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On L. Schwartz’s Boundedness Condition
for Kernels
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Abstract. In previous works we analysed conditions for linearization of Her-
mitian kernels. The conditions on the kernel turned out to be of a type consid-
ered previously by L. Schwartz in the related matter of characterizing the real
linear space generated by positive definite kernels. The aim of the present note
is to find more concrete expressions of the Schwartz type conditions: in the
Hamburger moment problem for Hankel type kernels on the free semigroup,
in dilation theory (Stinespring type dilations and Haagerup decomposability),
as well as in multi-variable holomorphy.
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1. Introduction

We analysed in [7] conditions under which the linearization functor produces a
Krĕın space from a Hermitian kernel, in the spirit of Kolmogorov type decomposi-
tions, and subsequently in [8] we generalised this construction to kernels invariant
under the action of a semigroup with involution. We also related these construc-
tions with the GNS representations of ∗-algebras, an issue of some recent interest
in quantum field theory with indefinite metric ([2, 13, 14, 19]). The conditions on
the kernel turned out to be of a type considered previously by L. Schwartz in [18]
in the related matter of characterizing those hermitian kernels that are in the real
linear space generated by positive definite kernels. These boundedness conditions
are rather difficult to be verified, see [2, 13], and their nature is quite obscure, see
[19].

† Prof. Tiberius Constantinescu died unexpectly on 29th of July 2005.
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The aim of the present note is to find more concrete expressions of the
L. Schwartz type conditions. We first note that the invariant Kolmogorov decompo-
sition has a counterpart in the representation theory of semigroups with involution
on reproducing kernel Krĕın spaces. Then, it is explained that the type of invari-
ance that is considered in [8] can be viewed as a Hankel type condition and we
apply this remark to a Hamburger moment problem for the free semigroup on N
generators. This is used in order to show how the Schwartz condition is somewhat
simplified when it is written for generators of a ∗-algebra.

In Section 4 we first show that the Stinespring dilation of Hermitian linear
maps fits into the general scheme of invariant Kolmogorov decompositions and we
make explicit the connection with completely bounded maps and Wittstock’s The-
orem [20]. This opens the possibility of defining a class of non-Hermitian decompos-
able kernels, that may successfully replace the missing class of completely bounded
kernels, by using a generalization of Haagerup’s decomposable linear mappings on
C∗-algebras, cf. [12]. An analog of Paulsen’s Dilation Theorem for decomposable
kernels is obtained in Theorem 4.4.

In Section 5 we show that scalar-valued holomorphic kernels in several vari-
ables have Kolmogorov decompositions and hence, that they automatically satisfy
the L. Schwartz’s boundedness condition. In view of the transcription between
Kolmogorov decompositions and reproducing kernel spaces, e.g. see Theorem 2.4,
this result is an extension of the result of D. Alpay in [3] that was proved for one
variable holomorphic Hermitian kernels.

2. Preliminaries

We briefly review the structure of the Kolmogorov decomposition of invariant
Hermitian kernels. As it was shown in [18], the natural framework for studying
Hermitian kernels is given by Krĕın spaces and for this reason we briefly discuss
the necessary terminology.

2.1. Krĕın Spaces

An indefinite inner product space (H, [·, ·]H) is called Krĕın space provided that
there exists a positive inner product 〈·, ·〉 turning (H, 〈·, ·〉) into a Hilbert space
and such that [ξ, η] = 〈Jξ, η〉, ξ, η ∈ H, for some symmetry J (J∗ = J−1 = J with
respect to the Hilbert space structure) on H. Such a symmetry J is called a fun-
damental symmetry and we will frequently indicate by a lower index the space on
which it acts. For two Krĕın spaces H and K we denote by L(H,K) the set of linear
bounded operators from H to K. For T ∈ L(H,K) we denote by T � ∈ L(K,H) the
adjoint of T with respect to the indefinite inner product [·, ·]. The Hilbert space
adjoint of T with respect to the positive inner products 〈·, ·〉 is denoted by T ∗. It
is important to note that, if JH and JK are fundamental symmetries on H and,
respectively, K then

T � = JHT ∗JK.
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We say that A ∈ L(H) is a selfadjoint operator if A� = A. For example, in
terms of fundamental symmetries, this means JHA = A∗JH. Also, we say that the
operator U ∈ L(H,K) is unitary if UU � = IK and U �U = IH, where IH denotes the
identity operator on H. Equivalently, this means that U is boundedly invertible
and JHU−1 = U∗JK. In terms of inner products, this means that U is isometric
and surjective.

A special situation occurs for a unitary operator U with domain and range
the same Krĕın space H if it commutes with some fundamental symmetry JH.
Such a unitary operator is called fundamentally reducible and it can be character-
ized in other different ways. For instance, U is fundamentally reducible if and only
if it is power bounded.

Most of the difficulties in dealing with operators on Krĕın spaces are caused
by the lack of a well-behaved factorization theory. The concept of induced space
turned out to be quite useful in order to deal with this issue. Thus, let H be a
Hilbert space and, for a selfadjoint operator A in L(H), we define a new inner
product [·, ·]A on H by the formula

[ξ, η]A = 〈Aξ, η〉H, ξ, η ∈ H. (2.1)

A pair (K,Π) consisting of a Krĕın space K and a bounded operator Π ∈ L(H,K)
is called a Krĕın space induced by A provided that Π has dense range and the
relation

[Πξ,Πη]K = 〈ξ, η〉A (2.2)

holds for all ξ, η ∈ H. There are many known examples of induced spaces. A more
delicate question is the uniqueness of the induced Krĕın spaces (see [7]).

2.2. Hermitian Kernels

We can use the concept of induced space in order to describe the Kolmogorov
decomposition of a Hermitian kernel. Let X be an arbitrary set. From now on we
assume H is a Hilbert space with inner product denoted by 〈·, ·〉. A kernel on X
is a mapping K defined on X ×X with values in L(H). The adjoint K∗ of K is
defined by the formula K∗(x, y) = K(y, x)∗. The kernel K is called Hermitian on
X if K∗ = K.

Let F0(X,H) denote the vector space of all functions on X with values in
H which vanish except on a finite number of points. We associate to K an inner
product on F0(X,H) by the formula:

[f, g]K =
∑

x,y∈X

〈K(x, y)f(y), g(x)〉, f, g ∈ F0(X,H). (2.3)

A Hermitian kernel L : X × X → L(H) is positive definite if the inner product
[·, ·]L associated to L by the formula (2.3) is positive. One can introduce a nat-
ural partial order on the set of Hermitian kernels on X with values in L(H) as
follows: if A, B are Hermitian kernels, then A ≤ B means [f, f ]A ≤ [f, f ]B for all
f ∈ F0(X,H).
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A Kolmogorov decomposition of the Hermitian kernel K is a pair (V ;K) with
the following properties:

KD1 K is a Krĕın space with fundamental symmetry J ;
KD2 V = {V (x)}x∈X ⊂ L(H,K) such thatK(x, y) = V (x)∗JV (y) for all x, y ∈ X;
KD3 {V (x)H | x ∈ X} is total in K.

The next result, obtained in [7], settles the question concerning the existence
of a Kolmogorov decomposition for a given Hermitian kernel.

Theorem 2.1. Let K : X × X → L(H) be a Hermitian kernel. The following
assertions are equivalent:

(1) There exists a positive definite kernel L : X × X → L(H) such that −L ≤
K ≤ L.

(2) K has a Kolmogorov decomposition.

The condition in assertion (1) of the previous result appeared earlier in the
work of L. Schwartz [18] concerning the structure of Hermitian kernels. It is easy
to see that (1) is also equivalent to the representation of K as a difference of two
positive definite kernels. Thus, Theorem 2.1 says that the class of Hermitian ker-
nels admitting Kolmogorov decompositions is the same with the class of Hermitian
kernels in the linear span of the cone of positive definite kernels.

It is convenient for our purpose to review a construction of Kolmogorov
decompositions. We assume that there exists a positive definite kernel L : X ×
X → L(H) such that −L ≤ K ≤ L. Let HL be the Hilbert space obtained by
the completion of the quotient space F0(X,H)/NL with respect to [·, ·]L, where
NL = {f ∈ F0(X,H) | [f, f ]L = 0} is the isotropic subspace of the inner product
space (F0(X,H), [·, ·]L). Since (1) in Theorem 2.1 is equivalent to

|[f, g]K | ≤ [f, f ]1/2
L [g, g]1/2

L

for all f, g ∈ F0(X,H) (see Proposition 38, [18]), it follows that NL is a subset of
the isotropic subspace NK of the inner product space (F0(X,H), [·, ·]K). There-
fore, [·, ·]K uniquely induces an inner product on HL, still denoted by [·, ·]K , such
that (2.4) holds for f, g ∈ HL. By the Riesz representation theorem we obtain a
selfadjoint contractive operator AL ∈ L(HL), referred to as the Gram operator of
K with respect to L, such that

[f, g]K = [ALf, g]L, f, g ∈ F0(X,H).

Let (K,Π) be a Krĕın space induced by AL. For ξ ∈ H and x ∈ X, we define the
element ξx = δxξ ∈ F0(X,H) (here δx is the Kronecker function delta), that is,

ξx(y) =
{
ξ, y = x;
0, y �= x.

(2.4)

Then we define

V (x)ξ = Π[ξx], x ∈ X, ξ ∈ H,
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where [ξx] = ξx + NL denotes the class of ξx in HL and it can be verified that
(V ;K) is a Kolmogorov decomposition of the kernel K.

We finally review the uniqueness property of the Kolmogorov decomposition.
Two Kolmogorov decompositions (V1,K1) and (V2,K2) of the same Hermitian ker-
nel K are unitarily equivalent if there exists a unitary operator Φ ∈ L(K1,K2) such
that for all x ∈ X we have V2(x) = ΦV1(x). The following result was obtained in
[7]. We denote by ρ(T ) the resolvent set of the operator T .

Theorem 2.2. Let K be a Hermitian kernel which has Kolmogorov decompositions.
The following assertions are equivalent:
(1) All Kolmogorov decompositions of K are unitarily equivalent.
(2) For each positive definite kernel L such that −L ≤ K ≤ L, there exists ε > 0

such that either (0, ε) ⊂ ρ(AL) or (−ε, 0) ⊂ ρ(AL), where AL is the Gram
operator of K with respect to L.

2.3. Invariant Hermitian Kernels

We now review some results on the Kolmogorov decomposition of Hermitian ker-
nels with additional symmetries. Let φ be an action of a unital semigroup S on X.
Assume that the L(H)-valued Hermitian kernel K has a Kolmogorov decomposi-
tion (V,K). The action φ is linearized by the following mapping: for any a ∈ S,
x ∈ X and ξ ∈ H,

U(a)V (x)ξ = V (φ(a, x))ξ. (2.5)

We notice that for a, b ∈ S, x ∈ X and ξ ∈ H we have

U(a)U(b)V (x)ξ = U(a)V (φ(b, x))ξ = V (φ(a, φ(b, x)))ξ
= V (φ(ab, x))ξ = U(ab)V (x)ξ.

Therefore, the family {U(a)}a∈S is a semigroup of linear operators with a common
dense domain

∨
x∈X V (x)H (throughout this paper

∨
denotes the linear space

generated by some set, without taking any closure). If K is a positive definite
kernel then the previous construction is well-known (see, for instance, [17]). The
remaining question, especially in case K is not positive definite, is: what additional
conditions on the kernel K should be imposed in order to ensure the boundedness
of the operators U(a), a ∈ S? We gave a possible answer in [8], by considering an
additional symmetry of the kernel.

Consider the set B = {ξx | ξ ∈ H, x ∈ X} which is a system of generators
F0(X,H). Define for a ∈ S,

ψa(ξx) = ξφ(a,x) (2.6)

and this mapping can be extended by linearity to a linear mapping, also denoted
by ψa, from F0(X,H) into F0(X,H). We say that a positive definite kernel L is
φ-bounded provided that for all a ∈ S, ψa is bounded with respect to the semi-
norm [·, ·]1/2

L induced by L on F0(X,H). We denote by B+
φ (X,H) the set of positive

definite φ-bounded kernels on X with values in L(H).
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From now on we assume that S is a unital semigroup with involution, that
is, there exists a mapping I : S → S such that I2 = the identity on S, and
I(ab) = I(b)I(a) for all a, b ∈ S. The following result was obtained in [8].

Theorem 2.3. Let φ be an action of the unital semigroup S with involution I on
the set X and let K be an L(H)-valued Hermitian kernel on X with the property
that

K(x, φ(a, y)) = K(φ(I(a), x), y) (2.7)

for all x, y ∈ X and a ∈ S. The following assertions are equivalent:
(1) There exists L ∈ B+

φ (X,H) such that −L ≤ K ≤ L.
(2) K has a Kolmogorov decomposition (V ;K) with the property that there exists

a representation U of S on K such that

V (φ(a, x)) = U(a)V (x) (2.8)

for all x ∈ X, a ∈ S. In addition, U(I(a)) = U(a)� for all a ∈ S.
(3) K = K1−K2 for two positive definite kernels such that K1+K2 ∈ B+

φ (X,H).

2.4. Reproducing Kernel Spaces

We now describe another construction, closely related to the Kolmogorov decom-
position of a Hermitian kernel. Let K be a Hermitian kernel satisfying (2.7) with
a Kolmogorov decomposition (V ;K) as in Theorem 2.3. Define

R = {gf : X → H | gf (x) = V �(x)f, f ∈ K}.
Then R is a vector subspace of F(X,H), the class of functions defined on X with
values in H. We define a map Φ : K → R by

Φf = gf , f ∈ K.
This map is linear and bijective, so that we can define on R the inner product

[gf , gh]R = [f, h]K, f, h ∈ K.
One checks that R is a Krĕın space with respect to this inner product. Also, Φ
is a bounded operator between the Krĕın spaces K and R, since it is closed and
everywhere defined on K, hence it is unitary. Moreover, R is the closure of the
linear space generated by the functions g

V (y)ξ
, y ∈ X and ξ ∈ H. These functions

are related to the kernel K as follows:

g
V (y)ξ

(x) = V �(x)V (y)ξ = K(x, y)ξ, x, y ∈ X, ξ ∈ H.
We will write gy,ξ instead of g

V (y)ξ
, and since gy,ξ(x) = K(x, y)ξ, these functions

can be defined without using V . Therefore, the space R has the following repro-
ducing property:

[gf (x), ξ]H = [gf , gx,ξ]R, x ∈ X, f ∈ K, ξ ∈ H. (2.9)

We also note that property (2.7) of the kernel K is reflected into a certain sym-
metry of the elements of R. Thus, we define an operator Ū(a) ∈ L(R) by

Ū(a) = ΦU(a)Φ�, a ∈ X,
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where U is the representation of S given by Theorem 2.3. We have

Ū(a)gf = ΦU(a)Φ�gf = ΦU(a)f = gU(a)f , a ∈ X, f ∈ K.
On the other hand, for any a, x ∈ X and f ∈ K,

gf (φ(I(a), x)) = V �(φ(I(a), x))f = V (x)�U(I(a))�f

= gU(a)�f (x)

and we deduce that the elements of R satisfy the relation

(Ū(a)gf )(x) = gf (φ(I(a), x)).

Based on this relation we obtain the following result.

Theorem 2.4. Let φ be an action of the unital semigroup S with involution I on
the set X and let K be an L(H)-valued Hermitian kernel on X with the property
that

K(x, φ(a, y)) = K(φ(I(a), x), y) (2.10)

for all x, y ∈ X and a ∈ S. The following assertions are equivalent:
(1) There exists L ∈ B+

φ (X,H) such that −L ≤ K ≤ L.
(2) K has a Kolmogorov decomposition (V ;K) with the property that there exists

a representation U of S on K such that for all x ∈ X, a ∈ S, V (φ(a, x)) =
U(a)V (x).

(3) There exists a Krĕın space R such that
(a) R ⊂ F(X,H).
(b) There exists a total set {gx,ξ | x ∈ X, ξ ∈ H} in R such that

[f(x), ξ]H = [f, gx,ξ]R, f ∈ R, ξ ∈ H, x ∈ X.

(c) There exists a representation Ū of S on R such that

(Ū(a)f)(x) = f(φ(I(a), x)), a ∈ S, x ∈ X, f ∈ R.
Proof. The implication (2) ⇒ (3) was already proved above. In order to prove
(3) ⇒ (2) we define the linear mapping V̄ (x) from H into R by the formula:

V̄ (x)ξ = gx,ξ, x ∈ X, ξ ∈ H.
The property (c) shows that V̄ (x) is a closed operator and by the closed graph
theorem we deduce that V̄ (x) ∈ L(H,R). From (b) and (c) we deduce that (V̄ ;R)
is a Kolmogorov decomposition of K. Finally,

(V̄ (φ(a, x))ξ)(y) = gφ(a,x),ξ(y) = K(y, φ(a, x))ξ
= K(φ(I(a), y), x)ξ
= gx,ξ(φ(I(a), y))
= (Ū(a)V̄ (x)ξ)(y).

This completes the proof. �
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3. Hankel Type Kernels

In this section we interpret the invariance property (2.7) as a Hankel condition.
To see this, let S = N be the additive semigroup of natural numbers (includ-
ing 0) and the action φ is given by right translation. If K satisfies (2.7), then
K(n, p+m) = K(p+n,m) for m,n, p ∈ N and K is a so-called Hankel kernel. We
can extend this example to a noncommutative setting as follows. Let S = F

+
N be

the unital free semigroup on N generators g1, . . . , gN with lexicographic order ≺.
The empty word is the identity element and the length of the word σ is denoted
by |σ|. The length of the empty word is 0. There is a natural involution on F

+
N

given by I(gj1 . . . gjk
) = gjk

. . . gj1 as well as a natural action of F
+
N on itself by

juxtaposition, φ(σ, τ) = στ , σ, τ ∈ F
+
N . The condition (2.7) means in this case that

K(σ, βτ) = K(I(β)σ, τ) (3.1)

for β, σ, τ ∈ F
+
N . It was noticed in [6] that kernels as above appear in connection

with orthogonal polynomials in N indeterminates satisfying the relations Y ∗
k = Yk,

k = 1, . . . , N .
Let P0

N be the algebra of polynomials in N non-commuting indeterminates
Y1,. . .,YN with complex coefficients. For any σ = gj1gj2 · · · gjl

∈ F
+
N , where jp ∈

{1, 2, . . . , N} for all p = 1, . . . , l, l = |σ|, we denote Yσ = Ygj1
Ygj2

· · ·Ygjl
. With

this notation, each element P ∈ P0
N can be uniquely written as

P =
∑

σ∈F
+
N

cσYσ, (3.2)

where (cσ)σ∈F
+
N

⊂ C has finite support.
An involution ∗ on P0

N can be introduced as follows: Y ∗
k = Yk, k = 1, . . . , N ;

on monomials, (Yσ)∗ = YI(σ); and, in general, if P has the representation as in
(3.2) then

P ∗ =
∑

σ∈F
+
N

cσY
∗
σ .

Thus, P0
N is a unital, associative, ∗-algebra over C. A linear functional Z on P0

N

is called Hermitian if Z(P ∗) = Z(P ) for P ∈ P0
N .

A convenient subclass of Hermitian functionals, called GNS functionals, is
given by those functionals admitting GNS data. A triplet (π,K,Ω) is called a
GNS data associated to Z if π is a Hermitian closable representation of P0

N on a
Krĕın space K and Ω ∈ D(π), the domain of π, such that Z(P ) = [π(P )Ω,Ω]K
for P ∈ P0

N , and
∨

P∈P0
N
π(P )Ω = D(π) (see [2, 13]). The numbers sσ = Z(Yσ),

σ ∈ F
+
N , are called the moments of Z.
Conversely, to any family of complex numbers Σ = (sσ)σ∈F

+
N

, we can associ-
ate the kernel

KΣ(σ, τ) = sI(σ)τ , σ, τ ∈ F
+
N , (3.3)

and it is easy to see that this kernel satisfies (3.1).
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The following is a Hamburger type description of moments.

Theorem 3.1. The complex numbers sσ, σ ∈ F
+
N , are the moments of a GNS func-

tional on P0
N if and only if there exists a positive definite kernel L on F

+
N such

that −L ≤ K ≤ L, where K(σ, τ) = sI(σ)τ , σ, τ ∈ F
+
N .

Proof. This result is just another facet of Theorem 2.1. Assume first that the num-
bers sσ, σ ∈ F

+
N , are the moments of a GNS functional on P0

N . Let (π,K,Ω) be a
GNS data associated to Z. Define V : F

+
N → L(C,K) by the formula:

V (σ)λ = π(Yσ)(λΩ), σ ∈ F
+
N , λ ∈ C.

We deduce that for σ, τ ∈ F
+
N and λ, µ ∈ C,

V (σ)�V (τ)λν = [V (τ)λ, V (σ)ν]K = [π(Yτ )(λΩ), π(Yσ)(νΩ)]K
= λν[π(Y ∗

σ Yτ )Ω,Ω]K = λνZ(YI(σ)τ ) = λνK(σ, τ).

Also, the set {V (σ)λ | σ ∈ F
+
N , λ ∈ C} is total in K, so that (V,K) is a Kolmogorov

decomposition of K. By Theorem 2.1, there exists a positive definite kernel L on
F

+
N such that −L ≤ K ≤ L.

Conversely, let (V,K) be a Kolmogorov decomposition of K. Define Ω = V (∅)
and

π(Yσ)Ω = V (σ), σ ∈ F
+
N .

We notice that
∨

P∈P0
N
π(P )Ω =

∨
σ∈F

+
N
V (σ)C, we define D(π) =

∨
σ∈F

+
N
V (σ)C,

and we can extend π to P0
N by linearity. Clearly, D(π) is invariant under π(P ),

P ∈ P0
N , and π(P )π(Q) = π(PQ). Also, for k, k′ ∈ D(π),

[π(Yσ)k, k′]K =



π(Yσ)
n∑

k=1

ckπ(Yτk
)Ω,

m∑

j=1

djπ(Yτ ′
j
)Ω





K

=
n,m∑

k,j=1

ckdj [π(Yσ)π(Yτk
)Ω, π(Yτ ′

j
)Ω]K

=
n,m∑

k,j=1

ckdj [V (στk)1, V (τ ′
j)1]K =

n,m∑

k,j=1

ckdjV (τ ′
j)

�V (στk)

=
n,m∑

k,j=1

ckdjK(τ ′
j , στk) =

n,m∑

k,j=1

ckdjK(I(σ)τ ′
j , τk)

= [k, π(YI(σ))k′]K,

which shows that the domain of π(Yσ)� contains D(π) and

π(Yσ)�|D(π) = π(YI(σ)) = π(Y ∗
σ ).
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We can extend this argument and show that the same is true for any P ∈ P0
N , so

that (π,K,Ω) is a GNS data for Z(P ) = [π(P )Ω,Ω]K, P ∈ P0
N . The moments of

Z are

Z(Yσ) = [π(Yσ)Ω,Ω]K = [V (σ)1, V (∅)1]K
= V (∅)�V (σ) = K(∅, σ) = sI(∅)σ = sσ.

�

As a consequence of the previous result and Theorem 2.2, we deduce a unique-
ness condition for the solvability of the Hamburger moment problem for GNS
functionals.

Theorem 3.2. Let sσ, σ ∈ F
+
N , be the moments of some GNS functional on P0

N , and
consider the kernel K(σ, τ) = sI(σ)τ , σ, τ ∈ F

+
N . Then, there exists a unique GNS

functional on P0
N with moments sσ, if and only if for each positive definite kernel

L on F
+
N such that −L ≤ K ≤ L, there exists ε > 0 such that either (0, ε) ⊂ ρ(AL)

or (−ε, 0) ⊂ ρ(AL), where AL is the Gram operator of K with respect to L.

4. Dilations and Decomposition of Kernels

In this section we show that Theorem 2.3 provides a general framework for a ver-
sion of the Stinespring theorem and for decompositions of Hermitian linear maps.
Let A be a unital ∗-algebra, H a Hilbert space, and let T : A → L(H) be a linear
Hermitian map. A Stinespring dilation of T is, by definition, a triplet (π,K, B)
such that:
SD1 K is a Krĕın space with a fundamental symmetry J , and B ∈ L(H,K);
SD2 π : A → L(K) is a selfadjoint (that is, π(a∗) = π(a)� = Jπ(a)∗J for all a ∈ A)

representation, such that T (a) = B∗Jπ(a)B, for all a ∈ A.
If, in addition,
SD3 {π(a)BH | a ∈ A} is total in K,
then the Stinespring dilation (π,K, B) is called minimal.

We consider the action φ of A on itself defined by

φ(a, x) = xa∗, x, a ∈ A, (4.1)

and a Hermitian kernel is associated to T by the formula

KT (x, y) = T (xy∗), x, y ∈ A. (4.2)

It readily follows that KT is φ-invariant, that is,

KT (x, φ(a, y)) = T (xay∗) = KT (φ(a∗, x), y), a, x, y ∈ A. (4.3)

Proposition 4.1. Given a minimal Stinespring dilation (π,K, B) of the Hermitian
linear map T : A → L(H), let

V (x) = π(x∗)JB, x ∈ A, (4.4)
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where J is a fundamental symmetry of K. Then (V,K) is an invariant Kolmogorov
decomposition of the Hermitian kernel KT .

In addition, (4.4) establishes a bijective correspondence between the set of
minimal Stinespring dilations of T and the set of invariant Kolmogorov decompo-
sitions of KT .

Proof. Let (π,K, B) be a minimal Stinespring dilation of T and define (V,K) as
in (4.4). Then

V (x)∗JV (y) = B∗Jπ(x∗)∗Jπ(y∗)JB = B∗Jπ(xy∗)JB = T (xy∗)
= KT (x, y), x, y ∈ A.

Since
∨

a∈A π(a)BH =
∨

x∈A V (x)H it follows that (V,K) is a Kolmogorov decom-
position of T . Let us note that, by the definition of V ,

π(a)V (x) = π(a)π(x∗)JB = π(ax∗)JB = V (xa∗) a, x ∈ A,
and hence, letting U = π, it follows that the Kolmogorov decomposition (V,K) is
φ-invariant.

Conversely, let (V,K) be an invariant Kolmogorov decomposition of the Her-
mitian kernel KT , that is, there exists a Hermitian representation U : A → L(K)
of the multiplicative semigroup A with involution ∗, such that

U(a)V (x) = V (xa∗), a, x ∈ A.
Define π = U and B = JV (1). Since T is linear it follows easily that π is also
linear, hence a selfadjoint representation of the ∗-algebra A on the Krĕın space K.
Then, taking into account that V (a) = U(a∗)B for all a ∈ A, it follows

T (a) = V (a)∗JV (1) = B∗U(a∗)∗JB = B∗JU(a)B, a ∈ A,
and since

∨
a∈A π(a)BH =

∨
x∈A V (x)H we thus proved that (π,K, B) is a mini-

mal Stinespring dilation of T . One easily check that the mapping defined in (4.4)
is the inverse of the mapping associating to each invariant Kolmogorov decompo-
sition (V,K) the minimal Stinespring dilation (π,K, B) as above. �

Proposition 4.1 reduces the existence of Stinespring dilations of Hermitian
maps T to the existence of invariant Kolmogorov decompositions for the Hermi-
tian kernel KT defined as in (4.2). Now the following result is just an application
of Theorem 2.3.

Theorem 4.2. Let A be a unital ∗-algebra and let T : A → L(H) be a linear
Hermitian map. The following assertions are equivalent:
(1) There exists a positive definite kernel L ∈ B+

φ (A,H), φ given by (4.1), such
that −L ≤ KT ≤ L.

(2) T has a minimal Stinespring dilation.

We show now that Wittstock’s Decomposition Theorem [20] and Paulsen’s
Dilation Theorem [16] fit into the framework of invariant Kolmogorov decompo-
sitions, more precisely, the following result shows that in case A is a C∗-algebra,
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Schwartz’s boundedness condition for Hermitian kernels represents an extension
of the concept of completely bounded map. We use standard terminology from the
theory of operator spaces, e.g. see [16] and [10].

Theorem 4.3. Let A be a unital C∗-algebra and let T : A → L(H) be a linear
Hermitian map. The following assertions are equivalent:
(1) T is completely bounded.
(2) There exists a completely positive map S : A → L(H) such that −S ≤ T ≤ S.
(3) There exists a Hilbert space K with a symmetry J , a ∗-representation π :

A → L(K) commuting with J , and a bounded operator B ∈ L(H,K) such
that

T (a) = B∗Jπ(a)B, a ∈ A,
and

∨
a∈A π(a)BH is dense in K.

(4) T = T+ − T− for two completely positive maps T+ and T−.

Proof. In the following we let U(A) be the unitary group of A. Then U(A) has the
involution I(a) = a−1 = a∗ and acts on A by φ(a, x) = xa∗ = xa−1.

(1) ⇒ (2) We use Paulsen’s off-diagonal technique. Briefly, assume that T is
completely bounded. By Theorem 7.3 in [16], there exist completely positive maps
φ1 and φ2 such that the map

F

([
a b
c d

])
=
[
φ1(a) T (b)
T (c∗)∗ φ2(d)

]

is completely positive. Define S(a) = 1
2 (φ1(a) + φ2(a)), which is a completely

positive map. We can check that −S ≤ T ≤ S. First, let a ≥ 0, a ∈ A. Then[
a ±a

±a a

]
≥ 0, so that

[
φ1(a) ±T (a)
±T (a) φ2(a)

]
≥ 0. In particular, for ξ ∈ H,

〈[
φ1(a) ±T (a)
±T (a) φ2(a)

] [
ξ
ξ

]
,

[
ξ
ξ

]〉
≥ 0,

equivalently, 〈(φ1(a)±2T (a)+φ2(a))ξ, ξ〉 ≥ 0. Therefore, S±T are positive maps.
The argument can be extended in a straightforward manner (using the so-called
canonical shuffle as in [16]) to show that S ± T are completely positive maps.

(2) ⇒ (3) Since S is completely positive, the kernel KS is positive definite
and satisfies −KS ≤ KT ≤ KS . Also,

KS(x, φ(a, y)) = KS(φ(a−1, x), y), a ∈ U(A), x, y ∈ A.
By Theorem 4.3 in [8], there exists a Kolmogorov decomposition (V,K) of KT and
a fundamentally reducible representation U of U(A) on K such that

U(a)V (x) = V (xa−1), a ∈ U(A), x ∈ A.
Let J be a fundamental symmetry on K such that U(a)J = JU(a) for all a ∈ U(A).
Then U is also a representation of U(A) on the Hilbert space (K, 〈·, ·〉J ). Also, for
a ∈ U(A),

T (a) = KT (a, 1) = V (a)∗JV (1) = V (1)∗JU(a)V (1).
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Since A is the linear span of U(A) and T is linear, U can be extended by linearity
to a representation π of A on K commuting with J and such that

T (a) = V (1)∗Jπ(a)V (1)

holds for all a ∈ A. Also, we have
∨

a∈U(A) U(a)V (1)H =
∨

a∈U(A) V (a−1)H =∨
a∈U(A) V (a)H and using once again the fact that A is the linear span of U(A),

we deduce that
∨

a∈A U(a)V (1)H is dense in K.
(3)⇒(4) We define for a ∈ A,

V (a) = π(a∗)B.

Then V (a) is in L(H,K) and
∨

a∈A V (a)H =
∨

a∈A π(a)BH. K becomes a Krĕın
space by setting [x, y]K = 〈Jx, y〉, x, y ∈ K. Also, for ξ, η ∈ H,

〈V (x)∗JV (y)ξ, η〉 = 〈JV (y)ξ, V (x)η〉 = 〈Jπ(y∗)Bξ, π(x∗)Bη〉
= 〈Jπ(xy∗)Bξ,Bη〉 = 〈T (xy∗)ξ, η〉
= 〈KT (x, y)ξ, η〉,

so that (V,K) is a Kolmogorov decomposition of KT . Let J = J+ − J− be the
Jordan decomposition of J and define the Hermitian kernels

K±(x, y) = V (x)∗J±V (y).

One can check that

K±(x, φ(a, y)) = K±(φ(a−1, x), y)

for all x, y ∈ A and a ∈ U(A). For x ∈ A define

T±(x) = K±(x, 1).

Then T±(x) = BJπ(x∗)∗J±V (1) are linear maps on A and for x ∈ A, y ∈ U(A),
we get

KT±(x, y) = T±(xy−1) = K±(xy−1, 1)

= K±(φ(y, x), 1) = K±(x, φ(y−1, 1))
= K±(x, y).

Since KT± and K± are antilinear in the second variable and A is the linear span
of U(A), it follows that

KT±(x, y) = K±(x, y)

for all x, y ∈ A. This implies that T± are disjoint completely positive maps such
that T = T+ − T−. The implication (4)⇒(1) is clear. �

Theorem 4.3 suggests how to extend the concept of decomposition to arbi-
trary kernels. In the following we repeatedly use the following observation: if L is
a positive definite kernel on X and with values in L(H), and T ∈ L(H), then the
kernel T ∗LT is positive definite. Thus, if K is a Hermitian kernel, L is a positive
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definite kernel, both on a set X and with entries in L(H), for some Hilbert space
H, then for any x, y ∈ X

[
1 1
1 −1

]∗ [
L(x, y) K(x, y)
K(x, y) L(x, y)

] [
1 1
1 −1

]

= 2
[
L(x, y) +K(x, y) 0

0 L(x, y) −K(x, y)

]
.

Thus,
[
L K
K L

]
is positive definite if and only if both L + K and L − K are

positive definite, that is, if and only if the Schwartz condition −L ≤ K ≤ L holds.
Following U. Haagerup [12], this observation and Theorem 4.3 suggest the

following definition: a kernel K : X × X → L(H) is called decomposable if there
exist two positive definite kernels L1, L2 : X × X → L(H) such that the kernel[
L1 K
K∗ L2

]
is positive definite. Clearly, a kernel K is decomposable if and only if it

is a linear combination of positive definite kernels. Actually, it is easy to see that
any decomposable kernel can be written as linear combination of at most four
positive definite kernels. The next result can be viewed as an analog of V. Paulsen
dilation theorem [16].

Theorem 4.4. The kernel K is decomposable if and only if there is a Hilbert space
K, a mapping V : X → L(H,K), and a contraction U on K such that K(x, y) =
V (x)∗UV (y) for all x, y ∈ X, and the set {V (x)h | x ∈ X,h ∈ H} is total in K.

Proof. If K(x, y) = V (x)∗UV (y) for x, y ∈ X and some contraction U , then con-
sider the positive definite kernels L1(x, y) = L2(x, y) = V (x)∗V (y). We deduce
that

[
L1(x, y) K(x, y)
K∗(x, y) L2(x, y)

]
=
[

V (x)∗V (y) V (x)∗UV (y)
V (x)∗U∗V (y) V (x)∗V (y)

]

=
[
V (x)∗ 0

0 V (x)∗

] [
I U
U∗ I

] [
V (y) 0

0 V (y)

]
.

Since U is a contraction, the matrix
[
I U
U∗ I

]
is positive. Next, take x1, . . . , xn ∈

X and after reshuffling, the matrix

[
L1(xi, xj) K(xi, xj)
K∗(xi, xj) L2(xi, xj)

]n

i,j=1
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can be written in the form

(
n⊕

i=1

(V (xi)∗ ⊕ V (xi)∗
)




[
I U
U∗ I

]
⊗





I I . . . I
I I . . . I
...

...
. . .

I I I









×



n⊕

j=1

(V (xj) ⊕ V (xj)



 ,

which shows that the kernel
[
L1(x, y) K(x, y)
K∗(x, y) L2(x, y)

]
is positive definite.

Conversely, assume that K is decomposable. We consider the real and imag-
inary parts of K,

K1(x, y) =
1
2
(K(x, y) +K∗(x, y)), (4.5)

K2(x, y) =
1
2i

(K(x, y) −K∗(x, y)), (4.6)

therefore K1, K2 are Hermitian kernels and K = K1 + iK2. Since K is decompos-

able, there exist positive definite kernels L1 and L2 such that the kernel
[
L1 K
K∗ L2

]

is positive definite. Therefore,
[

1 1
1 −1

]∗ [
L1 K
K∗ L2

] [
1 1
1 −1

]

=
[
L1 +K∗ +K + L2 L1 +K −K∗ − L2

L1 +K∗ −K − L2 L1 −K∗ −K + L2

]

is also a positive definite kernel, which implies that − 1
2 (L1 + L2) ≤ K1 ≤ 1

2 (L1 +
L2). Similarly,

[
1 i
−i −1

]∗ [
L1 K
K∗ L2

] [
1 i
−i −1

]

=
[
L1 + iK∗ − iK + L2 iL1 −K∗ +K − iL2

−iL1 −K +K∗ + iL2 L1 − iK∗ + iK + L2

]

is a positive definite kernel, which gives that − 1
2 (L1 + L2) ≤ K2 ≤ 1

2 (L1 + L2).
Since 1

2 (L1 + L2) is a positive definite kernel, we deduce from Theorem 2.1 that
both K1 and K2 have Kolmogorov decompositions, say

Ki(x, y) = Vi(x)∗J1Vi(y), i = 1, 2,
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where Vi : X → L(H,Ki) and Ji are fundamental symmetries on Ki, i = 1, 2. It
follows that

K(x, y) = V1(x)∗J1V1(y) + iV2(x)∗J2V2(y)

=
[
V1(x)
V2(x)

]∗ [
J1 0
0 iJ2

] [
V1(y)
V2(y)

]
.

Define V ′(x) =
[
V1(x)
V2(x)

]
: H → K1 ⊕ K2 and let K be the closure in K1 ⊕ K2

of the linear space generated by the elements of the form V ′(x)h, x ∈ X and
h ∈ H. Finally, define V (x) = PKV ′(x), where PK denotes the orthogonal projec-
tion of K1 ⊕ K2 onto K. Then the set {V (x)h | x ∈ X,h ∈ H} is total in K and

K(x, y) = V (x)∗PK

[
J1 0
0 iJ2

]
PKV (y). The operator U = PK

[
J1 0
0 iJ2

]
PK is a

contraction and the proof is concluded. �

5. Holomorphic Kernels

There are many examples of Hermitian kernels which are holomorphic on some
domain in the complex plane, see for instance [5]. In all these cases it is known
that the kernels are associated with reproducing kernel Krĕın (Hilbert) spaces,
and D. Alpay in [3] proved a general result in this direction. Our goal is to extend
the result in [3] to the multi-variable case. In view of the transcription between
Kolmogorov decompositions and reproducing kernel spaces, e.g. see the invariant
version in Theorem 2.4, we actually show that the original idea of the proof in [3],
which goes back to [18], can be adapted to this multi-variable setting.

We first review the well-known example of the Szegö kernel (see [4]). Let G
be a Hilbert space and denote by Br(ξ) the open ball of radius r and center ξ,
Br(ξ) = {η ∈ G | ‖η− ξ‖ < r}. We write Br instead of Br(0). For ξ, η ∈ B1, define

S(ξ, η) =
1

1 − 〈η, ξ〉 , (5.1)

and note that S is a positive definite kernel on B1. We now describe its Kolmogorov
decomposition. Let

F (G) =
∞⊕

n=0

G⊗n,

be the Fock space associated to G, where G⊗0 = C and G⊗n is the n-fold tensor
product of G with itself. Let

Pn =
1
n!

∑

π∈Sn

π̂ (5.2)

be the orthogonal projection of G⊗n onto its symmetric part, where

π̂(ξ1 ⊗ · · · ⊗ ξn) = ξπ−1(1) ⊗ · · · ⊗ ξπ−1(n)
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and π is an element of the permutation group Sn on n symbols. The symmetric
Fock space is F s(G) = (

⊕∞
n=0 Pn)F (G). For ξ ∈ B1 set ξ⊗0 = 1 and let ξ⊗n denote

the n-fold tensor product ξ ⊗ · · · ⊗ ξ, n ≥ 1. Note that

‖
⊕

n≥0

ξ⊗n‖2 =
∑

n≥0

‖ξ⊗n‖2 =
∑

n≥0

‖ξ‖2n =
1

1 − ‖ξ‖2
.

Hence
⊕

n≥0 ξ
⊗n ∈ F s(G) and we can define the mapping VS from B1 into F s(G),

VS(ξ) =
⊕

n≥0

ξ⊗n, ξ ∈ B1. (5.3)

Lemma 5.1. The pair (VS , F
s(G)) is the Kolmogorov decomposition of the kernel S.

Proof. VS(ξ) is also viewed as a bounded linear operator from C into F s(G) by
VS(ξ)λ = λVS(ξ), λ ∈ C, so that, for ξ, η ∈ B1,

VS(ξ)∗VS(η) = 〈VS(η), VS(ξ)〉
=
∑

n≥0

〈η⊗n, ξ⊗n〉

=
∑

n≥0

〈η, ξ〉n =
1

1 − 〈η, ξ〉 = S(ξ, η).

The set {VS(ξ) | ξ ∈ B1} is total in F s(G) since for n ≥ 1 and ξ ∈ G we have
dn

dtn
V (tξ)|t=0 = n!ξ⊗n. �

The reproducing kernel Hilbert space associated to the Szegö kernel S, see
(5.1), is given by the completion of the linear space generated by the functions
sη = S(·, η), η ∈ B1, with respect to the inner product defined by

〈sη, sξ〉 = S(ξ, η).

Note that there exists a unitary operator F from the reproducing kernel Hilbert
space associated to the Szegö kernel S onto F s(G) such that Fsξ = VS(ξ), ξ ∈ B1.

We now explore the fact that S is a holomorphic kernel. We use the termi-
nology and results from [9, 15] for holomorphic functions in infinite dimensions.
Thus, we say that a scalar-valued function f defined on the open subset O of G
is holomorphic if f is continuous on O and for all η ∈ O, ξ ∈ G, the mapping
λ → f(η + λξ) is holomorphic on the open set {λ ∈ C | η + λξ ∈ O}. One easily
check that S(ξ, ·) is holomorphic on B1 for each fixed ξ ∈ B1. We also notice that
the reproducing kernel Hilbert space associated to S consists of anti-holomorphic
functions on B1. It is somewhat more convenient to replace this space by a Hilbert
space of holomorphic functions on B1. Thus, define the holomorphic function
aξ = S(ξ, ·) on B1 for each ξ ∈ B1, and let H2(G) denote the completion of the
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linear space generated by the functions aξ, ξ ∈ B1, with respect to the inner
product defined by

〈aξ, aη〉 = S(ξ, η), ξ, η ∈ B1.

We notice that H2(G) is an anti-unitary copy of the reproducing kernel Hilbert
space of S.

We say that a scalar-valued Hermitian kernel K, defined on an open subset
O of G, is holomorphic on O if K(ξ, ·) is holomorphic on O for each fixed ξ ∈ O.

Theorem 5.2. Any scalar-valued Hermitian holomorphic kernel on Br, r > 0 has
a Kolmogorov decomposition on some Br′ , 0 < r′ ≤ r.

Proof. Let K be a scalar-valued Hermitian holomorphic kernel on Br, r > 0. Since
K is Hermitian, it follows that K(·, η) is anti-holomorphic on Br for each η ∈ Br.
It is convenient to reformulate this fact as follows. Let {eα}α∈A be an orthonormal
basis for G. We define the mapping

ξ =
∑

α∈A

〈ξ, eα〉eα →
∑

α∈A

〈ξ, eα〉eα = ξ∗,

so that the function f(ξ, η) = K(ξ∗, η) is separately holomorphic on Br ×Br. By
Hartogs’ Theorem ([15], Theorem 36.8), f is holomorphic on Br × Br. By ([15],
Proposition 8.6), f is locally bounded. We first suppose that r > 1. Hence there
exist 1 < ρ < r and C > 0 such that:

|K(ξ, η)| ≤ C for ξ, η ∈ Bρ (5.4)

and

K(ξ∗, η) =
∑

m≥0

pm(ξ, η) (5.5)

uniformly on Bρ, where each pm, m ≥ 0, is an m-homogeneous continuous poly-
nomial on G × G. That is (see [15] or [9], Chapter 1), there exists a continuous
linear mapping Am on Pm((G × G)⊗m) such that

pm(ξ, η) = Am((ξ, η)⊗m) (5.6)

for all ξ, η ∈ G.
Using Cauchy Inequalities, [9], Proposition 3.2, for Bρ, we deduce

‖Am‖ ≤ ‖pm‖ ≤ C
1
ρm

, (5.7)

hence
∑

m≥0

‖Am‖2 ≤ C
∑

m≥0

1
ρ2m

= C
1

1 − 1/ρ2
= C ′ < ∞. (5.8)

The previous facts are valid with respect to the norm ‖(ξ, η)‖=max{‖ξ‖, ‖η‖}.

Since this norm is equivalent to the Hilbert norm ‖(ξ, η)‖ =
√‖ξ‖2 + ‖η‖2, we

deduce that each Am is also continuous with respect to this Hilbert norm on
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G × G. By Riesz representation theorem, there exist am ∈ Pm(G × G)⊗m, m ≥ 0,
such that

Am((ξ, η)⊗m) = 〈(ξ, η)⊗m, am〉 (5.9)

and

‖am‖ = ‖Am‖ (5.10)

(with a0 = A0 ∈ C). Taking into account that Pm(G×G)⊗m is isometrically isomor-
phic to (PmG⊗m)⊕(m+1), we deduce that there exist ak

m ∈ PmG⊗m, k = 0, . . . ,m,
such that

〈(ξ, η)⊗m, am〉 =
m∑

k=0

〈bkm(ξ, η), ak
m〉 (5.11)

and
m∑

k=0

‖ak
m‖2 = ‖am‖2, (5.12)

where b00 = 1 and bkm(ξ, η) = ξ⊗(m−k) ⊗ η⊗k, m ≥ 1, k = 0, . . . ,m.
We now show that for each fixed ξ ∈ B1, gξ(η) = K(ξ, η) belongs to H2(G).

By (5.5), (5.6), (5.9), and (5.11),

K(ξ, η) =
∑

m≥0

m∑

k=0

〈bkm(ξ∗, η), ak
m〉,

and the series converges absolutely on η by (5.7). Reordering to m-homogeneous
terms in η,

K(ξ, η) =
∑

k≥0

∑

m≥k

〈bkm(ξ∗, η), ak
m〉.

For fixed ξ define Fk(η) =
∑

m≥k〈bkm(ξ∗, η), ak
m〉. By Schwarz inequality,

‖Fk(η)‖2 ≤



∑

m≥k

‖bkm(ξ∗, η)‖2








∑

m≥k

‖ak
m‖2





= ‖η‖2k




∑

m≥k

‖ξ‖2(m−k)








∑

m≥k

‖ak
m‖2





=
‖η‖2k

1 − ‖ξ‖2

∑

m≥k

‖ak
m‖2,

which implies

‖Fk‖ ≤ 1
1 − ‖ξ‖2

∑

m≥k

‖ak
m‖2.
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Finally,

‖gξ‖2
H2(G) =

∑

k≥0

‖Fk‖2 ≤ 1
1 − ‖ξ‖2

∑

k≥0

∑

m≥k

‖ak
m‖2.

By (5.8), (5.10), and (5.12), we deduce that

‖gξ‖2
H2(G) ≤ 1

1 − ‖ξ‖2

∑

m≥0

‖Am‖2 ≤ C ′ 1
1 − ‖ξ‖2

.

This shows that gξ ∈ H2(G) and, more than that, the formula

Paξ = gξ

gives a bounded linear operator P on H2(G), such that

K(ξ, η) = gξ(η) = (Paξ)(η) = 〈Paξ, aη〉H2(G).

This implies that P is selfadjoint and let P = P+ − P− be its Jordan decom-
position, where P± are positive operators on H2(G). Then K can be written as
the difference of two positive definite kernels. By [18] and Theorem 2.3, K has a
Kolmogorov decomposition. In case r ≤ 1, a scalling argument as in [3] concludes
the proof. �

As mentioned, the above proof is based on the same idea as in [3], which goes
back to [18]. An interesting aspect of this idea is that once again the Szegö kernel
S has a certain universality property, that is, any holomorphic kernel on Br, r > 1,
is the image of S through a bounded selfadjoint operator on H2(G). A different
kind of universality property of S, related to the solution of the Nevanlinna-Pick
interpolation problem, was established in [1].

Finally we apply Theorem 5.2 to show that non-Hermitian holomorphic ker-
nels are decomposable. A kernel K : O × O → C, where O is an open subset of
some Hilbert space G, is holomorphic on O if, for any fixed ξ ∈ O, the function
K(ξ, ·) : O → C is holomorphic and, for any fixed η ∈ O, the functionK(·, η) : O →
C is anti-holomorphic.

Corollary 5.3. Any scalar-valued holomorphic kernel K on Br, r > 0, is decom-
posable on some Br′ , 0 < r′ ≤ r.

Proof. We consider the real part K1 (4.5) and, respectively, the imaginary part
K2 (4.6) of K and note that both are holomorphic Hermitian kernels. Then we
apply Theorem 5.2 to produce Kolmogorov decompositions of K1 and K2 on a
possibly smaller, but nontrivial, ball Br′ in G and, proceeding as in the proof of
Theorem 4.4, we obtain the decomposition of K as required. �
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