3: Protein-protein interaction network from PATIKA database [28].
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Figure 1.4: Genetic interaction network from DRYGIN database [52].

Genetic interaction networks relate genes whose interaction (probably indi-

rect) is associated with a certain phenotype (Figure 1.4). For instance, if a yeast

strain dies when genes A and B are knocked out together, but is not affected

when only one of them is knocked out, then we say there is a genetic inteaction

between genes A and B. A recent high-throughput technique called Synthetic

Genetic Array (SGA) analysis is developed for quantitatively identifying genetic

interactions based on synthetic lethality [75].



CHAPTER 1. INTRODUCTION 5

Figure 1.5: Idea of Central Dogma of Molecular Biology, drawn by Francis
Crick [19].

1.2 Gene Expression

In 1958, Francis Crick reported in a symposium: “Once information has got

into a protein it can’t get out again” [19]. On his report, Crick draws a model

of information flow of the genetic code in the cell (Figure 1.5). This model is

recognized as the Central Dogma of molecular biology. Today, we name each

part of the flow as:

• DNA → DNA: DNA replication by DNA polymerases

• DNA → RNA: Transcription by RNA polymerases

• RNA → Protein: Translation by ribosomes

• RNA → RNA: RNA replication by RNA dependent RNA polymerases of

some viral genomes like poliovirus

• RNA → DNA: Reverse transcription by reverse transcriptase enzyme of

some viral genomes like HIV
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Second and third relations (DNA → RNA → Protein) are collectively called

as “gene expression”. The cell changes its expressed set of genes according to

changing conditions and external signals. This results in a different set of func-

tional proteins in the cell, which also is key to differentiation in multicellular

organisms.

1.2.1 Transcription

Gene expression starts with transcription, which means production of mRNA

using a DNA template. This mRNA is later used as a template for protein

synthesis. Transcription is performed by the enzyme RNA Polymerase, a multi-

component protein, found in all living cells. RNA Polymerase binds to promoter

region of genes in the presence of specific transcription factors (TFs), and initiate

transcription at the start site (Figure 1.6).

TFs are DNA binding proteins that recognize specific binding regions in the

promoter or enhancer region of genes. In eucaryotes, TFs can be generic like

TATA Binding Factor (TBF), or can be specific, like STATs, targeting a restricted

set of genes. Each gene posesses binding sites of a specific set of TFs in their

promoter, thus needs presence of a specific set of factors for their expression.

At any given time, depending on the context and cellular stimuli, a tran-

scription factor will affect only of a subset of its all possible target genes. This

specificity is often provided by modulators, proteins that control transcription fac-

tor activity through several different mechanisms, including: post translational

modifications, protein degradation, and non-covalent interactions. Modulators

help a cell to combine different external signals and make complex downstream

decisions. Elucidating their function is necessary for understanding and control-

ling cell’s response to external stimuli at gene expression level.
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Figure 1.6: Sketches showing transcription of a gene. Top: RNA polymerase
recognizes the transcription initiation complex, formed by several transcription
factors and their binding proteins. Middle: RNA polymerase starts transcrip-
tion, reading the coding strand of the DNA and synthesizing mRNA. Bottom:
mRNA is synthesized and RNA polymerase dissociated from DNA [80]
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1.2.2 Expression Microarrays

The most popular way of detecting gene expression is to measure the mRNA

level of the gene. Since mRNAs in a cell are constantly produced and degraded,

mRNA concentration cannot last without an active transcription; thus it is an

indication of transcription. Translation phase is generally assumed by the pres-

ence of mRNA; however, there are studies showing that another kind of RNA,

microRNA, can interfere with and inhibit the translation process [54, 67].

Microarray technology is an advancement over the Southern Blotting tech-

nique for detecting DNA, and first described by [71]. Southern Blotting is very

similar to catching a fish, where the complementary DNA (cDNA) of the queried

DNA is bait, and fragmented DNA of the cell separated with gel electrophoresis

are the fish [73]. Bait is spread over DNA fragments, and catches (hybridizes

with) the DNA whose sequence is complementary. Excess bait is washed out,

remaining bait indicates the location of the DNA in query.

Microarrays detect expression of thousands of genes, sometimes the complete

genome of an organism, in a single experiment. The method uses DNA fragments

attached to a surface (array). Each spot on the array contains a specific DNA

sequence. The mRNA, extracted from the cell, are used for production of labelled

with fluorescence cDNAs, which are later hybridized with the DNA attached on

the microarray. Attached cDNAs are detected with laser scanning, measuring

signals coming from spots, each one indicating the expression level of a gene

(Figure 1.7).

There are two main types of microarrays, cDNA arrays and oligonucleotide-

arrays. cDNA arrays are historically first emerged type and use the whole ex-

pressed sequence as the probe. Each spot cDNA arrays is specific to a gene.

Oligonucleotide-arrays, on the other hand, use short oligomers – 25 to 60 bases

– in each spot. These oligomers are matched with fragments of genes, one gene

represented by several spots on the array. These arrays are mainly produced by

corporations Agilent and Affymetrix, they are relatively cheap, and most popular.
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Figure 1.7: Steps of a microarray experiment

Measured expression values are rarely used as is, since there is no standard

for normal expression of a gene. The most common method used for interpreting

gene expression is to perform the microarray experiment for two different con-

ditions, and compare expressions of the same gene in these conditions. If there

is a significant difference in the expressions, then the gene is said to be differen-

tially expressed. However, comparing just two arrays for assessing differentially

expressed genes would not be wise because expression values have high variation

due to the expreimental technique. It is said that, differential expressions can

be false positive up to 75% [2]. A way to overcome this problem is to perform

many microarray expreiments on the same condition and decide the expression

by evaluating collectively.

1.3 Contribution

In this thesis, we formulate several analysis methods for process description

graphs. Chapter 3 discusses the characteristics of process description graphs

and describes some graph traversal algorithms adapted to these graphs. We use
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these algorithms for answering several biologically relevant questions like paths

between molecules or common targets. We discuss the semantics of integrating

microarray data to pathways, and define the concept of causative paths that can

be used for elucidating dependencies between gene expressions through paths

on the network. In Chapter 4, we describe a probabilistic method, GEM [4],

for inferring and characterizing modulators of transcription factors based on ex-

pression profiles. We treat interacting molecules of transcription factors as po-

tential modulators, and use known targets of factors for measuring the depen-

dency of factor-target correlation on the modulator expression. In Chapter 5,

we present two tools, PATIKAmad [3] and ChiBE [5], that facilitate pathway

visualization and analysis. PATIKAmad is the microarray data integration com-

ponent of PATIKAweb [28]. ChiBE is a BioPAX pathway editor that represents

BioPAX graphs using the process description notation. It also supports local and

distant querying of BioPAX models in process description graphs; and adapts

PATIKAmad for expression data integration and analysis.



Chapter 2

Related Work

2.1 Biological Pathway Ontologies

Biological pathways are represented in many different forms, mainly determined

by the pathway provider itself. Databases that focus on a specific type of net-

work use a model which is simplest to fit their data. For instance Database of

Interacting Proteins (DIP) [69] represent their data in PSI-MI [41], which covers

molecule and interaction details (like reference or evidence), but cannot model

reactions, regulations or abstractions.

There are several efforts for integrating pathway data from different sources.

Such an effort have to use a model that can accommodate different types of infor-

mation. PATIKA project [24] defines such an ontology, and integrates pathway

data from BIND [6], HPRD [50], and Reactome [59] databases. BioPAX [25]

is another ontology, being developed with community effort, for modeling many

kinds of networks, and offered as a pathway exchange language. SBML [44] is

a similar project with a focus on simulation. SBGN [53] is another community

effort for determining standards of pathway graphical notation.

An extension of graph-based representation, namely hierarchically structured

or compound graphs, in which a member of a biological network may recursively

11



CHAPTER 2. RELATED WORK 12

contain a sub-network of other pathway elements, can be used for representing

sub-pathways, molecular complexes and subcellular location. Compound graphs

also help managing complexity by interactively decomposing a pathway into dis-

tinct components or modules [35, 23]. The recently introduced visualization stan-

dard SBGN [53] also uses compound graphs extensively.

2.1.1 PATIKA Ontology

In 2000, PATIKA project was launched to create a pathway visualization and

analysis platform with a comprehensive database. Towards this goal, the PATIKA

ontology [23], that models pathways in two levels of detail, was defined. Less de-

tailed first level (bioentity level) includes bioentities and their binary interactions,

while the second level (mechanistic level) models mechanistic details of events.

A molecule node in the mechanistic level is called state, and each state is

associated with a bioentity, which keeps references to the sequence databases

such as Entrez Gene [56] or UniProt [1], and to small chemical databases such as

ChEBI [22] or PubChem [15]. States represent molecular state of an entity in a

cellular location with some modification, like phosphorylation.

Events in the mechanistic level are modeled with transitions, which have sub-

strate, product, activator, and inhibitor edges that link transitions to states (Fig-

ure 2.1). Transitions have several types such as chemical modification, complex

formation, and transport.

Homologous states and transitions are modeled with homology abstractions

(Figure 2.2), and regular abstraction structure is used for defining any kind of

groupings, like pathways.

PATIKA ontology can also handle incomplete information using the model

elements incomplete state and incomplete transition (Figure 2.3). When any of

the incomplete element is associated with an edge, this means that this edge is

actually associated with one of the members of the abstraction, but we do not

know which one.
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Figure 2.1: Basics of PATIKA ontology [23].

Figure 2.2: Demonstration of the use of homology abstraction in PATIKA ontol-
ogy [23].



CHAPTER 2. RELATED WORK 14

Figure 2.3: When the associated state is not certain, but a candidate set exists,
incomplete states are used in PATIKA ontology for representing this information.
T1 in the drawing is an incomplete state, indicating either S1 or S1′ inhibits the
reaction [23].

2.1.2 BioPAX

BioPAX (Biological Pathway Exchange Language) project was initiated for cre-

ating a common format that will facilitate the data transfer between biological

pathway databases. Each version of BioPAX language is called a level. The first

BioPAX level (level 1) is released in 2004, modeling biochemical reactions (Fig-

ure 2.4). Their model associates PhysicalEntity objects (molecules) to Con-

versions through utility objects called PhysicalEntityParticipant, which also

keeps stoichiometry, cellular location, and chemical modifications of the associ-

ated PhysicalEntity. Level 2 was released with an extension to include physical

interactions between molecules.

BioPAX level 3 improves over the previous levels by explicitly putting molecu-

lar states in the model. This level completely abandons PhysicalEntityParticipant,

and changes semantics of PhysicalEntity to represent molecular states in-

stead of entities, and semantics of previous PhysicalEntity class migrates to

EntityReference (Figure 2.5). Level 3 also supports gene regulatory interac-

tions and genetic interactions. Figure 2.6 shows the progress of BioPAX language

over time.
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Figure 2.4: Part of the data model of BioPAX Level 1.

Figure 2.5: Part of the data model of BioPAX Level 3.
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Figure 2.7: A manually drawn pathway appeared in [42].

2.1.3 SBML

SBML [44] was developed as a modeling standard for pathways at the level of

biochemical reactions. Focus of SBML is simulation of the modeled events; thus,

their model is very low level. Each pool of chemically identical molecules in

a specific cellular compartment is represented with a Species, which are also

inputs and outputs of the Reactions. SBML has structures for reaction rules

and parameters, while it completely ignores any generalizations or incomplete

information.

2.1.4 SBGN

Biological pathways are generally visualized using graphical models. Most graph-

ically pleasing pictures are still manually drawn ones that generally appear in

published materials. However, these nice pictures generally lack a consistent no-

tation, and it is impossible to understand them without an explanatory text. For

instance, the graph in Figure 2.7 describes regulation of Stat signaling by ITAM-

dependent pathways [42]. Two arrows that go to Stat1 have completely different

meanings. One edge is for the activation of Stat1, while the other is helping this

event, which we only understand after reading the related paper.
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SBGN [53] is a standardization effort for pathway drawings. It aims the draw-

ings to be self-explanatory and to cover most of the biological phenomena. SBGN

defines three kinds of drawings: process diagrams, entity relationship graphs, and

activity flow graphs. For each graph type, several glyphs are defined as units of

the notation. Process diagrams (Figure 2.8) explicitly draw processes with par-

ticipant molecular states. This graph type is most similar to the notation used

by popular pathway databases like Reactome, KEGG, and PATIKA. Entity re-

lationship diagrams (Figure 2.9) draw each entity once, and show processes by

edges between entities, their features, and other edges.

2.2 Pathway Editors

A limited number of software tools for biological pathway visualization and anal-

ysis was developed such as Cytoscape [51], CellDesigner [36], PATIKAweb [28],

Pathway Tools [49], and VisANT [43]. These tools differ in their focus and ca-

pabilities. Several of these tools are compared in Table 2.1 with their support

to BioPAX and SBGN standards, layout capability, compound graph support,

availability and type of software. More details about Cytoscape, CellDesigner,

and PATIKAweb are given below.



CHAPTER 2. RELATED WORK 19

Figure 2.8: Stimulation events in the neuro-muscular junction, drawn as a SBGN
Process Diagram [70].



CHAPTER 2. RELATED WORK 20

Figure 2.9: SBGN entity relationship diagram describing the effect of a depolar-
ization (dV) on the intracellular calcium, that binds to calmodulin, that itself
binds to the calcium/calmoduline kinase II (CaMKII) [70].



CHAPTER 2. RELATED WORK 21

B
io

P
A

X
S
u
p
p

or
t

L
ay

ou
t

C
om

p
ou

n
d

S
u
p
p

or
t

S
B

G
N

A
va

il
ab

il
it

y
T

o
ol

T
y
p

e

C
y
to

sc
ap

e
[5

1]
Y

es
A

u
to

m
at

ed
N

o
N

o
O

p
en

S
ou

rc
e

A
p
p
li
ca

ti
on

B
iN

oM
[8

2]
Y

es
A

u
to

m
at

ed
N

o
Y

es
O

p
en

S
ou

rc
e

A
p
p
li
ca

ti
on

1

R
ea

ct
om

e
[5

9]
N

o
A

u
to

m
at

ed
N

o
P

la
n
n
ed

O
p

en
S
ou

rc
e

W
eb

K
E

G
G

T
o
ol

s
[4

6]
N

o
M

an
u
al

/S
ta

ti
c

L
im

it
ed

2
N

o
F

re
e

W
eb

B
io

C
y
c

[4
7]

E
x
p

or
t

O
n
ly

N
o

N
o

N
o

F
re

e
A

p
p
li
ca

ti
on

V
is

A
N

T
[4

3]
Y

es
Y

es
3

Y
es

N
o

O
p

en
S
ou

rc
e

A
p
p
li
ca

ti
on

,
A

p
p
le

t
C

el
lD

es
ig

n
er

[3
6]

N
o

Y
es

Y
es

Y
es

F
re

e
A

p
p
li
ca

ti
on

P
at

h
C

as
e

[3
0]

Y
es

4
Y

es
N

o
N

o
T

S
S

L
ic

en
se

5
A

p
p
li
ca

ti
on

V
IS

IB
IO

w
eb

Y
es

Y
es

Y
es

Y
es

O
p

en
S
ou

rc
e

W
eb

P
A

T
IK

A
w

eb
[2

8]
Y

es
Y

es
Y

es
N

o
T

S
S

L
is

en
ce

W
eb

1
B

iN
oM

is
a

p
lu

g-
in

fo
r

C
y
to

sc
ap

e
2

O
n
ly

ce
ll
u
la

r
lo

ca
ti

on
s

ar
e

re
p
re

se
n
te

d
as

co
m

p
ou

n
d
s;

co
m

p
le

x
es

ar
e

sh
ow

n
w

it
h

si
m

p
le

n
o
d
es

3
C

om
p

ou
n
d

su
p
p

or
t

in
th

e
la

yo
u
t

se
em

s
u
n
re

li
ab

le
4

B
io

P
A

X
su

p
p

or
t

se
em

s
u
n
re

li
ab

le
5

T
om

S
aw

ye
r

S
of

tw
ar

e
L

ic
en

se
is

re
q
u
ir

ed

T
ab

le
2.

1:
A

co
m

p
ar

is
on

of
se

ve
ra

l
p

op
u
la

r
p
at

h
w

ay
v
is

u
al

iz
at

io
n

to
ol

s
[2

6]
.



CHAPTER 2. RELATED WORK 22

2.2.1 Cytoscape

Cytoscape is an open source pathway editor, based on yFiles graph editing frame-

work. The project aims the tool to be easily extendable by plugins, so that re-

searchers can write their own analyzers for pathways. Today, there are many

Cytoscape plugins, written by different groups, implementing a diversity of path-

way analysis algorithms 1.

One pitfall of Cytoscape is that they do not make use of compound graphs,

so they have an unusual way of representing complex molecules (Figure 2.10).

Cellular locations are shown as text next to the name of the related molecule.

2.2.2 CellDesigner

CellDesigner [36] is a diagram editor for drawing gene-regulatory and biochemical

networks. They use SBGN Entity Relationship and Process Diagram representa-

tions in drawings (Figure 2.11), and they can save the created models in SBML

language. CellDesigner lets user to adjust kinetic parameters of the reactions and

concentrations of the molecules, and performs simulations on the model.

2.2.3 PATIKAweb

PATIKAweb [28] is the front-end of the PATIKA database [24]. It is a web

based pathway editor, which was built on JSP (JavaServer Pages technology)

edition of the Tom Sawyer Visualization technology. Pathway representations are

similar to SBGN Process Diagrams. PATIKAweb draws pathways on a cell model;

i.e., drawing area is divided into compartments representing cellular locations

(Figure 2.12). The tool uses compound nodes for displaying molecular complexes,

homologies, and abstractions. Graphs are laid out using the CoSE algorithm [29],

specially designed for graphs with compound structures.

1For a complete list of plugins, refer to [21]
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Figure 2.10: Cytoscape pathway showing dissociation of CAV1 from a big com-
plex.
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Figure 2.11: A screenshot of CellDesigner [14].

Figure 2.12: PATIKAweb view of the pathway “Valine Catabolism”.
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2.3 Reverse Engineering of Gene Regulatory

Networks

Identification of a gene’s regulatory process with controlled experiments is a costly

procedure, which requires experiment setups that should involve the gene’s pro-

moter with a reporter, and all related transcription factors and their potential

modulators. Since it is not practical to test all potential regulators in com-

binatorially many settings, studies generally focus on few regulators in limited

conditions.

Gene expression microarrays can measure expression levels of all genes in

a specific condition, thus have potential to provide insights on dependencies of

genes to each other for expression. There are many studies that try to re-construct

the gene regulatory network using large numbers of expression data. A review

by Margolin and Califano [57] classifies reverse engineering methods as linear,

probabilistic, and information theoretic, basis of which are summarized below.

All of these methods assume that expression of a gene is a function of other

genes, and expression of genes are indicator of their protein activity.

2.3.1 Linear Models

Gene expression at time t+1 can be formulated as the linear combination of other

genes’ expressions at time t plus some constant (Eq. 2.1).

xt+1
i =

∑
j

ajx
t
j + ci (2.1)

X t+1 = A×X t + C (2.2)

The relation is more formally represented using matrices, like in Eq. 2.2,

where, X is the gene expression vector of size n, A is a n × n matrix, and C is
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the constants vector of size n. This formulation comes natural when worked on

time-series expression data, where samples in the expression dataset belong to

equally distributed time intervals, starting after a perturbation is applied to the

system.

2.3.2 Probabilistic Models

Probabilistic frameworks try to estimate a probability of expression for the gene

under condition of the expression status of other genes. The most popular prob-

abilistic framework is the Bayesian network, which is a directed acyclic graph,

where nodes represent gene expression statuses and edges represent dependencies

between expressions. A sample formulation is given in Eq. 2.3, where xi is the

expression status of the ith gene, πi,j represents the jth parent of ith gene, ai,j is

the weight of the effect of jth parent on ith gene.

P (xi) =
∑

j

ai,jπi,j + ci (2.3)

Probabilistic approaches are generally applicable when gene expressions can be

discretized, like high and low. While working on steady-state expression datasets

of differing conditions, probabilistic framework is easier to use than a linear sys-

tem because of absence of time in the formulation.

2.3.3 Information Theoretic Models

The information theoretic measure, mutual information (MI), can capture the

dependency between gene expressions. MI is calculated using independent and

joint entropies of gene expressions as in Eq. 2.4, where, S is the information

theoretic entropy, and Xi is the expression vector of the ith gene.

MIi,j = S(Xi) + S(Xj)− S(Xi, Xj) (2.4)
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MI is similar to Pearson correlation in the sense that it measures a kind

of dependence between variables; however, Pearson correlation assumes a linear

relationship between variables while MI measures any kind of dependence. MI is

guaranteed to be non-zero unless variables are statistically independent.

2.4 MINDY - Identifying Transcription factor

modulators

Wang et al. propose an information theoretic approach for inferring modulators

of transcription factors (TFs) from microarray data. They measure the mutual

information between the TF and the target gene (t), conditional to the modulator

candidate (M ); i.e., CMI(TF, t|M). The mutual information between TF and

the target gene indicates dependency of expression of the target gene on the

expression of the TF. In the presence of a modulation, they expect this value

to be different in low and high values of the modulator (Eq. 2.5), and infer

modulators with a high ∆CMI.

∆CMI = CMI(TF, t|M+)− CMI(TF, t|M−) (2.5)

They test their method on B cells, 254 expression profiles, and identify modu-

lators of Myc oncogene. They test all genes as potential targets, and all signaling

proteins and other TFs as potential modulators. Low and high values of a mod-

ulator are determined by rank-ordering the expression data values, selecting first

quartile as low and third quartile as high, and not using the second quartile.

Among 542 signaling proteins and 598 transcription factors, MINDY identifies 91

signaling proteins and 99 TFs as modulators of Myc.



Chapter 3

Analysis of Process Description

Graphs

This chapter provides the theoretical basis for pathway analysis as implemented

in the software tools PATIKAmad and ChiBE.

3.1 Basics

Let G = (V,E) be a graph with a non-empty node set V and an edge set E. An

edge, e = x, y or simply xy, joining nodes x and y is said to be incident with

both x and y. Node x is called a neighbor of y and vice versa. A pathway graph

G = (V,E) is a graph, where some of the edges in E are marked as inhibition

edges (e.g., an interaction that disables or impedes the target reaction node via

the source state node).

A path between two nodes n0 and nk is a non-empty graph P = (V ′, E ′) with

V ′ = n0, n1, ..., nk and E ′ = n0n1, n1n2, ..., nk−1nk, where ni are all distinct. n0

and nk are called the end points of path P = n0n1...nk, whose length, denoted by

|P | is the number of edges on it. A path is said to be directed if all its ordered

edges are directed in the same direction. A directed path P is called an incoming

28
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(outgoing) path of node n if P ends at target (starts at source) node n. A directed

path is called positive (negative) if it contains an even (odd) number of inhibitors

(i.e., inhibition edges).

Given node sets A and B, an A−B path is a path with its ends in A and B,

respectively, and no node of P other than its ends is from either set A or B. An

A − path is a path where one of its end nodes is in A, and no other nodes and

interactions are from A.

The graph-theoretic distance dG(x, y), between two nodes x and y in graph

G, is the length of a shortest x − y path in G. If G′ = (V ′, E ′) is a subgraph of

G = (V,E), and G′ contains all the edges xy ∈ E with x, y ∈ V ′, then G′ is an

vertex-induced or simply induced subgraph of G; we say that V ′ induces G′ in G

and write G′ = G[V ′]. If node x is the starting node of a directed path that ends

up at node y, then node y is said to be in the downstream of node x; similarly,

node x is said to be in the upstream of node y. A node y in the downstream of a

node x is a potential target of x; similarly, x is a potential regulator of y.

The graph type assumed in the rest of this Chapter (except section 3.5) is bi-

ological graphs that are similar to PATIKA mechanistic graphs or SBGN process

diagram, which we call process description graph. The characteristic property

of such graphs is that they follow the biochemical reaction paradigm, events are

represented with a special node type (transitions in PATIKA), molecule nodes,

or states, are related to the events through input, output, and effector relations

(Figure 3.1).

Edges in a process description graph always have a direction. When two states

are connected through a directed path, this implies that the state at the start of

the path can have influence on the existence (or concentration) of the state at

the end of the path. For instance, in Figure 3.1 the path from S1 to S4 implies

that concentration change of S1 can affect the concentration of S4. Because of

the presence of such a path, we say that S1 is at the upstream of S4, and S4 is at

the downstream of S1.
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Figure 3.1: Sample process description graph with three different node types and
5 different edge types. Direction of the edges without an arrow is from the state
to the non-state node. Green edge is for activation, while red edge represents
inhibition.

Only the effector edges in a process description graph can be negative. In Fig-

ure 3.1 S1 is at the positive upstream of S4, and S4 is at the negative downstream

of S5.

3.2 Visualization of BioPAX Using Process De-

scription Graph

BioPAX language have some structural differences from process description

graphs, which needs a conversion before visualization and analysis. BioPAX

level 2 uses PhysicalEntityParticipant (PEP) objects as a link from

PhysicalEntity (PE) to Interaction (Conversion and Control) objects. PEPs

in BioPAX are not reusable objects, they are created per interaction, because PEPs

also store the stoichiometry information which is specific to the Interaction.

During conversion, each PEP that has the same modification features and the

same cellular compartment corresponds to a unique state in process description

graph (Figure 3.2).

Conversion in BioPAX can be bidirectional (reversible), however a transition

in process description graph is strictly unidirectional. Any reversible Conversion

in BioPAX is represented with two transitions in process description graph (Fig-

ure 3.3).
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Figure 3.2: PEPs in BioPAX level 2 graph are grouped according to their modifi-
cations and cellular locations during conversion. Each group is represented with
a unique state in the process description graph.

Figure 3.3: Reversible Conversion in BioPAX is represented with two transitions
in process description graph.
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Figure 3.4: Desired distance labeling in a process description graph when states
are in focus of the traversal. Nodes and edges on the S1-S3 path is labeled
according to the distance from S1 (upper labels, forward distance), or distance
from S3 (lower labels, backward distance). Distances are defined between states,
however, there are advantages of defining distance labels for all nodes and edges.
For instance, the sum of forward distance and backward distance of a node or
edge on the S1-S3 path is equal to the state-based length of the path, which is 2.

3.3 Paths and Distances

Distances between nodes are often used in graph traversal algorithms. For in-

stance the breadth-first search (BFS) guarantees that no node in distance i + 1

will be traversed before all nodes in distance i is traversed. When a graph has

a single type of node and a single type of edge, distance between two nodes is

simply calculated by the number of the edges on the path that connects them.

However, when node and edge types are multiple, distances between a node type

of focus can be different from the graph theoretical distance. In that case, we

need to modify graph traversal algorithms to run using the specific node-based

distance.

In process description graphs, molecular states are connected through other

non-state nodes, like transition and control nodes. When the focus of a traversal

algorithm is the molecular states on the network, it needs to define the distance

as the distance between states. For instance in Figure 3.1, S5 – the upstream

inhibitor of S4 – has a graph theoretic distance of 3 from S4. However, S5 is an

immediate inhibitor of S4, and the state-based distance is 1.

Figure 3.4 shows an example state-based distance labeling on a path whose

graph theoretical distance is 5. The state-based distance from S1 to S3 is 2

because they are connected by 2 events. Here, the non-state nodes and edges



CHAPTER 3. ANALYSIS OF PROCESS DESCRIPTION GRAPHS 33

between states get the label of the state at their upstream. Upper labels in the

figure show a forward labeling, i.e, distance from S1; while the lower labels show a

backward labeling, i.e., distance from S3. The sum of forward label and backward

label of an object on the path is equal to the state-based length of the path, which

is 2 in this example.

3.4 Querying Paths on a Network

We previously designed a graph-theoretic querying framework, answering

some important biological questions for PATIKA (mechanistic and bioentity)

graphs [27], such as neighborhood, shortest path, graph of interest, paths of in-

terest, and common stream. Algorithms implemented in this framework did not

have to consider the heterogeneity of node types because PATIKA mechanistic

graphs are bipartite; thus state-based distance of a path is always half of its graph

theoretic distance.

Here we generalize these algorithms to process description graphs, which are

not necessarily bipartite; however, node types can be labeled as state and non-

state. All these algorithms are based on breadth-first search (BFS), so we first

modify the well-known BFS to use the state-based distances in process description

graphs, and then build other algorithms on this modified BFS.

3.4.1 BFS for Process Description Graphs

Algorithm 1 is a modified BFS, where search starts from the source set S, ends in

target set T, runs in the direction specified by dir parameter, and continues until

the limit distance k is reached. If there is no target set, T can be left empty; and

if there is no search distance limit, k can be defined as infinite. The complexity of

this modified BFS is the same with the ordinary BFS, which is O(|V |+ |E|) time

complexity, where |V | and |E| are the number of nodes and edges, respectively.

The difference of this BFS from the regular BFS is that breadth is defined
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with the closest level of states. This is realized by using a priority queue instead

of a regular queue. States are added at the end of the queue to be processed at

as the next breadth (line 25), while non-state nodes are added at the head of the

queue to be processed immediately (line 27). This BFS also uses a state-based

labeling, like the labeling in Figure 3.4. It increments labels only when reaching a

state from an edge during forward traversal (line 18), and when reaching an edge

from a state during backward traversal (line 12). The algorithm uses color labels

for the processing statuses of nodes: white means not processed, gray means in

queue, and black means processed. The algorithm assumes initial node colors are

white.

3.4.2 Neighborhood

Neighborhood of a set S of source nodes is defined as:

NB(S, k) = S ∪ {x | x is a node on a S-path P, and |P | ≤ k}
∪ {e | e is an edge on a S-path P, and |P | ≤ k}

Upstream or downstream neighborhoods of states in a process description

graph can be queried with simple BFS calls (Algorithm 2).

3.4.3 Paths of Interest

Simplest strategy for searching relations between states is to search paths in

between. We define the paths-of-interest (PoI) algorithm for searching paths

between two given sets of states – source set S, and target set T – within a search

distance limit k. This algorithm does not enumerate paths, but returns a merge

graph of the related paths. Paths-of-interest is formally defined as:

PoI(S, T, k) = G [B] , where B = {x | x is on a S-T path P, and |P | ≤ k}
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Algorithm 1 BFS(S, T , dir, k)

Require: dir is fwd or bkwd
Require: S and T contain only state-node
1: for all vertex n ∈ S do
2: n.color ← gray
3: n.label(dir)← 0
4: Q← ∅
5: R← S
6: Q.enqueue(S)
7: while Q 6= ∅ do
8: u← Q.dequeue()
9: for all incident edge e of u going in dir do

10: R← R ∪ {e}
11: if dir = bkwd and u is state-node then
12: e.label(dir)← u.label(dir) + 1
13: else
14: e.label(dir)← u.label(dir)
15: n← e.otherEnd(dir)
16: if n.color = white then
17: if dir = fwd and n is state-node then
18: n.label(dir)← e.label(dir) + 1
19: else
20: n.label(dir)← e.label(dir)
21: R← R ∪ {n}
22: if n /∈ T and (n.label(dir) < k or n is not state-node) then
23: n.color ← gray
24: if n is state-node then
25: Q.enqueue(n)
26: else
27: Q.addF irst(n)
28: else
29: n.color ← black
30: u.color ← black
31: return R
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Algorithm 2 Neighborhood(S, dir, k)

Require: dir is fwd, bkwd, or both
1: R← ∅
2: if dir = fwd or dir = both then
3: R← R ∪BFS(S, ∅, fwd, k)
4: if dir = bkwd or dir = both then
5: R← R ∪BFS(S, ∅,bkwd, k)
6: return R

Algorithm 3 PoI(S, T , k)

1: C ← BFS(S, ∅, fwd, k)
2: ResetColors(C)
3: C ← C ∪BFS(T, ∅,bkwd, k)
4: R← ∅
5: for all vertex u ∈ C do
6: if u.label(fwd) + u.label(bkwd) ≤ k then
7: R← R ∪ {u}
8: return R

An alternative version of the PoI algorithm uses the shortest path distance

between source and target sets as the search distance limit. This is useful espe-

cially when we do not have any idea on the distances from S to T, so we can not

provide a realistic k. So, we define the algorithm PoI-Shortest, searching paths

from S to T using a length limit shortest + k (Algorithm 4). Both PoI and

PoI-Shortest algorithms have O(|V |+ |E|) time complexity.

Algorithm 4 PoI-Shortest(S, T , k)

1: C ← BFS(S, ∅, fwd,∞)
2: ResetColors(C)
3: C ← C ∪BFS(T, ∅,bkwd,∞)
4: R← ∅
5: sd← min(u.label(fwd) + u.label(bkwd)) where u ∈ C
6: for all vertex u ∈ C do
7: if u.label(fwd) + u.label(bkwd) ≤ sd+ k then
8: R← R ∪ {u}
9: return R
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3.4.4 Graph of Interest

Often times researchers do not have source and target sets to search a relation in

between, but they have just a set of states, and want to learn if they are related.

We define the graph-of-interest (GoI) algorithm for searching any path between

a given set of states, within a search distance k, which is in fact a PoI call using

the state set as both source and target (Algorithm 5). GoI is defined as:

GoI(S, k) = G [B] , where B = {x | x is on a S-S path P, and |P | ≤ k}

GoI can alternatively use PoI-Shortest for searching paths within a distance

of shortest+ k.

Algorithm 5 GoI(S, k)

1: return PoI(S, S, k)

3.4.5 Common Stream

There are already a number of algorithms for inferring highly connected or co-

regulated subnetworks of cellular interactions and processes often called modules

or pathways [13, 81, 9]. When analyzing these modules, we often want to know

if there is a process or gene that is upstream of the genes in the module, which

can provide a causal explanation for the co-regulation, and ultimately a way to

control the module. Similarly, two pathways affecting the same mechanism in

the cell is interesting since it suggests that a specific phenotype can have more

than one molecular cause. For instance, Engelman et al. [31] discuss that drug

resistance in lung cancer is related to an alternative pathway that leads to PI3K

activation. Searching for common targets of signaling proteins can help to develop

alternative treatment strategies.

Common downstream (upstream) of a source entity set S is the set of poten-

tial common target (regulator) entities that are in the downstream (upstream) of
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all entities in S. We describe the common-stream algorithm for identifying com-

mon upstream and downstream (determined by dir parameter) within a search

distance limit k (Algorithm 6). Common downstream is defined as:

CD(S, k) = {x | ∀a ∈ S (∃P | P is a path from a to x, and |P | ≤ k)}

Common upstream is defined similarly. The algorithm simply executes a BFS

search from each source node and increment reached count of the nodes in the

resulting BFS tree. When a node is reached from all of the source nodes, it is

collected in the resulting common stream. This algorithm has O((|S|×|V |)+ |E|)
running time complexity.

Algorithm 6 CommonStream(S, dir, k)

Require: dir can be fwd or bkwd
1: C ← R← ∅
2: for all vertex u ∈ S do
3: C ← BFS({u} , ∅, dir, k)
4: for all vertex n ∈ C do
5: n.reached← n.reached+ 1
6: ResetLabel(C, dir)
7: ResetColor(C)
8: for all vertex v ∈ C do
9: if v.reached = |S| then

10: R← R ∪ {v}
11: return R

3.4.6 Inter-Compartment Paths

A signal in or outside of the cell is transmitted through cellular locations towards

its destination. This is mainly controlled through receptors on the boundary sur-

faces of compartments, and carrier molecules that assist other molecules in their

transmission. Paths between different cellular locations often capture these sig-

naling events. We define Inter-compartment-paths query (Algorithm 7) as a spe-

cial application of paths-of-interest query. This query executes a paths-of-interest

query from states in a compartment to the states in the other compartment.
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Algorithm 7 InterCompartmentPaths(compartment 1, compartment 2, k)

1: S ← states in compartment 1
2: T ← states in compartment 2
3: return PoI(S, T , k)

3.5 Expression Data on Pathways

Microarray experiments take a snapshot of the cell, showing expression of almost

the entire genome. Since gene expressions can be affected from their upstream

in a cellular network, and since they can affect expression of their downstream,

analyzing expression data on pathways can be informative. One of the simple

way of integrating expression data with pathways is visualization of data values

on the molecule nodes of the network.

Visualization of expressions on pathways needs a mapping from expression

values to molecules in the pathway. This mapping can be obtained by matching

external references on the expression data and pathway. However, often times

more than one row of expression data match with a molecule on the pathway,

and these rows can have dramatically different values. Presence of multiple rows

per gene is generally due to presence of several isoforms of that gene, which are

measured separately on the expression profile. The most accurate way of visual-

ization in that case is to represent all the related values on the molecule nodes;

however, this is generally not a practical solution because of space limitation and

increasing visual complexity of the pathway drawing. An approximation is to dis-

play only the highest value that is matched with the molecule; so that we define

expression of a gene as the expression of at least one of its isoforms. This ap-

proximation fails when isoforms have different functions, but this time the cause

of the failure is not incorrect mapping but absence of sufficient details on the

network.

Expression data is a measure for the concentration of RNA molecules in the

cell. Thus, the correct way of mapping is to map expressions to RNA states on

the network. Unfortunately, RNA states are highly under-represented in popular

pathway databases. Representing expressions on the protein states is the next
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option, and applied by several pathway editors [51, 5]. When represented on

proteins, expression values tend to be interpreted as indicators of protein levels,

or activities in the cell. This is a kind of an approximation ignoring translational

and post-translational control of proteins, which is probably wrong in many cases,

requiring caution when used.

Visualizing a single profile is generally not very informative since expression

values do not tell much about activity of gene products. However, comparisons

between two profiles tell many things; a change in expression values is often

interpreted as a change of activity of gene products in the same direction.

3.6 Causative Paths

Pathway databases contain information about possible interactions and reactions

between molecules in a cell. Usually, this data is created by manually curating

biological literature and can span multiple experiments from different tissues,

organisms and contexts. When taken as an interconnected network, these inter-

actions and reactions offer a causal model of a cell’s response to stimuli. For

instance, in a typical microarray experiment, relatively small portions of this

network are differentially active between the control and the sample, and deter-

mining these parts can be extremely useful for finding causal explanations for the

correlations observed in the data.

Change of an expression value can be related to change of other gene expres-

sions through a path in the cellular network. If a path in the network potentially

explains expression change of the end-state with the expression change of the

start-state, then we call it a causative path.

The last transition in a causative path should be a transcription, or should at

least be related to gene expression. A positive causative path will have similar

expression changes at its start-state and end-state. Similarly, a negative path can

be causative only when it has different expression changes at its start-state and

end-state (Figure 3.5).
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Figure 3.5: Examples of two causative paths. Red state: upregulated, blue state:
downregulated. Transitions with label t are transcription events. Red edge:
inhibition, green edge: activation.



Chapter 4

Discovering Modulators of Gene

Expression

Our current knowledge of the modulation of transcription factors comes mainly

from experimental studies that measure the expression levels of a few target genes

(such as [62] and [66]) or the expression level of an artificial reporter gene with a

“canonical promoter” (such as [77]). While these experiments provide invaluable

insight, they do not tell the whole story. In order to detect context-dependent,

target-specific effects of modulators, system-scale methods are required. Gene

expression profiles are now extensively used for inferring causal relationships be-

tween transcription factors and target genes. The models produced from gene

expression profiles, often referred as “gene regulatory networks”, or simply “gene

networks”, differ significantly in their semantics and level of detail. Margolin and

Califano [57] provide a comprehensive review of these methods and classify them

under three groups: linear, graph-theoretic, and information-theoretic models

(Section 2.3). The majority of these methods focus on modeling either causal

relationships between gene expression levels as binary interactions, or linear in-

tegration of expression values.

Expression level of genes can also be affected by non-modulator proteins such

as alternative transcription factors, generic inhibitors of transcriptional machinery

42
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or regulators of mRNA degradation. A modulator is defined by its dependency

on the transcription factor in order to exert its effect on the target. When the

transcription factor is not present, at least a part of the modulator activity should

be rendered ineffective. This implies a ternary, non-linear relationship, analogous

to the electrical transistor, between the activity levels of the two “inputs”, the

transcription factor and the modulator, and the “output”, the target gene expres-

sion. Using a sufficiently large set of expression profiles, these relationships can

be detected by looking at the correlations between expression levels of candidate

modulators with the expression level of a transcription factor and its target genes.

Assuming that the expression level is an indicator of modulator and transcription

factor activity, the dependency between modulator and target expression must

increase as the concentration of the transcription factor increases. Therefore, we

expect to observe a transcription factor-dependent correlation between modulator

and target.

Wang et al. [76] propose MINDy, an information theoretic algorithm for de-

tecting modulators. They test the conditional mutual information (CMI) between

the transcription factor and the target gene, and its dependency on the modula-

tor candidate (Section 2.4). This is, in essence, the aforementioned non-linearity

principle. Building upon the same principle, we present GEM (Gene Expression

Modulation) [4], a probabilistic method for detecting modulators of transcription

factors using a priori knowledge and gene expression profiles. For a modulator /

transcription factor / target triplet, GEM predicts how a modulator-factor inter-

action will affect the expression of the target gene. GEM improves over MINDy

by detecting two new classes of interaction that would result in strong corre-

lation but low ∆CMI, can filter out logical-or cases and offers a more precise

classification scheme. A detailed comparison of GEM and MINDy is provided in

Section 4.2.2.

In the following sections, we explain our method and assumptions and apply

GEM to predict modulators of Androgen Receptor (AR). We compare our results

with a recent literature review on modulators of AR and show that GEM correctly

predicts a significant number of its modulators and can provide additional insight

into the mechanism of modulation and affected targets. We observe that these
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Figure 4.1: Left: GEM is based on a simple model of gene regulation. A mod-
ulator interacts with a transcription factor to affect the expression of a target.
Right: Initial hypotheses are generated by combining known protein-protein and
protein-DNA interactions which are then tested against a set of gene expression
profiles.

modulators cannot be easily classified into co-activator/co-repressor categories.

Most modulators will selectively increase the expression level of some AR targets

while decreasing the others, a property we call bimodality.

4.1 GEM Method

GEM uses three types of input, protein-protein interactions, transcription factor-

target relations, and gene expression profiles. Proteins that are known to in-

teract with the transcription factor are considered as potential modulators and

transcription factor-target binding data are used to obtain a list of target genes

for each transcription factor. These two types of interactions are combined to

build a large number of small causal hypotheses of the form: “Modulator pro-

tein M, via transcription factor F affects the expression of the target gene T ”.

The modulator hypothesis predicts that correlation between the expression levels

of the modulator and the target must change as the level of transcription factor

changes. We use this dependency as a metric of the interaction between the mod-

ulator candidates and the transcription factor to select most likely modulators

(Figure 4.1).

We can estimate this relation with the following model:
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E(t) = hc + hm(m) + hf (f) + g(m, f) (4.1)

Where, m, f and t are expression levels of the modulator, transcription factor,

and target, respectively. E(t) is the expected value of t. hm and hf represent the

effect of m and f, respectively, on t by themselves alone (main effects), while g

represents the effect of their interaction. If interaction of m and f has an effect

on t, we expect g to be non-zero.

There is reason to believe that hm and hf can be approximated with linear

functions [17]. On the other hand, the nature of g can vary significantly from

triplet to triplet, and cannot be covered by a single class of continuous functions.

If g is monotonic, however, we can use a discrete model such as the one described

by Wang et al. [76]. This allows us to look for non-zero g components without

worrying about the actual mechanism. When we transform the expression values

of genes to activity levels 0 and 1, our model becomes:

P (t′ = 1) = αc + αmm′ + αf f ′ + γm′f ′ (4.2)

Given a set of expression profiles, we estimate alpha coefficients by calculating

the observed proportions of t′ = 1, conditional on m′ and f ′. We then select

triplets with a high γ coefficient that satisfy a false discovery rate threshold after

multiple hypothesis testing correction.

A high γ alone, however, is not sufficient to infer modulation. Some non-linear

relationships, such as logical-or of M and F cannot be explained by modulation.

To remove these false positives, and to infer the mode of action of the modulator,

we classify the non-linear triplets based on their proportion patterns and select

those that can be explained by a simple, direct modulation. We report these

modulators along with their respective targets and their mode of action.
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4.1.1 Construction of Triplets

To construct our initial set of hypotheses, in the form of a modulator-factor-

target triplet, we combine existing protein-protein and transcription factor-target

interactions. Proteins known to interact with a transcription factor, but not

targets of the factor themselves, are considered as potential modulators for all

targets of the transcription factor. Large integrated protein-protein interaction

datasets are already available [50], and known targets of transcription factors can

be obtained from literature curation [45] [60], sequence based prediction [45], and

ChIP-Chip experiments [11].

4.1.2 Selection of Expression Data

Using gene expression profiles we can directly measure the level of expression for

target genes and estimate activities of M and F from their expression levels. For

this estimation to be accurate, expression profiles must satisfy the following two

conditions:

• There is a steady state expression level for genes. A change in the expression

levels of M and F will be reflected in their protein abundance and expression

after a delay. Without steady state property, we cannot correlate m, f, and

t in the same expression profile.

• Expression levels of M and F are correlated with their protein abundance.

Studies demonstrated that there is a lower correlation between expression

levels and protein abundance than expected [39]. This correlation, however,

increases significantly if the variance of expression values are high.

In addition to these conditions, f and m should have sufficient variance in the

expression dataset. If one or both genes have relatively constant expression, then

this may cause three problems:

• A low correlation between mRNA and protein abundance is expected.
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• There will not be enough “perturbation” in the data set to infer M and F ’s

effect on T.

• There is a possibility of detecting fine-tuning feedback loops as modulations.

Ideally, m and f should have high variation and low correlation in the samples.

Gene expression profiles of 2158 human tumor samples published by expO

(Expression Project for Oncology) is currently the best publicly available dataset

for our purposes [32]. The variety of tumor samples used in this study increases

variation and thus helps reduce correlations between m and f due to the context.

There are, however, some genes in the expO set that have inadequate variation

in their expression levels (variation of log values less than 1) and these are left

out of our analysis.

4.1.3 Discretization and Conditional Proportions

We divide rank-ordered expression values of a gene by tertiles and further dis-

cretize the triplets using:

x′ =


1, if x is in upper tertile

null, if x is in middle tertile

0, if x is in lower tertile

(4.3)

This simple strategy has been shown to maximize entropy among groups [18]

and is similar to the one used by Wang et al. We also explored more sophisticated

(and computationally expensive) strategies including dynamically determining

optimal threshold for each triplet that maximizes entropy; however, these did not

yield substantial changes in our results.

After discretization, each experiment falls into one of the 27 possible bins

based on the ternary state of m′, f ′, and t′ (Figure 4.2, Left). While calculating
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Figure 4.2: Left: Samples are ranked and divided into 27 possible bins. Samples
with middle values are discarded and frequencies from 8 “corner” bins are used for
the rest of the analysis. Right: For each combination of m,f states, proportions
of t being high are derived from frequencies. Pairwise differences of proportions
provide estimates for α and β values.

the interactions, we only consider the 8 bins, where none of the genes has null

value. Observed frequencies of these states are denoted by f̂m′,f′,t′ .

We then calculate the proportions of t′ = 1 for each combination of states of

f ′ and m′:

p̂m′,f′ =
f̂m′,f′,1

f̂m′,f′,0 + f̂m′,f′,1

(4.4)

4.1.4 Selection of Significant Triplets

Observed proportions are conceptually similar to biological experiments. p̂1,1 is

our test case, where both f and m are high; thus, an interaction is expected. p̂0,0,

p̂1,0 and p̂0,1 are the controls; here, we do not expect an interaction to occur as

at least one of the interacting partners is missing.

By using the differences of observed proportions we can estimate the α coef-

ficients in Eq 4.2 (Figure 4.2, Right):
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α̂c = p̂0,0 (4.5)

α̂f = p̂0,1 − p̂0,0 (4.6)

α̂m = p̂1,0 − p̂0,0 (4.7)

We can also estimate the effect of F and M when their interacting partner is

present:

β̂f = p̂1,1 − p̂1,0 (4.8)

β̂m = p̂1,1 − p̂0,1 (4.9)

Finally, γ̂ gives us a metric for the effect of interaction:

γ̂ = β̂f − α̂f = β̂m − α̂m = p̂1,1 − p̂0,1 − p̂1,0 + p̂0,0 (4.10)

Any significant triplet must have a non-zero γ̂. This, however, is not sufficient,

as a synergistic effect can result from relationships other than direct modulation.

For example, consider the case where M and F are two transcription factors com-

peting for the same binding site to activate expression of T. When F is high, there

will be low M-T correlation – a non-linear relation which might have significant

γ. Such cases occur when effects of M and F are similar but independent, and

there is a cap on the T expression levels due to a third factor, such as the DNA

binding site. The nature of such a relationship between M and F is a logical-or

as opposed to logical-and in modulation. Although interesting, we can not apply

our statistical inference to these relationships due to the hidden third factor.

If M is affecting T directly through F, it must be active when F is high. More

formally, β̂m must be significantly different than zero, and must either have a

larger absolute value or have a different sign than α̂m.

As a result, all of the following null hypotheses must be rejected for a triplet

to be inferred as a direct modulation:
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H1 : γ = 0 H2 : βm = 0 H3 :
αm

βm

≥ 1 (4.11)

4.1.5 Significance of the Difference of Proportion Pairs

α and β values are estimated using independent proportions p0,0, p0,1, p1,0 and

p1,1 (Eq. 4.6 - 4.9). When M and F has no effect on T expression, these propor-

tions will be approximately normally distributed with mean zero. Similarly, the

difference between two proportions are approximately normally distributed with

mean zero when the change in the conditions does not have an effect on T.

Each pi,j was calculated using frequencies as in Eq. 4.12.

pi,j =
fi,j,1

ni,j

(4.12)

ni,j = fi,j,0 + fi,j,1 (4.13)

The variance of proportion difference pi,j − pk,l is estimated in Eq. 4.14 [34].

V ar(pi,j − pk,l) = pijkl qijkl (
1

ni,j

+
1

nk,l

) (4.14)

pijkl =
fi,j,1 + fk,l,1

ni,j + nk,l

(4.15)

qijkl = 1− pijkl (4.16)

Using the variance we can asses the probability of the measured difference to

belong to this distribution:
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P (x ∈ G(0, V ar(x))) = 1− erf(
x√

2V ar(x)
) (4.17)

erf(y) =
2√
π

∫ y

0

e−t2dt (4.18)

4.1.6 Significance of γ

γ is estimated using proportions as in Eq. 4.10. When the interaction between

M and F does not affect T, γ will be approximately normally distributed with

mean zero. Variance of this distribution is estimated in Eq. 4.19.

V ar(γ) = p′q′(
1

n0,0

+
1

n0,1

+
1

n1,0

+
1

n1,1

) (4.19)

p′ =
f0,0,1 + f0,1,1 + f1,0,1 + f1,1,1

n0,0 + n0,1 + n1,0 + n1,1

(4.20)

q′ = 1− p′ (4.21)

We use Eq. 4.17 for assessing the probability of a measured γ to belong to

this normal distribution around zero.

4.1.7 Category of Action

Using α̂f , GEM classifies unmodulated F activity into three classes: activator,

inhibitor, and inactive. Similarly, by comparing α̂ and β̂ coefficients, modulators

are classified into three classes – they can enhance, attenuate, or invert the activity

of the transcription factor. There are 6 possible categories that would have a high

γ. These cases and their interpretations are listed in Table 4.1, Table 4.2, and in

Figure 4.3.
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Figure 4.3: Classifying modulators using proportion differences: a) A triplet
can be represented as a vector 〈(αf , αm), (βf , βm)〉. The size of the vector is
proportional to γ. b) An example of logical-or case. c) An example of too
small γ. Most of the triplets fall into one of these categories and are filtered out
by GEM. 1-6) Representative vectors for each category of action in Tables 4.1
and 4.2, drawn assuming αm = 0.

Modulation Category Explanation

Attenuates Inhibition F, alone, inhibits T – M attenuates F activity.
Enhances Inhibition Modulated F inhibits T.
Inverts Inhibition F, alone, inhibits T – M inverts F activity.
Inverts Activation F, alone, activates T – M inverts F activity.
Enhances Activation Modulated F activates T.
Attenuates Activation F, alone, activates T – M attenuates F activity.

Table 4.1: Interpretation of the categories of modulation.
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Modulation Category γ αf βf βm αf + βm

Attenuates Inhibition + -
Enhances Inhibition - - - -
Inverts Inhibition + - + + +
Inverts Activation - + - - -
Enhances Activation + + + +
Attenuates Activation - +

Table 4.2: Inequality constraints that the category of modulation should satisfy.
“+” and “−” signs in the columns indicate significantly positive and negative
values, respectively. Note that this categorization is formulated for triplets for
which the null hypotheses in Eq. 4.11 were also rejected.

4.2 Results and Discussion

4.2.1 Inferring Modulators of the Androgen Receptor

Androgen Receptor (AR) is critical to the development and maintainance of male

sexual phenotype and is also implicated as a central component in development

of prostate cancer. Heemers et al. provide an extensive list of AR modulators

and targets [40]. In the AR literature, modulators are often classified as co-

activators or co-repressors. However, the semantics of this binary classification

can be ambiguous; for example, “Is a modulator that attenuates the inhibitory

action of a transcription factor a co-activator or co-repressor?” Another implicit

assumption is that most modulators are unimodal; that is, they have a single type

of effect which is either a co-activator or a co-inhibitor for all targets. Heemers et

al. list only 12 out of 192 modulators as bimodal. Since for most modulators only

a few targets are examined in the literature, we expect to have an observation

bias towards unimodality. The extent of this bias, however, is not obvious. To

answer these questions, and gain insight to the AR biology, we have applied GEM

to infer modulators of AR.

For this experiment, we used the expression dataset provided by Expression

Project for Oncology (expO), which contains 2158 profiles from various cancer

tissue samples. Target genes were compiled by combining 40 known AR targets in

Heemers et al. and 30 AR targets listed in TRED [45]. 134 proteins were listed
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Figure 4.4: Target genes of the Androgen Receptor detected to be modulated by
CAV1. KLK3, also known as PSA, is upregulated as well as 4 other important
tumor growth related genes.

in HPRD [50] as interactors of AR forming the modulator candidate set. We

removed genes that are both modulators and targets of AR as well as those that

lacked adequate variability in the expression profiles. We used GEM to detect

which of these 134 proteins modulate AR and compared our results with the list

provided in Heemers et al.

For each modulator, GEM predicts its targets and its category of action. For

example, Figure 4.4 lists the inferred target genes of CAV1 modulation. CAV1

was previously shown to positively regulate AR activity [55] and was associated

with prostate cancer and aggressive PSA (KLK3) recurrence. We observe that

expression levels of all 8 predicted targets were increased in response to CAV1,

including PSA. Four of the eight genes have various growth promoting func-

tions including fatty acid metabolism (ACACB), ketogenesis (HMGCS2), and

angiogenesis (AVP and VEGFA). CASP2 and NKX3-1 have, however, tumor

suppressor functions and are also upregulated by CAV1. These results show a

complicated picture of modulation by CAV1 but are in agreement with previous

studies that show both anti-tumor and metastatic functions for CAV1 [33].

CAV1 fits in nicely with the co-activator classification in the review by

Heemers et al. Most targets of CAV1 fall into “Enhances Upregulation” class and

inverting or even attenuating downregulation can be classified as co-activating.



CHAPTER 4. DISCOVERING MODULATORS OF GENE EXPRESSION 55

Following from this observation, we looked at whether the results inferred by

GEM agree with the review for the other modulators.

Using a 1% false discovery rate, we identified 47 modulators, covering 33 of the

192 modulators listed in Heemers et al. The 25 modulators with the most targets

detected by GEM are listed in Figure 4.5 along with their classification in Heemers

et al. Since we are limiting ourselves to direct modulators, and have a very

conservative false discovery rate, this is a quite good recall. On the other hand

we have predicted 14 modulators that were not listed in the review, including two

master regulators of AR – EGFR and RUNX1. When we searched the literature

for unlisted modulators with the most targets (EGFR, RUNX1, CDC2, CASP1,

and MED1), we were able to find supporting evidence for modulation. Recchia et

al. demonstrated the cross-talk between EGFR and AR pathways by investigating

their effect on CD1 expression [66]. They claim that CD1 expression requires

both EGFR and AR activity. Ning et al. identified modulation of mouse Slp by

RUNX1 via AR [62]. Moilanen et al. show that CDC2 phosphorylates N-terminal

domain of AR, which contains the major transactivation function [61]. Wellington

et al. report cleavage of AR by CASP1 [79]. Wang et al. detect that MED1 plays

an important co-regulatory role in AR-mediated gene expression [77]. These

results show that GEM can complement literature reviews and can identify likely

modulators from protein interactors of transcription factors. More importantly,

GEM can infer target-specific mechanisms for each modulator.

Unlike CAV1, we observe that most modulators are bimodal. Of the top 25,

only JUN and PIAS2 are listed as bimodal in Heemers et al. This difference in

the frequency of bimodal modulators predicted by our method and those found

in the literature supports our supposition that many modulators are classified as

co-activators or co-repressors only because they were tested on a restricted set

of target genes. We also observe that the number of targets for each modulator

varies from 1 to 27. Although the target sets are far from being complete, they

are sufficiently large so we expect the distribution of targets to be representative.

Our results show that there is a spectrum of very specific modulators with a few

targets to few master regulators that affect a majority of AR targets.
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Figure 4.5: Top modulators of Androgen Receptor: each box contains targets
affected by the modulator organized by categories of action and color coded.
If the modulator is listed in the review by Heemers et al., it is noted next to
the name of the modulator. Most modulators have different effects for different
targets and do not necessarily follow the classification in the review.



CHAPTER 4. DISCOVERING MODULATORS OF GENE EXPRESSION 57

As previously mentioned, GEM requires high variance in expression values.

When we do not filter out low variance genes, GEM detects NCOA3 as negative

modulator of AR for most of the target genes. NCOA3 is a generic nuclear

receptor co-activator whose expression does not change much in the cell. Heemers

et al. show that NCOA3 expression is negatively regulated up to 0.5 fold by AR

activation. When the expression of a candidate has low variation, such feedback

loops can lead to false inference. In the same study, the effect of AR activation on

other known modulators including some of the modulators in Figure 4.5 (DDC,

BRCA1, BAG1, CAV1, FLNA, TGFB1I1, and PAK6), were also reported. Since

these genes have very high variance in the dataset, however, these feedback effects

can only account for a small fraction of the observed expression level changes.

We performed a second analysis using GEM on all cancer related transcription

factors and their targets in TRED. Using interactors in HPRD as modulator

candidates we identify 435 M-F pairs in the result. These include 57 TFs and

295 modulators, in which we also observe that the type of modulation depends

on the target gene.

4.2.2 Comparison with MINDy

Both MINDy and GEM infer modulation of transcription factors based on factor-

dependent correlations between modulators and targets. MINDy measures the

differential conditional mutual information (∆CMI) between transcription factor

and target in low and high conditions of modulator (M- and M+). Since mutual

information is a non-negative measure, however, ∆CMI does not differentiate

between the negative and positive modes of modulation. This can be a problem

when the factor has opposite effects under M- and M+, which results in high

mutual information in both cases, and in turn low ∆CMI. An example of such a

relation is the effect of EGFR on the relation of AR with its target MYLK. GEM

detects that AR inhibits MYLK in EGFR- and activates MYLK in EGFR+. 10%

of GEM result triplets with AR have non-significant ∆CMI and would not been

able to be detected by MINDy.
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MINDy treats all signaling proteins as modulator candidates, whereas we

propose a much more conservative approach – we use only known interacting

proteins. Using known protein interactors has the advantage of producing hy-

potheses about direct interactions that are immediately testable. There are com-

binatorially many indirect modulators and to test them, one has to supply the

intermediary molecules to the system. This makes indirect modulators harder to

test, especially in vitro. Also, dependency between M and F activity on T can

be a result of non-causal relations – if any of the M, F, and T genes were replaced

with a highly correlated substitute, there would still be a non-linear dependency.

When we use a priori interactions to construct our triplets, a substantial amount

of indirect and non-causative cases are filtered out. As a tradeoff our method loses

some coverage due to missing or incorrect information in the source databases.

Similar to γ, ∆CMI would also detect a logical-or relation between M and

F. In the case of AR, one third of our result triplets were classified as logical-or

and filtered out. Unlike our approach, MINDy would not differentiate logical-or

from modulation. These relationships can be meaningful in other contexts, such

as genetic interactions. They, however, do not fit into the biological description

of modulation, where the modulator affects the target through the factor. We

believe that there is a value in basing the method on a biological model and fine

tuning assumptions and restrictions based on it, so that the biological interpre-

tation of the results are not ambiguous and they are more testable. To support

other biological models (e.g. genetic interactions) we are developing a customiz-

able GEM service where the user can select different a priori data and filtering

options.



Chapter 5

Tools

Most methods developed as part of this thesis have been put into practice within

software tools. In the remainder of this chapter, we discuss two such tools.

5.1 PATIKAmad

There are many microarray specific statistical tools that normalize and cluster

the data, and provide a variety of visualization options using tables and plots.

Similarly, many pathway databases and tools for creating, storing, querying and

analyzing biological networks exist [7]. But, there are only a few tools that bring

both worlds together. One such tool is GenMAPP [68], which provides static

pathway diagrams and the ability to map color coded expression values on top of

entities in the diagram. MAPPFinder is a tool for finding overrepresented Gene

Ontology (GO) terms in a microarray experiment, and for searching GenMAPP

pathways for the ones that have genes related with these overrepresented GO

terms. However, GenMAPP lacks an integrated database, thus it is incapable

of producing dynamic pathways related with experiments. Cytoscape [51] has

a plugin that loads tab-delimited array data, and performs several statistical

analyses. These values can be visualized on Cytoscape pathways via color coding.

Reactome [59] database shows an overview map of the reactions in the database,

59
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which is laid out according to the module that the reaction belongs to. They

support loading of microarray values and show them on an overview graph by

color coding, so that users have an idea about the affected module. None of these

tools are, however, capable of connecting microarray data with graph-theoretic

queries or any other advanced graph analysis operations.

We have built a microarray data integration component, called PATIKAmad [3],

within PATIKAweb [28], which is a Web interface to the PATIKA database for

querying, visualizing, and analyzing biological networks. Its ontology supports

pathway graphs at two levels: bioentity level and mechanistic level. Bioentity-

level graphs contain less detailed information, such as protein-protein interac-

tions or transcriptional regulations between biological entities. Mechanistic-level

graphs have state information (e.g. different phosphorylated states) and com-

partment of molecules. This level models reactions with its inputs, outputs, and

effectors.

About graphs at the bioentity level or other levels of similar detail, there

is a small body of literature regarding microarray data integration and co-

analysis [20]. The common goal in almost all these works is to detect regions

or pathways where significant microarray data is somehow “dense”. This ap-

proach makes sense when the mechanism of interactions is not clear in the graph.

However, in the case of mechanistic graphs, interesting paths do not necessarily

have to be rich in microarray annotation. Many reactions are post-translational

events and can be part of a differentially active network without any change of ex-

pression in their actors. Expression changes may be linked through paths, whose

activity change is independent from expressions. In PATIKAmad, we supply a

facility to query for paths between significant nodes (according to users’ signif-

icance criteria) in an integrated pathway knowledgebase, in order to compile a

“graph of interest”.

PATIKAmad accepts tab-delimited microarray data files containing data val-

ues, and external database references. Such files are available from well known
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public microarray databases such as Gene Expression Omnibus, Stanford Mi-

croarray Database, and ArrayExpress. Supported external references are Gen-

Bank, Unigene, Entrez Gene, HUGO Gene Symbol, SWISSPROT, OMIM, Entrez

RefSeq Protein ID, and Entrez RefSeq Transcript ID. During the processing of

tab-delimited files, rows of the array are matched to the objects in the PATIKA

database, and a “.pmad” (PATIKA microarray data format) file is created for

later use in PATIKAmad. Alternatively, one may load their local model, for

instance in BioPAX [25] format, containing external references. Then, microar-

ray data with compatible external references may be loaded and mapped to this

model, facilitating one to work on their proprietary data independent of PATIKA

database.

After loading a set of experiments specified in a “.pmad” file, the user may

set an experiment of interest, or choose to average a group of experiments, or

compare log-2 ratios of two groups. These settings are managed using the Data

Management dialog. This selection determines the value to be used for each row,

directly affecting visualization and querying events. Expression values, calculated

from current experiments of interest, are visualized on the graph through node

coloring and labeling. Visualization options can be modified using the Visual

Settings dialog. Besides the default red/green coloring, the user may customize

coloring by assigning colors to values. Values in between are shown with colors in

between. Rows of the loaded experiment may be visualized in the Values Table,

which also provides an interface for querying the PATIKA database associated

with the selected rows (Figure 5.1). The rows displayed may be filtered by key-

words, which partially exist in external references. Selected rows may be used

for retrieving related PATIKA objects from the database, or for running neigh-

borhood or graph-of-interest queries using related nodes as seed in the database.

These queries may run on either bioentity or mechanistic levels.

An experiment-scale graph-of-interest query using the Graph-of-Interest dia-

log is also supported. This dialog displays the user’s significance criteria for the

rows, length of search path, and type of graph, on which to execute the query.

This query maps significant rows to significant nodes and searches paths between

significant nodes. All paths not longer than the search length are included in the
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Figure 5.1: Part of the Values Table, where experiment rows are filtered with
string “tnfrsf10” in ascending order, according to the log-ratio values. Any num-
ber of rows may be selected and used for executing neighborhood or graph-of-
interest queries.

resulting graph of interest.

5.1.1 Clustering

Clustering is one of the most popular microarray data analysis methods. The aim

here is to group similarly behaving genes, thus to have an idea about modules

and genes whose function is not clear. PATIKAmad supports k-means and hier-

archical clustering of the loaded experiments. Users have the option for scale

normalization, standard normalization, and filtering out a certain percentage

of genes that show low variance. Clustering results can be saved in a “.pcaf”

(PATIKA cluster analysis file) file for later use. Clusters in loaded clustering re-

sults are visualized on pathways using compound graphs or by highlighting nodes

(Figure 5.2).

5.2 ChiBE

Computational biologists have advanced pathway knowledge representation, cre-

ated standards and formats [25, 44, 47, 46, 59, 23], and built more than 300

pathway and interaction databases [7] in recent years. However, current bioinfor-

matics infrastructure is still lacking in software tools for visualizing and analyzing
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Figure 5.2: Part of a MAP Kinase pathway where two clusters are shown using
compound nodes. Loaded microarray values are shown with labels and colors on
nodes.
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pathways. A main obstacle in this direction has been the fragmented, incomplete,

and incompatible nature of pathway knowledge, making representation and inte-

gration of pathways extremely difficult.

A number of interesting pathway visualization tools [51, 36, 43, 30, 82] have

been developed over the past decade, with diverse analysis focus, from analyz-

ing gene expression profiles to effective database querying, to discovering graph-

theoretic properties in biological networks. Such tools can benefit substantially

from standardization of knowledge representation, pathway-specific layout algo-

rithms, and representation of compound graphs.

5.2.1 Knowledge Representation

BioPAX has made great progress in developing a standard exchange format for

biological pathway data, as a result of several years of community effort. Path-

way Commons (PC) [63], based on BioPAX, was developed as an integrated

single point of access to publicly available pathway information. PC covers ma-

jor pathway databases and already provides integration at the level of molecular

identifiers. Therefore, the community now has an emerging platform for building

software tools and services without worrying about compatibility and fragmenta-

tion issues.

5.2.2 Pathway Layout

General graph layout algorithms do not address the specific needs and established

conventions of pathway graphs. So far, work on pathway layout algorithms [48,

8, 72, 78, 38] has primarily focused on biochemical pathways. Thus, the need for

layout of complex pathways, such as signal transduction, remains to be addressed.
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Tool Layout Compound
Support

Compartment
Visualization

Experiment
Data Visu-
alization

Open
Source

Plugin
Sup-
port

Cytoscape yFiles, Cy-
toscape and
JGraph
layouts

No No Yes Yes Yes

BiNoM Uses Cy-
toscape
layouts

No No N/A Yes N/A

VisAnt Circular
and spring
embedder

Yes No Yes Yes No

PathCase Hierarchical No No No No No
ChiBE CoSE (com-

pound spring
embedder)
layout

Yes Yes Yes Yes No

Table 5.1: Comparison of ChiBE and 4 other tools that support BioPAX vi-
sualization. Tools are compared in the aspects of automated layout support,
compound graph support, compartment visualization and experiment data visu-
alization.

5.2.3 Compound Graphs

ChiBE [5] is an open source visualization tool, which for the first time, brings

together compound graph based BioPAX visualization, seamless Pathway Com-

mons access, pathway specific layout, and strong visualization and data analysis

capabilities. Table 5.1 compares ChiBE with similar visualization tools.



Chapter 6

Conclusion

ChiBE ([5]) is a standalone pathway editor that we developed for working with

BioPAX pathways. It uses Paxtools for reading, manipulating and saving BioPAX

files, and for querying Pathways Commons database. ChiBE draws easy-to-

understand views of BioPAX when the graph is not very large. These views

are similar to SBGN process description language and are generated per path-

way. Most interesting part of ChiBE is its ability to generate small size pathways

out of cluttered files according to user’s point of interest. We realize this by pro-

viding a local querying mechanism, enabling to search for neighborhoods, paths

between molecules, or common upstream or downstream of molecules. We aim to

enrich editing and querying support in ChiBE, provide support for the recently

released BioPAX Level 3 ontology and format, and for the graphical notation

standard SBGN.

Pathway databases collect interactions and reactions in the cell, which were

discovered in different laboratories with different experimental settings. How-

ever, one often wants to restrict the network to a specific cellular context, such

as a tissue with a disease. Expression profiles provide a clue about the active

part of the network by showing expression levels of genes. PATIKAmad ([3])

integrates expression data to networks. It is not an independent software but

a concept that we implemented as a component in both PATIKAweb [28] and

ChiBE. Its function includes reading the expression data and showing expression
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values on related proteins in the network. Alternatively, one can compare two

microarray data and visualize the fold change of expression values. We defined

the term “causative path”, which infers the causes of dependency between expres-

sion value changes through the network. When causative paths are searched and

integrated, PATIKAmad can produce a candidate “network of change” based on

the compared profiles.

One drawback of causative path analysis is that the last step of the path

must be a gene regulation, and gene regulations are poorly covered in pathway

databases. However, many transcription factors are known or predicted along

with their target genes and binding sites in the promoter. We developed a new

method, GEM ([4]), for identification and characterization of modulators of tran-

scription factors (TF). GEM tests if the known binding proteins of TFs has

modulator activity using large number of expression data. It is based on the as-

sumption that gene expressions are correlated with their protein activity, and it

tests if the correlation between modulator and target gene expression depends on

the TF expression. We select modulator candidates among interacting proteins

of TFs to eliminate indirect relations and non-causative correlations. GEM also

identifies the specific mode of action of the modulator on a target.

We have observed that most modulators affect multiple targets and are bi-

modal – they do not have a single mode of action but can act as an enhancer or

attenuator based on the target. The co-activator and co-inhibitor classifications

in the literature reflect a very simplified version of gene regulation as they gen-

eralize the effect of a modulator for a single gene or binding site to all targets.

GEM provides a much larger scope for picking up likely targets and inferring

modulator-target relationships.

Ideally, the regulation at each promoter should be modeled including all major

actors at the site, considering a modulation affects the collective activity of actors

instead of just a single TF. GEM can be extended to model the control at each

promoter. This model would be a basis for predicting effects of upstream events

to gene expressions.

Transcription factors and their modulators are potential drug targets since
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their activity affect expression of target genes whose activity is related to diseases

such as cancer. Here, the idea is to detect the malfunctioning part of the network

and repair or disable it by modifying the control at the upstream. This would

be a straightforward operation if upstream events were composed of linear paths.

However, signaling paths are interlinked, and TFs and modulators affect multiple

target genes that function in diverse mechanisms. For instance, GEM infers that

CAV1 modulates AR on at least 8 target genes, some of which have metastatic

activity while some of other have tumor suppressor activity.

In drug discovery research, one big problem is to find manipulation points that

will affect the targeted downstream mechanism while causing minimal side effects

in healthy cells. This can be achieved by exploiting the robustness of cellular

networks. For instance, one can predict that removal of a modulator will not make

drastic effect while other similarly functioning modulators are abundantly present.

In this direction, we can search for manipulation points whose undesired effects

are mostly through robust control points. Note that robustness here depends on

the specific set of genes expressed, varying in each individual and tissue type.
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Appendix A

Features of ChiBE

ChiBE accepts data in BioPAX Level 2 format. Section 3.2 and Table A.1 sum-

marizes how BioPAX models are interpreted by ChiBE. We call the entire set

of biological information loaded from a BioPAX file a pathway model. As de-

fined by BioPAX, a pathway is a set or series of interactions, often forming a

network, which biologists have assembled for organizational, historic, biophysical

or other reasons. We use pathways to determine the boundaries of a coherent

view. Each loaded pathway is displayed in a separate canvas, organized with tabs

(Figure A.1). A pathway model may be expanded by merging it with another

BioPAX file or PC query.

A pathway view is composed of pathway objects and their interactions. Com-

pound nodes are exclusively used to represent molecular complexes and cellular

compartments (Figure A.1). Our notation is similar to that of PATIKA [23].

ChiBE has context-sensitive pop-up menus associated with pathway objects, pro-

viding fast access to popular operations for the associated pathway object. All

kinds of nodes and edges in a pathway view have distinct properties and UIs.

These properties can be changed by using inspectors for each pathway object.
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Table A.1: BioPAX elements and their corresponding visual elements in ChiBE.
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Figure A.1: ChiBE views are organized in canvasses, each displaying one or more
BioPAX pathways.

A.1 Viewing and Editing Pathways

The user has various mechanisms for navigating and editing the topology as

well as the geometry of pathway views. These mechanisms range from standard

zoom/scroll and highlight operations to modifying the UI associated with each

pathway object and to automatic layout of the pathway view.

A.2 Pathway Operations

Any subset of available pathways in a model may be displayed as a separate view,

and may be saved as an image or printed. Each subset may then be modified

as desired. Also, new pathway views may be created by duplicating, cropping or

capturing a neighborhood of a view.

A.3 Querying Pathway Commons

PC is a convenient point of access to biological pathway information collected

from public pathway databases, which one can browse or search. ChiBE provides
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Figure A.2: Dialog in which a paths-of-interest query is configured. User searchs
paths from CALM1 to CREB1 with a length limit of shortest + 2.

a graphical user interface to search this knowledge base to find pathways that

contain a specified molecule (using its UniProt or Entrez Gene ID), and present

the results in a visual form. The resulting view may contain either the whole

pathway or only the immediate neighborhood of the specified molecule in all the

pathways in which it appears.

A.4 Querying Local Pathway

ChiBE provides a local querying mechanism which helps the user to work on

large models. User can perform neighborhood, paths-of-interest (PoI), graph-of-

interest (GoI) and common-stream queries that we defined in Section 3.4. Fig-

ure A.2 shows the dialog that user specify parameters of a local PoI query, which

looks for paths from CALM1 to CREB1 with a distance limit of shortest path

length plus two. When we run this query on the “NGF Processing” pathway

from Pathway Commons database, we get the result graph in Figure A.3.

A.5 SIF Operations

SIF (Simple Interaction Format) is a format introduced by Cytoscape [51] for

describing interactions in a biological network. ChiBE can reduce BioPAX path-

ways to SIF using a customizable set of rules to obtain a simpler view. Pathways
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Figure A.3: Result of the paths-of-interest query in Figure A.2, performed on the
“NGF Processing” pathway from Pathway Commons database.
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can also be saved in SIF.

A.6 Visualizing High-Throughput Data

Multiple types of high-throughput data, such as gene expression or proteomics

profiles, copy number variation, and mutation data, can be loaded into ChiBE,

and overlaid onto pathway views using color coding or displayed in tables that

can be searched and filtered.

A.7 Availability and Components

ChiBE is a free (EPL v1.0) Java application that runs on Windows, Mac OS,

and Linux. It was built using Chisio 1.0 [16] and Eclipse GEF 3.1 [37] for graph

visualization, Paxtools [64] for accessing and manipulating BioPAX files, and

PATIKAmad [3] for high-throughput data visualization.


