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Abstract

PHONON RENORMALIZATION EFFECTS IN LOW
DIMENSIONAL ELECTRON-HOLE SYSTEMS

KNaan Guven
N. S, in Physics
Supervisor: Assoc. Prof. Bilal Tanatar
September 1995

Low dimensional semiconductor structures have been an extensive research area
in condensed matter physies. In particular, niueh effort has been devoted to the
study of quasi-one-dimensional semiconductor structures in recent years. The
new physical phenomena involved in these systems avising due to the reduced
dimeusionality point to various potential applications for [uture technologies.
Although the theory is [amiliar with the “one-dimensional” problem for a long
time, the realization of such structures (also known as quantum wires) extends
only to a decade before. However, the novel production techniques led to a rapid
increase in the experimental studies which, in turn, required a more realistic and
comprehensive theory to analyze and interpret the obtained data. This thesis
work intends to make a contribution in the divection of these improvements.
Our study 1s based on a quasi-one-dimensional clectron-hole system as realized
in photoexcited quantum wires, interacting with the bulk LO-phonons.  We
investigate the polaronic corrections to the hand gap and the carrier effective
mass, and the dependence of this correction itsell to carrier density, temperature,

and quantum finite size effects. We apply two dillerent formal approaches;



the perturbation theory and the variational method. The latter enables the
investigation of dynamical screening clfects, thereby clarifying the question of
validity of the static screening approximation in one dimension. Our results have
shown that dynamical screening is relevant in low dimensions. The dielectric
[unction, which is a key quantity in deseribing the many-particle properties, is
analyzed under different approximations such as the Hartree-Fock approximation,
random-phasce approximation, and the more advanced local-ficld correction.
several confinement potentials (infinite well, parabolic, eylindrical) are presented.
[oxplicit results are obtaimed for a GaAs quantum wire.

We compare the results of the polarouic corrections with that of the exchange-
correlation induced corrections. We foand that they are comparable in order
ol magnitude, indicating that carrier-plionon interactions are more enhanced as
the dimensionality reduces, and hence should be treated on an equal footing
along with the carrier-carrier interactions.  We make comparison with the
polaronic corrections i two dimensional systems. Finally, we brielly discuss

thie renormalization due to confined phonons as well.

Keywords: Low dimensional electron gas, exchange-correlation, clectron-
phonon interaction, polarons, random-phase approximation,

Hartree-Fock approximation, diclectric function.



ézet

DUSUK BOYUTLU ELEKTRON-DESIK SISTEMLERINDE
FONON RENORMALIZASYONU

Naan Guven
Fizik Yuksek Lisans
Tez Yoneticisi: Doc¢. Dr. Bilal Tanatar
Fylal 1995

Diigik boyutlu yarn iletken yapilar, yogun madde fiziginin geniy bir arastirma
alanmi olugturmaktadie.  Son yillarda yapilan ¢ahymalanm énemli bir kisim
ozellikle bireyakin boyutlu sistemler (zerinde yogunlagmaktadir.  Boyutlarin
indirgenmesiyle ortaya cikan yeni fiziksel ozellikler, hu sistemleri gelecekteki
teknolojik uygulamalara potansiyel aday kilmaktadir. Kuram, “bir boyutlu”
probleme uzun bir stureden beri tamdik olmasma ragmen, bu yapilarin hayata
gegirilmesi ancak on yil 6ncesine uzanmaktadiv. Yeni tivetim tekniklert deneysel
cahgmalarda hizli bir artiga sebep olurken, elde edilen deneysel verilerin saghkh
bir gekilde yorumlanabilmesi icin dahia gercekei ve gents kapsiomli bir karama da
ihitiya¢ dogmugtur. Bu tez ¢alismasi da sozkonusu ihtiyacin karsilanimasina bir
katkida bulunma amaci tagumaktadir.

(Cahisma, boylamsal optik fononlarla etkilegen bireyakim boyutlu bir elektron-
desik sistemi lzerine kuruldu.  Polaronik  diizeltmelerin bant  agikhgima ve
yuktagirlarin clektif kiitlesine yaptign katkidar, ve bu dazeltmelerin pargacik
yogunlugu, sicakhk, kuantum boyutu etkilerine baghhgr aragtirildi. Bu amacgla iki

degisik metod kullanmildi; Diirtiisel kuram ve degisken prensibi kuramr. Bunlardan

1l



ikincisi, dinamik perdeleme ctkilering gozoniine almayi saglamaktadie. Elde edilen
sonuglar, digik boyutlarda dinamik ctkilesimlerin etkin oldugunu gosternisgtir.
Cok parcacik etkilegmelert iin temel bir nicelik olan diclektrik fonksiyonn,
[artree-Fock, rasgele faz ve yerel-alan diizeltmeleri gibi farkh yaklagimlarda
incelendi.  Cesitli simrlandiar potansiyeller model olarak sunuldu.  Sayisal
sonuglar, bir GaAs kuantum teli ornek almarak verildi.

Polaronik diazeltmeler iin elde edilen sonuclar, degisim-korelasyondan kay-
naklanan dazeltmelerle karsilagtinlabitiv diizeyde bulundu. Bu, disik boyutlu
sistemlerde yiiktagie-fonon etkilesimlerinin yaktagir-yliktasir  etkilesmeleriyle
aynt onemle cle almmasi gerektigini gostermektedir.  Tezin sonunda, iki
boyutlu sistemlerdeki fonon renormalizasyonu ile kargifagtivmalar yapilmakta ve

sinirlandirilmig fononlarla yuktagirlarim etkilesimlerine kisaca deginilmektedir.

Anahtar
sozciikler:  digik boyutlu clektron sistemi, degisim-korelasyon, elektron-
fonon etkilegimi, polaron, rasgele faz yaklagun, Hartree-Fock

yaklagimn, dielektrik fonksiyonu.
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Chapter 1
Introduction

Low dimensional semiconductor systems are an extensive rescarch arca in
condensed matter physics. In particular, sinee the lirst suggestion by Sakaki! and
the experimental vealization by Peteoll of al= much ellort has been devoted to the
study of quasi-one dimensional (Q1D) structures in recent years. ‘I'hese systems,
based on the confinement ol the charge carriers in two transverse directions,
exhibit new physical phenomena arising from the reduced dimensionality, From
fundamental physics point of view, quantum wires are considered as examples of
real one-dimeunsional Fermi gases, where one-dimensional electron dynamics can
be studied in a controlled and quantitative manner. On the other hand, progress
in the fabrication techniques such as molecular-heam epitaxy and lithographic
deposition have made possible the production of such QLD systems.® ™ Quantum
wires with active widths (adong the plane of confinement) smaller than 300 Aand
of negligible (less than 100 A) thickness have heen fabricated ™ which allowed the
attainment of the truly one-dimensional electrie quantum limit, in the sense that
ouly one quantum subband is populated by the electrons in the quantum wire.
There is much excitement about the potential applications of these semiconductor
quantum wires as high-speed transistors and eflicient photodetectors and lasers.
Ience there is a rapid growth in experimental research on these structures which,
mecanwhile, acts as a [cedback on the theoretical studies. Our main motivation

comes at this point that a more extensive and improved theoretical survey is



Chapter 1. Introduction )

required to make a reliable comparison with the future experimental results.
We restrict our attention to the many-body elfects, and in particular to the
interaction of charge carriers (i.c., clectrons and holes) with phonons.

Formation of a dense electron-liole plasma in a semiconductor under intense
laser excitation is a well known phenomenon. I'ypical densities of the plasma

are of the order of 10° em™L.

Because of the exchange and correlation effects,
various single particle properties are affected. among which the most dramatic one
15 the band-gap renormalization (BGR). The exchange energy (or the Hartree-
IFock energy), accounts for the correlations of the charge carriers due to the Pauli
principle. The correlation energy is defined as the difference in energy between the
Hartree-Fock value and any better calculation which takes the mutual interaction
among the particles other than the Pauli principle, the Coulomb interaction for
example. Both of these terms bring negative contributions to the sell energies of
clectrons and holes. The change in the sell energies lowers the conduction band
and raises the valence hand, thevehby redueing the hand-gap. 1t may be useful to

give the definition of the BGR at this point.
Alsy = 15 — I3, = Y. (0) 4 ¥,(0),

where Y., (0) are the clectron and hole self-energies at the respective band
edges. The density dependence of BGR ts important to determine the emission
wavelength of coherent emitters as being used in semiconductors.®® Optical
nonlinearities are associated with the BGR phenomenon hecause a substantial
free carrier population can be induced by optical excitation and the consequent
band-gap renormalization can allect the excitation process itself in turn. In 2D
and 3D systems, the observed band-gaps are typically renormalized hy ~ 20 meV
within the range of plasma densities of interest. Band-gap renormalization as
well as various optical propertics of the clectron-hole systems have been studied
for bulk (3D) and quantum-well (2D)) semiconductors,'** providing generally
good agreement with the corresponding measurements. '™ Density dependence
of the BGR in QID systems was first considered by Benner and Haug?® within

the quasi-static approximation. Iln and Das Sarma®!' also caleulated the BGR,
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neglecting the hole population and considering an clectron plasma confined in
the lowest conduction subband only.  ‘Fanatar® studied the BGR in a Q1D
clectron-hole plasma investigating the density, temperature and quantum size
dependences. Recently, Campos, Degani and Hipolito® presented the exchange

and correlation cffects in a QLD clectron gas using a sell-consistent field method

21 ]

proposed by Singwi, Tost and Sjpolander.® Cingolani et al*" investigated the
density dependence of a Q1D clectron-hole plasma confined in GaAs quantum
wires using luminescence spectra.

In low dimensional semiconductor structures, most often made of polar
compound semiconductor materials, one has the additional complication of the
long-range dipolar Irohlich interaction between the charge carriers and the LO-
phonons which also contributes to the renormalization processes. The band-gap
and the carrier elfective mass are renormalized by the absorption and emission
of LO-phonons. It has been shown in Q2D systems that,*® even for weakly
polar materials such as GaAs this renormalization is present. Besides, several
energy scales in the problem, namely the electron and hole Fermi energies, the
dynamical plasma [requencies, and the LO-plhionon energy become comparable
which emphasizes the dynamical sereening elfects. We shall discuss the screening
clfects below in detail.

The coupling between charge carriers and LO-phonons introduces a new
quasi-particle into the scheme, namely the polaron. It has been quite useful
in deseribing the physical properties of carriers in jonic crystals and’ polar
semiconductors. Itarlier work on polarons deals with the interaction of a single
charge carrier and a cloud of dispersionless virtual optical phonons, described
by the Irohlich Hamiltomian. Most ol the polaron studies in low-dimensional
systems have been done in the one-polaron fimit. However, this approximation
is rather diflicult to justily because it contrasts with the real situation i.e., many
carriers present in the system. One has to face a many-polaron system, which
requires a many-hody formulation treating the carrier-carrier and carrier- phonon
interactions on an equal footing. Screening by [ree carriers (electrons in the

conduction band and holes in the valenee hand) reduces the coupling between
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carriers and LO-phonons. In the polaron picture, the BGR is associated with the
polaronic self-energy. Similarly, the mass renormalization is due to the phonon
cloud that the carrier has to carry with itsell. Thus sereening, by reducing the
magnitude of the polaronic sell-cnergy, acts o oppose the renormalization and
tends to restore the gap to its nnrenormalized value.

The effect of many clectrons on the clectron-phonon interaction in Q2D

31

quantum wells were first investigated by Das Sarma.®' Ile included screening

effects, via Thomas-Fermi approximation and later* the static RPA (random-
hase approximati Lei® presented a full dvnamical and finite temperature
phase approximation). Lei*? presented a full dynamical and finite temperature
study of the clectron self-energy in the presence of coupling with polar optical

I35 caleulated

phonons in a GaAs-GaAlAs system. Wu, Peeters and Devreese
the electron-phonon correction to the ground state energy of an interacting
polaron gas within a dynamical screening scheme by taking into account the
dielectric response at all frequencies. Das Sarma and Stopa® studied the phonon
renormalization eflects in Q2D wells. T'hey employed the static approximation
and the dynamical scheme mentioned above and presented explicit results for a
GaAs system. Wendler?™*7 and later Jalabert and Das Sarma®® re-investigated
the influence of screening on the ground state properties of a many-polaron
system in Q2D and in strictly two dimensions within the full RPA. Da Costa
and Studart® presented a theoretical study of the coupled electron-phonon in a
degencrate polar electron gas.

The study of the electron-phonon interaction in Q1D systems has started
recently. 1% Campos, Degani, and Hipolito™ calculated the electron phonon
contribution to the ground-state encrgy of a Q1D gas of interacting polarons by
using the self-consistent field approximation. Screening of the clectron phonon
interaction in QLD semiconductor structures is investigated by Hai, Peeters and
Devreese, '

In this work, we present the formulation and results on a Q1D electron-hole

AL Phe outline

plasma interacting with bulk LO-phonons based on our studies.
of the work will be as follows: In the next two chapters we will derive the two

methods we have applied, namely the perturbation theory and the variational
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theory.  The theorctical results will be given in the corresponding chapters
immediately, thereby making a comparison between the two methods. In the
last chapter we summarize the results, and briefly discuss the renormalization

effects due to confined phonons.



Chapter 2

Perturbation Theoretical

Approach

In this chapter; our aim is to caleulate the effects of static sereening on polaronic
corrections to the renormalization ol band edges and carrier effective mass.

»which they have

The formulation is similar to that of Das Sarma and Stopa™
applied for the phonon renormalization eflccts in quantum wells. We extend it
to include both electrons and holes, as is appropriate lor a photoexeited intrinsic
semiconductor.

The perturbative approacli consists of evaluating the Jeading order electron
(hole)-LO-phonon self energy.  Electron (hole)-LO-phonon coupling in Q1D
systems depends on the well width, free carrier density, and temperature.
Screening and phonon occupancy are temperature dependent as well.  Since
the screening function (dielectric function) 2(¢) carries the dependence on
these parameters, we pay attention to the formulation of €(¢), and investigate
diflerent models : We employ the temperature-dependent, static, RPA dielectrice
function and address also the question of validity of using the plasmon-pole

approximation to it. Furthermore, we attempt to include the vertex corrections

in an approximate way.

6



Chapter 2. Perturbation Theoretical Approach

2.1 Scaling properties

Das Sarma of al®® have found that, when the carrier density and the well
width are expressed in terms ol ellective dimensionless variables by scaling
them with the effective Bohir radius for the matervial, the dimensionless-hand-
gap renormalization expressed inunits of effective Rydberg shows a universality,
independent of the band- structure details of the material and dependent only
on ry, the dimensionless interparticle separation, and on the dimensionless well
width. They further showed that this two-parameter universality can be reduced
to an approximate one-parameter universality by choosing suitable quasi-two-
dimensional Bohr radius and elfective Rydberg as effective length and energy
scaling units respectively. Since we are caleulating the polaronic corrections to the
band-gap renormalization, we express these corrections in the same convention
modified for a Q1D clectron-hole system to be consistent with the results for
Q2D systems. The effective length scale appropriate for our electron-hole system
is the quasi-one- dimensional excitonic Bohr radius, whereas the energy scale is

chosen as the effective excitonic Rydberg. They are defined as

2
. ! e
”(.r = 2 Ilyu' = DY IR
My yt ..lt':,_,:

respectively, where € is the clectron charge and m, 4 is the reduced mass of the
electron-hole pair (m>}, = m7' + m; '), We take the common physical constants

I (Planck’s constant), and kg (Boltzmann constant) to be equal to unity.

2.2 Theory

Ior the two-component QD system consisting of electrons and holes, we consider
a squarc-well of width « with iulinite barriers. It may be built from a Q2D
quantum-well (grown in the z-direction) by mtroducing an additional lateral
confinement, We assume that ellective mass approximation holds and for GaAs
take me = 0.067m, and ney, = 0.bie, where e is the bare (free) electron mass. The

effective Coulomb interaction between the charge carriers in their lowest subband
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15 given by*! the average over the subband wave Tunctions

.)( 2

Vig) = — Fly), (2.1)

0
where ¢, is the lattice diclectric constant and £(¢) is the form factor of the Q1D
system defined for subscquent use. For the infinite well potential it is given by
1 i 3

I'{q) = /u ((.zf No(gax) [2 — (I —)cos(2ma) + o sin (2x.0)] (2.2)
in which Ag(x) is the zeroth-order modificd Bessel function of the second kind. It
is evident that the well width dependence (e finite size quantum eflects) euters
through the form factor into the formalism. V' (¢) is the bare interaction between

the carviers. (see Appendix AlL)

2.2.1 Electron (hole) self-energy

We assume that the electron (hole)-LO-phonon interaction is expressed in terms
ol the I'rohlich Hamiltonian. For weakly polar semiconductors, where a,p 1s
small, a systematic perturbation expansion in the coupling constant «,y 1s
meaningful. We shall discuss two methods in this context: the Brdlovin-Wigner
perturbation theory (BWPT) aud the Rayleigh-Schrédinger perturbation theory
(RSPT). The equation for the energy spectrum £ of a particle of momentum
veetor ks,

I = (k) + Re [Nk, 1), (2.3)
where N(&, £2) is the retarded sell-euergy, and ¢(k) = &*/2m. In BWPT, the
imaginary part of the self-energy is neglected and Eq.(2.3) is solved by an
approximate self-encrgy expression in which fivst few terms are evaluated in the
perturbation expansion of X(k, I2). The Twmm-Dancolf approximation (TD) is
a special case of BWI'T, where only the fivst term (the one-phonon term) is
evaluated. In the Rayleigh-Schrddinger lorin of perturbation theory (also called
on the mass shcll perturbation theory) energy and momentum are no longer
separate variables. In evaluating Yk, I7), the energy is set equal to e(k), so the

sell-energy is just a function of one variable b or, equivalently (k).
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O

The studies on the electron-phonon interaction contribution to the electron
sell-cnergy in 2D and 3D Lave shiown that RSP works better than BT,
The former of these studies s done in the one-polavon limit, whereas the latter
and the recent one investigates a many-polaron problem in 3D. In the light of
these conclusions, we base our formulation on RSPT.

The leading order polaronic self=cnerpy for a Q1D system is eiven byt
£y ) 5 ¥

, : [{/ M o) , » .
Yok, i€,) ==T L/ dy | ’.-i/le._, Goa(h — gl —iw,) Dig,iw,), (2.1)

27 |2y, tw,

Wy,
where 1" is temperature, M. ;,(q) 1s the unscreened electron (hole)-phonon
interaction strength,

92

(h

<o
———_ 2
\/—l“. L LO ¥ ) (

and £, and w, are the standard Matsubara frequencies. The Iréhlich coupling

(A (@) =

|8
(1]
~

constant for electrons and holes is delined as

1 l 1 - 5 o
Q. ) = ; (—— - —-‘——— \/ ST AWWOLO - (._.)())

v/ «LO

In Eq. (2.6), e is the optical dielectric constant, wio = 36.5meV is the bulk
LO-phonon energy in GaAs.

Clen(k — ¢, 1€ — 4w, is the one-electron (hole) Green’s function. In principle,
it should be determined from the Dyson equation (7, = Gyl ~ X, where

Gloon(h,1€,) 1s the non-interacting Green’s function,
O, i\ vy v '

—
o
~1

~—

Cloenlkyi€) = [i&, = Lornh)™",

with Lyen(k) = coon(k) = pep, where ¢oop(h) and gy are being the single
(non-interacting) particle energy and the chemical potential for cach species,
respectively. Iquation (2.1) along with the Dyson equation thus defines a set of
coupled equations which should be solved self-consistently. In practice, however,
one can substitute Gy for ¢ in L. (2.1) to obtain a rather good leading order

self-energy correction for the polaron problem.
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D(q, 1w, ) is the renormalized LO-phonon propagator describing the plasmon-
phonon coupling process. It is given by

[V \oly i)
sy, )

/‘)(‘/31‘“"/1) - I)l)(‘/‘(;«.’,t) I I)U(‘/yl"-'v'u) : (..).\\)

where Dy defines the bhare-phonon propagator. I one treats the LO-phonons
without any dispersion, and take the phonon energy at a fixed @y, it has the
lorm

2210

Dolq, i) = ——t (2.9)

Coy )

(e ) =T
In genceral, the system under study involves three different fields, namely the
electron (hole), phonon, and plasmon, that are coupled to cach other. These
processes are not quite important in deseribing the ground state of the system.
\We should note, however, that they play a fundamental role {or the excitations
ol the system. So, we neglect the plasmon-phionon coupling, by using Dy instead
ol D(q,w,).

The electron (hole) diclectric function =(q¢, we,) contains all the information
abont screening. A [ull dynamic sereening in the perturbation calculation is
intractable, so we shall work with static sereening, e w, — 0. A detailed
analysis of the diclectrie Tunction will be given i section (2.2.3).

Under these assumptions, the sell cnergy expression can be written as

) ] 20y, u.Jf() s I'(q)
Yo n(h, = : o / lq e
N ( LE) T \/"21”(',/[»,;)1,() 0 “d [:‘((/, U)]“’
no -+ [k —q) no+ 1 — [k —q)

: , . . (2.10)
1{” + wLO — -['-Uc,h(/‘. - (/) 1‘5/1 — WLO ]"Ut.,h(/‘f - (1)

Here, 1o and [, 5, ave the Bose (phonon) and Fermi occupancy factors respectively
ny = [(.""'“'/-" —_ 1]_l
(2.11)
Joanlk) = [[ + (,,:fq,,,,,,(/;)]-l

We will show later that when the Fermi energy ) € wro, the Iermi occupancy

effects will not be important, as in the case of two dimensional (2D) systems.®
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To obtain the real part, we do the standard analytic continuation /£, — £ + Ly
with iy — 0. We also change the encrgy variable from € to ¢, where ¢ = €+ 1, .

) 2
=) <10

Re X (ko) = - /“ dy e (2.12)

T 2o

1y '*‘ ‘/., ‘[,(l\' "-(/) } “_—’_(_(‘)_ '}" l _'_ l( A ( l‘. - (/)

ct+wro = wonlk —q) = wro = ok —q)
We make the usual assumption of parabolic hands, taking the electron and hole
single particle energies to be o i (h) = &2/2m, . 'This should be justified for
the GaAs example we consider in this work, but lor certain semiconductors
such as InSb, nonparabolicity elfects would require higher-order corrections.

In addition, we evaluate the clectron (hole)-phonon self-energies on the mass

shell (¢, = k2[2m, 1) o obtain the polaronic corrections at the band edge
Wl
[Re X, ,(0,0)]
c 2
o) ')"Ql' e w[,(')
E,= -

T V2o

o Plg) (2o D)@ 2mep) + (2feale) = Do,
X dq 3 VR 5 5 o2
0 [=(¢))? (¢2)2m ) = wio

2.2.2 Polaron effective mass

The definition of the polaron elfective mass (in the long-wavelength limit) is

L ! 1o ,
—— = —— 4 lim ——Re X (kA7 /2m) . 2.1
M, Men + }:l_l’ld ‘(,)/‘_1\(, e (Ko k2 [2m) (2.14)

For low temperatures (7" < H0K), we neglect the phonon occupancy, taking
ng — 0. The remaining integrand can be expanded in powers of k. Then, taking
thie derivative, and letting & — 0, we obtain
. 2 . . Al L2
I Qe |2 Wio 2 < I'(q) q
dq-
0

- — e | : — ,
Mep  Mep | T V200 pwno i, - [ [wno + 42/ 2mep)?
(2.15)

e »
”I'cf,h

The above expression yields in the weak coupling limit (a,,, — 0)
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2.2.3 The dielectric function

A full treatment of the total diclectric function for the electron-hiole system
coupled to LO-phonons is very complicated.  Iu general, the total dielectric

function should be in the form
Sl = g, N _*— 5/1/4 3 (2]())

where &, and g,, are the electron (hole) and phonon dielectric functions
respectively. We take ¢, = 0 and make the so called ¢ approximation which
consists of replacing c.. (high frequency dielectric constant) by ¢, in the Coulomb
potential (Eq.(2.1)). The rationale for this approximation is that the main
eflect of the high- frequency LO phonons is to screen the Coulomb interaction,
which 1s suitably accounted for by the replacement of ¢ by €. Das Sarma
el al? investigated the validity of the ¢ approximation for the 2I) and Q2D
semiconductor quantum wells and concluded that, for weakly polar materials
(c.g. GaAs, InAs, Ge, Si) the band-gap renormalization is very well approximated
by ¢ provided that the carrier densities do not reach very high values. This is
because with increasing carrier density the Fermi energies beconie comparable to
the LO-phonon energy which makes ¢ approximation less appropriate. Since the
density range of interest in our system satisfies the condition £y < wio, the use
ol ¢y is reasonable.
So the total dicleetric function reduces to carrier dielectric functions only.
The definition 1s
*':_l(,(/v"“‘): ! ‘1".-(([)\(‘176—')-, (‘217)
where V(¢) includes the carrier-carrier interactions only, and y is the polariz-
ability function of the charge carriers. In the Hartree-Fock approximation the
bare (non-interacting) polarizability functions are used (we suppress the ¢ and w

dependences):

R - (2.19)
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In the RPA, the polarizability lunction is

\o
\ i e (2.20)
l “"‘ \u ) )
which gives
=1 . (2.21)
A further advance for 4 includes the local lield corrections
\ \0 (2.22)

T

where ¢ is known as the local field factor. The corresponding form ol the
dielectric function is
=14V, (2.23)
where 4 1s the vertex correction
I

P R 2.2
PO+ VN (2.21)

The unscreened limit is obtained by
gow) = 1, (2.25)

i.e., no interactions are taken imto account. T'he above equations summarize the
general form of the diclectric function in several approximations. For our system,
we work in the static screening approximation, and employ the static RPA for

the dielectrie function
'f((lv = Ovlll) =1~ "((/) [\t ((/)"‘“ = 0, /') ‘iA \/«(‘/1“"‘ = U,I.)] ) ('22())

where V(q) is the Coulomb interaction between the charged particles, and
Verlgyw = 0,7) are the finite temperatare static polarizahilities for electrons
and holes. The form we use for 2(q,0) is appropriate [or a photoexcited intrinsic
semiconductor, since screening by electrons aud holes are treated on an equal

footing. In the case of doped n- and p-type semiconductors, screening by electrons
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and holes should be considered separately. At zero temperature, the general form

ol the polarizability lunction for a Q1) clectron (hole) gas is given by®?

\(gw) = i) Fivelgow) (2.27)
with
m - :
e — L{r‘_
V) = T
Y~ . L
. 7“/ 5, '
(2.23)
il wy > w>w_
\2(g ) .
0, otherwise
where wy = ¢*/2m & kpq/mg g and ke = 70,4, /2 s the Fermi wave vector
(sce appendix A.2). Since we are dealing with the case No = Ny, kp 15 the

same lor both species. For the static case (w = 0). the imaginary part is zero.
Note also that the rcal part diverges lor ¢ = 2k We calculate the finite-

B

temperature polarizabilities using the Maldague™ approach starting from the

zero-temperature QLD polarizability of an electron gas

Nerl(qyw =0,1") = il / A | + \/7, . : - . (2.29)
' Ty Ju gy — | cosh (w2 —1)
where v = jie /T and y = ¢/ |\/ITT/_ Here g g are the chemical potentials for
cach species al finite temperature. (see appendix AL2)
In various applications, the diclectrie Tunction 2(¢) was [urther simplified by
the plasmon-pole approximation to the following form*”

‘)

Ve

e oy , 2,30
() * ;%Th (N fmini) + (g7 [2ne)? | )

where the plasmon [requency for the QLD system is wﬁ'i = (N/m;)V(¢) (in

the long-wavelength limit), and the screcning parameter is x; = ON/dp;. The
plasmon-pole approximation cousists ol ignoring the weight of single-particle
excitations and assuming that all the weight of the dynamic susceptibility xo(q,w)

is at an eflective plasmon energy w,,.



Chapter 2. Perturbation Theoretical Approach 15

To improve RPA, we inclade to elfects of local field correction. Using 12q.(2.23)
we account for the vertex corrections to \ (¢) in the mean-field sense. We use the
cquivalent of Thabbard approximation for G(g) i one-dimension™

1 (\/(/'4 4 ki)

("(‘/) ~ E“‘——"\",‘('"J)—-—' . (2.31)

The physical nature of the Hubbard approximation is such that it takes exchange
into account and (:(n‘rcsl;on(ls to using the Pauli hole in the calenlation of the local-
ficld correction between the particles of the same kind. Coulomb correlations are
omitted. In this simple form, the static local-licld factor (/(g) is temperature

independent.

2.3 Results

2.3.1 Polaronic correction to the band edges

We first investigate thie density dependence ol the polaronic correction at low
temperatures. Since the dielectric function 2(¢) of a QLD system diverges at 2kp
and 7" = 0, we choose a small but finite temperature to work with. Figures 2.1 (a)
and 2.1 (D) show the clectron and hole polaron energices, respectively, as a function
of the carrier density N for various well widths at 7' = 5 K. The solid curves
in both figures, from top to bottom, indicate widths of « = 500, 250, and
100 A. With increasing plasma density, the polaron energy decreases indicating
the screening of the electron (hole)- LO-phonon interaction. On the other hand,
the effect of the finite size of the quantum well is that the polaron correction
decreases as the well width increases. Das Sarma and Stopa have shown® that
in Q2D systems, the polaron energy drops oll very rapidly as the well increases
from 0 (strictly two dimensions) to 100 A. K then continues to fall more slowly
as the well thickness increases further. Although we do not show the strictly one-
dimensional limit, the behavior is the same in QLD systems. There is a tendency

for higher densities to be slightly less alfected by an increase in well width than
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lower densities. This can be seen by recognizing that at higher densities the self-
energy depends more strongly on coupling with shorter wavelength (higher ¢)
phionons; the others being screened out. The form factor for finite well thickness
allects most strongly those short wavelength plionons.

In order to see the influence of the Fern occupancy factors. we also plot by
dashed lines 1, caleulated without [t Fge (2003). In the density range of
imterest, they are ncg]igi.l)lc siall, except close to N~ 10% e ™! both for electrons
and holes. Since I ~ k3 ~ N0 it turns out that the condition £p << oo
breaks down for & > 10%em™ ' Jnother words, the carriers start to Gl teir next
respective subbands which violates the extreme quantum approximation.

Also drawn in these figures by horizontal dotted lines are the unscreened
encrgies. They are caleulated using kg, (2.13) with e(¢) — 1, ng — 0, and
Jen — 0. The no-screening limit depends only on the well width, and typical
numbers are £, = —3.8379, =2.103, and = 1575 meV for well widths of @ = 100,
250, and 500 A, respectively, for the case of electrons. The corresponding values
for holes are [7, = —6.631, —=3.773, and —2.310 me\".

In PFigs. 2.2(a) and  2.2(b), we show the cffeets ol finite temperature on
the polaronic correction to the bhand gap as a function of plasma density at
« = 100 A. The solid lines indicate, from top to bottom, 1" = 5. 100, and 300 Ix.
We note that as the temperature increases, f/, also increases in nmgnil,ml.c. As
a general trend, the phonon renormalization decrcases for higher values of the
carrier density, while its rate is temperature dependent. The dashed curves
Fig. 2.2 gives the BGR calculated within the plasmon-pole approximation to the
diclectrie function using the same parameters. We note that the temperature
dependent plasmon-pole approsimation yiclds considerably different results from
the RPA. Das Sarma ¢f «l.% have found significant deviations ol the plasmon-
pole approximation from the full RPA result in two-dimensional (2D) quantum
wells. Our calculations suggest increasing discrepancies between the full RPA
and plasmon-pole approximation as 7' increases. The temperature dependence in
the plasmon-pole approximation (L. (2.30)) mainly enters through the screening

parameter £ and it is conceivable that differences originate {rom somewhat
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Figure 2.1: Density dependence of the polaron correction at different wire widths
(a) Polaron correction to the conduction-band edge as o function of the carrier density
N at 1" =5 K. Solid (dashed lines from top to bottom are for well widths a = 500,
250, and 1004, with (without) Fermi surface effects. ‘The corresponding dotted lines
indicate the unscreened limits (not all of them are in the ranges of the graphs). (b)
Same for the valence-band edge.

different temperature dependences.

Having established the insignificance of the Fermi occupancy factors in the
polaronic correction to the BGR in the density range ol interest (10" < N <
10% cm™!, we now turn to the temperature dependence ol I, IMig. 2.3 shows
the polaronic energy as a function of temperature. Mg, 2.3(a) is the conduction
band correction for various carrier densities, in a quantum wire of well width
a = 200 A. Solid lines from top to bottom are for N = 101, 10°, and 10° cm™!,
respectively. In Fig. 2.3(b), the same quantity is plotted for the valence band.
At low temperatures, F£, is due mainly to virtual phonons, since ng (the average

number of real phonons in the system) becomes vanishingly small as T — 0.
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Figure 2.2: Density dependence of the polaron correction at  dilferent
temperatures

(a) Polaron correction to the conduction-band edge as a function of the carrier density
N for a quantum-well wire of width « = 100-4. The solid lines from top to bottom
indicate 1" = 0, 1060, and 3004 calculated with full RPA, whereas the dashed lines are
with the plasmon-pole approximation. (b) Same for the valence-band edge.

At higher temperatures, the average phonon number inereases and emission and
absorption of phonons contribute to [, through the factors ng and ng + 1 i
I5g. (2.13).  The dashed lines in Mg, 2.3 are calenlated without the phonon
occupancy factors ng but we retain the dielectric Tunction £(¢). The difference
between the dashed line and the corresponding solid line is a measure of the
thermal phonon cllects, which scem to be important for 7' > 100 K. The dotted
lines are calculated by setting e(¢) = | while keeping the phonon occupancy
factors. In the no-screening limit this quantity is independent of the density.
For the most part, the depeudence of self-energy on density and temperature

merely reflects the dependence of screening on temperature and wavelength. Das
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E, {(meV)

Figure 2.3: Temperature dependence of the polaron correction.

(a) Correction to the conduction-band edge for a quantum-well wire of width a = 200
A. The solid lines from top to bottom indicate ¥ = 10%, 10%, and 10" cin™!. The dashed
lines show the effects of thermal phonons (ng = 0). The dotted line is calculated in the
no-screening limit. (b) Same for the valence-band edge.

Sarma and Stopa have shown™ that in Q21 wells, there is a competitive behavior
ol the screening and anti-screening elfects on the polaron energy depending on
the phonon wavelength at very low temperatures. The long wavelength (longer
than the average interparticle separation ~ 1/kp) phonons allect the electron
more clearly at finite temperatures, and henee these renormalize the energy more
effectively than at 17" &~ 0. However, for phionons whose wavelength is short
according to the criteria given above, screening creases with temperature., At
T = 0, other electrons are apparently “frozen out” of the region immediately
surrounding a given clectron.  As thermal effects set in, the other clectrons

penetrate this region so that very short wavelengths are screened hetter at nonzero
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temperatures. For low densities long-wavelength sereening dominates so the self-
energy decreases monotonically. At somewhat higher densities the anti-sereening
of short-wavelength starts to show up. Ia their work,™ they have found that the
anti-screening may lead even to a weak maximum near 7' = 0.

The foregoing results for the polavonic corrections at the conduction and
valence band edges imply a total ol ~ 10 meV renormalization in the density
range 10 < N < 10%cm™" which is comparable to the exchange-correlation

corrections.?®2H20 Tle’

phonon renormalization effects become negligible for
densities N > 10% cm™! irrespective of the quantim wire well width. We observe
these effects also for a quantum wire of width « = 500 A in Fig. 2.4. The solid
lines in Fig. 2.4 are calculated with the RPA dielectrie function, whereas in the
dashed lines vertex corrections are included. Inclusion of the vertex corrections
in the dielectric function through the local field factor brings about considerable
changes in the theory of metals.

We observe that within the simple Hubbard approximation to G/(¢), the BGR
deviates only slightly from the RPA result. The difference in 14, with and without
G(q) is largely independent of temperature. We have also found good agrecment
for other values of the well width. These vesalts suggest that the RPA is valid
(in the range 10" < N < J0%cm™) provided that the local-field factor we use
is correct. In order Lo assess a more reliable measure of corrections beyond the

RPA, better approximations to the local field factor (/(q) are needed.

2.3.2 Effective mass renormalization

The temperature dependent behavior of the mass renormalization is also a
consequence of the diclectric function £(¢,1"), its main effect being to reduce
the electron-phonon coupling. In the no-screening limit (s(¢) — 1), the effective

mass (renormalized mass) is independent of temperature and carrier density,
2

) 2 2 20 ¢
Lo LG |2 Mo / dq F(q) | (232)
771.:"1 Mep Mep [T \/-d"“'t,,th() Men Jo [wl,O + (I"/-”'lc,h]

which we write as 1/m* = (1 —aB)/m. In the opposite limit of infinite screening

(¢ = o0) the electron (and hole) no longer couples to the phonon and there is
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Figure 2.4: Vertex corrections
(a) For the conduction-band edge as a function of the carrier density N for a quantum-
well wire of width a = 500, The solid lines from top to bottom indicate T = 0, 100,
and 3004°. The dashed lines are calculated with a diclectric function which includes
the vertex corrections. (h) Same for the valence-band edge.

no mass renormalization, i.e., n), = m, . Thus ™ is bounded hetween the
values 1/(1 — aB) and 0.07 (0.1 for holes, and in units of bare electron mass).
In Figs. 2.5(a) and  2.5(b) we display the per cent change i the band masses
[or clectrons and holes, respectively, as a function ol temperature. To illustrate
the density dependence, we show (by solid lines) from top to bottom N = 109,
105, and 10" cm™! for a quantum wire of well-width @ = 200 A. Indicated by the
dotted lines are the no-screening Limit results discussed above. We observe that
mass renormalization is rather large both for electrons and holes, ~ 6% and 10%,
respectively.

We are not aware of any experiments to compare our results in quantum-well

wires where the temperature dependence of the polaron mass is measured. In the
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Figure 2.5: Ellective mass renormalization
(a) At the conduction- band edge as a function of temperature for a quantum-well wire
of width a = 200A. The solid lines from top to bottom indicate N = 10%, 10°, and
10* cm ™Y the dotted line gives the no-screening limit. (b) Same for the valence-band
edge.

case of 21) systems, Das Sarma and Stopa™ found the mass renormalization to be
rather small compared with the cyclotron resonance data. Since our analysis is
along similar lines, we do not expect to obtain good agreement with the cyclotron
resonance experiments. It remains an open problem to develop an adequate

theory of screening of electron-phonon coupling in high magnetic fields.
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Variational Method

In low dimensional structures, the plasmon energy wy(b) is generally much
smaller than the LO-phonon cnergy w0, in contrast to the situation in bulk,
which may cause the dicleetrie function (g w) to behave very dillerent at finite
w ~ wo from its w = 0 value (i.c., static value). Thus, the dynamical screening
cllects are expected to be important i low dimensional systems as pointed out by
Lei™ i this chapter, we develop a variational formulation of the contribution of
dynamical screening to the ground-state energy of an Q1D interacting electron-
hole-phonon system. Our method is the generalization to two-component plasma
of the variational calculation of polaron energy given by Lemmens ef al®® The
Q1D system we study contains clectrons and holes at equal number density N,
appropriate for an undoped, photoexeited semiconductor, and we consider the
coupling with bulk LO-phonon modes. \We compare our results with perturbation
theory calculations performed in the previous chiapter, to assess the validity of

static approximation to the screening elfects,

3.1 Theory

The specific model- we use in our calculation for the Q1D, clectron-hole fluid
is developed by Das Sarma and Lai®® and is applicable to the experimental

realizations of semiconducting systems.? The charge carriers are assumed to be

23
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in a zero thickness ay-plane with a harmonic (parabolic) confinement potential
in the y-direction so that the subband encrgies are ¢, = Q(n 4 1/2) where Q
describes the strength of the confining potential.  Again, we shall assume that
both types of carriers are i their lowest subbands. This approximation will
hold, as long as the subband sepavation remains much Jarger than the phonon
energy in quantum wires and the thermal energy kg 7', The Coulomb interaction
between the particles in our model QD system is given hy® (2¢*/¢o) 1°(q)
where F(q) = ;'__—vxp(/F(/"'/I)/\'(,(/ﬁ/"’/‘l) in which Ay(e) is the modified Bessel
function, aud ¢ is the background diclectrie constant (scee appendix A1), The
characteristic length b = 1/y/782, where jis the reduced mass of the electron-hole
pair, is related to the confining potential strengths of electrons and holes, and for
simplicity we use throughout this paper the same vadue of b for both species. For

more realistic calculations this restriction may casily be relaxed.

3.1.1 Lee-Low-Pines Transformmation of the
Hamailtonian

The total Hamiltonian lor the mteracting many-polaron system is given by

2
— >§: 2 N 1 I > 2y et A N,
H = oy (i,k('lok + 2_4 L‘JI‘O“(/“’I + _; > y "U(l' )Li,l.'*}-lﬁ,(“[,I,D—]},(‘.ivl)(‘-Ib'
T q -

(%) L’,I:'/,l’

+ SOST (Migal 4 Mial el e, (3.1)
(o

where 4,5 are the indices specilying the carvier type (i.e., electron or hole), «f
and ¢, are the creation and annihilation operators for phonons with energy wio
and wave number ¢, whereas ('1 and ¢, respectively, ereate and annihilate an
clectron (hole) with wave vector ko Vi (q) is the Coulomb interaction hetween
the particles. The electron (hole)-phonon interaction matrix clement is given
Ly30A48AT A P = '[‘2(.\,~wﬁo/\/‘Zm,wl,,() F(q). So the fiest and second terms in
the Hamiltonian are the free clectron (hole) and phonon energies, respectively,
whereas the third and fourth terms describe the carrier-carrier and carrier-phonon

interactions.
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(WA

We employ the Lee-Low-Pines unitary transformation® approach as devel-
oped by Lemmens ¢t al.” and Wu of al* in application to 3D and Q2D systems.
This is a canonical transformation which helongs to the standard procedures to
obtaim variational estimates of the gronnd state energy of many polavon problem.
I order o clarify the differences between this and the perturhation approach
we review the essentials of the method. The Hamiltonian given by Eq. (3.1) is

subjected to the snmlarity transformation
[i = (‘_\I)(_J.‘ (f__’)

where

Q=" figla,—a el cing,. (3.3)

Ly
Fhe variational parameters f,; are to be determined by minimizing the ground-
state energy. The transformation of the operators can be calculated using the
- . . - - 1 . :
Baker-Hausdorfl equation ¢™' Bet = B+ [B, A+ L [[3, A], A] + ... The phonou

operators «a, and (1,3 transform as displaced operators:

-1 - N . b
(/ (l(/(/ == “‘I - L ‘/5»’1( 1,/;( ih-q
t

(3.-1)
(/”lu(’l(,/ = “11/ - }: ./.~,1("‘t'l‘~('1,l\"l"l .
The transformation of the clectron (hole) operators gives
U~ be el = exp }: Jig la, = u!_,l) Cik s
/I (3.5)
(_/"(-f'k(/ = (:f-',‘_ exp | — X Jig lay — ”T_U)
4
The transformation leads to the following form of the Hanultonian:
UYHU = I + Hopo+ Hypop + Ui + Hppepn + Hy (3.6)
Hy.;,, 15 the kinetic energy of clectrons and holes :
I
Hiw =Y | pein (3.7)

2m;

i



Chapter 3. Variational Method 26

{15 the free phonon part.
=N oal a0
WO ALy (3.3)
i

-, describes the modified interaction between the charge carriers

— ff ot :
Il P - 3 Z \ ‘/+l /I_f II)(ll)’ (.j.f))

6 Quirnp!

where \"Jf /A

q) is given by

Vil (a) = V(o) = 200 L+ Moy, = wvo L7, (3.10)

H,_ 1, 15 the carrier-phonon interaction :

III»—l/h - L I W] - t""L()_/.,‘-',I)”,'I i ( ~l/i.*[ - W’I,()./.l',q)“qJ (‘:'/‘. i /('[‘l;
i,y
. A..! | .
+ L D (/l glty — / - ) .,"/;('{,/.'-ta, . (; Il )
ik 2,

Hop—pn term gives the interaction between the phonons mediated by the charge
carriers :

Wi = LL ‘ [ /‘l~/.’/'”'fl(”l' ; /—q/—(, —1/) 'it,k(‘kjr-/%l’

Lk gy’ 21

t Fadgaliay gy + I Tpabag cimgry)] (3.12)

The remaining term [y contains only the number operator AN, :
Hy =) [(w, o + )/t " Jig = (M [y + ;'\1';,(,j'if[I)J N (3.13)
6y
In the next section we discuss the ground state energy of the translormed

Hamiltonian.

3.1.2 The Variational Ground State Energy

For weakly polar materials the mean number of virtual phonons (i.e., the

deformation of the lattice due to the presence of the charge carrier) in the polaron
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cloud is small. Therclore, the phionon part of the gronnd state wave function can
be deseribed by by the vacuum state |eac -0 'The total wave function of the
ground state is then

[(0. 2= |eae = |y >, (3.11)
where |¢h; > are the ground state wave functions of electrons and holes. Within
this ansatz, one can construct a reduced Tamiltonian which operates on the
ground state of the charge carriers only -

H,.y = <‘l’(t('“/_l'H('lll‘(l('\

= Z__ i CipF = ZL ‘uff (1) :P+,,J,,_', Cip'Cip

i 2 G
- L (‘,‘Ii':fljli,f/ _*— A[iu/./.;:,l) R (Wl ) + )/‘ - /1 W ,’ . (v;l:-))
¥
The minimum energy is found by taking the Tunctional derivative of < H,.q4 >
with respect to f7’s and solving for [i's, which yields the following set of
equations for f;;’s (we suppress the ¢-lependence of A and f)
(Stiweo + 12my) fi+ Sewno o= SO A Sy,

) ) _ ) . (3.16)
(522 wLo tyq /'—)IN;') ./z + Siewro ,/1 = _'.’ Uz + "1 2 )

where 5;(¢) are the static structure factors to be discussed below. Solving the
above sct of coupled equations lor f;, we obtain the polaronic contribution to the

ground-state energy as
By = = L ASu (VLS A7) 4 S ot AR SS 4 ME S+ AL )

4-.8'22(4‘"1’;‘/.2 + 1\[),/;)}
+ ZwLO {Sufi o+ ST fa+ NfD) + Sels f)
1
€ ey -
+ }_,( Jifi+ :‘;:./3,/:) ~ (3.17)

When the correlations between the electrons and holes are neglected, e, S = 0,

we obtain a simplified expression for the energy

Lg‘2 . ,S’.’z:
B o= — My|? 1 Y | M|t ———2 3.18
P Z l ll wLo S + ‘12/'3'”1 * Z,‘ , ZI w0522 + (/1/2'”2 ’ ( )

q
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as a sum ol individual contributions of the plasma components. Furthermore,
setting Sy, = Sy = 1, amounts to the no-screening limit, and we recover the

perturbation theory result.

3.1.3 Static Structure Factor

The structure Tactor describes the correlation hetween the interacting particles.
It is a key quantity which has to be caleulated i order to determine the sereening

properties of the polaron system. T most generad form it is defined as

.q((/,w') = Z ,/ l:“lllf’H("‘U > i (’)(W' - u),‘“) (;I‘))
n

where p, 1s the particle density operator, o, are the exact wavefunctions of the
system, and w,g = 14, — Iy is the dillerence in energy between the nth excited
state and the ground state.  S(g,w) is a measure of the density fluctuation
spectrum ol the electron gas. There s a direct counection between this and

the dielectric response Tunction of the systenn.

) = ] 3
Slq,w) = 00 Lin :'((/~w‘)I . (3.20)

For our system we shall use the statie structure factor, with carrying the dynamic
information as well. T'his is possible by using the following defintion ol the static
structure factor

Ste) = < /“ de S(qa ) . (3.21)

which may be called quasi-static structure factor. In evaluating the integral in
I%q.(3.21), one has to he careful about the poles ol the inverse diclectric function
(12.(3.20)). There are two methods to overcome this difficulty. One is to caleulate

the single particle and the collective contributions separately?
S(q) = Senlq) + Sulq). (3.22)

The single particle contribution is calculated by using the RPA diclectric response

function (Iq.2.21

1 0 -1 J
Srll(([) WN\'/(([) /() dw Im Slﬂl- A(([’ w) ( )
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whereas the plasmon ¢ontribution is calculated from*®

-1 !

NV (q) ["%}l{c{i‘(tl,v'&)}]

Sula) = (3.21)

=W

The other methiod involves the extension of integral in Eq.(3.20) to the complex

¥ We shall emiploy this

{requency domain and carrying the integration there.
method and discuss below. To establish the connection between the definition of
the static structure factor and the formalism in the previous section, we rewrite
the structure factor in the second quantization for the two (7mnpém(>nt mteracting
system

| !
() = 2 = o et 1 T Q)
‘Sij(‘/) =0+ -\7 S :|‘L/vr'l(.i,/"—r/('.hl."(h//l“] > (3.25)

donp!
We consider two approximations in the evaluation of static structure factors
Si(q). In the first case, we use the Hartree-Fock (HIF) approximation which

lias a simple form

‘ q/2k), q < 2
A oo : o o
D (q) = 0y - . (3.26)
[, q - ..)./u/
Note that in the HE approximation Sy - Sy sinee we have eqnal number of

clectrons and holes, and S = 0. lu the second case, we employ the RPA
generalized Lo a two-conponent systen.™ The density-density response function

of the system is expressed i matrix form

(S (ge)] ™ = Vi) —V(q)

RP’A -1
(()w == , .y
W) -V(q) [\ Dlgs)] ™ = Vi)

where v%(¢,w) is the Lindhard function for the 7th component, le., nou-
interacting susceptibility. We caleulate the corresponding static structare factors
using

T | i (oo > . 9 90
SEMg) = - / — i Mg, tw), (3.23)

Y N Jy =Y
where the analytic continuation of the response function to the complex frequency
plane and a subsequent Wick rotation ol the frequency integral are used to

incorporate the single-particle and plasmon contributions.
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Figure 3.1: Static structure factors within RPA in a Q1D clectron-hole system.
Solid, dashed, and dotted lines indicate S1((q), Sz(q). Si2(q¢), respectively. The dash-
dotted line is for the Hartree - Fock approximation. Thin solid line is the function

1)((1) = .5’11522 - ‘S"llz .

We again cmphasize that, the static structure factors Si,(q) are obtained
from the full frequency dependent response function v(g,w) by lutegrating over
all frequencies, thus they inherently carry dynamic information.  TFor QLD
electron systems the collective excitations (plasmons) have a strong wave vector
dependence without damping. Thus, along with the single-particle excitations,
plasmons must also be taken into account in the caleulation of Si;(¢). The static
structure factors, as set out above; determines the sereening properties of the
electron (hole)-phonon system. In Iig.3.1 we show the resulting partial structure
factors in a two-component plasma for a typical density N = 10%cm™" and
confinement energy = 10 Ry. Solid, dashed; and dotted lines indicate Syi(q),
Spa(q), and Sy2(q), respectively, whereas dash-dotted line is the HIP result. Also
shown by the thin solid line is the quantity D(¢q) = Sii(q)Se(q) — Si(q) as
defined by Chakraborty.®® It has been argued that D(¢) qualitatively resembles

the static structure factor of a single species system at the same density.
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3.2 Results

We illustrate our calculations of eclectron (lole)-phonon contribution to the
ground-state energy ol a quantum wire by choosing a GaAs system. The
relevant parameters used in the caleulations are ey = 0.067Tm,, my = 0.5,
for the clectron and hole effective masses, respectively, a; = 0.07, ay = 0.193,
for the electron-phonon and hole-phonon coupling constants, respectively, and
wrLo = 36.5meV.

We show in Iig.3.2(a) the total polaronic contribution to the ground-state
cuergy as a function ol one-dimensional electron-hole plasma density N. The solid
line represents the variational calculation emiploying the RPA structure factors to
account for the screening effects. The variational caleulation using the Hartree-
Fock structure factors is indicated by the dashied line. For comparison we also
show by the dotted line the result of a perturbative calculation.

We first note that both the variational RPA and the perturbative caleulations
exhibit considerable sereening even at densitios as low as N~ [0°cm™! For
the present choice of the conlining potential energy (€2 = 10 Ry) the unscreened
polaron energy is about =7 meV. The Hartree-Fock approximation gives relatively
small screening at low density, and i general it auderestimates the screening
clflect. The perturbative calculation we liave formulated m the previous chapter
includes the static diclectric Tunction 2(y,0) throngh the renormalization of
the electron (hole)-phonon interaction matrix element |AL[*/[¢(¢,0)]*. We use
the T = 0, plasmon-pole approximation lor (¢, = 0) which includes the

contribution of elections and holes
i 2
— [““'pl((/” .
5((/,0) == ] |- L T T (-}_))
i=c,h (‘11/2”1’)2
where the QLD plasmon [requency is [wi(¢)]* = N (¢*/2m:)V(g). As in the
case of quantum-wells™ (21 structures), static approximation overestimates the
cffects. We observe that going from the HIE to RPA, the sereening reduces the
electron (hole)-phonon interaction appreciably for low carrvier densities. It has

been noted®® that the static screening has a stronger effect in the renormalization
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Figure 3.2: Polaronic contribution to the ground-state energy.
(a) Polaronic contribution to the ground-state energy for € = 10 Ry as a function of
plasma density N; (b) for ¥ = 10% ™" as a function of wro /. In both figures,
the solid and dashed lines indicate the variational calculation using RPA and ITartree -
I'ock structure factors, respectively. The dotted line is for the perturbative calculation
using the plasmon-pole approximation. The thin solid line in fig.(b) represents the

unscreened lmit.

(of polaton energy and mass) than the dynamic sereening, because in the static
approxinmation only the long-time response of the systemis taken into account.
Similar conclusions are drawn by llai of «l' i a caleulation that takes the
dynamic screening effects into account for single-component Q1D systems.

In IMig.3.2(b), the confining potential encrgy dependence (or size dependence)
ol the polaronic contribution to the ground-state cnergy is illustrated. We show
the results of various approximations as a fnnction of wro /) at a fixed plasma
density N = 10°cm™". The solid and dotted lines represent the dynamical
(variational, RPA), and static (perturbative, plasmon-pole approximation)

screening calculations, respectively. We again observe that static approximation
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overestimates screening effects in comparison to the dynamical approach. The
variational calculation using the Hartree-lock approximation to the structure
factors (dashed line) appears to underestimate the sereening effects especially
for wide quantum wires (small Q). The thin solid line indicates the unsereened
polaron energy.

We have use the RPA to describe the many-body effects in the interacting
system of electrons and holes rather uneritically. 1t may be argued that the
attractive nature of the electron-hole iiteraction would make the two-component
plasma structure factor caleulations somewhat less veliable. 1t is known that
the corrections to RPA become more tmportant in lower dimensions than in 31).
Also, the RPA, although exact in the laeh density Tonit, fails to take the short-
range clectron correlations to account properly in lower density regime. For
these reasons it would be wortliwhile to investigate corrections 1o RPA through
local-lield factors using lor instance the sell-consistent field method of Singwi,
Tosi, Land, and Sjolander.®! The ground state properties including the exchange-
correlation effects in quantum-well wires heyond the RPA were recently studied
by Campos el al.®* To assess the importance of local-field corrections, we use the

equivalent of TTubbard approximation in one-dimension given as

SO R AR (3.30)

U
which takes only the exchange ellects into acconut, neglecting the Coulomb
correlations. IMigure 3.3 shows I, as a Tunction of plasima density for a quantm
wire with € = HRy. The dashed Tine s calenlated using the HE structure
[actors. The solid and dotted hines are with and without the local-field factor
C/(q) included, respectively. We note that the local-field ellects start to become
important for densitics less than ~ 10%cm ™" In Chapter 2, we have shown that
vertex corrections introduced within the perturbation theory did not aflect £,
appreciably.

Our variational approach yields also effective interactions among the charge
carriers modified by the interaction with phonons. In terms of the variational

parameters f;, they are given by 1q. (3.10). This result is the generalization of
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Figure 3.3: Lilcct of local-field correction on the polaron energy.
The solid and dotted lines are calewdated with wnd without ((g), respectively, whereas
the dashed line is the result of Hartree - Fock approximation.

the effective potential as derived by Lemmens ef al®® and da Costa and Studart.®®
We display in Fig.3.4 the effective interactions for NV = 10° cm™" and Q = 10 Ry
within the RPA. The solid and dotted lines are for VT and Vi and the dashed
line is for V. We have also shown, by the thin solid line, the bare Coulomb
interaction for comparison. We find that the changes due to electron (hole)-
phonon interactions are significant, but decrease with increasing width (small Q)
and increasing plasma density.

We point out that in the present method (variational) the polaronic energy
in an electron-hole system is calculated at 1" = 0. It is possible to use a
temperature dependent dielectric function <(¢, T') within the perturbation theory
approach.?™® [or the variational calculation, not only the temperature dependent
structure factors are necessary, but also the assumptions about the product forin

ol the ground-state need to be justilied.
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Figure 3.4: The effective interaction potential.
The effective interaction potential between the charge carriers at N = 10° em™! and
Q = 10 Ry. Solid and dotted lines are for ‘»","l” and \"T_szf, and the dashed line is for
\/'1”,_,”. The thin solid line is the bare Coulomb interaction.

3.3 Comparison with two-dimensional

quantum-wells

The effects of screening on polaronic corrections 1o the effective band edges in
a Q2D quantum-wells were considered by Das Sarma and Stopa.™® They use the
perturbative approach of evaluating the leading-order sell-energy including static
diclectric function, and a variational formabsm wvolving the structure factor.
Their approximation amounts to the 21 version of our simplified expression
given in Bq.(3.18) It is of interest to apply the full dynamical scrcening eflects
within the variational approach to quantum-well structures. Fig.3.5 shows the
results of our dynamically screened calculation for a strictly 2D system, for which
the Coulomb interaction is taken to he o(¢) = 2x¢?/q. The solid and dashed
lines indicate the I and RPA; respectively, lor the total (electrons and holes)

yolaronic correction to the ground-state energy. We observe qualitatively similar
k. |



Chapter 3. Variational Mcthod 36

features to the Q1D case, in that, the RPA yields more screening than the HF
approximation. The dotted line appearing in Fig.3.5 is for the statically screened
perturbative calculation. At zero temperature, the static dielectric function for
a 2D system is independent of density. Note that the 2D screening wave vector
is given by ¢, = 2me? /ey, Thus, we have a constant line which nevertheless
exhibits considerable screening (over screening) as noted by Das Sarma and
Stopa.® Deviations {rom the constant behavior could be attributed to finite
temperature effects. "The dash-dotted line m 1Mg.3.5(a) is evaluated with the
aid of Eq.(3.18) when the corvelations between eleetrons and holes are neglected.
We find that omitting Si2(q) in Eq.(3.17) affects the polaronic contribution to
the energy considerably.

We next study the effects of finite well width on the energy [2,. Assuming
only the lowest subband is occupied both in conduction and valence bands, we

use the form factor??¥t

3 i A2l — ¢
Fly) = —— [y o = ,:—(j . ‘),_,
(qa= A lx : T (R N

]

where a is the well width. In Fig.3.5(h), we display the polaronic contribution to
the ground-state energy as a function of quantw-well width at i typical plasma
density N =5 x 10" e ™ We note that the sereening elfects dominate as the
well width is increased. Similar conclusions may be drawn [rom the caleylations
of Das Sarma and Stopa.*® A more complete many-body calculation within the
perturbation theory of the band-gap renormalization which includes the electron-

electron and electron-phonon interactions for semiconductor quantunm-wells were

performed by Das Sarma of al™
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Figure 3.5: Polaronic contribution to the ground-state energy in 2D systems.
(a) Polaronic contribution in a strictly 21) system as a function of plasma density. (b)
The size dependence of the polaronic contribution in a quantumn-well structure. In both
figures the solid and dashed lines are calculated using Hartree - Fock and RPA structure
factors, respectively . The dotted line is the result of perturbative calculation including
static screening. The dash-dotted line in fig.(b) shows the variational approach in RPA
without the cross term 5)»(q).



Chapter 4
Discussion and Conclusion

We have presented two different methods to imvestigate the polaronic corrections
on the single particle properties in a quasi-one-dimensional electron-hole system.
A strictly competitive approach in comparing the results ol these methods
would not be true, since they provide complementary information as well.
The variational method emplasized the timportance of the dynamical nature
of screening, whereas it is the perturbational approach where the temperature
dependence can be analyzed casily.  In addition to that, since no equivalent
canonical transformation has been developed to calculate the eflective masses in
variational method, our results for the polaronic mass renormalization rely on the
static screening treatment of the many polaron system as discussed in Clxaﬁter 2.

The overall results have shown that the polaron self-energy is comparable
to the exchange-correlation effects in order of magnitude. A direct consequence
of this result 1s that in low dimensional structures, the interaction between the
charge carriers and phonons and among the charge carriers themselves should be
treated on an equal footing. ‘I'he coufinement potential determines the carrier
phonon interaction directly but the general trends obtained for the carrier density
and screening dependence should be valid irrespective of the details of the model
chosen. We have verified this by using two diflerent models, namely, the infinite
well and the parabolic confinement potentials.

The dependence of the polaronic correction on relevant parameters are

38



Chapter 4. Discussion and Conclusion 39

discussed it detail in the previous chapters, so we brielly swmmarize them heres

o Screening by free carriers strongly alleet the ciarier phonon interaction.
hence the polaron sell-energy. As the plasina density increases, the polaron

scll-energy decreases.

o The quantum size ellects of the system plays an important role. "T'he polaron

energy decreases with mercasing “widdh™ ol the quantum wire.

o lemperatureis a restoring parameter for the polaron energy. ‘I'his is mainly
due to the fact that at finite temperatures the mean number of phonons

iereases which brings an enhancement to the polaron encrgy.

e The renormalization of the polaron effective mass can bhe explained in the

same terms in which we understaud the behavior of the polaron self-cnergy.

[t may be uselul to review the main asswnptions for the construction of
the many-body system. We have taken a two-component plasma consisting of
clectrons and holes of equal nuumber density and focused on the interaction of
this two-component plasma with bulk LO-phonons.  IFirst, we assumed that
the electron-hole plasma is in equilibrivm, which can be justified, since the
laser pulse durations are much longer than the particle relaxation rates in these
semiconductor structures under study. Second,the subband structure is i.y)’nur(-d
by taking the extreme quantum himit, in which the chemical potential of cach
carrier type lies in the lowest respective subband. This, however, puts limitations
on the range of carrier number density, temperature, and the effective width of
the wire from which the first two control the level of the chemical potential,
and the last one determines the subband separation. On the other hand, the
existence ol LO-phonons put another criteria for the subband separation, that
it must be larger than the phonon encrgy wy o, so that electrons (holes) cannot
scatter into higher subbands via their interaction with phonous. The energy and
the effective mass of an electron in a quantum wire including the subband eflects
were calculated in the presence ol electron-LO-phonon interaction by Degani and

Hipdlito.5%%6 Ryan and Reinecke®” presented a multisubband formulation for an
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clectron-hole system. Their work was obtaining the band-gap renormalization
due to exchange-correlation effects, including the intersubband and intrasubband
interactions.

Our work is based on a photoexcited intrinsic semiconductor, hence the
number of electrons and holes are the same. The extension to doped
semiconductors should he straightlorward. We note however, that taking the hole
density equal to zero does not reflect the veal sitwation because all experiments
measuring band-gap shifts involve ercation or annihilation of clectron-hole pairs
which result in a renormahization ol the vidence bhand. We further jgnored the
degenerate nature of the valence hand, approximating it by the simple parabolic
dispersion.

Along with the LO-phonon coupling one may inchude the coupling to confined
phonons and interlace phonons ws well. However: there is no experimental
evidence of the coupling of the interface optical phonons to the confined electrons
as pointed out by Das Sarma and Mason™ Sceondly, in heterostructure type
systems consisting of two lattice matched semiconductors (e.g. GaAs and
AlGaAs) with rather similar lattice diclectrie properties, the existence of purely
interface phonon modes is rather unlikely. The interface phonon modes will have
exponentially decaying amplitudes into the wire, which makes them neghigible
unless the wire is too narrow. We shall discuss the coupling to conlined phonons

in the next section.

4.1 Phonon confinement effects

Fasol ef al% have presented evidence of plionon conlinenient in low dimensional
structures. PPhonon conflinement causes changes on the carrier-phonon mterac-
tion, modifying properties like scattering rate and relaxation rates from those in
the bulk case. Considerable work las been done™ ™ on the role of confined
phonon modes in the hot-clectron relaxation phenomena in semiconductor

quantum wells. To obtain the confined phonon modes, the three dimensional

Frohlich Hamiltonian is subjected to boundary conditions at the interfaces.
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There are two dilferent macroscopic approaches 1o phonon confinement: the

clectrostatic or the slab modes™ and the mechanical or the guided modes.™
They difler essentially in the way the boundary conditions ave applied. In the
slab model the electrostatic potential vanishes at the boundaries, whereas in
the guided model it is the electrie ficld. Stroscio™ has applicd the diclectrie
continuum model to describe the the confined LO-phonons in rectangular
quantum wires.  Ou the other hand Ricker of al™” presented a calculation of
the polar electron-1.O-phonon interaction in GaAs/AlAs quantum wells, based
on a fully microscopic approach for the phonon spectra. According to thetr
comparison, some of the macroscopic models lead to acceptable predictions,
whereas some of them are completely inconsistent with the microscopic results, Tt
turns out that the correet use ol the diclectiie houndary conditions is erncial for
the applicability of the macroscopic models to polar electron-phonon scattering.
They concluded that, the assumption ol unmodified bulk phonons may provide
resonable results, and pointed out that an accurate description of the phonons
is necessary when one is interested in the contribution of individual modes, e.g.,
for the interpretation of results of time-resolved spectroscopies.

Recently, we have presented a preliminary mvestigation ol the contribution
of confined phonon modes to the ground-state energy of a Q1D clectron-phonon
system, and in particular the effects ol screening oun this contribution.®® The
polaron energy is calculated vaviationally incorporating the dynamic screening
effects and it is found that the confined phonon contribution is comparable to

that of bulk phonons in the density range N = 107 — 107 cin™'.



Appendix

A.1 Effective Coulomb Interaction

Here, we give the form factor of a ¢uasi-one-dimensional system for several
confinement potentials. In the first two models that we consider, the wire is
constructed as follows: We take a strictly two-dimensional electron-hole plasma
in the © — y plane and introduce an additional confinement in the y direction.
So the wire has zero “thickness” but finite “width”. The reason that we neglect
the finite size effects along the = direction is just for simplicity and will not lead
to a qualitative change in the obtaimed results. Besides, this assumption can be
justified, becaunse, at this stage the technology lor confining the charge carriers to
two dimensions is much more advanced than techinology for confining the electrons
along and additional divection. For example by modulation doping, the electrons
can be confined in the z direction on the order of less than 100 A, whereas the
confinement in y dircetion is approximately 300 A, leading to at least an order of
magnitude difference in the energy-level spacings of the y and = directions. The
last model we present is a quantum wire with a circular cross-section.

We based our lormulation mainly on the RPAL Consequently, the effective
potential we use in our caleulations is the bare Couloml potential given by
Bq.(2.1). Campos, Degani, and Hipdlito® have caleulated the effective Conlomb
potential in rectangular Gads quantom well-wire using the self-consistent field

approximation (so called the STLS approximation), which incorporates the
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exchange-correlation elfects. There, the effective potential is given by

plq) = V{g)+ 57— /U db [ SCE) = (g 1 )V g+ K)o+ (g = k)V (g = k)],

2mnq

which nmplies that the RPA results correspond to the zeroth-order approximation
where ¢(q) s taken as the bare Coulomb interaction potential V(g).  Their
results® indicate that RPA underestimates and the HIFA overestimates the short
range correlation eflects.

From electrodynamics potnt of view, the prescnce of other charge carriers
should be taken into account when caleulating the effective potential acting
on an individual charge carrier. This amounts to a numerical solution ol the
Schrodinger equation coupled to the Poisson equation, which has heen considered
in some studies?® 27 concerning the sell-consistent electronic subband structure
of a quantum wire.

Below, we represent the general part of the derivation, "The one-clectron (hole)

wavefunction is given by

| - .
",’/)q,u(_:l.v Y :) == \/‘7 ot {;.u(.(/) O(:) ) (‘\ L. [)

where V' is the volume of the wire, ¢ is the wave vector in @ direction, £,(y) is the
bound state wave function for the nth subband associated with the quantized y
motion. The wave function will not have = component, but it is shown here by a
delta function for completeness. We will drop that term henceforth. The explicit
form of €,(y) is obtained from Schrodinger Fquation

1o :

—5— 5 H V)| ) = ), (A.1.2)
2m dy?

with a choice of the confining potential V(y). The matrix clements of the

Coulomb interaction are given by

PO PO e PO
Vitmn (¢ — ¢') = / / / / da di’ dy dy’
=20 =L =0OUY =N

[ s ) W s ) 0 = e = ') () (9] (A1)
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where v(w — a’,y —y') is given by

oo —a iy —y') = ALl ) (A1)

V=) 4 (g = y')?

At this step it is possible to carry out the integration over the variable 2 in

0q.(A.1.3). This leads to one-dimensional Fourier transformation of
o(a —a'yy —y'):

D¢ 2 a0 (‘[ql

~ '
olg,y—y') = — A —

(A.1.3)

where we let ¢ = @ — o’ The mtegral in Eqg.(A.1.95) can be represented by KNo(e),
the modified Bessel function of the second kind, of order zero.™
N / 2. / -
oy —y') = — Nollqly — 4"} - (A.1.6)
Y]
IHence, the form factor is given by

Fitinn = // dydy'No [laly = g &) &) Ea(y) €alu) (A1.7)

where we have used Fq.(2.1) along with Fq. (N 1L3).

Infinite well confinenent

We take the confinement potential in g direction as mhnite well
| Y

0, —a/2<y<al?
Viy) = o2y =l (A.1N)

2o, olherwise.

There are two lamilies of solutions for the subband wavelunctions

%sin (11:77%) , neven .
Euly) = = y (A.1.9)
\/: COs (u'f:;) , noodd
where n denotes the subband indices. The subband energies are
Tn?
v, = (A.1.10)

2
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T NPy P ey S A .. y y N ' :
I'he explicit form of Fyy,,.,.(¢) can be found Tor any values of the subband indices
in a straightforward manner. Since we are dealing with the extreme quantiom

limit, we take kLmyn = 1. Using P (A 197 in By (A7) gives

. 2 2 af2 puf2 . , Ty ’/TI/I 2
I(q) = ((—L) / / dy dy" Ko (lgly = 4] {cos ---;— cos —'—) (AL
. (

—af2S—af2 a

A [urther change of itegration variables w = (y — y')/a, @' = (y -+ y')/a yields
A gl e .,
I'(y) = 2/ (l;l;/ de’ Ny(|qae]) (cos me + cosma’)” . (A.1.12)
0 0

Then, taking the integral over @ gives [2q.(2.2).

Parabolic confinement

The conflinement potential is given by
’ L o2 o ,
Viy) = 5;1&2 g, (A.1.13)

where g is the reduced mass, Q is the strength of the confining potential. The

envelope functions in y direction are given by,

N
(y) = w=| VYL (g )b). AL
Saly) [2“11!\/%(}] ( (o/8) ( )
The subband cuergies are
. o : -
I"IL - SZ(” -+ E) (.’\.l.lv’))

Here, b = 1//uf) is the characteristic length of the parabolic potential, and
I, (y) is the Hermite polynomial. The interesting point in parabolic confinement
is that, one can obtain the form factor in closed form. I and O’Connell”
presented the analytical calculation for the Coulomb matrix elements in QLD
system using the harmonic (parabolic) confinement potential. They have given
detailed calculations for some ol the diagonal part of the Coulomb matrix, for
both the intrasubband (nn = & = [ = = 1) and the intersubband (nn = k=,

nn! = m = n) interaction. The underlying algebra is quite complicated, thus we
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cite the general form only and give the explicit form factor for the Towest subbind

casc which 1s our main intevest,
N2 NY V2o 220 4y, PRETRE ,
S B I LN even

ALLLG
0, N odd ( )

Finylg) =

where {N} is a collective index representing N = k + {4 ne + n, Wy () is the

Whittaker function, BN are the coefficients. For .V = 0, the result is%
I'(g) = AV Ko(q*b* /1), (ALLLT)

as given in section 3.1, We also note that, in the long wavelength limit
(by — 0), the typical logarithmic divergent behavior of the strictly one-

dimensional Coulomb interaction can be obtained for this form factor,
F'(qg — 0) — —1n(bq). (AL1S)

Cylindrical confinement

In this case, the wire is taken to be along the o direction with a circular cross
section of radius . We choose the confinement potential as
v, r<l?
Vir) = (A.1.19)

oo, R<r

—y——y \ . . . . .
where » = y? + z2. The radial part of the wavelunction can be obtained by

solving the Schrodinger equation in polar coordinates,

Jg
— === V() ) E) == I AL
(:(..)r/d,_ H(/))w) EEr), (A.1.20)

which gives

| J:u(imu l.-)}
cmu I ; . 'I! ' . A’\lll
. ( ) l{ |:'/m‘|-l(_/mu) ( )

where J. is the nth zero of the Bessel function J, (). The subband energies

are given by
W

I I.lllll
1 (0) oo ['— ] AL1.22
(0) 20l R (7 )
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The total wavefunction has the following form

) | ‘/ ) ; ._’.'.) ) .
'l/{‘lll,lt,k R - (Jl“i, b ¢ ”“(I"(.-‘k‘r . ("\ 1 .3;)
T '//u -+ 1 (J:uu ) )

or - : - . .

Phe integral i Eq.(ALT) has, to ome knowledee, no analytical form.  Gold
N s . . . .

and Ghazali®™ presented analytical results Tor the form Tactor by employing

approximate wavelunctions for the ground state and first excited state,
Sanle) V3L ), (A 121)

Evni(e) = VI2 (0 =), (A.1.25)

with the corresponding subband cuergies,

0

Lo (D) = —— 126

o1 (0) i (A.1.20)
16

Ly0) = ——— AL27

1(0) Sl (A.1.27)

where o = /R, We skip the details of the caleulation and give the final result®

36 I 2 32 (-1

,I" = —— — -1 - . I ( 4 8 4 . Fi W ..._).‘.‘
(q) (i |10 7 3(g0 | OO OTBL (g RYN (g 1Y) (AL1.28)

Here, 1,(¢) and K, (x) are the modified Bessel fncetions of the first and second
kind respectively. The definitions of all the spectal Tunctions employed in this

appendix may be found in Abramowitz and Stegan.™

A.2 Polarizability Function in 1D

The polarizability function (also known as the density-density response function)
is obtained [rom the dynamical evolution of a charge density fluctuation. In the
RPA, one obtains the unperturbed (free electron) polarizability function for an

electron plasma as

Ngw) = Jizu = Ji (A.2.1)

. ]
Wt Gy — et
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where fi is the Fernn distribution function, ¢, = K /2 is the free electron
energy. We write the polarizability function as v = \ | + iy, in terms of real and
imaginary parts. Ilq.\.2.1 can be rewritten as

. L l
X(gw) =" fu [d .y - } : (A.2.2)
k i

Cepg = ) ) w = (G — cpy) + 1y

Using the Dirac identity given below, one can obtain the real and imaginary parts
exphicitly

:—_—/(T);,—,l =P (LL> +im [(2)0(z — =), (A.2.3)

oredk | ]
\ilg,w) = 2P /—/A [w‘ T - ] , (A2

r Gog =) w o (= Gy
dk
\2(q,w) = =27 / 5o dk 0w = gy F ) = 0w =ty (A25)

where the overall Tactor 2 is due to spin states.
1= 0 case

At T = 0 K, the Fermi distribution Tunction is fi = 0(|kpr| = k) . Using this

and the explicit forms ol ¢;’s, Vq.(AL2.1) hecomes

R B — e
A= e fw = (.‘:‘1 -+ _;,f_) w (ﬂ - ’L) | o

e 2 mn 2m
Upon integration we get the linal form as™
'-» "r
m W -
N1 i e (A.2.7)
rq o |w? - wi
where
kg o
'I"( . )
Wy = + . (A.2.%)
I 2in
The imaginary part of \ becomes
'l.'lﬂ ) .
X2 = —/k A [6(w — wy) — B(w — w_)] (A.2.9)
k.
-5 wo <w < wy
= 1 (A.2.10)
0, otherwise
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T > 0 case

Maldague® has given a derivation of the finite temperature polarizability function
and represented explicit results {or 2D clectron gas. We apply the derivation
given there for ID case. lor {inite temperatures the Fermi function is given by
S = {1 +expl(ex — )/} " where ¢ = k2/2m, and j¢is the chemical potential.
To evaluate Eq.(A.2.1) we use the [ollowing integral representation of the Fermi

function.
|

A1 cosh® (o — p) /217

where 03 — ¢) is the zero-temperature Fermi function with Fermi energy 4.

h=:/anU/—u)
JO

Replacing in Eq. (A2 1) and performing the integral over g’ first, we find
l i) le ; 9

!

swy —‘—‘/WI I\ (g, 0, 0) = ; ) A2l
gy wi T p) o Ml ") 11 cosh™ ((je — p) /21 ( g

where y(¢,w;0,4) 1s the zero temperature polarizability function. By using
Lgs.(A2.7) and (A.2.9) we can obtain the real and imaginary pacts for the finite

temperature polarizability function exphieitly.

2Ty ( l/'l \//> |

m "

ilg,wy 1) = — / dtin |-———zes . ,
’ wq o W — (,{/ - \,/I) cosh” (l - »’*’-)

Fi
where y = ¢/4V/mT'. Setting w = 0 leads to the static limit and we obtain
15g.(2.29). The imaginary part hecomes
. me (] - N 9 R
Nolqwy ) = — {_/ [—--— (w -+ ) ] - | [- (w—x) }} . (A.2.15)
T da SR

where @ = ¢*/2m and [ is the Fermi function. We also note that one can make
use of the Kramers-Kronig relations to obtain the real part from the imaginary

part and vice versa.

2 e u) .
mex»/(uuwmﬂﬁ . (A.2.16)

i Jo
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