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Abstract

Kaan Giivcaı 
M. S. ili Plî 'sics

Supca-visor: Assoc. Prof. Bilal Taııatar
S('i)t(‘iııl)(‘r 1995

Ia)vv (linuMisioiial sciniromluclor st i iid iii4's lia\4‘ 1и‘(М1 an (‘Xt(Misiv(‘ i4\soa,rrh iwcix 

ill (4)iul(4iscd iiiatlcr physics. In j âii iculai', iiindi (‘llorl has 1)(Ч'п dcvolnd to lhc‘ 

study ol ciuasi-one-diiiK'iisional siMniconductor sli-iiclures in гесчмП, yc'ars. The 

IK'W physic'al pluMioiiK'iia. in\'ol\4*d in tlu'sc* sysitMUs arisin,  ̂ diu‘ to th(‘ Г(‘(1п(чм1 

dimensionality point to various |)ot(Milial applicalions for iuture teclinologi(.‘s. 

y\ltliough the theory is lainiliar with tin* "oiK'-dimensionar’ pi’oblem for a long 

time, the realization of such structures (also known as (juanlum wires) extends 
onl}  ̂ to ¿1 decade belonx Ilowciver, the по\ч'1 рго(1 исГкя1 t(‘chni([n('s led to a rapid 

increase in the experimental studies which, in turn, required a mor(' realistic and 
comi)rc*hensive theory to anal '̂/c' and int('rpr('t tln̂  obtaiiKnl data. This tlu'sis 
work intends to make a contribution in i1k‘ diiH’ctioii of th(‘S(' imj>rovem(‘nts.

Our study is based on a (juasi-one-diiiKMisional eh'ctron-hole syst em as realized 
in pliotoexcit(‘d quantum wires, interacting with tlu' bulk bO-])honons. VVe 
investigate the polaronic corrections to the band gap and the c:arri(n* eilective 
mass, cirid the dependence of this correction itself to carrier density, temperature, 
and quantum finite size effects. VVe apply two different formal approaches;



tho' p(n·Lurl.)гıtion theory and the vaiiational iiK'thod. 'I'he latter enables the 
investigation of dynamical screening elfects, thereby clarifying tin? (luestion of 
validity of the static screi'iiing approximation in one dimension. Our results have 
shown that dynamical screening is r<'levant in low dimensions. The dielectric 

function, which is a key quantity in describing tin' many-particle properties, is 

analyzf'd under diihn(*nt tip'proximations such as the 1 lartree-Fock ap[)roximation, 

random-|)hase api)roximation. and the more advaiuaxl local-field correction. 

Several confinement |)otentials (inlinit(‘ well, paralrolic, cj lindrical) are presented. 

I'kxplicit results iirc.' ol)tained hn' a (¡a.As (|uan(iim wiiv.

VVe compare the results of tin' |)olar(niic corn'cticnis with tluit of tin? (‘xchange- 

corndalion induced corrections. W'e loiiinl that they are comi)arable in orrler 
of magnitudi', indicating that cari'i('r-|)lu)non int('iactions are more enhanced as 

the dimensionality reduces, and Ik.micc' should be treated on tin etpial footing 

along with the carrier-carri(‘r interact i(jiis. WV* make comparison with the 

pohironic corrections in two diiiK'iisiinial sysUnus. kdiially, we brielly discuss 

the renormalization due to confined phuiions as well.

Keywords: Low dimensional electron gas, exchange-correlation, electron- 
phonon interaction, polarons, random-phase a])proximation, 
Ilartree-Fock approximation, dielectric function.
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DUŞUK BOYUTLU ELEKTRON-DEŞIK SİSTEMLERİNDE 
FONON RENOR.MALİZASYONU

Kaan Gah'oıı 
Fi/ik Yüks(4v Lisans 

Tez Yiaıcticisi: Dor. Dr. Bilal Taııatar 
leyini 11)95

Düî Lİk boyutlu ycin iletken yapılar, yoğun ınaclde liziğiııin g('iıi.ş bir ara.stınııa 

alanını olu^stıırnuıktadır. Son yıllarda yapılan ealısınaların önemli bir kısmı 

özellikle bireyakm boyutlu sistemk'r üz(Tİnd(‘ y’oğımlai^maktadır. Boyutların 

indirgenmesiyle' ortaya гık¿uı ye'iıi iiziksc'l özellikler, bu sistc'inleri gelecekteki 

teknolojik uygulamalara, potansiyed aday kılmaktadır. Kuram, "bir boyutlu” 

probleme uzun bir süreden beri tanıdık olmasına rağmen, bu yapılarm hayata 
geçirilmesi ancak on yıl öncesiiK' uzanmaklaelır.  ̂eni üretim teknikleri deneysel 
çalii^malarda hızlı bir artusa s('b(‘p olıırlUMi, (‘ld(' ('dih'iı (hmeysed ve'rih'rin sağlıklı 
bir isekihhî yorumlanabilııi(‘si için daha. g(T'Ç(‘kçi V(‘ geniş kapsamlı bir kurama da 
ihtiyaç doğmuştur. Bu t(‘Z çalışması da siizkonusu ilıtiyiicın karşılanmasına bir 
katkıda buluııma amacı taşımaktadır.

Çalışma, boylamsal optik fononlarla etkileşen bireyakm boyutlu bir elektron- 

deşik sistemi üzerine kuruldu. Polaronik düzi'ltıiK'leriıı bant açıklığına ve 
yüktaşırlarm efektif kütlesine yaptığı katkılar, ve bu düzeltııu'h'rin p^ırçacık 
yoğunluğu, sıcaklık, kuantum boyutu etkilerine bağlılığı araştırıldı. Bu amaçla iki 
değişik metod kullanıldı; Dürtüsel kuram vedc'ğişken prensibi kuramı. Bunlardan

m



İkincisi, dinanıik pcrdck'nu'cl kik'riııi n̂’̂ zöııüııc almayı sa^huııakl adır. Fdde (Mİiknı 
sonuçlar, dü.şük boyulhırda dinamik c'lkilcisimlorin (.‘ikin olduğunu gösü'rmi.slir. 
Çok pctrçacık etkiK'.sııu'k'ri için icuıu'l 1/ır nic(‘lik olan di(‘l('ktrik ronksiyonu, 
IIartr(.н^l·bck, rasg(d(i laz v(‘ yc'rc'I-alan düz(‘llm(‘l('ri gibi İarklı yakla.sımlarda 
incelendi. Çe.'jilli sımrlandıcı polansiyelK'r modc'l olarak sunuldu. Sayısal 
sonuçlar, bir GaAs kuanlum leli örnek alınarak verildi.

Polaronik düzeltmek'r için elde edilen sonuçlar, değiijim-korelasyondcın kay- 
ruıklanan düzeltmelerle kari ı̂lai t̂ırılabilir düz(‘yde bulundu. Bu, düijük boyutlu 
sistemlerde yükta.şır-İonon et kile.si inlerin in 3 ’ükta 5̂ir-yüktaî5ir etkileşmeleriyle 
a^mı önemle ele ¿dınması g(‘rektiğini gr)stermekt(xlir. Tezin sonunda, iki 
boyutlu sistemlerdeki fonon renormaliziisyonu ile karşılaştırmalar j'apılmakta ve 
sınırlandırılmış fononlarla. yüktaşırların etkil(‘şimlerine kısaca değinilmektedir.

Anahtar
sözcükler: düşük boyutlu (‘l(‘ktron sistemli, de'ğişim-korehısyon, elektron- 

Îonoıı etkileşimi, polaron, rasgede laz yaklaşımı, llartree-Fock 

yaklaşımı, dielektrik fonksiyonu.

IV
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Chapter 1

Introduction

Low (liiiKMisional si'iiiicoiuliichjr syshMiis hvc an (\xtoiisi\'c rc'Si'aixii area in 

condensed inaU.er physics. In parli(4ihii\ sinc(‘ llu' lirsl suggc'sl ion by .Sakaki  ̂ and 

lli(M‘xperim(‘iilal Г(‘аГг/а1/юп by Ik'liolf tl air iiiiicli (‘doi l has Ihhmi (клчЯчч! to 1.1к‘ 

study of (luasi-oiie dinuMisional ((Jl D) slniclures in rc'cent y(xirs. These systems, 

bas(‘d oil the coiiiineinent ol the cluirgt' carriers in two transverse directions, 

exhibit new jihysical ph(Miomena arising Ьчяп the г(ч1псе(.1 dimensionalit}'. From 

fundamental physics point of view, (juantum wires are considered as examph.^s of 

rcxil one-dimensional In'rmi gases, wIkui' oiu'-dinuMisional (d(4‘tron dynamics can 

b('studi(‘d in a controll(‘(l and ((iiantit at i\4‘ maiiiun·. On th(M;th('r hand, progrc'ss 

in the fabrication teclmiciues such as mohxnila.rdxxmi epitaxy and lithogra[)hic 
deposition have made possible i1k‘ jirodiK lion of such Q ll)  systcMMs.^̂ “'' Quant um 
vvii4."s with activii widt hs (along t 1k‘ plain' cd (onfiiK'iiu'iit) smalh'i* than dUO Aaiid 
of negligible (l(.*ss tlia.n 100 yV) thickness have' Ix'en fabr ica ted ,w h ic li  allowed tlu' 

attainiiKuit of the truly (nu'-dinu'nsional ('h'ctric (|uantiim limit, in the s(mis(' that 

only one ciuantum subband is popukitc'd by the ('h'ctrons in tlu' c[uantum wire. 

There is much excitement about the poU'iitial ap|)lications of these semiconductor 

(|iuintum wires as high-speed transislors and (dficii'iit photod('t('ctors and lasers. 

Hence there is ti ixipid growth in ('Xi)erim('ntal research on these structures which, 

meanwhile, acts as a feedback on the theoretical studies. Our main motivation 

comes at this point thiit a more extensive and improved theoretical survey is
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required to make a reliable comparison with the iuture experimental results. 
VVe restrict our attention to the maiiy-body (’ Ifects, and in |)articular to the 
interaction of charge carriers (i.e., electrons and holes) with phonons.

Formation ol a dense electroii-hrjle [)lasma in a si'iniconductor under intense 

laser excitation is a well known phenomenon. 'Гу|)1са1 densities of the plasma 

are of the order of 10'̂  c u r b  Because of the exchange and correlation effects, 
various single particle properties are alfected. among which the most dramatic one 

is the band-gap renormalization (IKIH). '1 lu‘ exchange energy (or the Ilartree- 

I’ock energy), accounts lor the correhilions tjl the charge carriers due to the Pauli 

principle. The correlation energy is dcdined as the (liilerence in energy between the 

liartree-Fock value and any bett(‘r calculation which takes the mutual interaction 

among (he |)articles otluu· than llu' Pauli principle, (he Coulomb interaction for 

('xainple. Both ol th(‘S(' t('rms biing nega(i\'e cont ribii( ions to (he self (‘lU'rgies (d’ 

electrons and holes. 'Flu' change in the sc'lf (Miergies lowers tin' conduction band 

and raises the* valence' l)and, (luTe'by ic'diiciiig (he band-gap. It may b(' useful to 

give the delinition of the BCllv, at this point.

ft К У ';: :О Т(0) +  ^/,(Ü),

where are the (‘lectron and hole self-energies at tlu' la^spective band

edges. The density dependence of lK,iR is important to determine the emission 

wiivelength of colierent emittcMs as bf'ing used in semiconductors.^’'̂  Optical 

nonlinearities are associated with tlu' 1K!1\ plKuionKnion In'causi' a substantial 
free carrier poj>ulation can b(‘ indiua'd by optical excitat.icni and th(‘ consi'Cjiumt, 

band-gap renormalization can ailed th(‘ (xxcilalion ))rocess it.s(df in turn. In 21) 
and ill) systems, the obs('rv(‘d l.)and-gaps ai(' ty[)ically r(‘iiormaliz(xl by ~  20 meV 
within the range of |)hisma densiti(.\s of inleiTist. Hand-gap riMUMmialization as 

well as Vcirious optical properties of th(' (dectron-hole systems have been studied 

for bulk (3D) and (luanturn-well (21)) s e m ic o n d u c t o r s ,p r o v id in g  generally 
good agreement with the corix^sponding nuxisurenunits.^ '̂" '̂  ̂ Dcnisity depend(Mice 
of the BGR in Q lD  systems was first considered by Henner and llaug*^̂  within 
the quasi-sttvtic approximation. IIn and Das Sarma“* also calculat(‘d the HCU,
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neglecting the Iiole poinilalion and c(ni.si(lering an eleclron plasma сопПшч! in 
the lowest conduction subband only. 'Гапа1 а1 *- studied tin' ИСК in ;i Q lD  
electron-hole plasma investigiiting the density, teniptn-ature and quantum size 
dependences. Recently, ('ami)os, Degani and lliitúlito'-'  ̂ pro'sentc'd the e.xchange 

and correlation elfects in a Q ll)  electron gas using a seH'-consislent held method 
proposed by .Singwi, Tosi and SJolander.-' Cingolani et imx'stigated the
(hmsity dependence of a Q ll)  eha tron-liolc' |)lasma сопПшк! in CaAs (juantum 
wires using luminescence s[)ectra.

In low dimensional semiconductor structures, most often made of polar 

compound semiconductor materials, one has the additiomd complication of the 
long-range dipolar Fröhlich int(‘raction betwc'en the charge carriers and the LO- 
phonons which also contributes to the rcMiorimilizal ion ])rocesses. The band-gap 

and the carrier ellective mass are renormalized b}̂  the absorption and emission 

of LO-phonons. It has been shown in ( '̂21) systi'ins tluit,**̂  even for weakly 

polar materials such as CaAs this laniormalization is present. Besides, several 

energy scales in the problem, namely llu* electron and hole Fermi energies, the 

dynamical plasma frequencies, and the FO-phonon energy become comparable 
which emphasizes th«' dynamical screening elfects. We shall discuss the screening 

eifects below in detail.

The coupling between charge carric'rs and LO-phonons introduces a new 

(piasi-particle into tlu; scheme, nann'Iy the polaron. It has Ikhmi quite useful 

in describing the physical projM'ities of carriers in ionic crystals and polar 

.semiconductors. Earlier work on polarons deals with the interaction of a single 

charge carrier and a cloud of dispersionless virtual optical phonons, described 

by the Fröhlich Hamiltonian. Most of the polaron studies in low-diimmsional 

.systiMUS have Ix'en done in th(' oii('-|)olaron limit. However, this approximation 

is ratluM' diliicult to justify because it coiitrasls with the I'eal situation i.e., many 

carri(‘rs |)resent in tlie system. One has to lac(‘ a many-i)olaroii system, which 

requires a many-body formulatit)n treating the carrier-carrier and carrier- phonon 

interactions on an equal footing. Screening by free carriers (electrons in the 

conduction band and hoh's in th<‘ valence band) reduces the coii|)ling betwc'en
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carriers and LO-plionoiis. In the polaron picluii’ , tin' ΙΚ.ΊΙ is associated with the 
i^olaronic self-energy. Similarly, the mass renormali/;ition is din- to the i)honon 
cloud that the carri(‘r has to cany with itself. 'I'liiis screcming, hy lanlucing tin' 
magnitude of the polaronic .self-energ\·, acts to oppose the renormalization and 
tends to restore the ,gap to its unrenormalized \alne.

The eflect ot many electrons cm t.lu* electi'on-|)honon interaction in Q2D 
quantum wells were hist invcistigated lyy Das Sarnia.'“  lie included screening 
effects, via Thomas-l''ermi appro.ximation and latc'r*“ the static KPA (random- 
l)hase aiiproximation). Lei’"* presentcxl a. full dynamical and finite* temperature 

study of the electron self-energy in the presence of coupling with polar optical 
phonons in a CaAs-Ga.M.As systcun. \Vu, Pec'ters and Devrec'se'’ *’^̂  calculated 

the electron-i)honon correction to the* ground state energy of an interacting 

j)olaron gas within a dynamical scrc'cning scheme hy taking into account the 

dielectric, response at all frequencies. Das Sarmaand Stopa·”* studied the phonon 

renormalization effects in Q2D wells, d'hc'y ('inploycxl the static ap[)iOximation 
and the dynamical scheme mentionc'd abova* and ])iesented explicit results for a 

CaAs system. Wendler”’’'’  ̂ am.1 later .Jalahert and Das Sarma'*''* re-investigated 
the influence of screening on the ground state properties of a rnanj^-polaron 

system in Q2D and in strictly two dimensions within the full HPA. Da Costa 
and Studart '̂"* presented a tluOietictil study of the coupled election-phonon in a 

degenerate polar electron gas.

The study of the eh'clron-phonon interaction in Q lD  systems has started 

recently.'“  Campos, Deganl, and Hipólito“’ calcnhited the electron phonon 

contribution to the grouiid-stali* <'ii(*rgy of a (JlD gas of inti'racting polarons by 

using the self-consistent field ai)i)roximation. .Screening of the electron phonon 

interaction in Q lD  semiconductor structures is investigated by llai, Peeters and 

D(‘vree.se.'^

In this work, we present the fornuilation and results on a Q lD  electron-hoh' 

plasma int(.'racting with bulk LO iihonons based on our studies.'"’“ '·'’ * The outline 

of tlie work will be as follows: In the next two chapters we will derive the two 

methods we have applied, namely the perturliation theory and the variational
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theory. The llieoretical n'sults will he ii,i\'cii in th(' coiTespoiiding ehapt(‘rs 

immediately, tlu'n'by making a compari.scai In'twaHMi llu' two melhod.s. In the 

last chapter we summarize tin.' results, and hritdly discuss tin' renormalization 

eifects due to confined ])honons.



Chapter 2

Perturbation Theoretical
Approach

1 1 1  tills chapter, our aim is to calciilalt' tiu' e(l(‘cls ol static scnn'iiiiig on polaroiiic 

corrections to tlie renormalization of band (‘dges and carrier eHV‘ctive mass. 

The rormulation is similar to that of Das Sarnia and Stopa.'^̂  ̂ udiich they ha\'(,̂  
a]>pli(3d lor the phonon r(*normalizaticni (dlects in (juantiim wadis. VVe exttMid it 
to include both (d(.'ctrons and hoh's, as is a|)i)ro|)riat(‘ for a phototwcited intrinsic 

semiconductor.

The perturbative' a[)proach consists of (W'aluating the heading onlcv electron 

(hole)-LO-plionon st'lf (uiergy. Kleclron ilioh') -LO-phonon coupling in QIU 
systems depends on the well wddth, free carrier density, and temperature. 
Screening ¿uid phonon occupancy are temperature dependent as ŵ ell. Since 

the screening Function (dielectric function) c(q) carries tlie dependence on 

these parameters, wa' pay attention to th(‘ formulation of e(q),  and investigate' 

different models : VVe employ t he t('mj)ej*atui4'-d('p('ndent, static, RPA dielectric 

function and address also the' cpiestion of validity of using the plasmon-pole 

¿ipproximation to it. Imrthermore, w-e att(Tiii)t to include the vertex corrections 

in an approximate way.
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2.1 Scaling properties

Das Sarnia cl \uivc lomid dial, \v1j(‘ii 1,1k‘ rarricM* di'iisily and Ui(‘ \vt‘ll
width arc expressed in leriiis of е(Г(чМ!\ч‘ diiiiensionless variables by sealing 

tlunn with the edV'ctixi' Holir ladins lor tli(‘ ma.l(MÍal, llu‘ dim(‘nsionl('ssd)and- 
gap renormalization ('xpr(‘ss(‘d in nnils оГ (‘llr êliu* Kydberg shows a universality, 
independent оГ the band- slruetui4‘ (b'lails of iIk  ̂ material and dc‘pendent only 
on /\., the dimensionless ¡nt(‘r])article s(‘i)aration, and on the dimensionless well 

width. They further showed that this two-parameter universality can be reduced 

to an approximate one-parameter uni\(‘rs<dity by choosing suitable qu¿isi-two- 

dimeiisioiud Bohr radius and (dfective Rydl)erg as effective length and energy 
scaling units respectively. Since we are calculaling tlu' polaronic corrections to the 
band-gap renormalization, we ('xj)i4'ss tli('S(‘ corrections in the same convention 
modified for a Q lD  electron-lioh^ system to be consist(uit with the results for 
Q2D systems. The effective length scale a|)proi)riate for our electron-hole system 
is the (luasi-one- dimensional excitonic Bohi* radius, whereas the energy scale is 

chosen as the effective excitonic Rydberg. They arc' defined as

respectively, wlieixi t is the electron cliarge and is the reduced mass of the

electron-hole pair ~  Ddve th(‘ common ])hysical constants
It (Idanck’s constant), and (Boltznnmn constant) to be ecpial to unity.

2.2 Theory

I'or the two-coinpouent QlD systciu consist iiig of electrons and lióles, we consider 

a square-well of width u with inliiiitc* harriers. It may he l)uilt Irom a Q2D 

(luantuni-Wi'll (grown in tlie .:-direction) hy intioducing an additional lateral 

conlinement. We assiinie that edective mass apiiroximatioii holds and lor (¡a.As 

take »/ie = 0.0i)7//i, and m/i =  U. l/n, where ui is the hare (free) (dectron mass. 'I'he 

effective Coulomb Interaction hi'tween the chai ge carriers in their lowest subband
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is giv(‘ii I)}' t li(' av(‘ra^(‘ over 11k‘ siil)l)aii(l wa\4‘ liiiicl ions

(2.1)

where e,j iy the lattice di<‘Iecti-ic conslaiit and F{(i) is the form faclor (j1‘ tlu' Q lD  
system delined Гог sul)se(|iieiit use. Inu' the inlinile well potential it is given by

У\ч)̂  f d.r Ao((/«·'·)Ju ·
.1·) cos (2;г,г) h —  sin(27r,i·) 

2л· (2 .2 )

in which A'o(x) is the zeioth-order modilied He.ssel function of tlie second kind. It 
is evident tliat the well width depeiuhnice (i.e linile size quantum effects) enters 
through the form faclor into the lormalism. V (r/) is tin? bare interaction between 
the carriers, (.see App('ndi.x A .l)

2.2.1 Electron (hole) self-energy

VV̂e assume that the electron (hole)--LO-phouon intcMaiction is e.xpressed in terms 

of the hrohlich Ihimiltonian. For w('akly polar s<Mniconductors, where Oe,/, is

small, cl systematic [)erturbation expansion in the coupling constant is
meaningful. We sliall discuss two methods in this context: the Brillouin-Wujntr 
¡X: rlurballon ihtorij (BW PT) and the UaijlcigJi-Schi'odiiKjcr pt rt urbalion theory 
(RSPT). The eciuation for the (Uiergy spectiiim Id of a partich' of momentum 

vector k is,
/' =((A:) + He[T(A·,/·:)] , (2.3)

where X1(A, Æ) is the retardetl self-energy, and ( (/.■) == k^f2ni. In BW PT, the 
imaginary part of the self-em'rgy is lu'gh'cted and F(p(2.3) is solved by an

approximate self-energy ('xpression in which lirst lew t(,'rms art' evaluated in the

perturbation expansion of 'I’he I'atiiiii-DancojJ approxiinalion (TD) is

a spo'cial ca.se of BWP'l·, where only the liist term (the one-phonon term) is 

evaluated. In tire Rayleigh-Schrodinger form of perturbation theory (also called 

on the mass shell perturbation theory) mungy and momentum tire no longer 

separate variables. In evaluating E(A·, A’ ), the energy is set eqiuvl to t(A), so the 

self-eiK'i'gy is just a function of one variable /.· or, e(|uiv;ih'ntly <{k).
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The studies on tlie eh'ctron i>huiiuii iiil(‘|·¿ı(■tiıяı roiitribulion lo tlu' electron 
selfu'iK'rgy ill 21),” ’ ’·'' and lia\'e sinnvn I liat liSP'l’ win ks hel lei' I lian IIW'I’ 1'.
'I'll!' Гоппег of tliese studies is (l.nic in I lie one pidaion limit, whereas the latter 

and the recent one investigates a niany-polaron prohlein in 31). In the light of 
these conclusions, vve liase our ionnulation on HSP Г.

'I’he li'ading order polaronic si'H'-energy for a (^11) system is given by'“^

A·, =  - 7 '  I ^  '̂ ' ' “  Ч- 'SM -  ) P(<p , (7.1)Au 7тг

where 7' is temperature, M^j,[q) is thi' unscreened electron (hole)-phonon 

interaction strength,

i .v .a - / ) i -  = \/'-OI, Ji'-ClX)
(2.5)

and S,a and lOn iH'C the standard Miitsubara I’requencies. The Frohlich coupling 
constant for electrons and holes is defined as

1 Í  I
2 If:.,.., f(j/ ^’[̂ Q (2.6)

111 Eq. (2.6), f-oc. the optical dielectric constant, =  36.5 meV is the bulk 

LO-j)honori energy in CaAs.
Of,h{h — (li 'iin ~  i^n) E the one-electron (hole) (¡reim’s function. In principle.

it should be determined front the Dyson (4iua.tion 6»̂ .  ̂ =  6',,/ 
G’o<.,/,(A:,iif,i) is the non-interacting (.¡reiMi’s function,

6''oey(A:,/if„) =  [î n -  E’u ,.,/,( A·)] ,

e , / i w h v VC

(2.7)

with -  <o.;,/i(A·) -  IP,h, where (u,,/,(A·) and /q,./, are being the single

(non-interacting) particle t'lier.gy and the cliinnical potentitd lor each species, 

respective!}'. Equation (2.1) along with the Dyson I'quation thus defines a .set of 

coupled equations which should be sohi'd sell consistently. In practice, however, 

one can substitute Go for G in E([. (2.1) to obtain a rather good leading order 

self-energy correction for the iiolaron problem.
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D{([. i^n) is t.lie rciiornializ('(.l ljO-j)liuiioii propaiialor describing the plasrnoii- 

phoiiuii (‘(aipling proci'ss. It is gi\(‘ii by

/'*((/, t ^ \ , )  u e „ ) (d.bj
c(//, L·' ,  , )

\vh('re D(, defiiu's the bare-pliuiiun pia>pagat<)r. If one tn'ats tin' I.O-i)lioiu)ns 

without any tlispi'isiuii, and lake tin· pluaion eneigy at a lix('(l .cio, it has th(‘ 

iorin

/w’„ ) — — •t.o
., · (2-9)-u-'fo

In general, the systt'iu under study invul\(\s three different fields, namely the 

electron (hole), phonon, and plasinon, that are coupled to eacli other. These 
processes are not quite ini|)ortant in descrilhng tfie ground slat(' of the system. 

\V(‘ shoidd note, however, that they |)lay a fundanK'iital role I'oi· the excitations 

of the system. So, we neglect tlu' pfasmon-phonon coujrling, fjy using 7do instead 

of 7d((/, /ca„).
'I'he electron (hole) dieh'cliic function -[(piuj,,) c<uilains aJI the information 

a.bcuit screening. A lull dynamic screoning in the p(‘rturbalion calcidation is 

intractable, so we shall work with static screening, i.e. u;„ —r 0. .-\ detailed

analysis of the dielectric function will b(‘ given in sc( tion (2.2.d).
Under these assumptions, t he self energy expression can be written as

V n. : n  _  __________  r  I—'t ,/l ( ) A-v------------ / f / n\l'■7T x/2nf,.y^no Aj [;(</, U)J-

X >h) +  J, ,h( '̂ ~  '/) + - i>i) + 1 -  -  <i)
. ( 2 . 10 )

+ '̂\.o ~ 7'.u<:,/,(̂ ' — <y) tin — ^LO ~  7'.ü,,/,( ·̂ “  <y). 

riere, /io and Jc,h are tlu? Bose (i)honon) and I'ermi occupancy factors respectively

"u
C'.ii)

- J

We will show later tliat when the Fermi energy E¡·’ C  Fermi occupancy

effects will not be important, as in the case of two dimensional (2D) systems.'^“
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Jo obtii.iıı the real pail, we do the slaiidard aiialylie coiit iiiual ion If
S/<

4- ;f ///
with // -4 Q·̂ . We also change 1 1k‘ (Miergy variabh' from to c, wli(4*e t —  ̂ ^.

I  ((¡)
( 2 . 12)]{.eV ‘ ■ d^i

7Г у/2///,^д4’1д) Уи [-'(</
//и Ь /  ,/ЛА· " V )  ^ //() + 1 — /, д (А* — (/)

( -|-и.'|д) — ((),,а(А· - ( ¡ }  ( - - cjj^) — (и,,/,(А· — i/)_̂

We make Ukî usual assumption оГ parabolic- bands, taking the* (‘leclron and hole 
single particle energies to be (o,j, {k) — lr/2ni, j,. This should l)e justified for 
the GaAs example w'e consider in this work, but for certain semiconductors 

such as liiSb, nonparabolicily effects would require higher-order corrections. 

In addition, we evaluate.' the (‘h'ctron (hol(‘)-phonon self-energic.'s on the mass 
shell =  A:“/2//g-^/J to ol.)lain the ixdaroiiic corrections at the b¿шd edge

[lie L-.,,.(0,0)1

E , =  -

X

1,0‘2 a , ,k _

7Г c,/e^’LO

-  F(q) {2 n o + \ ) { r / ‘2m,,n) +  {2f c M ( q ) - \ ), I'((¡I
i  4 s iq W {(¡'C2m,jJ- -u j'to

(2.13)

2.2.2 Polaron effective mass

The clefinition of the polaron elfective inas.s (in tlu' long-wavelength limit) is

n i
-1- lim -  —  Re T,,/,(/.;, k~ f 'lm ) .

,h iî ,r,h 2̂k·
(2.14)

For low temperatures (7' < .30K), wc ru'gh'ct tlu* ])honon occupancy, taking 
Uq —> 0. The remaining integrand can he expanded in powers of h. Then, taking 

the derivative, and letting k —* 0, we obtain

1 o,,/,
rn m c,h  r n , j ,

'i.o /■·" , I 'V i )
,,Л./и ' " ‘ H q W U o> / 2 / n , III,, 4- q C 2 4 ic ,h Y

(2.1.5)

The above expression yi<4ds in the weak coui^ling limit (cv̂ ,/! —> 0)

vi* ~  iiicJiO "t ^^C), wln're C is given by the expression inside the brackets in

Eq.(2.15).
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2.2.3 The dielectric function

A lull treatment of the total dielectric function lor tlie eleci r(;ii-liole system 
coupled to LO-plionons is very comjdicated. In general, the total dielectric 
function should be in the form

■ I ^ f J l  h j/h , (2.1G)

where ‘>-nd cp/, are the electron (hole) and |)honon dielectric functions 
respectively. We take tp/, =  0 and make the so callerl co a])))roximation which 
consists of replacing c,;.,, (high fre([uenc\  ̂ dielc'ctric constant) by to in the Coulomb 

potential (E(p(2.1)). The rationale for this ap|)roximation is that the main 

effect of the high- fretiuency LO phonons is to scrc'en the Coulomb interaction, 

whicli is suitably accounted lor by tin' rephicenu'ut of Iry to- Das Sarma 
ct alT'̂  investigated tin' validity of th<‘ (o ap|)roximation for llu' 21) and Q21) 

semiconductor quantum wells and concluded that, for weakly polar materials 

(e.g. CaAs, InAs, Ce, .Si) the band-ga]) renormali'/ation is very well approximated 
by to provided tluit the carrier densities do not rtsudi very high \’alues. This is 
because with increasing carrier tlensity the henui energies become comparable to 

the LO-phonon energy which makes to approximation less ap|)ropriate. Since the 

density range of interest in our system satisii(>s the condition Ep <  tuno, the use 

of to is reasonable.
So the total dielectiic function reduces to canT'r dielectric functions only, 

'file delinition is

=  1 -1- '

where V{(i) includes tin' carrier-carrier interactions only, and \ is the polariz­

ability function ol the charge carriers. In the I lari re(’ l''ock approximation I he 

Irare (non-interacting) |)olarizability luiictioiis aic used (w(' suppress the </ and cu 

dependences):

\ - \ u ,  (2.18)

JIFA ^
I +  \;v
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In the HPA, the polarizability ruiiction is

\o
1 -  r\o

(2.20)

which gives
.in'A l - r \ u .  (2.21)

A further advance for includes the local held corrections

\u
A ( 2.22)

] -  \ (1 -  6']\„ '

where Cl is known as the local held lactor. TIk' corresponding form of the 
dielectric function is

1 “■ 1 \o ·

where 7  is the verte.x corrc'ction

I +  Vr<'vü

(2.23)

( 2 .2-1)

The unscreened limit is obtained by

I , (2.25)

i.e., no interactions are taken into account. The al>ove ecpiations summarize the 

general form of the dieh'ctric function in s(‘\('ral approximations. For our system, 

we work in the static screening approximation, and employ the static RPA for 

th(' di<'l('ctric function

e[ (pu  -  0,7') =  1 -  V[i¡) [a , (7 , - '  ■--- 0 . 7') |- \/,((y,c.- =  0, 7')] , ( 2.20)

where V{q)  is the Coulomb interaction between the charged particles, and 

\, l (̂<pu) ~~ 0 , 7 ') a.r<' the liiiile Icmpi'iatiire static pwlarizabilities lor (T'ct.rons 

and holes. The form we use lor ¿'(i/,0) is aj)propriale lor a photo(‘xcited intrinsic 

semiconductor, since screening hy electrons and lióles are treated on an equal 

footing. In the case of doped n- and p-type si'iuicondnctors, screening by electrons
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and holi.'s sliould be consi(,lcred sepaiately. Al zero t,cniperatiii4 \ tlie general lorin 
ol’ the polarizability ruiie.tion for a. Q ll)  ('lection (hole) gas is gi\en by'"“*

(2.27)

with

m
7Г</

·) )

(2.28)

— iii/(¡ if ;> (̂ ' >

0, (Л

where u;̂ - =  q“ :Jz k‘Fq/m, j, and A-y.· — is lli(‘ 1чм-пи wave x'ector

(see a])peiidix A.2). H\ncc wr are dralijiir with llu' case i\\ =  Лд, ky is the 

same for l)oth s])eci('s. 1ч)1· tin* sialic cas(' {.j — l)j. the imaginary i)art is zero. 

Note also tliat the real part div(‘rges for (/ ~  2ky.  VVe calculate the iiiiite- 

temperature ].)olarizabilit ies using th(‘ Maldague ’ ' api>roach starting from the 

zero-teni[)erature Q il)  polarizability of an el(‘ctron gas

/У 4- \//
Xc,hi(¡po =  0,7') ^ I  (¡I in

yq Ju / /

1

C(;sh "(.r/'i — / j
(2.29)

where ;r == V — /̂/ i ,///'· lhu(' //,  ̂ ai (' 1 lu' ch(Mui(’al ])ot('iitials for
ciach s|)ecies at finite t(‘in|)(M’a.l ui('. (s(‘(‘ app(‘iidix A.2)

In various a))[)lica.tions, tin' di('l(‘(.*tric lunclion z{q) was lurtlnM· sim])liii(‘d l)y 

the plasmon-pol(‘ approximation to the following foi*m̂ ‘̂

:(</) =  I +  E (-'V·/·'/"'.''·.) +  {чЧ-ЧЧ?  '

where the plasmori frecpiency Гог the (^1)'^*' system is =  (Nlrni)V((j)  (in 

the long-wavelength limit), and the screening parameter is л·, =  ON/Opi. The 

plasmon-pole aj)])roximation consists оГ ignoring the weight of single-particle 

excitations and assuming that all the weight of the dynamic susceptibility Xo(</, 

is at an elTective plasmon ('iiergy u-y,.

(2.;W)
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'lo  improve RPA, we iiidiich,· eU'eels of local li('M correction, bding 2.2.'5) 
\vc account for the verte.x corrections lo \(q) in the inean-liekl sc'iise. We use the 
('(juivalent ol Iluhhaid appro.xiiiial ion lort/(i/j in oue-iliniension "

I i ( У'/· -I- bj,)
(2..П)

Tlie phy.sical nature of tin' Hubbard approximation is such that il takes exchange 
into account and corresi)onds to using the Pauli hole in the calculat ion of tlu* l(K al- 

field correction between tin' particles of the same kind. Coulomb correlations are 
omitted. In this simple form, tin' sialic local-liehl factor C'{i/) is tempera!ur(‘ 
independent.

2.3 Results

2.3.1 Polaronic correction to the band edges

We first investigate the density dependence' of the' polaronic correction at low 
temperatures. Since the dielectric fund ion s((/) of a Q ll)  system diverges at 2Ap.· 

and T  0, we choose a small but finite tem])erature to work with. Figures 2.1 (a) 

and 2.1 (b) show the electron and hoh' [)olaron energies, respectively, as a function 

of the carrier density N  for various well widths at T =  5 K. d’he solid curves 
in both figures, from top to bottom, indicate widths of a =  500, 250, and 

100 A. With increasing plasma d('iisity, the i)olaron energy decreases indicating 
the screening of the ('lection (hole) LO-phonon interaction. On the other hand, 
the effect of the finite size of tlu' c|uantum wi'll is that the polaron correction 

decreasijs as the well wi<lth increases. Das Sarma and Stopa, have showir*^ that 

in Q21) systems, the polaron energy drops olf vc'ry rapidly as the well increases 

from 0 (strictly two dinu'iisions) to 100 .-\. It tlu'ii continues to fall more slowly 

as the well thickne.ss iucr('a.ses further, .\lthough W(' do not show the strictly one­

dimensional limit, the behavior is the sanu' in Q lD  systems. There is a tendency 

for higher densities to be slightly h'ss allecti'd by an increase in well width than
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lower densities. 'I’liis can b<; seen by reeogniziiig thaï at liigluM· densities the seli'- 
energy depends rnor«' strongly on coupling with shorter wa\'el(Migth (higher q) 

phonons; the others being screened out. 'l'he rorin factor for finite well thickness 

affects most strongl}' thos<‘ short wavelenglh idionons.

In order to see the influence <;f llu' fei ini occupancy lacfors. W(‘ also plot by 

dashed lines calcnlatc'd willioiil. /, /, in K(|. (d.b'f). In the «lensity i'ang(‘ cd 

int(?rest, they are negligible small, e.\C('|)l close to A' iO'‘ cm “ ’ both for electrons 

and holes. Since I'jj.' ^  /'y.· ~  N~. it turns out that the conditicm /rV < <  ’̂i.o 

breaks dowji for A’ > l(f‘’ ciir '. In other woids, the ( arriéis start to fill their ne.xt 

respective snbbands which \ iolates the extreme (inantum approximation.

Also drawn in tlu'se (iĝ nrc's by hcni/caital (hotted liiu's are the unscreened 

energies. They are calculated using Kq. (2.1.’5) with c{q) -s- 1, iio —̂ Ü, and 

I'tji d. The no-screening limit depends only on the well width, and typical 

numbers are — —3.879, —’2.10.3, and — l.-ñT.á nuA' for wfdl widths of a — 1ÜÜ, 

2.50, and ÓÜÜ.4, resiri'ctively, hu' the case of eh'cti'ons. The corresponding values 

for hole's are Ep — —G.fi.’l f ,  —3.773, and —2.310 me\'.
In Figs. 2.2(a) and 2.2(b), wo show the effects of finiti' temia'ratnrr' on 

the ]j(elaronic corr(.'cti(jii to the band gap as a Imiction of plasma di'iisity at 
a 100 A. 3'he solid lines indicate, from teq) to bot tom, 7' — 5, 100, and 300 K. 
We note that as the tenqreratnre increasi's, A), also incieasi's in magnitude. .As 

a general trend, the [)honon renormalizat ion decn'asc's for higher value's of the 

carrier density, while its rate is tempc'ratnre (h'pendent. '1 he dashed curves in 
Fig. 2.2 gives the 13(!U calculated within the |)lasinon-pole approximation to tlu,' 
diedectric fnnctiiíii using the same |raiainelers. We note that tlu' temperatni’e 
d(‘pend('iit plasmon-i)ole appro.ximation yields cousidc-rably diflc'rent la'snlts from 

the RFA. Das Sarnia cl have' fonnd significant deviations of the plasmon- 

pole approximation from the full KF.A result in two-dimensional (’2D) (|nantum 

wells. Our calculations suggest increasing discn'irancies betwo'en the lull RF.A 

and plasmon-pole approximation as T  increases. Tlu' temperature dependence in 

the plasrnori-pole approximation (Fxp (2.30)) mainly enters through the screening 
parameter k and it is conceivable that differences originate from somewhat
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1 0 * 10®
N (cm “‘ )

10 '

Figure 2.1: rjensit}’ (lepeiuleiice of t 1k' polaron corn'ct.ion at dii['crcnt wire widths 
(a.) l\)lan)ii coir(‘Ctioii to (lie coiKliH tiDii baud cdg*' as a ruiictioii oI’ iIh* canii'r deiisily 
A' at 7' ~ 5 K. Solid (daslicd lines iroiii lo|) lo bottom are lor w<'ll widths a — bOO, 
250, and iOO/l, with (wdthoiit) l ermi surface effects. 'I'he corresponding dotted lines 
indicate the unscreened liiiuts (not all of them are in tlie ranges of the graphs), (b) 
Same for the valence-band edge.

different temperature depeiuhmces.

ilaving establi.shed the insignificance of the f''ermi occupancy factors in the 

polaronic correction to the BCR in tin' density range of inteiest (10 ‘ <  A' < 

10‘' c m “ \ we now turn to the temperature deiiendence of Fp. Fig. 2.3 shows 

the polaronic enc'rgy as a function of tenip('ra,tur(‘. f'hg. 2.3(a) is the conduction 
band correction for various carrier densities, in a (|uantum wire of well width 

a — 200 A. Solid lines from top to bottom are for N — 10‘ , 10 ’, and 10*’ cm “ *, 

respectively. In Fig. 2.3(b), the same (piantity is jdotted for the valence band. 
At low temperatures, iv,, is due maiidy to virtual phonons, since «o (the average 
number of real phonons in the system) In'comes vanishingly small as T  —> 0.
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10 '

N (cm  ')
10^

N (cm "*)
10̂

Figure 2.2: Density dependence of the polaion correction at diU'erent 
temperatures
(a) Polaroii correction to tlie coiuhiction-band (nlgc as a function of tlio carrier density 
N for a quantum-well wire of width a ■- 100.4. Tlie solid lines from top to bottom 
indicate 7’ 0, 100, and 400A’ calculated with full RP.\, whereas the dashed lines are
with the plasmon-pole approximation, (b) Same for tlu' valence-band edge.

At higher temperatuii's, the average phonon numher increas('s and emission and 

absorption of phonons contribute to A'̂ , througli the factors i?u ‘ind Uq 1 in 

I'hj. (2.13). 'I'lie daslu'd lines in f'ig. 2.3 are calculated without the plnmon 

occupancy factors no but we retain the dielectric function £{</). The dilference 

between the daslied line and the corresixmding solid line is a measure of the 

thermal phonon effects, which sevm to b(‘ imporlanl for T >  100 K. The dotted 

lines are calcidatcd by setting c(q) — 1 whih' k(.'(q)ing the phonon occupancy 

factors, in the no-screening limit this (piantity is independent of the density.

For the most part, the deiienchmce of self-cmergy on density and temperature 

merely reflects the depiuidence of screening on t('mp('rature and waveliingth. Das
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Figure 2.3; Tenipeiaturc (li'pcaiU'iice of tlie polaioii correction.
(a) Correction to the couductioii-baiul edge for a quantum-well wire of width a — 200 
A. I'ho solid lines from toj) to bottom indicaU! N — 10*’ , 10*’ , and 10* cm~^. The dashed 
lilies show the eifectH of thermal phonons (uq =: 0). Tlie dotted line is calculated in the 
no-screening limit, (b) Same for the valence-band edge.

Sarrna and Stopa have shown'*** that in Q21) wells, there is a comiietitive behavior 

of the screening and anti-screening (dlects on the jiolaron energy dc'pending on 

the phonon wavelength at very low tcmpm-aturi's. 'The long wavelength (longer 

than the average interparticle sc'paration ~  1/A'y. ) phonons alfect the electron 
more clearly at finite temperatures, and hence these rmiorinalize the energy more 

effectively than at T ^  0. However, for phonons whose wavelength is short 

according to the critm'ia given aliovi', scremiing increases with temperature. At 

T  =  0, other electrons are apiiarently "frozmi out” of the region immediately 

surrounding a given (dectron. As thermal effects set in, the other electrons 

penetrate this region so that very short wavelengths are screened better at nonzero
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tciniHiratures. For low donsitii's long-wav('l('iip,t,li .scrcciiiiig dominates so llic self- 

ciKM’gy ([(‘creases inonoLonically, At s(mi('what higher d(‘iisities th(‘ anli-scn'cniiig 

of short vvav('leiigth starts to show u|). In their work,'^ tlu'y liave found that the 

anti-screening may lead even to a. weak maximum near T — 0.

The foregoing r('stdts for the |)(daronic corrections at the conduction and 

valtnice l)and edg(.‘s imply a total ol ~  lUmeV ri'iiormalization in the density 

range 10* < N <  10*’ cm“ * which is comparable to the exchange-conxdation 
c o r r e c t i o n s . T h e  phonon renormalization eilects become negligible for 

densities N >  10** cm “ * irr(‘S|)ectiv(‘ of th(‘ (|nantnm wire well width. We observe 

tlu'se effects ¿dso for a (luantum wire of width и -- 500 A in Fig. 2.4. The solid 
lines in Fig. 2.4 are calculated witli th(‘ liP.V dielectric function, whereas in the 
dashed lines vertex corrections are incluch'd. Inclusion of the vertex corrections 

in the dielectric function tlirough the local held factor brings about considerable 

changes in the theory of metals.

We observe that within the sim|)le Hubbard apinoximation to C((j), the BGR 

deviatt;s oidy slightly from the RP.A result. 4'he difference in l'!p with and without 

G{q)  is largely indepench.'nt of temperatui<‘. Wc* have also found good agre(‘inent 
for other values of the well width. Th(‘S(‘ results suggest that the RPA is valid 

(in the range 10'* < N <  10*’ cm“ *) provich'd that the local-lield factor we use 
is correct. In order to assess a more r(‘liable measure of corrections beyond the 

RPA, better approximations to the local li(‘ld factor C{(j) are m'cded.

2.3.2 Effective mass renormalization

The temperature clepimdent behavior of the mass renormalization is also a 

consequence of the dielectric function c((/,7'), its main effect being to reduce 

the electron-phonon coupling. In the no-screening limit (£((/) —»· I), the effective 

mass (renormalized mass) is independent of temperature and carrier density,

—  =  — ----- —  r  dq F{q) --------------------------------- -----------J  (2.32)

which we write as l/?n* =  (1 — cxB)lm. In the opposite limit of infinite screening 

(t —+ oo) the electron (and hole) no longer couplt's to the phonon and there is
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F ig u i ’e 2.4: Vertex correrlions
(a) For tlie coiuluctioii-baiid ('dge as a riiiidioii oftlK· carrier density /V for a quantum- 
well wire of width a  — 500.1. The solid lines from top to l)ottom imiicato T  =  0, 100, 
ajid 300A'. 'I'he tlashed line.s are calculated with a dielectric, function which inclmh's 
the vertex correction.s. (h) Same Ibr the vidi'iice-hand (>dge.

no irictss renormalization, i.e.,  ̂ riiiis m* is bounded between the

values 1/(1 — a B )  and 0.07 (0.1 lor holes, and in units of bare electron mass). 
In Figs. 2.5(a) and 2.5(b) we dis])lay the per cent change in the band masses 

for electrons and holes, i4'spectiv<'ly, as a function of temperatui'e. To illustrate 
the density dependence, we show (by s(did lines) from top to bottom N  =  10‘’ , 

lO'", and 10''cm “  ̂ for a (luantum wire of well-width a =  200 .Л. Indicated by the 

dotted lines are the no-screening liitiit results discussed above. VVe observe that 

mass renormalization is rather lai'ge both for idectrons and holes, ~  6% and 10%, 

respectively.
We are not iiware of any experiments to compare our results in quantum-well 

wires where the temperature d('p<mdence of tin; polaron mass is measured. In the
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Figure 2.5: KfFcclive iiuiss renoniULlizatioii 
(a) At the conduction- band edge as a funclion of teiiii)erature for a. (luantuni-well wire 
of width a =  200A. Tlie solid lines from loj) to bottom indicate iV = 10̂ , 10'̂ , and 
10'̂  cm” ;̂ the dotted line gives the no-screening limit, (b) Same for the valence-band 
edge.

case of 21) systems, Das Sarnia and Stopa'^̂  ̂ found llu' mass renoriiialization to l>e 

rtither small compared with the cyclotron r(*sonance data. Sinc(' oiir analysis is 

along similar lines, we do not expect to olitain good agreement with the cyclotron 

resonance experiments. It remains an open problcMii to develop an adeciuate 

theory of screening of electron-phonon coii|)ling in high magnetic fields.
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Variational Method

In low dimensional stnicliires, i Ik  ̂ [)liismon (мкм'цу ;̂̂ ,/(A·) is 9;enerally nuirh 

smaller than lln.' LO-|)lionon (пичгуу in eoiitrasl to the siliiation in bulk,

wliicli may cause ilu‘ diel(‘cti*ic Innction to l)(*li<iv'(' vc'ry dilhu'ent at iinil('

^  ^Lo from its u; — 0 value (i.(\, static \’alu(‘). Thus, the dyiiamical screening 

effects are ex[)ected to 1)C im|)ortant in low dimensional systems as |)oint(id out by 

I.ei.' '̂  ̂ In this clia.pter, wc d(‘V(‘lo|) a \'ariat ional lormulalion of the contribution of 

dynamical screening to the ground-state (Miergy of an Q il)  interacting electron- 

hole-phonon system. Our method is the g(‘iiei-a.lization to two-component plasma 

of the variational calculation of polaron (niergy giviui by Lemmens tl The 

Q lD  system we study contains (dectrons and hoh's at ecjiial number density Ab 
a[)])ropriate for an undoped, i)lu^t(;exril(sl semieonductor, and w<‘ considi'r the 

coupling with bulk LO-phonon modes. We C(un|)ai4'our results with ])erturbation 
theoi'y caJculations регГошич! in llu‘ pi4‘vious eliapt.(‘r, to ass(‘ss tin' validil.y ol 

static approximation to tlu* scr(4‘iiing (‘ll(4 ts.

3.1 Theory

The specific model'we use in our calculalion for the Q lD , eh'ctron-hole fluid 

is developed by Das Sarma and Lai®''* and is ai^plicable to the experimental 

realizations of semiconducting systems.'^ The charge carriers are assumed to be

2:1
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in cl zero thickness .Tv/-plane with a. liarmoiiic (¡raraholic) coniinernent potential 
in the y-direction so tliat tli(( subband eiuTgies аг(> — Q{n +  1/2) where Cl 
describes tlie strength оГ the confining potential. .Again, we shall assume that 
both ty|)es of carriers are in tlu'ir lowest suldiands. This ai)i)roximation will 

hold, as long as the snbband separation remains much larger than the phonon 

energy in ([uantum wiri's and tin' thermal eiungy ktjT. The Coulomb interaction 

between the partich's in our moded Q lD  systiun is given by'·''̂  (2e*/co)/'’(<y) 

where /''(y) ~ <‘X|) ( / r y ’/  l ) /\'i,(/'“</■/0 which /\(i(.r) is t he modifii'd Hessel
luin tioii, and ··'’ lb<' backgruuud dielectric cuii:>taiil. (see appendix /\.l). The 

characteristic length b — i j У /dl, when' // is the reduced mass of tin.' electron-hole 

pair, is ri'lated to the conlining put('iitial strengths ofi'lectrons and holes, and for 

simplicity we use throughout this рарс'г tin' sanu' value of h for both species, l or 

more realistic calculations this la^striction may I'asilv bi' relaxc.'d.

3.1.1 Lee-Low-Pilies lYimsibniiatioii of the 

Hamiltonicin

The total Ihimiltonian for the interacting many-|)olarou system is given by

yC2 I

; h Ч ‘ ,J l-<P:P'
+ E E ( ' « c , s h e « ; , , ( : U )

wlu're i j  a,re the indices siM'cifying tdu' carrii'r ty|)e (i.e., ('h'ctron or hoh'), 
and a,I are the creation and annihilation opi'iators for jihoiions with energy a.’i,o 

and wave number </, whereas c| and i·/., i<'sp('ctiwly, cix'ate and annihilat.e an 
el(;ctron (hole) with wave V(x:tor k. is tin' Coulomb interaction In'twei'ii

the particles. The electron (hole)-phonon interaction matrix element is given 

|jy')o,4C,‘i7 _  ■ 2o,· Lo'(QI\/'2riI¡uio h'iq). So the first and second terms in

the Hamiltonian are the free ('lection (hole) and jihonon energi(;s, respectively, 
whereas the third and fourth terms describe the carrier-carrier and carrier-phonon 

interactions.
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VVe employ the I.ec-Low-lhiu's uniUiry transioniialioii**' apj)ioach as de\el- 
opecl 1>3’ Lenmiens ct and \Vu d  «/.■'' in application to 3D ;uid Q2D systems, 

j his is a canonica.1 translormation which Ijclongs to the standard procedure's to 

ohia.iii variational esl imal.es ol ihe L'Toiind si ate eiK'i a)'ol many polaron proMem. 

In order to clarify the dillerences helweeii this and the' [H'ltnrhation ajjprcauh 

we nn'iew the essentials ol the method. 1 he Hamiltonian given by Dcj. (3.1) is 
sul)ject('d to the similarity traji^format ion

U Q . {■■Cd)

where

<'-■/ )

The variat ional parameteis /,,,, ai(' to be deti'rmined by minimizing the ground- 

state energy. The transformation of tin' operators can be calculated using the 

Baker-Ilausdorif equation c “ ' ' / ic · '  =  B -t- [B, .1] +  ;7j [[/i, .1], .4] -(-... The [)honou 
operators and a} transform as displac('d o|)erat(us:

I ' - 'a J I

(3.1)

-  «J ”  E  .
I

' l̂'li(‘ tra.iislbnnalioii of llu' ('l(‘(·tгoπ (1k;1i‘ ) ojMTalors giv(\s

-  ('xp y  . J C<I ■ ^̂ -<1)
L 'I

(.15)

y  . Jidlc - ' c ' . a '  =  ' l o - s *

The transformation leads to the following form of the llamiltouian: 

U~^'HU — Ilhia +  +  ^̂ ¡>-1̂  T T Bpli-jjli -f .

IBin is the kinetic energy of electrons and hohrs :

, r  ̂' t^htn — 2^ < · (3.7)
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III,I, is I lie |)lii>iioii p.irl, :

h'l
k-

( 6. 8 )

11 ¡1- ¡) < It'scri b(‘s Uu' iiKKlilicd i 111 (Tad loll Im'Iuvcii 1 he Cliargr ('arricrs :

llp-i> — I) ^  '̂.I ^ ’ (6-9)
'.J

where \\j\q)  is giv(,'ii by

id/^(r/) -  I ;-(i/) -  2( -  ^ x o i . , j ' i i ) . (.6.10)

JIj,-ph (:arrier-i)li()iioii iiitcraclioii :

^  >.//,■/î /̂ I' {'^A.7 “  ^’1.( ).//,(/)̂ /̂j

( :U1)

llpi,-pk tcnu gives the iiilciraclion bet\V(‘(*ii tlie phoiK îis inedialod by the charge' 
caniiMS :

i,k

8“ (./1 ; . / ^  /.' I 7“'/' b J7 . /  ̂A--7 + 7' )

Odie remaining term //,v contains only the niimber (jperator yV, :

ff/v =  E
C7

(^Lo +  -  (·■'/,:7./o7 +  -v/p-,/;:,;) .'V,.

In the next section we discuss tin* ground state energy oI the translormed 

Hamiltonian.

3.1.2 The Variational Ground State Energy

For weakly polar materials the mean number of virtual phonons (i.e., the 
deformation of the lattice due to the presence of the charge carrier) in the polaron
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cloud is small. 'riuMvIcjn', tlu> |)lioiioii |)iirt of the L’.iiamd stale \va\'e function can 
he descrihed hy by the vacuum state |e(/c 'I he tolal wav<' fimcticju of t he 
ground slal(! is lluMi

I'/',./·.. l·'"'· - I'/’, >. (d.M)

where |i/>, >  are the groniifl slale wave functions of electrons and holes. Within 
lids ansatz, one can cijiistruct a reduced Ilamiltijidan which operatc's on tlu‘ 
ground st-at(' of the diarge raiTK'is oiil\· :

il,,u =  < V(u]U-^'HU\l'UC>
1 —̂

iyk

- E N..  (3.15)

The minimum energy is found by taking the functional derivative of < >
with respect to / ’ /.’s and solving hn· / , y ’s, which yields the following set of 

equevtions for /,■,/;’s (w(> sui>press the ry d. pemh'iice of M. and f .)

wlo +  < r / ' d , n i i )  j i  +  .S'lju^no J-> =  h'li.l/j q- 5 'u . l / j ,

+ (l^l'dni·,) f·, +  .S'l Jv̂ ’l.O /i =  V̂.>d/-2 +  .S'i2-'/l ,

where Sij{(j) are the static structure factors to b(' discussed below. Solving the 
above set of coupled equations for / , ,  we obtain the polaronic contribution to the 

ground-state energy as

=  -  E  +  ^^2{м¡f2 +  - I / , / ;  +  m ; j\ +  .-vT/n
<1

+ s , ,{M ;f->  -h 3 / 2 ./2 )}

+  { ' ’̂ 'n./i’ ./l +  ■SVi(./i’ ./_> +  ./l./'J) +
'/

/  ·) ·> \

r
+ E U ^ / r / .  + :r -E /·^\ ¿m\ ¿ 111 ·̂ ,

(3.17)iL
<1 \-">i

When the correlations between the (dectrons and hoh.'s are neglected, i.e., .S'i2 =  0, 

we obtain a simplified e.xpression for the (‘lu.'rgy

i ’p =  -

9 20| I
t^\X)Sn +  (i^'llUi +  E

9 22̂2
’̂t.O‘S'22 +  (f^l'Nrh j

(3.18)
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¿IS ¿1 sum of iiidividiuil contributions of i 1k‘ plasiiui components. Furthermore, 
setting »S'li =  S'22 =  F ¿miounts to the' no-sci*('ening limit, ¿md \v(' recover the 
p(írturb¿ılion th('ory re'sult.

3,1,3 Static Structure Factor

'rii(' structure' f;ictor (le\'̂ e*ribe's t he' e'orre'lai ieni be‘l\vee'ii the inle'racl ing piirticles. 

It is a k('y ([lumtity which has te> l)e' e ahailalesl in e)releM· to d(‘te*rmiii(‘ th(‘ se'reHMiing 

properti<*s of the polare)ii syste'm. In inê st ge'ii('i*al leaiii it is deiine'd ¿is

S(</.^’ ) = I ]  |< 'S.l/ l̂'··

where.' is the p¿ırticle ele'iisily e>pe'ratea·, ¿ire' the' ex¿ıct wiu'e'functions of the' 

system, ¿ind l''o Fie dilfereMice' in eaie'rgy betwe'en the nth excitc'd

state anel the grounel state'. is a mexisuic of the.' elensity fluctuation

spectrum of the electron gtis. There' is a dire.'e't ceaine'ction l)e.'lwe'eMi this ¿ind 

tliei die'lectric re.'sponse' lunctie)n ed the' syste'in.

(3.2U)

For e)ur syste'm we shall use' t.he' slsit ic st m et lire' I act or, with exirrying t he' dyimmie· 

infe;rimitie)U ¿IS well, d'his is pe)ssible* by using the' re)llenving de'linil ie>n e)Γthe‘ st¿ıtic 

structure factor

S(</) (3.21)

vvliidi may lx; called qua.si-.sl.at ic st i iicl lire factor, lii ('valiiat inti; t lu' iiiU'gral in 
rq .(3 .2 l) , one ha.s to b<' careful about the poh's of the· inver.se dii'li'clric function 
(lv.[.(3.20)). There ar(> t.vvo methods to overcome this diilicult.y. One is to calculate 

the singh' particle and the collective contributions separately ''

S{q) =  -h S,,iiq) · (:5-'22)

The single particle contribution is calculated by using the RPA diidectric response 

function (Eq.2.21

= N̂V{q) L
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vvheretis the plasinon contribution is calculcLtecl IVonî '̂̂

Srl{<l)
' - v i ' i ' / )  ¿ l i e { ; (< / . - ) )

The other method involves the extension of integral in E(i.(:T20) to the complex 
IVequeucy domain and carrying the integration t h e r e . W e  shall employ this 
method and discuss below. 'Jb ('stablish the connection between the deliuition of 
the static structure factor and tlu' lormalism in the previous section, we rewrite 
the structure factor in the secoiul (luantization for t he two component interacting 
systejii

Wo consider two approximations in the ('valuation of static structure factors 

Sij{<i). In the first cas(', \\c use tiu' 1 lart ror'-lwH-k (IIF) a])i)roxiination whicli 

has a siinph' form

ill-lki·., ij < 2A·;,·

Not<‘ that in the III·' appro.ximat.ion Sn - b.-,- since we have ecjual number ol 

eh'ctrons and holes, and b'lj ~ 0. In i Ih‘ st'cond case, we eiii|)loy the; RP.A 

generaliz(‘d to a two-component systenn."· 'bin' density-chnisity response function 

of the system is expressed in malrix hn ni

(3.27)

whore i·'̂  flit‘ Liiidhard functicni (or ihe vth component, ian, non-

interacting susceptibilil^c We calcidat(' tlu' corr('sj)uiiding static structure iactors

using•rj
c\U\\( N  ̂ X

where the amdytic continuation of the respojise function to tlui complex Irc(iuency 
plane and a subse(in<‘iit Wick rotation of tin' IVe(|uency integral are used to 
incorporate the single-particle and plasmon contributions.
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Figure 3.1 : Static structun.' factors within \iP\ in a QlD electron-hole system. 
Solid, dashed, and dotted lines indicate .S’n(/y), .S'vj(iy). .SVj(//), res])eclively. The dash- 
dotted line is for the llartree - Fock a|)j)roxiination. 1'hiii solid line is the function
V{fi) = SnS'n -  s ' l , .

We again emphasize that, tin' static structure lactors Sij{q) are obtained 

from the full freciuency dependejit res])onse funclion by integrating over

all frequencies, thus the}  ̂ inlun'ently caii'y dynamic information. For Q lD  
electron systems the collective excitations (plasmons) have a strong wave vector 
dependence without damping. Thus, along with the single-particle excitations, 

plasmons must also be tak(Mi into account in the calculation of Sij{q). The static 
structure factors, as scU, out abov(', d(d.(‘rmines tin' screiuiing propcu'ties of ihc 
electron (hole)-phonon system. In Fig.d.l we show the resulting partial structure 

factors in a two-component plasma for a typical density N  — lü^'cm“  ̂ and 

confinement energy i} =  lÜlvy. Solid, daslu'd, and dotted line's indicate S 

,S'2 '2 ((/), iUld S'i2 {(l)i n.'spocl ivi'l}', wluMVilS (liisl 1 -(lul I ('( 1 liuC IS tlic III·' result. Also 

shown by tlu; thin solid line is the ((uantity l)((i) — 5'n (<y)‘'’ 2 2 (iy) -  Sl>{q) as 

defined by Cluikraborty.^’’̂  It has been argued that D{q) qualitatively resembles 

the static structure factor of a. single si)ecies sy stem at the same density.
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3.2 Results

VVe illustrate our calculations of electron (hole)-i)lionon conlrilnition to the 
ground-state energy ol a quantum wire by choosing a GaAs system. The 

relevant parameters used in the calculations are //i| =  0.067//q., ni2 — O.oni^, 

for the electron and hole eilective masses, respectively, o i  =  Ü.07, a 2 =  0.195, 
for the electron-phonon and hule-plionon cou|)ling constants, respectively, and 
cujx) =  36.5 meV.

VVe show in Fig.3.2(a) the total |)olaroiiic contribution to tin' ground-state 
energy as a function of one-dimensional electroii-hoh,' |)lasma density N. The solid 

line represents the variational calcuhvtiou (‘inployiiig the RPA structure factors to 
account for the screening effects. 'I'lie variational calculation using the Hartn'e- 

Fock structure factors is indicated by the dashcxl line. For com|)arison we also 

slunv by the dotted line the i('sult of a p(>rtui bativc' calcuhition.

Wle first note that lioth the \ariatioiial KF.A and th(' perturbât iv('calculations 

e.xliibil. coiisiderabh' s<'re('uiiig even at deiisilies as low as A ~  lO’ ciir*. I'dr 

the pre.sent choice of tin' confining potential energy [il — lüKy) the unscreauxl 

polaron energy is about —7 nuA·'. The I fart ree f'oek approximation giv('s r('latively 

small screening at low (huisity, aiul in gcMieral it underestimates the scixauiing 

effect. The perturbative calculation we ha\(' huimilated in the |)r('vious chaîner 

includes the static dielectric function ;((/,0) thixnigli the renormalization of 

the electron (hole)-phonon interaction matrix eh'inent (</,0)]". We use

the T — 0, plasmon-pole approximation foi' — Ü) which includes the

contribution of elections and holes

' - i M Y
a<;,0) -  I +

i~c- ,li ¿III,,

where the Q lD  phismon fre()uency is i(i/)]  ̂ -  N {(¡^/2iiii)V{(j). .As in the 
case of <iuantum-wells'“’ (21) strnctnnisj, static ap|)roximation overestimates the 
effects. We observe that going from the ffF to U15A, the screening reduces the 
electron (hole)-phonon interaction appreciably for low carrier densities. It has 
been notecF“ that the static screening has a strongi'r effect in the nmormalization
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F igure 3.2: l\)laronic coiiLribulion lo the giouncl-state energy.
(a) holarouic coiilrihutioii to tlie giound-slali' energy for Q = 10 Uy as a function of 
plasma density N; (b) for N = 10'’ cm“ ' as a function of ujnolil. In both iigures, 
the solid and dashed lines indicate' the variational calculation using RIW and Ilartree - 
I'bck structure factors, resjiectively. 'I'he doUeil line is for the perturbative calculation 
using the plasmou-pole approximation. Ihe thin solid line in lig.(b) represents the 
unscreened limit.

(of |)olaron eiK'fgy and mass) than the dynamic scree'iiing, In'cause in the static 

apiiro.ximation only the long-time res|)ons(' eil tlu' system is taken into account. 

Simihir conchisions arc' drawn by llai it aid' in a calculation that takes the 

dynamic screening elTects into account for singl('-com|)onent Q lD  systems.

in Fig.3.2(b), the conlining poti'iitial eiu'rgy de|)eiidence (or size dcpendt'iice) 

of the polaronic contribution to the ground-stati' em'rgy is illnstrati'd. VV(' show 

the results of various approximations as a function of ¡'f <*■ fixed plasma

density N  =  10‘*cm“ F The solid and dotted lines represent the dynamical 

(variational, RPA), and static (perturbative, plasmon-pole approximation) 

screening calculations, r('spectivel}c We again observe that static approximation
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o\4irestimates scroeriiug cliccts in comparison to tlu' djmainical approach. Tlie 
variational ciilculation using the 1 1 а.1Ч.г(ч̂ -1ч)ск api)roximation to the structure 
[actors (clashed line) api)ears to und<Mestiinat(‘ the screening elfects especially 
for wide ciuantuin wires (snud] <Л). Tlu' thin solid line indicates the unscreened 
polaron energy.

We have use the lUW to descril.x' l.he iiiany-body eifects in the interacting 
system of electrons and holes rather uncritically. It may be argued that the 

attixictive nature oi the (dectron-hoh' interaction would make the two-component 

plasma strurtui'e factor cahmlations soiiuuvhat h's.'̂  r(diable. It is known that 

tlu' con’c'ctions to RPA Ь('счлш‘ moi4‘ important in lowc'r diiiumsions than in 31). 

Also, th(‘ Ulh\, although exact in (he high d('nsity limit, fails to lak(‘ th(‘ short- 

rang<̂  electron correlations \uU) account [uoperly in lower chuisit}  ̂ regime. For 

th(\se reasons it would \)c woi-(liwhih' to in\(‘siigat(' ('orrcx.'tions to Klb\ through 

local-li('ld fac'tors using for instanc(‘ llu' s(‘ll-coiisist('nt liedd iiK'lhod (Л' Siiigwi, 

Tosi, Jaind, ¿md Sjblaiich'r.“ * The* ground stxil(‘ properties including the exchange- 

correlation effects in quantum-W('ll wiix's b(\yond tlu' RPA were.' n'cently studied 

by Campos cl To ass(‘ss the impoi'tanc(‘ (.3* kx-al-lield corix'cl ions, we use the 

ecjuivcdent of Hubbard approximation in cnie-diiiuuision given ¿is

T (v )

wliidi tiikcs only llie excliaiigo ed'eds into accoiuit, ncglc'cting the Coulomb 

conelatioiiH. I'hgurc .'{.d sluavs C, as a rimclimi of plasma density Гог a (inanlnm 
wire with il — Г) Hy. I Ik' d.islnsl Гше is ealrnlated using I he 111·' sl.nicl nre 

factors. 'The .solid and dotted liiu's are wilh and without tin* lucal-lield factor 

6'(f/) included, respectively. VV(‘ not«' that t in- local-held elfer ts start to beconu' 

important lor densitie.s less than ~  lO'Can-'. In Chapter ‘2, we have shown that 

vertex corrections introduced within the ix'i turbation theory did not affect 

appreciabl)c
Our variational approach yields also eifective interactions among the charge 

carriers modified by the interaction with j)honons. In terms of the variational 
parameters / , ,  they are given by E(p(;f.lO). This result is the generalization of
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Figure 3.3: Kifect оГ lo(‘al-fi(‘l(.l coiTL'ctioii on the i)olaroii (aiergy.
The solid and dotted lines are calculated with and without i4'Sj)eclively, whereas
the dashed line is the result of llurtrei' - I'ock a|)i)roximatiou.

the effective j)oteiitial as derived by Lenimeiis d  and da Costa and Studart. '̂^ 

VVe dis].)lay in Fig.3.4 the elfectivc interact-ions for N — lO^'cni“  ̂ and ii — 10 Ry 

within the RPA. The solid and dotted lines are lor and and the dashed 
line is for Vyf. We have also shown, l)y the thin solid line, the bare Coidomb 

interaction for comparison. We (ind that the changes due to electron (hole)- 

phoiion interactions are significant, but ch'creasci with increasing width (small Q) 

cind increasing [)lasma density.

We ])oint out that in the i)resent nudhod (variational) tin,' |)ohironic energy 

in an electron-hole system is calculated at 7' — 0. It is possible to use a 

tiMiiperature dependent dielectric rnncticui c((y, 7') wilhin the [)erturbation theory 

ai.)proach.^ ’̂’ '̂'̂  ̂ For the variational calcnlal ion, not only the tempi'rat ure dependent 

structure factors are necessary, but also tin' assumptions al)out the product form 

of the ground-state need to be justi(i(‘d.
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Figure 3.4: The eifeclive interaction potential.
The eifective iutcractioii potential between tlie cliarge carriers at N ~ 10̂  ̂ cin“  ̂ and 
Q = 10 Ry. Solid and dotted lines are for and and the dashed line is for
Vyl^. Tlie thin solid line is the har(' Coiilomh int('raction.

3.3 Comparison with two-dimensional 
quantum-wells

The eirccts ol" screeiuiig on polaronic coneclions to the eilective l)and edge.s in 

a Q ‘2D cinantuin-wells were considei'ed h)' l)a.s Sarma and Stopa. ’  ̂ They use the 

perturbative approach of evaluating th<' h'ading-order .s('ll’-energy including static 
dielectric function, and a variational rorinali.sin involving tlie structure factor. 
'Jdieir approximation amounts to Ihe ’21) xansion of our simplified expression 

given in Eq.(3.18) It is of interest to apply the full dynamical screening elfects 

within the variational ap|)roach to ([uantuni-well structures. l''ig..'j.5 shows the 

results of our dynamically screi'iied calculation for a strictly 21) s^astem, for which 

the Coulomb interaction is takcMi to In' e((/) =  2tu:~jq. Th(‘ solid and dashed 

lines indicate the IIF anti RPA, res|)ectively, for the total (electrons and lioles) 

polaronic correction to the ground-stale eiK'igy. VW oh,serve (pialitativtily similar
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lctit;ui4.\s to tlie Q lD  ease, in that, tln̂  И РЛ yields morci screening tlian the IIF 
approximation. The clotted line' appenihiig in Fig.3.5 is for the statically screened 
perturbiitive calcnlation. At /л'го temjx'rature, tlie static dielectric function for 
a 2D system is indejKMident (Л d(iiisit\'. Note' that the 2D screening wave vector 

is given by — 2ni(: !̂i\). Thus, wc‘ hav(' a constant line which nevertheless 
exhibits consideriibh' screening (ov('r scrc'ening) as noted by Das Sarrna and 
Stopa.'^̂  ̂ Deviations from the constant bedavior could be attributed to finite 
tempei'citure effects. The dash-dotted line in Fig.3.r)(a) is evaluated with the 

aid of Ec[.(3.18) when tlu' ccu'rc'lations b('tw(*(‘n (‘h'ctrons and holes are neglected. 

We find that omitting S\2 [(l) in ld|.(3.17) affects the polaronic contribution to 

the energy considerably.
We next study the effects o {  liiiite W ( ‘ l l  width on the energy l i p .  Assuming 

only the lowest subband is occupi('d l)olh in conduction and valence bands, we 

use tiie form factor"̂ ^̂ ’ '̂̂

7Г- l 7 r - ( l  -

<1<1Пч)  - 1- Ьг-) (/'·-’(/-((/'-(i* I- Itt-)]

vvIk 'I'O a is the well width, la hit.';..'{..5(1)), we dis|)lay th(‘ polaroaie eontrihution to 

the groiiad-.state eaergy as a luactioii ol (|iianluni-well width at a typical plasma 

density iV =  5 X 10" cm~·. We aot(' that the' sm'ening eirects dominate as the 

well width is incicased. .Similar conclnsions may he drawn irmn the calciilations 

of Das .Sarma and .Stopa.'**̂  .\ mor(' comph'te man\d)ody calculation within the 

[)ertiirhation theory of the haiid-ga]) renormalization which inclurh's the electron- 

electron and electron-phonon intc'ractions lor siMuicondnetor (luantum-wells were 

performed by Das Sarma ( t
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Figure 3.5: Polaroiiic contribution to tlu' ground-state energy in 2D systems, 
(a) Polaroiiic contribution in a strictly 2D system as a function of plasma density, (b) 
The size dependence of the polaronic contribution in a (iiiantuin-well structure. In both 
figures the solid and dashed lines are calculated using Ilartree - Fock and RPA structure 
factors, respectively . The dotted line is the result of perturbative calculation including 
static screening. The dash-dotted line in lig.(b) shows the variational ai)i)roach in RPA 
without the cross term .SVj(//)·



Chapter 4

Discussion and Conclusion

VVe have presented two different methods to investigate the polaroiiic corrections 
on the single particle properties in a (luasi-oiu'-dimensional electron-hole system. 

A strictl}^ competitive approach in com])aring the results of these methods 

would not be true, since th(\y |)rovide complementary information as well. 
The varicitional method emphasized th(‘ importance of the dynamical nature 

of screening, whereas it is the perturbational approach where the temperature 
dependence can be analyzed easily. In addition to that, since no equivalent 

canonical transformation has been develoi)ed to calculate the effective masses in 
variational method, our results for the polai'onic mass renormalization rely on the 

static screening treatment of the many polaron system as discussc^d in Chapter 2.
The overall results have shown that tlu‘ polaron self-energy is comparable 

to the exchange-correlation effects in order of magintude. A direct consequence 
of tliis result is tluit in low dimensional sti‘uct.ur('s, the interact ion betwecui the 

charge c¿vrriers and ])honons aiul among tlu' charge' carriers themselves should be 

treated on an ecpial footing. The' conhiK'im'nt potential determines the carrier 

phonon interaction directly but the gener al trends ol)taiii(‘d for the carrier density 

and sci‘eening dependence should be valid irrespective of the details ol the model 

chosen. We luive verified this by using two dilferent models, namely, the iidinite 

well and the parabolic confinement potentieds.

The dependence of the polaroni(‘ coiic'ction on relevant parameters are

:hS
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(liscussccl ill (l(‘La.il in l\\e prí'vious diapUTs, so \V(‘ briefly suiiimariz(' tliciii \\cve:

• Snv(‘iiiiij; by li(4‘ raiTÍ<4h sli4ai!*l\' allrcl llie carrit'i· plioiioii iiitrrarl ioiu 

henee tlie polaroii sell-c*iK‘rgy. .\s llie |)lasjiia density increases, the pohiron 
sel Г-energy clecrc vi s( *s.

• Tlie (|iia.ntuin sizcM'lhrts of llu‘ system plays an ini|)ort<uil rob*. The pohiron 

energy decreases'with increasing "width" оГ the (luantum wire.

• dernperalure is a ¡'('storing paranu'ti'r Гог tlu* |)olaron (Mi(*rgy. This is mainly 

due to the Tact that at finite temperatures tin* mean number оГ phonons 
increases which brings an (*nlninc('m(*nt to the* potaron energy.

• The renormalization оГ the [)olai4m ('llective mass can b(* c'xplained in the 

same terms in which we und(.Tstand the beha\ ior оГ the potaron seir-energ;y.

It may be userul to rc.'vic'w tin* main assumplions Гог tin* construction оГ 
tlie many-body system. We Ьалч* tak(*n a two-component plasma consisting оГ 

electrons ¿ind holes оГ eipial number d('iisity алк1 locust'd on tin* iiiti'raction оГ 

this two-component plasma with bulk LO-phonons. I'drst, we assumed that 

the electron-hohi [)lasma is in (‘(luilibriiim, wliich can be just dic'd, since the 
laser pulse durations arc* mm'li longer I ban the' |)arlicl(* relaxation rat(xs in these 
semiconductor structures uiidc'i* study. S('C()iid,t lu* sul>band structure' is igiior(*d 
by tciking the extreme quantum limit, in which the chemical |)ot('ntial оГ each 

carrier type lies in the lowest respc'ctivc'subband. This, however, ])uts limitations 
on the range оГ carrier number density, temjx'rature, and the ('ITective width оГ 
the wire iVom which the first two (’ontrol the 1е\ч'1 оГ the chemical potential, 
cind the last one detc'rmines the subband separation. On tlu' other hand, the 

existence оГ LO-phonons put another criteria Гог the subband separation, tlmt 

it must be larger tlum the i)honon energy so that electrons (holes) cannot 

sccitter into higher subbaiuls via their interaction udth phonons. The energy and 

the effective mass of an electron in a quantum wire including the subbcuul effects 

were calculated in the presence of electron- LO-phonon interaction by Degani and 
H i p ó l i t o . Ryan and Reinecla/"^ i)resent('d a multisubband formulation for an
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(ilectron-hole sysleni. Tlu‘ir work was oblaiiiing llu' baiKl-gap ronormali/'atioii 
clue to cxchange-correlai ion eilcrts, iiicliicliiig tli(' iiiU'rsubbiincl and intrasuld)ancl 
interactions.

Our work is bcLsed on a i)liotoexcited intrinsic seniiconductor, hence the 
nuniber of electrons and liolc\s ai\‘ the same. The extension to do])ed
semiconductors should bc' straight Idi-wai'd. VVe note however, tliat taking the hole 
density ecjual to zero do(‘s not I'l'llect tlu' lisd siluaticni becaus(' all experimcmts 

iiH^asnring baiid-ga|) shifts in\'ol\(' crc'aticai or aiiiiiliilalion (;f (‘lectron-hole pidrs 

which I'i'siilt ill a. i(‘iiormalizatlwii ol i Ik‘ valeinv band. VVe fiiilhei· ignoia'd lh<* 

dc'generate nature of tiu' vahnici' band, approxiiiuit ing it by the? simple parabolic 

disp(‘rsioii.

Along with the LO-plioiKUi ccaipliiig o i k ‘ may iiicliuh' tlu' coupling to ciuiliiKal 

phonons and interface,' phonons as \v(‘ll. llowe\('i·. there is no experimental 

evidenci' of the (.•oupling of the iiitt'rfac(' optical [.)hoiuais to tlû  confined electrons 

as [)oijit('d out by Das Sii.rimi and Mason.'"' Seccaidly, in hetc'rostructure type 

systems consisting of two lattice matcln'd semiconductors (e.g. CaAs and 

AlCiaAs) with rather similar lattice dic'lectric propc'ities, the existence of purely 
interface [)honon modes is ratln'r unlikely. The int(‘rface idionon modes will have 

ex[)on('ntially decaying ami)litiides into tlu' wire', which make's them negligible 

unless the wii*e is too narrow. VVe sludi discuss the' c(aipling to conhiu'd i)lionons 

in th(' next section.

4.1 Phonon confinement effects

Fasol d  al}'  ̂ have; pn'sciiic.'d cvi<lcii< (· |)1k»iioii coiiliiK'niciil in k>\v diiiH.MKsioiial 

struct,ures. PhoMOu coiiiiiionicnt causi's changes on tlic cai'ri(n'-|)hoiioM interac­
tion, modifying properties like sc;d,tering rate and relaxation rates İroni those in 

the hulk case. Considerable work has Ihxmi don<‘ ‘̂ on the role of confined 

phonon modes in the hot-clectron relaxation jdıenomena in siMiiiconductor 

ciuantum wells. To obtain the confined phonon modes, the three dimensional 
Prohlich Hamiltonian is subjected to boundary conditions at the interfaces.
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I ’here are two cliilerei.it iiiaerosc'opic apprcjarlic's to [Люпои eoiiiiiieineiit: tlie 

electrostatic or the* shil.) iiioch's'^ and lln* mechanical or tin* guided inodc*s.‘ “ 

They diiler essentially in the way the boundary conditions are applied. In the 
slab model the cdectrostatic potential \anisli(*s at the boundari(*s, whereas in 

the guichxl model it is the (*le(ii*ic (ield. Strosciu''*  ̂ has apjilii'd the сН(*КчЧг1С 

continuum model to d(\sci ib(* th(* I I k * confined hO-])honons in rectangular 
([uantum vvircis. On tin* other Innid Uiicker г/ i)rc‘S(‘nt4*d a calculation of
the polar electron-IX)-phonon inti'racticni in (¡aAs/AlAs Cjuantum wells, leased 
oil a fully microscopic apjiroaih for tin* ])honon spc'ctra. According to their 
comparison, some of the macroscopic models h' ûl to acceptabh.* predictions, 
wh(‘reas someof th(*m ai’(* comi)l(*t(*ly incunsisl(*nt with tlu* micioscopic rc'sults. It 
turns out that the correct usi* сЛ the diel(‘cliic boundary conditions is crucial lor 

the applicability of the macrosc(jpic models to {иЛаг (*l(*ctron phonon s(uitt(*ring. 
They concluded that, the assumption of unmodiiied bulk phonons maj  ̂ provide 

resonable results, and pointed out that an accurati* description of the phonons 
is necessary when one is interested in the* contribution of individual modes, e.g., 

for tlie interpretation of n'sults of time-i4's(dved sp(*ctroscopi(*s.
Recently, we have prc'sented a pieliminary iiu'est igation of the contribution 

of coniined phonon modes to the ground-stat(* energy of a Q lD  electron-phonon 

system, and in pcirticular the elfects of scr(*ening on this c o n t r i bu t i o n . T he  

polaron energy is calculated variationally incorporating the dynamic screening 

effects and it is found that the coniined phonon contribution is сотргггсгЬк) to 

that of bulk phonons in the density range N — 10̂  — 10' cm ” b
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АЛ Effective Coulomb Interaction

Here, we give the Îorm factor of a. (luasi-oiie-cliiiuMisional system for several 
confinement potentials. In the first two models that we consider, the wire is 
constructed ¿vs follows: We t¿ıke ¿i strictly two-dimensional electron-hole plasma 
in the X — y phine and introduce an additioiicd confinement in the y direction. 
So the wire luvs zero 'Mdiickness” but (inite “width” . The reason that we neglect 

the finite size effects ¿dong the dii*ection is just for siiii])licity and will not h âd 

to a ([ualitative change' in tlu' obtaiiu'd revsults. Besides, this assumiition can be 
justified, bec¿ıuse, ¿it tliis st¿ıg(' the technology for conlining the charge carriers to 

two dimensions is much more advanced than technology for confining the electrons 

along and ¿vdditional direction. For ('xami)le by nualulation doping, the electrons 
Ccin be confined in the c direction on the оічК'г of h'ss than 100 A, where¿ıs the 

confinement in у direction is api)roximat(dy 300 A, hxvding to at hxvst ¿in order of 
iruignitude difference in the eii('rgy-lev(d spacings of the у and r directions. The 

hist model we present is a (juantum wire,' with ¿i circular ci-oss-section.
Wc b¿ısed our formuhition mainly (лі thi' 1ІВЛ. (.’onseqiK'iitly, the effective 

potential w(' us(' in our calculations is th(‘ bare' (k)ulomb poti'iitial giviui l)y 

lv|.(‘2.1). Cam|)Os, Di'gani, and llipdlito“·̂ liavi'саІепкОдчІ tli('(‘ll(4tiv(‘ ( oulomb 

pot(*ntial in r(4d4 ingular (!a.As (|iiantum well \vii(‘ using tli<' si'll coiisistcuit. lii'ld 

¿ipproxiimition (so (.‘¿tiled the STIjS a[)])roxima.tion), which incorpor¿ıtes tlui

•12
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('Xchang('-coiT<'la(,ion (‘Heels. Т1и'ге, the eHeclive |)ol(*iiLial is given by

,/;((/) .= l/((/) + - i-  2 - l)l(v  I· /.·)! '(<y -I- A:) + (,/ - /')l ·((/ - /,·)] ,

which iiiii)ru"s lhal th(' IvPA results (4)i r('s|)oii(l Uj 11и‘ z('rot hч>г(1(‘г approximation 

wh(*i4‘ ф((/) is lakc‘11 as the Ьаг(' (V)iiloml) iiitt'radion i)ot(‘ii(ial V((/). Tlu. îr 

results“  ̂ inc.licat(.' that 1\1\\ undei4\stimal(‘s ami tlû  lll'A ova^restimates tlie short 
range correlation effects.

From electrodynamics point of vi('W, I I k ' p i * ( ' S (  nee of other charge.  ̂ cari-iers 

should be taken into account when calculating the eifective potential acting 

on an individual charge' carrieM*. This amounts io a nuivu'rical solution of the 

Schrödinger eijuation coui)lc‘d to the Ikdsson ('quation, which lias becni considered 

in some studies· '̂  ̂ “  ̂ conceM'niiig the seT-cc^nsistcMii (‘hx'tronic subband structure 
of a. cpiantum wire'.

Below, we r(*pres('iit l,lu‘ ge‘ii(‘ral part ol l lir d(‘i i\al ion. dT( ‘ oiH‘-(‘l(‘ctroii (lioh*) 

wavefunction is given by

07,/<(·'■ , I J , ~) =  ^  6.(.'У) <̂ (·') ( (Л .1.1)

where V is the volume of tlu* wir(‘, </ is tlni wav(i vecUor in x (lirc'ction, ^n{y) î  ̂ ihe 
bound state wave function for the /(th snbband associated with the (luaiiti/ed y 
motion. The wave, fnnet ion will not hav(‘ component, but it is shown here by a 

delta runction for completc'iK’ss. We will drop that term hcmtaddrlh. The (wplicit 

form of Cniy) obtained from Schrdding('r l'a.[uation

■ф--ф^ +  У(у)2rn ()y~ s(.'y) =  ¡•'ui{y), (Л .1.2)

with a choice of tlie conlining potential \'(//). 'I'he matri.x (‘lements ol the 

Coulomb interaction ait' given by

dx dx' dy dy'

X Φq,ki·̂ ■ 1 y) Ф(1',1 {^ l iJ ) t’( f  X  , y y )  , 1/ ) ,Д.i;, J/) ,(A .1.3)
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where 'o{x — x ',y  — y') is given hy

v{x -  x\ y -  /;') =
\A·'· “  +  in -  v'Y

(A.1.4)

At tliis step it is possible to carry out the integration over the variable x in 
Eq.(A.1.3). This leads to one-dimensional hburier Iranslbrrnation of 
v(x -  x', y -  y'):

ii<h ! J I  (II-
2i "

dl. , (A.1.Ô)

where we lei t ee x  — The iiit(‘gral in h(j.(A.l.r)) ran be repr('s(‘nieel by J\o{x), 
llie inoeliilecl Bessel rnnetion of the s(H-onel kinel, uf oi'der Z('ro.'^̂

‘ i ‘h y -  / / )  =  - -  -  //')(()

Hence, the form factor is given by

wlu'i'i? vve have used K(j.(2.1) along wit h Kq.l A. 1.3).

Iniiniti' W(\1I coüliiienu'iit

(A .1.6)

1‘Umn =  I I </,'/ [ I d i l J  -  //')il sA-(/y) 6(/y') tn iy ') C<{y ) , (A. 1 .7)
X .

We lake lh(‘ ronfinenunil poU'iilial in ij (rnvclioii as ¡nliniU‘ W(‘ll

0, - ( / /2  il 1 2

DC , ()lh(n-wis(‘.

There are Iwo families of solulions lor ihe snbl)aiKl \va\ahnnct ions

C(,!y) =
' l s i n ( n Tr f ) ,  nI even

\/;fcos(//7r;f) , » o d d  

wlione n demotes the sul)band iiidicc's. 'I'Ih' subband einn'gies are
·) ·)

://(r

( A . 1.8)

(A.1.9)

(A. 1.10)
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The cx{)licit. lonn o( h(‘ IcmiikI lor any \«iIih's cjÎ tlû  siihhand iin.licc'.s

ill a straiglitiorwarcl luaniK'r. .Since \\'(‘ ait‘ (hxiling w'illi IIk' (Wlianne (juanluiii 

limit, we take A*,/,777,71 — 1. Using l'k|.( A. I .f)) in IAi.(A.1.7) giv(\s

ш a/ ¿ rii f L I T U ¡1 \
/ (IjJ (It/ Au [|(/(/y -  /y')|] [ COS ----- COS — - I ( A. 1. 11)

-ti/2./-a/J \ a (I J

A further change of int(‘gration vai'iahles x -- {ij — /y')/a, x' — (/y + t/)/a yicvlds

F{(l) — 2 [  dx [  dx' Koilqâ t'l) isos 77X -\- cos TTx'y . (A. 1.12)
Jo Jo

Then, taking the integral o\̂ er x̂  gives Uci.(2.2).

Paraholic coiiiiiioiiiont

The confinement potential is given hy

C(/y) =  , (A. 1.13)

where /i is the reduced mass, il is tin; strengt li of tlie confining potential. The 
envelope functions in y direction ai(' given h}··,

Ci{y) =

Tlie subband energii's ar('

2'^/d\/r/i
( A . l . l l )

/■;„ =  i f ( n - l - - ) .  (A .1. 15)

IT *re, b =  i / v 7 ^  is the characteristic length of the parabolic potential, and 

IJa{y) 1!̂  llermite polynomial. 'The inteicsting point in paral)cdic confineuK.Mit 

is that, one can obtain the lorm (actor in clo.s<'d lorin. Itu and O ’Clonneir''  ̂

presented the analytical calcidation for the (Joulomb nmtrix elements in Q lD  

system using the harmonic (parabolic) confinement i)otential. 'f'hey have given 

detailed calculations for some of the diagonal i)art of the Coulomb nuitri.x, lor 

both th(‘ intrasubband {vn -  k -  / r.: m -  n) imd (h(' intersubband {nn =  k “  /, 

ini' — in — (/) interact ion.Th(‘ underlying algebra is (|iiit(' complicated, t hus \v<‘



Appendix •К)

ciU' tliegcnnal form only and give llir ('X|dicil Form Farlor For | Ik‘ lowest, siiMmii.l 
cas(.‘ which is our main interest,.

E S   ̂ lh'-.,u( ^rtr)^ A  , cv<m
0, Λ ,ocl(l

where { tV} i.s a collect iva* index representing /V — k -{■ I rn +  l'K\;/(·')·) is the
VVhittaki’r Function, аг(‘ coí'íliriíMiís. I'ov \  ~  Ü, tlir result

(A .1.17)

as given in section 3.1. We also tiot(‘ that, in the long wavelength limit 

{b(j —> 0), the typical logarithmic divergent behavior of tin.' strictly one­
dimensional Coulomb inU'raction can 1и' obtained For this Form Factor,

F{(j -r  0) -  ln(/a/).

C vliiid rica l coiifiiK'iiieiiF

(A.1.18)

In this case, the wire is taken to be along the ,r direction with a circular cross 

section of radius R. We choose the conhnetiuMit [)otinitial as

l/(r) =
U , r < R 
cc., R < r

(A .1.19)

where r =  \/ŷ  +  d'he radial part of t lu' wavel'unction can lx* obtained by 
solving the Schrödinger ecjuation in p(dar ccAudinates,

-  + ' ('■)] s('·) ==

which gives

b, III II )
R

III ij III II j‘ ) 
•Aii 1 {j III It )

(A.1.-2Ü)

( A . 1.21)

where is the ?ith zero of the llesscd Functioti ,y„,(-r). The sidjband energies 

are given by
J lit и

R .
( A .  1 .22 )
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Tlie toUil wavefunctioii has th(' Ibllowiiig rorin

d l i t  { j I I I  I I  P ,)
dm -p 1 {Julh )........ . 7 S / i

un<l> ̂  ikx (A.l.-J:])

Tli(‘ inU'gral ill K(1.(A.I.7) has, lu uiir kiKAvhahjv, no anal\i,ical forin. ( !okl 

and ( ¡lia/ali'’̂  prcstnilcd anaivliral rcsiills fur I hr form faclur hy rin|)lu\ inr·, 

a])])roxiinate wavcfuiutions for the ground slalc and lirsl rxcitcal state,

6n(·'·) \/'i ( I .(■■),

i ,L i . ( .r ) -  v/l7(.r -

with the corre.spojjding snbljand (Miergies,

li

A'n(U)
l(i

p l { -  '

(A. 1.21) 

(A .1.2.7)

(A.1.2G) 

(A. 1.27)

where x =  r/R. VVe skip the (hMails of lh<‘ ealrulalion and gi\’e the final residl”

J'Vi)
:i()

{,lR.y
;i2 (il

10 MqR)-  :i(r//.')' (v/ ·) '
--- l,{iiR)K,(<iin (A. 1.28)

Hero, ln{x)  and ni(Klili<‘d H(‘ss(‘l fiiiirl ions of i Ik' lirst and si'cond

kind respcclivcly. T 1 k2 dcliniiions of all llio special functions cnnployc'd in lids 

a.p|)endix may be found in Abramovvitz and SU'gaii.' ^

A .2 Polarizability Function in ID

The polarizability function (also known as the density-density res))on.se function) 

is obticined froiTi the dynamical evolution of a charge density fluctuation. In the 

RP/C one obtains the unpc'rturbcd (fia'c eh'ctroji) polarizability function for an 

electron plasma as
J k~ii J k

LO +  — (k +  >v
( A . 2 . 1 )
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where is the Fermi distrihutioii riuuti(;ii, (/. = k‘ I'lin is the free electron 
energy. VVe write the i)olarizal)ility fiinction as \ = \ i +  / \ j, in terms of real and 
imaginary parts. Eq..\.2.1 can he rewrittc'ii as

1 1
X{(l·,^) =  Y^ Ik (.A.2.2)-  c/,) +  ill ^  -  ((), -  +  /■//_

Using the Dirac identity given below, one can obtain the real and imaginary 
e.xplicitly

/7cl /  f ( . A  \

(A.2A)/1^·) = .p
-  ~u T  I'I 

- - dk

■'(),

1
t , , , , (A.2.1)

---= -'¿T  ̂ I  i j -  Ik -· 'A + v -I- < a) -  -  <A + <A-,/)l , (.A.2.b)

where tlu' ovtM’a.11 factor 2 is due to s|)in stales.

T  0 rii.St'

At 7' 0 K, the lArmi distribntion functitni is J). =  0 {\ki. \

and the e.vplicit forms of c/,.’s, F.:j.(A.2.1) becomes

1 U‘·/·

k) .

I f'l··
X i  =  -  /r  J-h,.·

dk
\  III J//( /  \ //( 2//i /  J

U])on integration we get tin' linal form as ’ '

A I —  IIIK(l kaJ" — uJ“i

where
u’i  -

The imaginary part of \ becomes

l'̂ l·'ll , <i'
I I I  ¿ I I I

X2 -  -  dk [Á(û  -  u;+) -  -  ce_)]
J — h /.’
— ~  , iü— <C, iO

0, otherwise

Using this

(A.2.(i)

(A.2.7)

(A.2.S)

(A.2.9)

(A.2.Í0)

( A . 2 . 1 1 )
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T > 0 c‘ase

Maklague''’·'’ has given a <l('riva.t ion of the finite tem|K*ratnre polarizability function 
and represented explicit results for 2D electron gas. We apply the derivation 

given tli(;re for ID case. Dor finite tenip('raturc‘s the Dernii function is given by 

Jk- — {1 +  tixp [(t̂ . — /0/"^']} * where =  k~/2in, and ¡i is tin.' chemical ])otential. 
To evaluate Dq.(A.2.1) we use tlu' following integral representation of the Fermi 
function.

n ,.' -  n) ^  . (A .-'. 12)

where 0{p' — ct;) is the z('ro-temj)erature b'ermi functioji with Fermi energy p'. 
R(‘placing in Fq.(A.2.1) and ])('rforming tin' integral over p' first, we find

A [<p cu; 7’, p) =  dp' 0, p') j : / —

where \(ry,cu; 0 , / / )  is the zero tem|)c“ralure polarizability function. By using 

E(js.(A.2.7) and (A .2.9) we can obtain the real and imaginary parts for the finite 

temperature [)ola.rizability fuiiclion (>x|)licitly.

(■/ i  / ' )

-  a  (,/ -  v//)'¡T(l Jo cosh“ (f -
(A.2.M)

where y =  q/is/^nT. Scdting cu -  0 leads to the static limit and we ol)tain 

F(i.(2.29). The imaginary |)art becoiiK's

X'Afl· / ') =  — { /  7“  + ·'■)■ - . / ’ y -  (>̂  -  ·'■)■
7T L J L l.r J

(A.2.15)

where x — ¡^rn and /  is tlu' Fei'iiii limction. VW also not(.' that, one can make 

use of the Krainers-Kronig r(.‘la.tions to obtain th(̂  veal part Iroin tlie iniaginaiy 

part and vice versa.

\i((/,u;) ir:: “ /  (LA\Aq,^'YP—;rr------7· (A.2.U))
'/r Jo
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