
SEGMENTATION BASED OTTOMAN TEXT
AND MATCHING BASED KUFIC IMAGE

ANALYSIS

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Hande Adıgüzel

July, 2013

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Pınar Duygulu Şahin (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Vis. Prof. Dr. Fazlı Can

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Sinan Kalkan

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

SEGMENTATION BASED OTTOMAN TEXT AND
MATCHING BASED KUFIC IMAGE ANALYSIS

Hande Adıgüzel

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Pınar Duygulu Şahin

July, 2013

Large archives of historical documents attract many researchers from all around

the world. The increasing demand to access those archives makes automatic re-

trieval and recognition of historical documents crucial. Ottoman archives are one

of the largest collections of historical documents. Although Ottoman is not a

currently spoken language, many researchers from all around the world are in-

terested in accessing the archived material. This thesis proposes two Ottoman

document analysis studies; first one is a crucial pre-processing task for retrieval

and recognition which is segmentation of documents. Second one is a more spe-

cific retrieval and recognition problem which aims matching Islamic patterns is

Kufic images. For the first segmentation task, layout, line and word segmenta-

tion is studied. Layout segmentation is obtained via Log-Gabor filtering. Four

different algorithms are proposed for line segmentation and finally a simple mor-

phological method is preferred for word segmentation. Datasets are constructed

with documents from both Ottoman and other languages (English, Greek and

Bangla) to test the script-independency of the methods. Experiments show that

our segmentation steps give satisfactory results. The second task aims to detect

Islamic patterns in Kufic images. The sub-patterns are considered as basic units

and matching is used for the analysis. Graphs are preferred to represent sub-

patterns where graph and sub-graph isomorphism are used for matching them.

Kufic images are analyzed in three different ways. Given a query pattern, all the

instances of the query can be found through retrieval. Going further, through

known patterns images can be automatically labeled in the entire dataset. Fi-

nally, patterns that repeat inside an image can be automatically discovered. As

there is no existing Kufic dataset, a new one is constructed by collecting images

from the Internet and promising results are obtained on this dataset.

Keywords: Historical Manuscripts, Ottoman Documents, Layout Segmentation,

Line Segmentation, Word Segmentation, Islamic Pattern Matching.

iii

ÖZET

BÖLÜTLEME TABANLI OSMANLICA METİN VE
EŞLEŞTİRME TABANLI KUFİ RESİM ANALİZİ

Hande Adıgüzel

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Pınar Duygulu

Temmuz, 2012

Tarihsel arşivler dünyanın pek çok yerinden akademisyenlerin ve konuyla ilgile-

nen araştırmacıların ilgisini çekmektedir. Bu belgelere erişim isteğinin artması

otomatik erişim ve tanıma sistemlerini zorunlu kılmaktadır. Osmanlıca belgeler

tarihsel belgeler arasında önemli ve büyük bir yer kaplamaktadır. Osmanlıca

günümüzde halen konuşulan bir dil olmamasına rağmen bir çok tarihçinin il-

gisini çekmektedir. Bu tezde de iki adet Osmanlıca belge analizi çalışması

sunulmaktadır. İlki Osmanlıca belgelerin bölütlenmesi olup; bölge, satır ve ke-

lime bölütleme çalışılmıştır. Bölgelere ayırma Log-Gabor filtreleme yöntemi ile

sağlanmıştır. Satırlara bölütleme içinse 4 farklı yöntem sunulmaktadır. Son

olarak ise belgeler morfolojik yöntemler ile kelimelere ayrılmıştır. Veri kümelerine

Osmanlıcanın yanında farklı dillerden oluşan belgeler (İngilizce, Yunanca ve

Bangla) da eklenmiştir. Deneylerden elde edilen sonuçlar bölütleme algorit-

malarının iyi çalıştığını göstermektedir. Tezin ikinci kısmında ise Kufi resim-

lerinde İslami motiflerin tespiti amaçlanmıştır. Motiflerin temsili için grafikler

kullanılmıştır. Eşyapılı grafikler ve altçizgeler incelenerek motifler eşleştirilmeye

çalışılmıştır. Kufi imgeleri farklı deneyler ile incelenmiştir. İlki verilen bir sorgu

motifinin veri kümesinden geri getirilmesidir. İkinci deney Kufi resimlerinin

otomatik etiketlenmesidir. Son olarak, her resimdeki tekrarlanan motifler ince-

lenmiştir. İnternet üzerinden toplanan resimlerle bir veri kümesi oluşturulmuştur.

Önerilen yöntem bu veri kümesi ile test edilmiş ve umut verici sonuçlar elde

edilmiştir.

Anahtar sözcükler : Tarihi Metinler, Osmanlıca Belgeler, Bölge Bölütleme, Satır

Bölütleme, Kelime Bölütleme, İslami Motif Eşleştirme.

iv

Acknowledgement

First of all, I would like to express my gratitude to my supervisor Dr. Pınar

Duygulu from whom I have learned a lot due to her supervision, patient guid-

ance, and support during this research. Without her invaluable assistance and

encouragement, this thesis would not be possible.

I am indebted to the members of my thesis committee Prof. Dr. Fazlı Can

and Asst. Prof. Dr. Sinan Kalkan for accepting to review my thesis and their

valuable comments.

I would like to express my special thanks to my friends Burcu and Zeren for

always being so supportive and cheerful towards me.

I am thankful to all my friends from the RETINA group especially Fadime,

Nermin, Gokhan, Sermetcan and Caner. Conference days or Quick China meet-

ings would not be so memorable and enjoying without them.

The biggest of my love goes to my beloved family, for their endless support

and love. None of this would be possible without them.

v

Contents

1 Introduction 1

2 Segmentation of Ottoman Documents 4

2.1 Motivation . 4

2.2 Related Work . 7

2.3 Methodology . 9

2.3.1 Pre-processing . 10

2.3.2 Layout Segmentation . 11

2.3.3 Line Segmentation . 19

2.3.4 Word Segmentation . 29

3 Segmentation Experiments 32

3.1 Dataset Descriptions . 32

3.1.1 Ottoman Dataset with Multi-Oriented Lines 32

3.1.2 Ottoman Dataset with Similarly Oriented Lines 33

3.1.3 ICDAR Dataset . 34

3.2 Evaluation Strategies . 34

3.3 Experiments and Discussion . 36

3.3.1 Ottoman Document Segmentation Experiments 36

3.3.2 Script-Independent Document Segmentation Experiments . 42

4 Matching Islamic Patterns in Kufic Images 49

4.1 Motivation . 49

4.2 Challenges in Kufic patterns . 51

4.3 Related work . 53

4.4 Our approach . 54

vi

CONTENTS vii

4.4.1 Extraction of foreground pixels 56

4.4.2 Extraction and labeling of sub-patterns 57

4.4.3 Sub-pattern matching . 60

5 Kufic Pattern Matching Experiments 65

5.1 Dataset Description . 65

5.2 Other Approaches . 66

5.2.1 Profile based features with DTW matching 66

5.2.2 Sequence matching based on contour representation 67

5.3 Experiments . 69

5.3.1 Query retrieval . 70

5.3.2 Image indexing . 74

5.3.3 Repeating pattern detection 75

5.4 Discussion . 76

6 Conclusion 77

A Layout Segmentation Results 89

List of Figures

2.1 The overall organization of our segmentation system. 6

2.2 (a) and (c): Some examples from the historical degraded docu-

ments, the ink is faded, paper is stained and the images are noisy;

(b) and (d): Adaptive binarization manages to overcome those

difficulties. 11

2.3 A binarized document with multi-oriented lines. 13

2.4 A bank of Log-Gabor filters with 4 different orientation and scales

for a minimum wavelength of 40 and scaling factor of 2. 14

2.5 Convolution response images to Log-Gabor filters with 4 different

orientations. Only a single scale is shown here. 15

2.6 (a) Response image constructed from 4 ∗ 4 Gabor filter-

ing results with finding the maximum response for each cell

(ResponseImage). (b) Region image with cells tagged with 4

possible values indicating orientations computed from maximum

responses of different filters (RegionImage). 16

2.7 (a) BoundaryImage combined with the RegionImage showing

approximate line boundaries with orientation tags. (b) Post-

processed image of (a). 17

2.8 (a) Layout segmentation result. (b) Line segmentation result. . . 18

2.9 (a) Binarized document image, (b) image without small-sized com-

ponents. 21

2.10 Procedure of extracting baseline pixels. (a) connected component,

(b) contour image, (c) left-to-right, (d) right-to-left, (e) bottom-

to-top gradient images, (f) approximate baseline pixels, (g) exact

baseline pixels. 22

viii

LIST OF FIGURES ix

2.11 Left part shows the image reconstructed from the baseline pixels of

connected components, right part is the vertical projection profile

of the reconstructed image. A Fourier curve is fitted to the projection. 22

2.12 (a) Approximation of interline gaps, (b) computed baselines. . . . 23

2.13 (a) Original binary image to be line segmented. (b) Pre-processing

applied to (a) with processes: morphological operations, small

sized connected component removal and extreme smoothing. . . . 25

2.14 Image constructed from the baselines of connected components. . 26

2.15 Approximate line boundaries computed by binarizing the maxi-

mum convolution response. 27

2.16 (a) Intersection of line boundaries with ink pixels is visualized. (b)

Final line segmentation result. 28

2.17 Baselines shown on the original binary image, computed by fitting

lines to line boundaries. 29

2.18 Example page in Ottoman. 30

2.19 Word segmentation result for a Greek document. 31

3.1 Example images from the first Ottoman dataset with multi-

oriented lines. 32

3.2 Example images from the second Ottoman dataset with similarly

oriented lines. The leftmost one is printed while the others are

handwritten. 33

3.3 Example images from the ICDAR dataset combined with Ottoman

documents. From left to right: English, Greek, Bangla and Ot-

toman document. 34

3.4 (a) Ground truth. (b) Segmentation result. (c) Matchscore table. 35

3.5 Layout segmentation results. 37

3.6 Layout segmentation errors showed with black circles. (a) Type

1 error caused by small regions. (b) and (c) Type 2 error caused

by closely located components. (d) Type 3 error caused by shape

illusions. 38

3.7 Line segmentation results of Ottoman dataset with multi-oriented

lines. 39

LIST OF FIGURES x

3.8 Line segmentation results of the hybrid method applied to Ot-

toman dataset with similarly oriented lines. 42

3.9 Line segmentation results of 4 methods categorized according to

languages. PP: Projection Profile, HM: Hybrid Method, GFRI:

Gabor Filtering with Region Intersection, GFLF: Gabor Filtering

with Line Fitting. 44

3.10 Line segmentation results of 4 methods for the whole dataset. PP:

Projection Profile, HM: Hybrid Method, GFRI: Gabor Filtering

with Region Intersection, GFLF: Gabor Filtering with Line Fit-

ting. 44

3.11 Line segmentation results of GFRI: Gabor filtering with region

intersection for Greek, Bangla, English and Ottoman documents. 46

3.12 Word segmentation results. From top row to bottom row: English,

Greek and Bangla documents. 48

4.1 Some decorative Kufic patterns. Left: Gudi Khatun Mausoleum in

Karabaghlar, Azerbaijan, 1335-1338 (Image taken from [1]). Mid-

dle: Coin of the Hafsids, with ornamental Kufic script, from Bejaia,

1249-1276 (Image taken from [2]). Right: Tombstone of Abbas,

with floriated Kufic, 9th century (Image taken from [3]). 50

4.2 Square Kufic script letters. Note that, due to the nature of Arabic,

the same character may have different shapes, depending on its

position within the sentence. Characters may also have different

shapes in different designs. (Image courtesy of [4]) 52

4.3 The same sub-words in different shapes and different sub-words

in similar shapes. In the first two images, the gray (sub-pattern

lillah), light gray (sub-pattern la) and lighter gray sub-patterns

have different shapes in both designs. For example, the gray ones

are different designs of the letter La. In the last image, the gray

(sub-pattern lillah), light gray and lighter gray ones are different

sub-patterns but they share similar shapes. 53

4.4 The overall organization of our system. 55

LIST OF FIGURES xi

4.5 Top (a-d): Example Kufic images, bottom (e-h): their correspond-

ing color histograms. As can be seen from the color histograms (a)

and (b) has a few distinct colors, while the degradation in (c) and

(d) result in multiple colors. 56

4.6 Some square Kufic images with Allah patterns are shown in red

(gray). Note that this word has different shapes in different designs

(Images 1,2,3 are taken from [4], 4-10 and 12 from [5]). 58

4.7 The patterns in green (light gray) are Resul patterns, which are

formed by three sub-patterns. The red (gray) sub-patterns are

from the La ilaha illa Allah pattern. The last image contains four

Resul patterns at each corner (First image is taken from [6] and

second one is from [1] and third-fourth ones are from [7]). 58

4.8 The patterns in red (gray) are La ilaha illa Allah. The green (light

gray) patterns are Resul patterns and note that the last one’s two

sub-patterns are connected. In the first image, first black pattern

is Allah, while second black one is Muhammed and in the second

image first black sub-pattern is Muhammed, while the second one

is Allah and the same for the third image. (The first and second

images are taken from [7] and the third from [1]). 59

4.9 16 sample images from su sub-pattern. This is the middle compo-

nent of the word Resul. 60

4.10 Junction and end points of some example sub-patterns. 61

4.11 (a) An example sub-pattern (b) the sub-pattern’s graph (c) matrix

that represents the undirected, non-weighted graph 62

4.12 Example sub-patterns with their graph representations, the graph

pairs are isomorphic. (a) La sub-pattern (b) Lillah sub-pattern (c)

Muhammed sub-pattern . 63

4.13 Example sub-patterns with their graph representations. Although

the pairs are same sub-patterns their graphs are not isomorphic.

(a) and (b) Leh sub-pattern (c) and (d) Su sub-pattern 63

LIST OF FIGURES xii

5.1 Some example square Kufic images. On the first row, the 4th image

from the left has four Allah and Muhammed patterns, while the

5th image has four Masaallah patterns. Note that in the second

row, the 2nd and 5th images have very small sub-patterns and

their outer contours also form Allah patterns. The 3rd and 6th

images in the second row have patterns which have some zig-zags

on the contours, which make line extraction process difficult. On

the first row, the 1st,4th,5th and 6th images are from [7], the 2nd

image is from [6], and the 3rd image is from [8]. The second row

images are from [1]. 66

5.2 (a) and (b) Two Allah patterns in different shapes and the outputs

of the line simplification process. Start-end points of lines are

shown with small slashes. The chain code representation of sub-

pattern A is 0246424642460646, B is 0246, C is 02465324653246

and D is 0246. (c) Output of the string matching algorithm for

sub-patterns A-C and B-D. (The images are taken from [9]) . . . 68

5.3 This Figure shows average TPR vs FPR results for all types of

query patterns in dataset. Results show that sequence matching is

good at finding instances of a pattern but it can not easily eliminate

false matches, while graph matching can discriminate false matches. 71

5.4 Connected pattern examples that our sequence matching method

can not detect (The images are taken from [7]). 72

5.5 Connected pattern detection experiment results by graph matching. 73

5.6 Repeating pattern examples (The images are taken from [1]). . . . 75

5.7 Muhammed patterns in different formats that our proposed

method can not match. 76

List of Tables

3.1 Results obtained with different printed and handwritten datasets

with different writing styles and writers. 40

3.2 Results obtained on 6 different handwritten books with MS thresh-

old of 0.95. 40

3.3 Results obtained on 6 different handwritten books with MS thresh-

old of 0.90. 41

3.4 Results obtained on 2 different printed and handwritten datasets

with MS threshold of 0.95. 41

3.5 Results obtained on 2 different printed and handwritten datasets

with MS threshold of 0.90. 42

3.6 Line segmentation results of GFRI: Gabor Filtering with Region

Intersection method categorized by languages. MS − Threshold
is taken as 0.90. 45

3.7 Word segmentation results categorized by languages. 47

4.1 Number of components per class and number of images where these

patterns are found. Note that an image may contain more than a

single labeled pattern. 60

5.1 Comparison of three methods on query retrieval based on Area

Under ROC Curve (AUC) and F1 values. 71

5.2 Recall and precision values of query retrieval task performed by

two different approaches: sequence matching and Graph matching. 72

5.3 10-fold cross validation, graph isomorphism accuracy results for

query retrieval. 74

xiii

LIST OF TABLES xiv

5.4 Image categorization success rates with line and graph matching

methods. Graph matching method again outperforms sequence

matching method. 74

5.5 Repeating pattern detection by sequence matching and graph

matching methods. We didn’t provide results for La ilaha illa Al-

lah, because at most only one instance of that pattern in images,

which makes it non-repeating pattern. 75

Chapter 1

Introduction

Historical documents constitute a large heritage that needs to be preserved. Many

researchers from all around the world are interested in accessing, analyzing and

studying them. Ottoman archives are one of the largest collections of historical

documents; they include more than 150 million documents ranging from military

reports to economic and political correspondences belonging to the Ottoman era

[10]. Ottoman empire, which had lasted for more than 6 centuries and spread

over 3 continents, shaped the history of the old world for several countries [9].

Although Ottoman is not a currently spoken language, many researchers from all

around the world are interested in accessing the archived material.

Until recently, access to historical documents were provided only by manual

indexing which can be considered costly because excessive amount of human effort

is required. Lately, digital environments became available for keeping historical

documents in image format. After this technological progress, demand to access

digital historical archives has been increased. To make the historical contents

available, automatic indexing and retrieval systems are required. Since, most of

the historical documents are kept in image format, analyzing their visual content

is suggested to build automatic systems.

Optical character recognition (OCR) can be used to provide automatic docu-

ment indexing and retrieval [11, 12, 13, 14]. However, applying OCR techniques

on old historical documents is nearly impossible because of the poor quality of

the documents, the variety of scripts and the high-level noise factors like faded

ink and stained paper caused by deterioration. Moreover, existing OCR systems

1

are language dependent and not available for every language. Thus, retrieval and

indexing of historical documents problems are usually solved by word spotting

approaches [15, 16, 17].

As a pre-processing step, segmentation provides several benefits for retrieval

and indexing tasks by supporting fast and easy navigation. In the first part of

this thesis, segmentation of Ottoman documents is studied. First layout segmen-

tation which aims to detect regions consisting of text lines written with different

orientations is explored. A Log-Gabor filtering based approach is used to segment

documents with multi-oriented lines. Experiments are performed on an Ottoman

dataset constructed with documents with multi-oriented lines.

The second segmentation task is line segmentation where four different ap-

proaches are proposed. The first one is a traditional line segmentation method,

called projection profile, used for printed documents with straight lines and it is

used as a baseline system. The second method is a hybrid line segmentation, com-

bining projection profile and connected component based methods. This method

is proposed for segmenting lines from Ottoman documents. The last 2 methods

are based on Log-Gabor filtering like the layout segmentation and they support

script independency. The first one uses region intersection while line fitting is

preferred for the second one.

The hybrid line segmentation method is tested on both printed and handwrit-

ten Ottoman documents to compare the algorithm’s performance for different

type of texts. Also, another handwritten Ottoman dataset is constructed with

different books and authors to evaluate the performance under different writing

styles and writers. The four line segmentation methods are tested and compared

on a mixed dataset including Ottoman, English, Greek and Bangla documents.

The last segmentation task is word segmentation where a simple morpholog-

ical method is applied. The tests are performed on English, Greek and Bangla

documents. Ottoman word segmentation is not in our study’s scope because it

can be only performed by language based rules which requires Ottoman language

experts.

The second part of this thesis concentrates on Islamic pattern matching in

Kufic images. The approach involves four main steps: (i) foreground extraction,

(ii) sub-pattern extraction, (iii) representation and matching, (iv) analysis. The

2

sub-patterns are considered as basic units and extracted connected components

are used as sub-patterns. The relationships between straight lines in specific

orientations are observed and thought to be important for the identification of

Kufic patterns. Based on this observation, a line-based method for representing

and matching sub-patterns is proposed. Each sub-pattern is represented with

a graph and then graph and sub-graph isomorphism are applied to match the

patterns.

Sub-pattern matching is used for the analysis of Kufic images in three different

ways. Given a query pattern, all the instances can be found through retrieval.

Going further, through known patterns images can be automatically labeled in the

entire dataset. Finally, patterns that repeat inside an image can be automatically

discovered.

The rest of the thesis is arranged as follows. First segmentation of documents

is explained in the order: layout, line and word segmentation. Line segmentation

section is divided into four, where each section explains a different algorithm.

Afterwards, the segmentation experiments are given; first one is Ottoman doc-

ument segmentation where layout and line segmentation results are discussed

for Ottoman documents. Second experiment section is script-independent seg-

mentation where line and word segmentation results for different languages are

given.

Second part of the thesis focuses on matching Islamic patterns in Kufic images.

First, extraction of foreground pixels and labeling of sub-patterns is explained.

Then in the next section, graph isomorphism is proposed for sub-pattern match-

ing. Finally, analysis is done with three different experiments; query retrieval,

image indexing and repeating pattern detection.

3

Chapter 2

Segmentation of Ottoman

Documents

2.1 Motivation

Large archives of historical documents attract many researchers from all around

the world. The increasing demand to access those archives makes automatic re-

trieval and recognition of these documents crucial. Ottoman archives are one

of the largest collections of historical documents; they include more than 150

million documents ranging from military reports to economic and political corre-

spondences belonging to the Ottoman era [10]. Researchers from all around the

world are interested in accessing the archived material [18]. Unfortunately, many

documents are in poor condition due to age or recorded in manuscript format.

Line segmentation is usually a crucial pre-processing step in most of the docu-

ment analysis systems. Although text line segmentation is a long standing prob-

lem, it is still challenging for hand-written degraded documents. The problems of

handwritten texts can be categorized into 2 parts: (i) line-based problems such

as, variance of interline distances, inconsistent baseline skews, multi-oriented text

lines and high degrees of curl; and (ii) character-based problems such as, broken

characters due to degradation, touching and overlapping text lines, small-sized

diacritical components, noisy components like ornamentation and variance of

character size.

Even though there are many advanced methods [19, 20, 21, 22, 23] designed

4

for complex datasets, the studies in text line segmentation are dominated by

projection profile and connected component-based approaches. Projection profile

based methods are usually successful on machine printed documents [24], never-

theless, they can be extended to deal with slightly curved text lines [23]. Besides,

projection profile based methods are easy to implement and fast thru the basic

intuition of straightness of text lines.

Connected component based methods are appropriate for more complex doc-

uments where interline distances and baseline skews change. However, most of

the connected component based methods work directly on the input image where

each pixel is treated equally and a change of one pixel may result in a different

result [23].

In this study, we first propose a layout segmentation algorithm based on Log-

Gabor filtering to obtain line segmentation for documents with multi-oriented

lines. First, the document image is convolved with a Log-Gabor filter bank with

different scales and orientations and then the convolution results are divided into

cells and maximum Gabor response per cell is computed.

Secondly, four different line segmentation algorithms are explained. First one

is based on vertical projection profile which is used as a baseline system. Second

one is a new segmentation algorithm where we use a hybrid approach which

combines both connected components and projection information. Rather than

obtaining the projection profile directly from the input image or straightly using

connected components for line detection, baselines of connected components are

extracted and passed to second phase where projection profiles are used. This

process also allows some skew tolerance.

The last two line segmentation algorithms are based on Log-Gabor filtering

like the layout segmentation algorithm. Firstly, document image is pre-processed

to suppress language based characteristics and emphasize the line structure. Then

pre-processed image is convolved with different Log-Gabor filters with different

scales to detect the correct character scale. Afterwards, convolution result is

binarized to obtain the line regions. The first algorithm intersects connected

components with detected regions while the other one fits lines to boundaries

and computes the closest baseline for each component.

Finally, a simple morphology based word segmentation algorithm is proposed.

5

Figure 2.1 shows the overall system design.

Ottoman Document
with multi-oriented

lines
Layout Segmentation

Word Segmentation
Projection ProfileGabor Filtering with Curve

Fitting
Gabor Filtering with Region

Intersection
Hybrid Method

Ottoman Document
with similarly oriented

lines Document from ICDAR
Dataset (English, Greek or

Bangla)

Line Segmentation

Figure 2.1: The overall organization of our segmentation system.

The contributions of this study are threefold. First we address the layout and

line segmentation problem for historical Ottoman documents which are rarely

studied. We intend to apply our method to considerably large and complex his-

torical datasets with multiple authors from various time periods including doc-

uments with multi-oriented lines. To achieve a simple but effective line segmen-

tation method, bottlenecks of projection profile based and connected component

based methods are prevented through a hybrid approach. Second, Fourier curve

fitting is suggested for determining the peaks and valleys in projection profile

analysis which is still considered as a problematic issue [23]. Additionally, script

independent line segmentation and words segmentation methods are proposed.

As far as we know, our study is the first one to use Gabor filtering for the text

line segmentation problem.

6

2.2 Related Work

Text line segmentation algorithms can be mainly categorized as projection profile

based [24, 25] and connected component based [26, 27]. Projection based methods

makes the assumption of text lines being parallel and straight thus, they are

effective for machine printed documents.

For handwritten documents where interline gaps are small or lines have con-

siderably high skew, piece-wise projection approaches are used [25]. In these ap-

proaches documents are divided into vertical strips and vertical projection profiles

of strips are combined to obtain the results.

Connected component based methods [26, 27] extracts geometrical informa-

tion such as shape, orientation, position and size from connected components to

group or merge them into lines. They are more appropriate for complex docu-

ments than the projection profile based methods. However, they are sensitive to

small changes in connected component structures. Another disadvantage is that

they may be script dependent. For example, there is a space between neighboring

words in English, but a Chinese text line is composed of a string of characters

without word spaces [28].

There are also studies which propose script-independent line segmentation

methods with deformable models [20, 22, 28]. The paper [28] first enhances text

line structure using Gaussian window and then uses level set method to evolve

text line boundaries. With the prior knowledge that a text line is a horizontally

elongated shape, the text line boundaries are forced to grow faster in the hori-

zontal direction. However, the approach is sensitive to the number of level set

evolution iterations.

Another study that segments lines with deformable models is [20], which uses

the Mumford-Shah Model. The approaches presented in [20, 28], depend on skew-

correction and zone segmentation before text line segmentation. Also, they are

sensitive to large number of touching and overlapping components and they use

heuristic post-processing rules for splitting and joining segmented text lines to

handle these cases [22].

The authors of the paper [22] solve these problems by using active contours to

detect curved lines. First, snakes are deformed in horizontal direction and then

7

neighboring baby snakes are joined together. Since, they preferred to use image

smoothing using multi-oriented Gaussian filters that enhance the line structure

even on high curvature; the algorithm does not depend on skew correction or

zone segmentation.

Another script-independent line segmentation study is [29]. In this study,

text line segmentation is achieved by applying Hough transform on a subset of

the document image connected components. A post-processing step includes the

correction of possible false alarms, the detection of text lines that Hough trans-

form failed to create and finally the efficient separation of vertically connected

characters using a novel method based on skeletonization. Although, Hough-

based methods can handle documents with variation in the skew angle between

text lines, they are not very effective when the skew of a text line varies along its

width [30].

There are few studies [10, 31] that apply line segmentation on Ottoman

datasets. In [10], it is assumed that baselines will have more number of black pix-

els than the other rows. With this intuition projection profile of the documents

are analyzed and peaks of the profile are detected according to some predefined

threshold. However, due to inconsistent baseline skews, multi-oriented text lines

and small interline gaps observed in Ottoman documents; directly applying pro-

jection profile method is likely to fail. Further, different threshold values need to

be set for different types of writing styles or writers.

Another study that demonstrate their results on Ottoman documents, con-

structs a Repulsive-Attractive Network for line segmentation [31]. In this net-

work, attractive and repulsive forces are defined and baseline units’ y-coordinates

are iteratively changed according to these forces until local convergence is ob-

tained. Nevertheless, the lines must have similar lengths and each baseline is

detected according to previously examined one where a detection error can trig-

ger other ones.

There are also papers which work on line segmentation of documents with

multi-oriented lines [22, 32, 33, 34]. In paper [34], multi-oriented text line extrac-

tion from handwritten Arabic documents is studied. The local orientations are

determined using small windows obtained by image paving. The orientation of

the text within each window is estimated using the projection profile technique

8

considering several projection angles.

Another study [32] focuses on multi-oriented line segmentation on English

documents. Their method is based on foreground and background information of

the characters of the text. In the proposed scheme at first, individual components

are detected and grouped into 3-character clusters using their inter-component

distance, size and positional information. Then clusters are merged to obtain

individual lines. Another study that segments multi-oriented text lines [33], uses

a similar strategy of clustering connected components. First they obtain word

groups from the clusters and then, text lines of arbitrary orientation are seg-

mented from the estimation of these word groups.

Word segmentation is applied on Ottoman documents in a few studies [9, 10].

In [9] a version of a document, in which word segmentation is easy, is used as

a source data set and another version in a different writing style, which is more

difficult to segment into words, is used as a target data set. The source data

set is segmented into words by a simple method and extracted words are used

as queries to be spotted in the target data set. In [10] a more simpler method

is preferred. To find the boundaries between the words, they apply a threshold

value on the length of the space in between the words.

There are also statistical methods for word segmentation [35, 36, 37, 38].

However, they are usually preferred for Chinese documents where sentences are

written as characters strings with no spaces between 2-character words. Thus,

statistical features that capture the dependency among connected components of

a word such as mutual information and context dependency are used to extract

words.

2.3 Methodology

Our segmentation process consists of four main tasks whose details are given

in the following sections. First, pre-processing of documents is explained which

consists of binarization, simple repairment and page segmentation steps. These

steps are only applied to Ottoman documents. ICDAR dataset which consists of

English, Greek and Bangla documents were already binarized and page segmented

when it was obtained.

9

The second task is layout segmentation, which is applied to Ottoman docu-

ments that include multi-oriented text lines in a single page. Within the layout

segmentation, how to segment lines from documents with multi-oriented lines is

also explained.

The third task is line segmentation, where we present 4 different approaches.

First one being projection profile is a traditional method which we use as a base-

line system. Second method is a hybrid line segmentation, combining projection

profile and connected component based methods. This method is proposed for

segmenting lines from Ottoman documents. Third and fourth line segmentation

methods are designed for script-independent documents and both of them are

based on Gabor filtering, first one uses region intersection while line fitting is

preferred for the second one.

The last segmentation task is word segmentation where we apply a simple

morphological method whose parameters are optimized based on simple charac-

teristics of different languages. Ottoman word segmentation is not in our study’s

scope because of the fact that it can be only done by language based rules which

requires Ottoman language experts.

2.3.1 Pre-processing

Binarization is one of the important pre-processing steps of segmentation. Global

binarization methods use a single threshold value to classify pixels into foreground

or background classes. However, they do not always yield satisfactory results es-

pecially on historical documents that are degraded, deformed and not in good

quality due to faded ink and stained paper and may be noisy because of deterio-

ration (see Figure 2.2 (a) and (c)).

After the original documents are converted into gray scale, adaptive binariza-

tion method [39], which calculates multiple threshold values according to the local

areas, is used for binarization (see Figure 2.2 (b) and (d)). Then, small noise such

as dots and other blobs are cleaned by removing connected components which

are smaller than a predefined threshold.

10

(a) (b)

(c) (d)

Figure 2.2: (a) and (c): Some examples from the historical degraded documents,

the ink is faded, paper is stained and the images are noisy; (b) and (d): Adaptive

binarization manages to overcome those difficulties.

After binarization, to connect broken characters; first Manhattan distance

between adjacent foreground pixels are calculated then pixels are connected if

the measured distance is smaller than a predefined threshold.

The documents in our datasets are scanned in 2-page format. Therefore,

before segmentation documents must be segmented into pages. The horizontal

projection profile of each document is calculated and then the two largest peaks

of the profile are observed for segmenting the two pages. To detect the widest

peaks, a Fourier curve [40] is fitted to the horizontal projection profile and then

the image is cropped according to the smallest value of the profile that lie between

the two peaks.

2.3.2 Layout Segmentation

For layout segmentation task we preferred to use Gabor filters to detect regions

which include similarly oriented lines. Gabor filtering, which is named after Denis

Gabor is basically a linear filter used to detect edges [41]. Besides, the theory pro-

posed in [42] explains that the retinal image is decomposed to a number of filtered

images with different sizes and orientations in the human visual system. This the-

ory indicates that Gabor functions are similar to perception in the human visual

system and thus, Gabor filters are found to be appropriate for texture represen-

tation, optical character recognition, iris recognition and fingerprint recognition

11

[41].

A Gabor filter is a Gaussian Kernel function multiplied by a complex sinusoid

which are known as the envelope and the carrier respectively. The formula of a

complex Gabor function in space domain is [43]:

g(x, y) = s(x, y)wr(x, y); (2.1)

where s(x, y) is a complex sinusoid, and wr(x, y) is a 2-D Gaussian-shaped func-

tion. The complex sinusoid is defined as follows:

s(x, y) = exp(j(2π(u0x+ v0y) + P)); (2.2)

where (u0, v0) and P define the spatial frequency and the phase of the sinusoid

respectively. This sinusoid can be thought as two separate components, conve-

niently allocated in the real and imaginary part of a complex function. Besides,

the two components may be formed into a complex number or used individually

[41].

The Gaussian envelope is as follows:

wr(x, y) = Kexp(−π(a2(x− x0)2r + b2(y − y0)2r)); (2.3)

where K scales the magnitude of the Gaussian envelope, (x0, y0) is the peak of

the function, a and b are scaling parameters of the Gaussian, and the r subscript

stands for a rotation operation.

For segmentation tasks usually a Gabor filter bank is constructed with filters

of different scales and orientations. Then the filters are convolved with the image

and the response in Gabor space is analyzed. This process is very similar to the

process in the human primary visual cortex [44]. Another study [45] proposes

that the real parts of the Gabor function is a good approximation of a receptive

function belonging to cats’ striate cortex. For our study, we adapt a similar

process of constructing a Gabor filter bank and analyzing the real components

of different responses generated by Gabor filters with different orientations and

scales.

We preferred to use Log-Gabor filters [46] instead of Gabor filters, which

12

eliminates some traditional disadvantages such as DC-bias. They are basically

constructed with the logarithmic transformation of the Gabor domain.

Firstly for a binarized document (see Figure 2.3), connected components are

extracted and average connected component height (avgH) is found. This metric

is used as a parameter for the wavelet scale of the Gabor filter. Then, the binary

image is convolved with a bank of Log-Gabor filters with 4 orientations and 4

scales, resulting in 16 different filters (see Figure 2.4). Peter Kovesi’s Gabor

Convolve software is used for the convolution task 1. The filters with different

orientations are used to detect the text line regions with different orientations

and different scales are used to obtain accurate results for the documents which

has characters with varying sizes.

Figure 2.3: A binarized document with multi-oriented lines.

1http://www.csse.uwa.edu.au/~pk/research/matlabfns/

13

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

1 2 3 4

1

2

4

3

Orientation

Scale

Figure 2.4: A bank of Log-Gabor filters with 4 different orientation and scales

for a minimum wavelength of 40 and scaling factor of 2.

The wavelength of the smallest scale filter is set to half of the average con-

nected component height (avgH/2) and the scaling factor between successive fil-

ters is set to 2, which results in filters with scales avgH/2, avgH, 2avgH, 4avgH.

The ratio of the standard deviation of the Gaussian describing the log-Gabor

filter’s transfer function in the frequency domain to the filter center frequency is

set to 0.65 and the ratio of angular interval between filter orientations and the

standard deviation of the angular Gaussian function used to construct filters in

the frequency plane is set to 1, 3. Figure 2.5 shows the real part of the convolution

responses to Log-Gabor filters of 4 orientations and a single scale.

14

Figure 2.5: Convolution response images to Log-Gabor filters with 4 different

orientations. Only a single scale is shown here.

Afterwards, an empty image is constructed with the same size as the original

image and it is divided into n ∗m cells. For each cell, the maximum convolution

response that reside in the same location in 16 response images is extracted

which makes 16 responses for each cell grid. To compute the maximum of these

16 responses, the result of convolving with the even symmetric filter, which are

the real components; are summed and then sorted. After the maximum sum is

found, the cell is assigned to the response which was extracted as a grid from

the response image. Figure 2.6 (a) shows an example image obtained with this

approach.

Besides, each maximum response’s orientation is saved and each cell is tagged

with that orientation. Figure 2.6 (b) shows an example image with 10 ∗ 10

cells, each tagged with 4 possible different orientations. As a result, two images

are constructed from different Log-Gabor filters, resulting one with responses

(ResponseImage) and the other with regions (RegionImage) tagged with inte-

gers indicating different orientations (see Figure 2.6).

15

(a) (b)

Figure 2.6: (a) Response image constructed from 4 ∗ 4 Gabor filtering results

with finding the maximum response for each cell (ResponseImage). (b) Region

image with cells tagged with 4 possible values indicating orientations computed

from maximum responses of different filters (RegionImage).

Afterwards, to detect the approximation of the line boundaries, binarization

is applied to the computed response image (RI). A predefined threshold is used

for binarization, which is max(ResponseImage)/10. The resulting image indi-

cates the approximate of line boundaries, where boundaries are tagged as 1 and

background pixels are tagged as 0 (BoundaryImage).

To approximately find the regions which have differently oriented lines, the

BoundaryImage computed from the ResponseImage is combined with the

RegionImage. Each pixel of the binary image with the value 1, is assigned

to the value of the pixel which is at the same location in RegionImage. Figure

2.7 (a) shows the resulting image.

16

(a) (b)

Figure 2.7: (a) BoundaryImage combined with the RegionImage showing

approximate line boundaries with orientation tags. (b) Post-processed image of

(a).

After this step, post-processing is applied to correct some results. Firstly,

connected components that have multiple orientation tags are found and if the

ratio of the pixels with different values are lower than 50%, the pixel group which

are the minority are assigned to the majority pixels’ value. The reason we are

using a threshold like 50% is to eliminate assigning a connected component to

a single orientation while it contains multiple regions. Figure 2.7 b shows the

resulting post-processed image.

To segment the image, we prefer tagging each connected component with a

value indicating the orientation of the line that it belongs. To obtain this, first

we intersect the original binary image with the image that indicates boundaries

with orientations. The ink pixels intersecting with a boundary are tagged with

the boundary’s orientation. There remains some ink pixels in the original image

which do not intersect with any of the boundaries. Thus, we find those pixels and

for each of them, we count the votes using a grid whose size is predefined and

17

centered on the pixel. Therefore, each unassigned pixel is tagged with a value

indicating the orientation.

Final step is computing the majority of the tags for each connected compo-

nent. What we mean by this statement is that, sometimes connected compo-

nents of the original image are assigned to multiple tags cause they were partly

intersecting with multiple boundaries. A similar approach we explained in the

post-processing step is used except there is no threshold. Thus, all connected

components of the original image are assigned to single values. Figure 2.8 a

shows the result of layout segmentation.

(a) (b)

Figure 2.8: (a) Layout segmentation result. (b) Line segmentation result.

Line segmentation of these kind of documents, documents that include multi-

oriented lines, can be done in a very similar approach to layout segmentation.

18

Instead of assigning orientations to line boundaries which is computed by bi-

narizing the maximum Gabor response per cell, each line boundary can have a

different tag indicating the line identification number. Similar post-processing

techniques can be used such as using voting for correcting the boundary tags or

connected component tags. Figure 2.8 b shows an example line segmentation

result done in a similar fashion.

2.3.3 Line Segmentation

We propose 4 different line segmentation algorithms. First one is projection

profile, which is a traditional line segmentation method generally preferred for

printed documents with straight lines. Second one is a new method that we

designed specifically for Ottoman documents which uses advantages of both pro-

jection profile and connected component based methods. Third and fourth algo-

rithms are based on Gabor filtering where the first one uses region intersection

after the line boundaries are extracted, while the other one fits lines to bound-

aries as baselines. These 2 algorithms were designed so that they will suppress

language based features and emphasize the line structure and because of these

characteristics they prove to be successful on script-independent documents.

2.3.3.1 Projection Profile

Projection profile is applied for segmenting lines of Ottoman documents in other

studies too. The authors of [10] indicates that finding positions of baselines and

segmenting lines according to character sizes is a better solution than finding

spaces between lines. The reason comes from the fact that, Ottoman language

includes many characters with long ascender and descender parts resulting in

narrow spaces between lines. They propose a method, where vertical projection

profile of the image is calculated and then peaks of the profile are extracted as

lines. To detect the peaks, projection profile values are compared to a threshold

value with the intuition of lines should have greater number of black pixels in the

profile. However, using a single threshold value may produce extra or missing lines

in the results. To eliminate that, we propose a new idea for detecting the peaks

of the profile. First a Fourier curve [40] is fitted to the profile and local maxima

19

points are found. These points are thought to be the location of baselines.

Fourier curve can capture the repetitive pattern of lines. A Fourier series is

defined as:

y = a0 +
n∑

i=1

ai cos(nwx) + bi sin(nwx); (2.4)

where the function is a weighted sum of sine and cosine functions that describes

a periodic signal, ai’s are the weights, n is the number of terms and w is the

fundamental frequency of the curve.

Finally, connected components are assigned to closest baselines.

2.3.3.2 A Hybrid Approach

Ottoman language has some common properties with Arabic; most notably the al-

phabet and the writing style which relies on dots and diacritics heavily. However,

these small-sized components may produce ambiguous results for line segmenta-

tion since they usually lie between the text lines. In [47, 48] it is mentioned that

diacritical points can generate false separating or redundant lines.

Some line segmentation studies applied on languages that include diacritical

symbols [48, 49] does not filter these small connected components during line

segmentation and then apply a post processing step for correcting the approxi-

mate results. On the other hand, some studies [34, 19] eliminate those small-sized

components during segmentation and reconsider them to generate the final line

segmentation results.

We propose a method that ignores small-sized components during line seg-

mentation to obtain results more accurately without post processing. After we

detect all connected components, the small ones are marked so that they will not

be used during detection of the lines.

To find the small-sized components, each connected component’s filled area

is calculated and then components which have a smaller filled area than a pre-

defined threshold are marked as small. After the lines are detected, small-sized

components are reconsidered and assigned to related lines. Figure 2.9 b shows

the document image without small-sized components. As it can be observed, the

text line structure is enhanced.

20

(a) (b)

Figure 2.9: (a) Binarized document image, (b) image without small-sized com-

ponents.

Baseline is the fictitious line which follows and joins the lower part of the

character bodies in a text line [50]. Thus, each connected component has baseline

pixels that fit or come close on its baseline. In this study, for baseline extraction

first each connected component’s baseline pixels are found approximately. To find

those pixels, contour image of the connected component is obtained (see Figure

2.10 (b)). Then, left-to-right (see Figure 2.10 (c)) and right-to-left (see Figure

2.10 (d)) gradient image, measuring the horizontal change in both left and right

directions are calculated.

Also, the bottom-to-top (see Figure 2.10 (e)) gradient image which shows the

vertical change in the upward direction is obtained. Then these 3 gradient images

are subtracted from the contour image which results in the group of pixels that

approximately lie on the baseline (see Figure 2.10 (f)).

To obtain the exact baseline pixels, first the y-coordinates’ standard deviation

(s) and mean (m) values are calculated. Then the pixels where |p −m| > s are

considered as outliers and removed from the group. The rest of the pixels are

used as baseline pixels (see Figure 2.10 (g)).

21

(a) (b) (c) (d) (e) (f) (g)

Figure 2.10: Procedure of extracting baseline pixels. (a) connected component,

(b) contour image, (c) left-to-right, (d) right-to-left, (e) bottom-to-top gradient

images, (f) approximate baseline pixels, (g) exact baseline pixels.

This procedure is applied for each connected component and a new image is

reconstructed from these obtained baseline pixels which can be seen from Figure

2.11. Then to detect the baselines of each line, vertical projection profile of the

reconstructed image consisting of baseline pixels is obtained (see Figure 2.11).

The peaks of this profile can be interpreted as lines and the valleys as interline

gaps.

To detect the peaks, a Fourier curve [40] is fitted to the profile and local

maxima points are found. Fourier curve can capture the repetitive pattern of

lines.

Figure 2.11: Left part shows the image reconstructed from the baseline pix-

els of connected components, right part is the vertical projection profile of the

reconstructed image. A Fourier curve is fitted to the projection.

22

Then, for each two adjacent peaks of the curve, the smallest value in the

profile that lie between these peaks, which is usually zero, is obtained as a cut

point. Thus, for each gap a cut point is calculated respectively. These points can

be considered as an approximate of the interline gaps and are used for separating

the baseline pixels that belong to different adjacent lines (see Figure 2.12).

After obtaining the baseline pixels that belong to each line (see Figure 2.12

(a)), polynomial curves are fitted to each group of those pixels to calculate the

actual baselines (see Figure 2.12 (b)). Line fitting can also be used however; we

preferred to use a 4th degree polynomial to tolerate some amount of curvature.

(a) (b)

Figure 2.12: (a) Approximation of interline gaps, (b) computed baselines.

After the baseline curves are extracted, the connected components which are

not marked as small are assigned to their closest curves. To find the closest

curve of a component, the distance function is obtained from the curve’s equation

and the component’s midpoint. Then, the derivative of the distance function

is computed to find the closest distance between the midpoint and the curve.

23

Finally, the component is assigned to the curve which has the minimum distance

to its midpoint.

To finalize the results, removed diacritical components are assigned to lines.

First each small-sized connected component’s nearest neighbors in 4 directions

(right, left, up, down) are found. The nearest neighboring components should

not be small-sized thus, must be assigned to some line.

The 4 nearest neighbors’ assigned lines are voted accordingly to their distances

to the small-sized component. To, illustrate if the nearest neighboring component

in some particular direction is closest to the small-sized component, its line id gets

the highest vote. With this voting scheme each small-sized connected component

has at most 4 different line candidates with their votes calculated according to

the distances. Finally, each small-sized component is assigned to the line which

has the highest vote.

2.3.3.3 Gabor Filtering with Region Intersection

To achieve script-independency for line segmentation, an algorithm not only en-

hances the line structure but suppresses the language based characteristics should

be used. Thus, we designed and algorithm that applies morphological and pre-

processing operations on the image before the line segmentation step, to eliminate

the mislead of language based properties. Also, Log-Gabor filter bank that we

used for layout segmentation is also used here to detect line boundaries.

First of all, average connected component width (avgW) is calculated. The

image is dilated with a disk structuring element of size average width (avgW).

Then, opening and closing is applied with a disk of size 2. Small connected

components are removed from the image in the same fashion explained in section

2.3.3.2 and they are left to be assigned after the lines are detected.

Since we are studying hand written documents many of them include charac-

ters with long ascender and descender parts although they are in different lan-

guages. By intuition these parts may cause problems during line segmentation

since they complicate the process of discriminating lines with gaps. To eliminate

this problem, extremes of connected components are smoothed. First, connected

components whose rate of filled over convex area larger than 70% is found. These

24

connected components are thought to have extremes. The y-axis contour coordi-

nates of the connected components are found and their mean (m) and standard

deviation (s) is computed. Finally the pixels whose y-values lie in the range of

(m− s,m+ s) is cropped from the connected component and the others are con-

sidered as outliers and removed from the component. Figure 2.13 shows the so

far pre-processed image with the processes: morphological operations, small sized

connected component removal and extreme smoothing. As you can see, the line

structure is enhanced and language based properties are less significant.

(a)

(b)

Figure 2.13: (a) Original binary image to be line segmented. (b) Pre-processing

applied to (a) with processes: morphological operations, small sized connected

component removal and extreme smoothing.

From the pre-processed image connected components are extracted and base-

line’s of components are computed with the same approach explained in section

2.3.3.2. As an additional step instead of using baseline pixels, lines are fitted

25

to each connected component’s baseline pixels and actual baseline formulas are

used. Afterwards, an image is constructed from those baselines which can be seen

in Figure 2.14.

Figure 2.14: Image constructed from the baselines of connected components.

The projection profile method we explained in section 2.3.3.1 is applied to the

constructed baseline image to compute the frequency of the Fourier curve which

indicates an approximate of gap and line distance together (GaL). This metric

is used as a parameter for the wavelet scale of the Gabor filter. A filter bank

is constructed from Gabor filters with a single orientation and 4 scales. Peter

Kovesi’s Gabor Convolve software is used for the task 2.

Since we explained how to segment lines from documents with multi-oriented

lines in section 2.3.2 and our line segmentation datasets include documents with

similarly oriented lines, we used single orientation for the Gabor filters. Different

scales are used to decrease the error rate caused by computing the gap and line

distance (GaL). Thus, multiple scales are used to find the best approximation of

gap distance.

Wavelength of the smallest scale filter is set to half of the gap and line length

(GaL/2) and scaling factor between successive filters is set to 2, which results in

filters with scales GaL/2, GaL, 2GaL, 4GaL. Ratio of the standard deviation of

the Gaussian describing the log Gabor filter’s transfer function in the frequency

domain to the filter center frequency is set to 0, 65 and ratio of angular interval

2http://www.csse.uwa.edu.au/~pk/research/matlabfns/

26

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

between filter orientations and the standard deviation of the angular Gaussian

function used to construct filters in the frequency plane is set to 1, 3.

The filter bank is convolved with the constructed image and the maximum

convolution response image is chosen. To find the maximum, the result of con-

volving with the even symmetric filter, which are the real components are summed

and then sorted.

Afterwards, to detect the approximate of the line boundaries, binarization

is applied to the maximum convolution response image (ConvolutionImage). A

predefined threshold is used for binarization, which ismax(ConvolutionImage)/10.

The resulting image indicates the approximate of line boundaries, where bound-

aries are tagged as 1 and background pixels are tagged as 0. An example output

can be seen in Figure 2.15.

Figure 2.15: Approximate line boundaries computed by binarizing the maximum

convolution response.

The intersection of line boundaries and connected components of the original

image is computed (see Figure 2.16 a). For each connected component, the largest

intersecting line is found and the component is labeled with that line’s id. There

remains unlabeled connected components which do not intersect with any of the

boundaries and components which are labeled as small before. Each of them is

assigned to its closest labeled connected component’s line. Figure 2.16 b shows

the final line segmentation result.

27

(a)

(b)

Figure 2.16: (a) Intersection of line boundaries with ink pixels is visualized. (b)

Final line segmentation result.

2.3.3.4 Gabor Filtering with Line Fitting

Our last line segmentation method uses the same steps with region intersection

algorithm to detect the line boundaries which are explained in section 2.3.3.3.

Afterwards, instead of intersecting connected components with regions, lines are

fitted to each boundary and connected components are assigned to their closest

lines. Figure 2.17 shows an example image with fitted lines to each boundary.

28

Figure 2.17: Baselines shown on the original binary image, computed by fitting

lines to line boundaries.

2.3.4 Word Segmentation

Word segmentation is a difficult task for Ottoman documents because words

consist of one or more sub-words (see Figure 2.18) and a sub-word means a con-

nected group of characters or letters, which may be meaningful individually or

only meaningful when it comes together with other sub-words [9]. This indicates

that there are both inter and intra-word gaps and when intra-word gaps are as

large as inter-word gaps or when both gaps are very little the words can not

be discriminated. To apply word segmentation to Ottoman documents language

based rules can be used which requires language experts. Also, supervised tech-

niques can be applied but usually Ottoman archives do not contain segmented

documents and word segmentation is usually required before recognition.

29

Figure 2.18: Example page in Ottoman.

Therefore, Ottoman word segmentation is not in our study’s scope. We

designed a simple morphology based word segmentation algorithm for script-

independent documents. Most of the word segmentation algorithms are based

on analysis of character space distances. Thus, we use basic morphological oper-

ations like dilation, opening and closing to generate an output where each con-

nected component will be a single word.

After line segmentation for each line image, average connected component

height (avgH) and width (avgW) is found. Then a structuring element of size

proportional to average component sizes (avgH and avgW) is generated and the

source image is dilated with that structure. Opening and closing is applied with

a disk of size 2. Each connected component in the resulting image is thought to

be a word. So, the intersection of the resulting image and original image is found

and each word is tagged with a different label. Figure 2.19 shows an example

30

word segmentation result for a Greek document.

Figure 2.19: Word segmentation result for a Greek document.

31

Chapter 3

Segmentation Experiments

3.1 Dataset Descriptions

3.1.1 Ottoman Dataset with Multi-Oriented Lines

The first Ottoman dataset contains 50 handwritten documents from different

books with total number of 44973 connected components. It was generated

specifically to test layout segmentation. Thus, it only contains documents with

multi-oriented lines and a document in this dataset should at least include 2 line

groups with different orientations. Also, there are cases where different character

sizes, line gaps and even 4 different orientations can be observed on a single page.

Examples can be seen in Figure 3.1.

Figure 3.1: Example images from the first Ottoman dataset with multi-oriented

lines.

32

3.1.2 Ottoman Dataset with Similarly Oriented Lines

Second Ottoman dataset is generated to evaluate the performance of the hy-

brid line segmentation method which was designed specifically for Ottoman doc-

uments. This dataset was constructed with 3 different parts. First one and

the second one consist of text pages belonging to single books. First part is

printed (Printed) and includes 120 pages while the second one is handwritten

(Handwritten) and includes 50 pages. These 2 parts are constructed to compare

the algorithm’s performance for handwritten and printed texts.

The third part includes 240 pages taken from 6 different books (Book1−6), 20

pages from each and the documents are all handwritten. This part is constructed

to evaluate the performance under different writing styles and writers. Figure 3.2

shows examples from the dataset. Number of connected components and lines in

the dataset are given in Table 3.1.

Figure 3.2: Example images from the second Ottoman dataset with similarly

oriented lines. The leftmost one is printed while the others are handwritten.

33

3.1.3 ICDAR Dataset

This dataset is released on ICDAR 2013 Handwriting Segmentation Contest. It

includes 125 English, 125 Greek as well as 100 Bangla documents. The docu-

ments are all handwritten and in binary format. We also converted 50 Ottoman

handwritten documents to the dataset’s format and added them to obtain com-

parative results with different languages. Thus, the whole dataset includes 400

pages. Figure 3.3 shows example images from the dataset.

Figure 3.3: Example images from the ICDAR dataset combined with Ottoman

documents. From left to right: English, Greek, Bangla and Ottoman document.

3.2 Evaluation Strategies

Segmentation results are evaluated according to the ICDAR 2013 Handwriting

Segmentation Contest’s evaluation strategies 1.

The performance evaluation method is based on counting the number of one-

to-one matches between the areas detected by the algorithm and the areas in the

ground truth. A MatchScore table is used whose values are calculated according

to the intersection of the ON pixel sets of the result and the ground truth.

Let Gi be the set of all points of the ith ground truth region and Rj be the

set of all points of the jth result region. T is an operator that counts the number

1http://users.iit.demokritos.gr/~nstam/ICDAR2013HandSegmCont/index.html

34

http://users.iit.demokritos.gr/~nstam/ICDAR2013HandSegmCont/index.html

of pixels in the zone. Table MatchScore(i, j) represents the matching results of

ith ground truth region and the jth result region as follows:

MatchScore(i, j) = T (Gi ∩Rj)/T (Gi ∪Rj). (3.1)

An example is illustrated in Figure 3.4.

(a) (b)

(c)

Figure 3.4: (a) Ground truth. (b) Segmentation result. (c) Matchscore table.

The matching-scores between all the result zones and the ground-truth

zones are obtained. If the matching score is above a predefined threshold

(MS − Threshold) then the result zone is counted as a TruePositive (TP). Re-

sult zones which are not matched to any ground truth zones are FalsePositives

(FP) and the ground truth zones which are not matched to any result zones are

FalseNegatives (FN). Precision, Recall and the F1− Score are calculated as

follows:

Precision =
TP

TP + FP
, (3.2)

35

Recall =
TP

TP + FN
, (3.3)

F1− Score =
2× Precision×Recall
Precision+Recall

. (3.4)

3.3 Experiments and Discussion

3.3.1 Ottoman Document Segmentation Experiments

3.3.1.1 Layout Segmentation Experiments

Ottoman dataset with multi-oriented lines which is explained in section 3.1.1 is

used for layout segmentation experiments. All layout segmentation results can

be found in layout segmentation results section of Appendix A. Some example

results are shown in Figure 3.5. The components which are tagged with same

colors are thought to have the same orientation. As it can be observed, each

document has more than one region that has a different orientation. Some has

regions with changing character sizes and some has connected components which

are written so close that their region boundaries are difficult to discriminate.

Layout segmentation algorithm computes the maximum Gabor response per

cell (see Section 2.3.2). The number of cells are defined by two parameters n

and m and during experiments both of them are set to 10. Thus, each image

is divided into 100 cells. These two parameters should not be too large or too

small. The cell size should be small enough to discriminate each region while it

should be big enough to capture the scale and orientation relationship between

components.

To evaluate the results we counted the number of connected components which

are labeled wrong. As it was mentioned before, there are total 44973 connected

components in this dataset and according to results only 1794 of them are labeled

wrong which implies an accuracy rate of 96.01%.

36

Figure 3.5: Layout segmentation results.

Different types of errors can be observed from wrong labeled connected com-

ponents. Figure 3.6 shows example error types from results. First type of error

is caused by regions which are much smaller compared to others. Figure 3.6 (a)

is an example and as it can be observed, the green part has the same writing

orientation with the blue part however according to results they are labeled with

different orientations. This mistake is caused by the narrowness of the green re-

gion. Since those connected components construct a vertical narrow shape, during

Gabor filtering a larger scale than their true character scale with a vertical orien-

tation gives higher convolution response than the correct scale and orientation.

This problem can be solved by using a single scale but then, the algorithm will

loose its character scale-independency and it will lack of detecting regions with

different character sizes which will result in a decrease in accuracy.

37

Figure 3.6 (b) and (c) shows example errors of the second type. They are

caused by connected components that are written very closely to other connected

components with different orientations. Thus, those adjacent connected compo-

nents are tagged with the wrong region’s orientation. One solution might be

searching the document and looking for connected components that are shaped

in the same way without rotation. After finding them, their orientations can

be observed, if the majority of the orientations is not same with the result, the

result can be changed. However, finding similarly shaped connected components

is not an easy task for handwritten documents especially for historical Ottoman

documents. Therefore, this solution can be preferred for printed documents. An-

other solution might be using language based rules because it is even hard to

discriminate the closely written regions for a person who does not know the lan-

guage. Therefore, an unsupervised technique would not solve the problem for

handwritten documents.

Third type of error is caused by components that are shaped in a way which

looks like they are written with a different orientation. Figure 3.6 (d) shows an

example. The component that is shaped on the vertical axis is labeled with the

vertical orientation’s tag which is incorrect. Also, it’s incorrect label misguided

closely located components’ results. The same solutions suggested for the second

type of error which is explained in the above paragraph can also be used to

eliminate this error.

(a) (b) (c) (d)

Figure 3.6: Layout segmentation errors showed with black circles. (a) Type 1

error caused by small regions. (b) and (c) Type 2 error caused by closely located

components. (d) Type 3 error caused by shape illusions.

38

As explained in section 2.3.2, 4 different orientations and scales are used re-

sulting in 16 different Gabor filters. These parameters can be changed according

to the dataset that layout segmentation is applied. If the character size inside

a single document does not change, then a single scale can be used. Similarly,

number of orientations can be chosen according to the number of different orien-

tations observed inside the dataset. However, although an increase in the number

of different filters will result in better segmentation for some documents, the total

accuracy might decrease because of the fact that more components will fall into

error categories (see Figure 3.6).

It is explained in section 2.3.2 that line segmentation can be easily applied

to multi-oriented documents after layout segmentation. Figure 3.7 shows some

example results for the multi-oriented Ottoman dataset generated by the line

segmentation algorithm explained in section 2.3.2.

Figure 3.7: Line segmentation results of Ottoman dataset with multi-oriented

lines.

3.3.1.2 Line Segmentation Experiments

For this experiment Ottoman dataset with similarly oriented lines is used which

is explained in section 3.1.2. Table 3.1 shows the number of lines and connected

components in the ground truth and the results for each part of the dataset.

39

Lines in GT Detected Lines CCs Correct Detected CCs

Book1 923 921 5208 4847

Book2 880 879 4634 4315

Book3 871 869 4489 4154

Book4 795 793 4132 3884

Book5 764 763 3795 3375

Book6 836 834 4208 3824

Printed 3210 3210 16157 15510

Handwritten 1068 1041 5573 5245

Table 3.1: Results obtained with different printed and handwritten datasets

with different writing styles and writers.

As it can be observed from Tables 3.2, 3.3, 3.4 and 3.5 the line segmenta-

tion results for both printed and handwritten datasets are considerably high at

MSthresholds 0.95 and 0.90. The F1 − Score for the 6 different handwritten

books is nearly 0.93 and 0.94 for MSthreshold 0.95 and 0.90 respectively. The

segmentation accuracy is nearly same for different books. Thus, it can be con-

cluded that, the change in the writing styles or writers which means different

interline spacing, character sizes and line skews does not have an impact on seg-

mentation results.

0.95 Precision Recall F1-Score

Book1 0.9665 0.9067 0.9357

Book2 0.9703 0.9101 0.9392

Book3 0.9552 0.9030 0.9283

Book4 0.9710 0.9024 0.9354

Book5 0.9568 0.8937 0.9242

Book6 0.9544 0.8973 0.9250

Table 3.2: Results obtained on 6 different handwritten books with MS threshold

of 0.95.

40

0.90 Precision Recall F1-Score

Book1 0.9893 0.9085 0.9472

Book2 0.9932 0.9120 0.9509

Book3 0.9875 0.9133 0.9490

Book4 0.9926 0.9085 0.9487

Book5 0.9792 0.9057 0.9410

Book6 0.9858 0.9069 0.9447

Table 3.3: Results obtained on 6 different handwritten books with MS threshold

of 0.90.

Also, as it was expected Tables 3.4 and 3.5 show that the segmentation accu-

racy increases for printed texts. However, there is not much difference between

them and the results of handwritten documents, which means the algorithm is

successful for segmenting both printed and handwritten documents.

We observed that most of the errors are due to inadequate binarization, noisy

components such as page numbers or ornamentation and assigning small-sized

connected components to wrong lines. Binarization errors are due to dark stains

that cannot be separated from the ink pixels and multiple ink colors used in

the document. The noisy components can be detected as a separate process or

removed manually before segmentation. Moreover, most of the wrong assigned

small components are very difficult to classify without language dependent met-

rics. Figure 3.8 shows example results of the algorithm.

0.95 Precision Recall F1-Score

Printed 0.9864 0.9456 0.9656

Handwritten 0.9775 0.9229 0.9494

Table 3.4: Results obtained on 2 different printed and handwritten datasets with

MS threshold of 0.95.

41

0.90 Precision Recall F1-Score

Printed 0.9956 0.9503 0.9724

Handwritten 0.9933 0.9237 0.9572

Table 3.5: Results obtained on 2 different printed and handwritten datasets with

MS threshold of 0.90.

Figure 3.8: Line segmentation results of the hybrid method applied to Ottoman

dataset with similarly oriented lines.

3.3.2 Script-Independent Document Segmentation Ex-

periments

ICDAR dataset combined with 50 Ottoman documents in the same format is used

for script-independent segmentation tests. The dataset is explained in section

3.1.3.

3.3.2.1 Line Segmentation Experiments

For line segmentation experiments 4 different methods are used to obtain com-

parative results which are projection profile (PP), hybrid method (HM), Gabor

filtering with region intersection (GFRI) and Gabor filtering with line fitting

(GFLF). The dataset contains documents with 4 different languages: English,

42

Greek, Bangla and Ottoman. Figure 3.9 shows line segmentation results of 4

methods categorized according to languages and Figure 3.10 shows the results for

all dataset categorized according to methods.

It can be observed that projection profile has the worst performance (see

Figure 3.9 and 3.10) because as we mentioned before, projection profile method

is appropriate for printed documents with straight lines. The method shows even

lower performance for cursive scripts like Bangla and Ottoman (see Figure 3.9).

The best performing method is Gabor filtering with region intersection and it

has similar results with Gabor filtering with line fitting method (see Figure 3.9 and

3.10). The reason might be because of having similar pre-processing steps. Only

line fitting method fits lines to regions while the other directly uses the regions

to segment the lines. Although their performance is similar, region intersection

beats line fitting for each language which implies that correctly extracting the

baselines of the document is not sufficient for line segmentation. The connected

components should be also matched correctly to baselines. Region intersection

automatically skips this step so it is more advantageous.

The other line segmentation method which combines connected component

based methods and projection profile has average results for English and Greek

(see Figure 3.9). It is successful for segmenting the lines of Ottoman documents

since it was designed to do so. However, the performance for Bangla documents

can be considered really low. The reason comes from the fact that Bangla script

has a distinctive horizontal line running along the tops of the graphemes that

links them together which is called matra [51]. The hybrid method uses gradients

of contours of the components (see Section 2.3.3.2) and excludes bottom-to-top

gradient to find the baselines. During this procedure, the matra information

is lost and very few pixels are detected as baseline pixels which results in bad

segmentation. To solve the problem; instead of extracting the baselines, matra

lines can be detected for Bangla documents.

Another thing to mentioned is that, the reason why English and Greek docu-

ments have very similar results for each method (see Figure 3.9) is that they are

both in Latin. Also, the same patterns can be observed for Ottoman and Bangla

document’s results, except for the hybrid method which the reason is explained

in above paragraph. This is also because of the similarity of the languages which

43

is being cursive.

English Greek Bangla Ottoman

Projection Profile 54.07 50.32 35.44 32.62

Hybrid Method 62.38 74.06 27.80 91.20

Gabor Filtering with Region Intersection 89.92 86.02 86.81 90.86

Gabor Filtering with Line Fitting 83.85 81.50 78.10 90.30

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

F

1

-

S

c

o

r

e

Projection Profile

Hybrid Method

Gabor Filtering with Region Intersection

Gabor Filtering with Line Fitting

Figure 3.9: Line segmentation results of 4 methods categorized according to

languages. PP: Projection Profile, HM: Hybrid Method, GFRI: Gabor Filtering

with Region Intersection, GFLF: Gabor Filtering with Line Fitting.

Projection Profile Hybrid Method
Gabor Filtering

with Region
Intersection

Gabor Filtering
with Line Fitting

Precision 0.3879 0.5623 0.8408 0.8087

Recall 0.5653 0.6770 0.9250 0.8417

F1-Score 0.4556 0.6090 0.8804 0.8248

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

F

1

-

S

c

o

r

e

Precision

Recall

F1-Score

Figure 3.10: Line segmentation results of 4 methods for the whole dataset.

PP: Projection Profile, HM: Hybrid Method, GFRI: Gabor Filtering with Region

Intersection, GFLF: Gabor Filtering with Line Fitting.

44

Table 3.6 shows the results of the best performing method, Gabor filtering

with region intersection, categorized according to languages. The table shows that

most results are similar for different languages. This implies that the algorithm is

script-independent. Also, the changing in writing styles or authors which means

different interline spacing, character sizes and line skews does not have an impact

on segmentation results. Figure 3.11 shows example outputs generated by the

method.

0.90 Precision Recall F1-Score

English 0.8628 0.9388 0.8992

Greek 0.7968 0.9343 0.8602

Bangla 0.8365 0.9022 0.8681

Ottoman 0.9043 0.9129 0.9086

Table 3.6: Line segmentation results of GFRI: Gabor Filtering with Region

Intersection method categorized by languages. MS−Threshold is taken as 0.90.

45

Figure 3.11: Line segmentation results of GFRI: Gabor filtering with region

intersection for Greek, Bangla, English and Ottoman documents.

3.3.2.2 Word Segmentation Experiments

Last segmentation experiment is word segmentation and as we mentioned before,

Ottoman word segmentation is not in our study’s scope because of the fact that

it can be only done by language based rules which requires Ottoman language

experts. Thus only results in English, Greek and Bangla documents are given

(see Table 3.7). English and Greek documents have similar results because they

are both in Latin.

For all of these 3 languages, the letters run from left to right and spaces are

used to separate words unlike Ottoman, where letters run from right to left and

spaces are both used as inter and intra word gaps. Although, the linguistic of

46

using spaces only as inter word gaps can be violated for handwritten documents,

still the gaps between words are going to be more obvious than others. Thus,

basic morphological operations gives promising results for segmenting words from

English, Greek and Bangla documents (see Table 3.7). Figure 3.12 shows exam-

ple outputs of the algorithm. To increase the results, language based rules or

supervised techniques can be applied.

Precision Recall F1-Score

English 0.6954 0.8921 0.7675

Greek 0.6034 0.9317 0.7237

Bangla 0.6183 0.7126 0.6455

Total 0.6405 0.8449 0.7170

Table 3.7: Word segmentation results categorized by languages.

47

Figure 3.12: Word segmentation results. From top row to bottom row: English,

Greek and Bangla documents.

48

Chapter 4

Matching Islamic Patterns in

Kufic Images

4.1 Motivation

Islamic calligraphy, also known as Arabic calligraphy, has been the main form of

artistic expression in Islamic cultures throughout the history 1. Kufic is one of

the oldest calligraphic forms of the various Islamic scripts. Kufic derives its name

from the city of Kufa, where it was developed around the eighth century, and until

about the eleventh century it was the main script used to copy Qur’ans. Although

it has been mainly used as a decorative element in manuscripts, pottery, coins,

architecture, stone inscriptions and wooden work for several centuries [52, 53, 54]

(see Figure 4.1 for examples), the proverbs and passages from the Qur’an have

continued to be used as dominant sources. Its influence on European art during

the Middle Ages or the Renaissance can also be recognized and the resulting style

is known as pseudo-Kufic or Western-Kufic.

1http://en.wikipedia.org/wiki/Islamic_calligraphy

49

http://en.wikipedia.org/wiki/Islamic_calligraphy

Figure 4.1: Some decorative Kufic patterns. Left: Gudi Khatun Mausoleum

in Karabaghlar, Azerbaijan, 1335-1338 (Image taken from [1]). Middle: Coin of

the Hafsids, with ornamental Kufic script, from Bejaia, 1249-1276 (Image taken

from [2]). Right: Tombstone of Abbas, with floriated Kufic, 9th century (Image

taken from [3]).

Cultural heritage is a legacy from the past, which should be passed on to

current and future generations. Analysis of Kufic scripts, may shed light to

a relatively unknown era in history. However, even for a person whose native

language is Arabic, it is difficult to determine the meaning of Kufic scripts due

to a set of challenges inherent in Kufic calligraphy (see Section 4.2). Therefore,

scholarly work on Kufic scripts is limited.

Providing automatic tools for the discovery, documentation and organization

of Kufic designs may assist scholars working in this area and help for long-term

preservation of this heritage. With the automatic analysis of Kufic designs, one

can learn specific stretches of Kufic motifs and similar designs in other places can

signify some similar cultural perspectives, at a scale that no human could phys-

ically perform. Moreover, automatic analysis and classification of Kufic images

may help understanding of their characteristics and design rules, and may lead

to the automatic generation of new designs [4].

Despite the need, based on our knowledge, automatic analysis of Kufic images

has not been addressed previously. In this study, we aim to fill this gap by

developing tools for indexing and retrieval of Kufic images towards documentation

and preservation.

50

In the rest of the paper, first we briefly describe the challenges of study-

ing Kufic images, and review related studies on the automatic analysis of other

calligraphy images. Then, we describe our approach towards the matching of

sub-patterns in Kufic images, and report the results of experiments. Finally, we

discuss the results and conclude.

4.2 Challenges in Kufic patterns

Kufic script is grouped into three categories: written, ornamental and Ma’qeli.

Ma’qeli Kufic is known as square Kufic and is also called geometric, rectangular,

quadrangular or rectilinear Kufic. It is one of the most common Kufic types

used in decoration [1]. Letters in square Kufic are in the form of a square or a

rectangle. Geometric shapes consisting of various straight lines [1, 54] can be

elongated by 45 or 90 degree angles to compose different motifs [1, 52, 4, 5].

In Arabic, a character may have different shapes depending on whether it

is at the beginning, middle or end of a sentence or whether it is in an isolated

form [55, 56, 57]. Most characters are only distinguished by the attached dots or

zigzags, called diacritics. Moreover, because of the consonantal nature of Arabic,

vowels are omitted [58].

Kufic calligraphy images involve additional challenges [1, 4]. Firstly, the di-

rection of the words in Kufic images may change, unlike other calligraphy styles.

Calligraphers who have to fill a specific space in a Kufic design, are forced to mod-

ify the letters to fit the space, whether by extending them or contracting them,

or by changing their shapes. Therefore, a single word or letter can be modified

in many different ways to create different motifs resulting in a wide variety of

appearances and shapes of the same word or letter (Figure 4.3). Furthermore,

there is very little distinction between the shapes of different letters (see Figure

4.2).

Moreover, texts in Kufic can be written in a spiral way, starting from a corner

and ending at the center of an image. Bending may introduce new shapes to the

letters. Zigzags crossing the design surface results in additional complications.

The square shape of the Kufic image can be maintained by designing repeated

51

patterns around the square or at the center. Letters and their relative arrange-

ments can be updated and the organization can be redefined when a new word is

added to the composition [59]. Instead of writing a letter more than once, that

letter may be used by two different words in a design, like a crossword puzzle,

and similarly a word may be written just once and used by two different phrases

in the same design. These challenges, related to the very nature of Kufic callig-

raphy, became even more daunting due to the differences of the calligraphy style

by different cultures and at different periods.

All these challenges make the recognition and matching of Islamic patterns in

Kufic images more interesting –and yet more difficult– to deal with and require

techniques beyond usual text and handwriting recognition.
16 05 2013 Square_Kufi_Alphabet.html

www.sakkal.com/instrctn/sq_kufi_alphabet.html 1/2

ARABIC CALLIGRAPHY INSTRUCTION

Square Kufi Alphabet
Instructor: Mamoun Sakkal

New Square Kufic Alphabet chart (2010)

Figure 1.28 Square Kufic alphabet chart Notes:
Init= Initial form, Medi= Medial form, Fina= Final form, Isol= Isolated form.

Red letters are variations that occur historically but are not desirable because they create reading ambiguity.
Letters can be turned at right angles, examples are shown for letters D, N, and W.Figure 4.2: Square Kufic script letters. Note that, due to the nature of Arabic, the

same character may have different shapes, depending on its position within the

sentence. Characters may also have different shapes in different designs. (Image

courtesy of [4])

52

Figure 4.3: The same sub-words in different shapes and different sub-words in

similar shapes. In the first two images, the gray (sub-pattern lillah), light gray

(sub-pattern la) and lighter gray sub-patterns have different shapes in both de-

signs. For example, the gray ones are different designs of the letter La. In the last

image, the gray (sub-pattern lillah), light gray and lighter gray ones are different

sub-patterns but they share similar shapes.

4.3 Related work

In recent years, accessing and preserving cultural heritage has been considered in

many different ways [60, 61, 62]. Computer vision techniques have been proposed

for automatic indexing and retrieval of historical collections [63]. Here we focus

on studies in indexing and generation of Arabic calligraphy [53, 59, 64, 65, 66,

67, 68, 69, 70, 71].

Dunham et al. [64] developed a method to generate a repeating pattern of a

hyperbolic plane based on a tiling by any convex polygon. Their method draws

patterns based on tilings by a polygon which is not necessarily regular and that

polygon is assumed to be convex. In [65, 66], a method based on radially sym-

metric motifs is proposed to generate Islamic star patterns .

In [68], Aljamali and Banissi proposed a method to classify Islamic geometric

patterns (IGPs) based on the minimum number of grids and lowest geometric

shape methods necessary for the construction of the star pattern, while in [69],

IGP images are described using discrete-symmetry-groups theory. Firstly, every

pattern is classified into one of three major categories based on translation in one

direction. Secondly, some symmetry features, such as the symmetry group and

53

the fundamental region, are extracted. As a last step, the fundamental region is

described by a color histogram.

In [67], comprehensive analysis and cataloging of Islamic design patterns from

digital images is done through plane-symmetry-group theory. By using image

segmentation algorithms, these regular design patterns are then grouped by pixels

to obtain pieces forming tiles. After vector representation is done, the objects

are compared according to their contours and then classified by their shape and

color.

In [59], a prototype (Interactive Calligraphy Exploration) is described to com-

pose calligraphic images by manipulating symmetries to produce unusual visual

effects. The approach introduces a novel method of interaction with compo-

sitional elements and demonstrates how controlled change propagation can be

used to promote design exploration.

For Kufic calligraphy, there exists only a few studies for automatic genera-

tion [72]. Based on our knowledge, matching Kufic patterns has not been studied

previously.

In [72], cellular automata with an extended Moor neighborhood is used to

generate square Kufic script patterns, specifically Muhammed, by defining some

transition rules. Their approach focuses on three most famous Muhammed pat-

terns, which makes it applicable only to some models.

4.4 Our approach

As shown in Figure 4.4, our approach involves four steps: (i) foreground extrac-

tion, (ii) sub-pattern extraction, (iii) representation and matching, (iv) analysis.

Given a Kufic image, initially decorative elements in the background should

be eliminated, and foreground pixels that are the elements of patterns should be

extracted. In this study, we consider the sub-patterns as basic units and extracted

connected components are used as sub-patterns.

We observe that the relationships between straight lines in specific orienta-

tions are important for the identification of square Kufic patterns. Based on this

observation, we propose a line-based method for representing and matching sub-

patterns. In our method, each sub-pattern is represented with a graph and then

54

graph and sub-graph isomorphism are applied to match the patterns.

Sub-pattern matching is used for the analysis of Kufic images in three different

ways. Given a query pattern, all the instances can be found through retrieval.

Going further, through known patterns images can be automatically labeled in the

entire dataset. Finally, patterns that repeat inside an image can be automatically

discovered.

Feature Extraction

Analysis

Sub-pattern Extraction and Labeling

Red - Mohammed (connected)
Green - Lillah

Query: Allah

Matched Allah patterns Red - Mohammed Green - Lillah

Input Image Foreground Extraction

Image IndexingQuery Retrieval Repeating Pattern Detection

Query: Mohammed 4 repeating Mohammed pattern

Graph Matrix RepresentationEdge and Joint points

Graph Matching

Figure 4.4: The overall organization of our system.

In the following, we will first describe the collection, and then labeling and

decomposition of the dataset. In the next section, we present our methods for

feature extraction and sub-pattern matching.

55

4.4.1 Extraction of foreground pixels

As it can be seen from Figure 4.5, due to the different origins of the images, the

dataset includes examples in a large range of variety, from multi-color ornamental

images to degraded and noisy images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Top (a-d): Example Kufic images, bottom (e-h): their corresponding

color histograms. As can be seen from the color histograms (a) and (b) has a few

distinct colors, while the degradation in (c) and (d) result in multiple colors.

These different characteristics of images are reflected on their corresponding

color histograms. We observe that, the clean images may have a few distinct

colors –varying from two to eight colors for the images in our collection–, with

clear peaks on the color histogram. On the other hand, noisy and degraded

images, –which happen to be dominated by images with two main colors in our

collection–, have likely to have shorter peaks where the strengths are reduced

with similar colors around.

While standard binarization methods, when applied with adaptive threshold-

ing, may resolve the problems in degraded images with two colors, on multi-color

images they fail, and cannot extract the foreground pixels properly.

56

As a solution, we design a two stage method to extract the regions correspond-

ing to foreground pixels. First, we divide the images into two sets according to

their color distribution characteristics, and then apply different techniques to

each set.

The first stage separates clean images from the degraded images by looking

at the number of distinct colors in the color histogram. If this number is less

than a predefined threshold, then the image is considered as a relatively clean

multi-color image, otherwise it is considered as a degraded one. The threshold

is selected as eight in our experiments, since we observed that there are at most

eight different distinct colors in the images in our collection.

To extract the foreground pixels corresponding to Kufic scripts in multi-color

images, and to eliminate the pixels corresponding to ornaments or frames, we

propose a method based on color masking. Each peak value on the color histogram

is selected and the image is masked with that value. The regions corresponding

to selected color are marked with one, and the others are marked with zero in the

output image. Then connected components are extracted on the binary image.

This process is repeated for all the distinct colors. The color which results in

the highest number of connected components is considered as the foreground

color. Note that, the assumption in behind of this method is that, the image is

dominated by the sub-patterns in Kufic script.

The second set of images includes degraded and noisy images. Since we ob-

served that in most of the images backgrounds are distinguishable from the fore-

ground, we applied Otsu’s method for binarization without further processing.

4.4.2 Extraction and labeling of sub-patterns

We focus on four patterns that are very common across the square Kufic images.

These patterns are Allah, Muhammed, Resul, and Lailahe illallah. We limit the

retrieval and indexing experiments with these four patterns due to the difficulty

in labeling. Note that, the proposed method is not restricted to these patterns

only. It can match any other sub-pattern as will be shown by the experiments

for automatic detection of repeating patterns.

Figure 4.6 shows some Allah patterns. This pattern is the most common

one in the dataset and it is a combination of two sub-patterns, which are Alif

57

and lillah. Muhammed pattern is the second common pattern in our dataset and

while it consists of a single sub-pattern it has a large variety among its instances

(see Figure 4.8). Resul pattern is formed by three sub-patterns as it can be seen

in Figure 4.7 and Figure 4.8. The longest pattern type in dataset is La ilaha

illa Allah pattern (see Figure 4.8), which is composed of seven sub-patterns: one

lillah, three Alifs, one leh, two la.

Figure 4.6: Some square Kufic images with Allah patterns are shown in red

(gray). Note that this word has different shapes in different designs (Images 1,2,3

are taken from [4], 4-10 and 12 from [5]).

Figure 4.7: The patterns in green (light gray) are Resul patterns, which are

formed by three sub-patterns. The red (gray) sub-patterns are from the La ilaha

illa Allah pattern. The last image contains four Resul patterns at each corner

(First image is taken from [6] and second one is from [1] and third-fourth ones

are from [7]).

58

Figure 4.8: The patterns in red (gray) are La ilaha illa Allah. The green (light

gray) patterns are Resul patterns and note that the last one’s two sub-patterns

are connected. In the first image, first black pattern is Allah, while second black

one is Muhammed and in the second image first black sub-pattern is Muhammed,

while the second one is Allah and the same for the third image. (The first and

second images are taken from [7] and the third from [1]).

To extract the patterns, first all the connected components (CCs) from the

binarized images are extracted [73] using OpenCV Library [74]. In total there

are 8082 extracted CCs. We will refer to the CCs that are parts of the patterns

as sub-patterns.

Rather than labeling all the sub-patterns for the four patterns used in our ex-

periments, we choose only the discriminating ones. Similarly during querying we

also aim to find these discriminative components. Note that, these sub-patterns

still may also be placed in other patterns and have large variations in appearance.

Table 4.1 depicts the number of samples labeled for each sub-pattern. Com-

ponents that are not labeled as one of the four patterns are put into the unlabeled

class.

59

Label Number of components Number of images Example

la 80 26

leh 170 45

lillah 938 129

muh 184 37

su 26 15

unlabeled 6684 203

Table 4.1: Number of components per class and number of images where these

patterns are found. Note that an image may contain more than a single labeled

pattern.

As shown in Figure 4.9 for the sub-pattern su, instances of a sub-pattern

class can be in various sizes and rotations. In the overall dataset, height of the

components vary between 14 pixels to 1918 pixels, median height is 50 pixels.

Width of the components vary between 8 and 1840 pixels, median width is 47

pixels. Median aspect ratio is 1, 25% of the components are square, 35% are

landscape and 40% are portrait.

Figure 4.9: 16 sample images from su sub-pattern. This is the middle component

of the word Resul.

4.4.3 Sub-pattern matching

As described in the previous section, all the sub-patterns are extracted automat-

ically both for the query and for the dataset images. Then the discriminative

60

sub-patterns in query pattern are searched among all the sub-patterns in the

dataset. However, sub-pattern matching is a challenging task due to large geo-

metric variations within a class.

In this study, we addressed this problem and proposed a new descriptor and

a matching approach for sub-pattern matching. Our method is based on graph

isomorphism. In the following, first we describe how we represent sub-patterns

as graphs, then we present the details of graph matching method.

Note that, the techniques in character recognition cannot be directly applied

for our problem, since it is difficult, if not impossible, to segment the words or

phrases into characters.

To represent the sub-patterns as graphs, we utilized the skeletons extracted

from connected components. First we applied smoothing to get rid of knurls

and noisy edges. Then, the endings and junctions of connected components are

extracted using an available junction/ending extractor software 2.

The software produces many junction points for components with ragged

edges. However, erroneous junction points may create extra nodes in the graph,

and change the graph structure. To eliminate the unnecessary junction points,

we checked the distances between each junction point pairs and only the ones

that exceeds a pre-defined threshold are kept. This threshold is set relative to

the minimum of width and height of the connected component. As seen in Fig-

ure 4.10, even for the complicated cases, junction and end points are extracted

correctly.

Figure 4.10: Junction and end points of some example sub-patterns.

2http://www.csse.uwa.edu.au/~pk/research/matlabfns/

61

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

Then, the graph representation is obtained from the extracted points. Note

that, graphs are undirected. We also prefer to keep them non-weighted to ob-

tain scale invariance. Figure 4.11 shows the graph of a sub-pattern with the

corresponding matrix representation.

(a) (b)

 A B C D E F
A 0 1 1 0 0 0
B 1 0 0 1 0 0
C 1 0 0 1 1 0
D 0 1 1 0 0 0
E 0 0 1 0 0 1
F 0 0 0 0 1 0

(c)

Figure 4.11: (a) An example sub-pattern (b) the sub-pattern’s graph (c) matrix

that represents the undirected, non-weighted graph

For graph matching, we first apply graph-isomorphism [75]. Two graphs are

said to be isomorphic if their nodes can be one-to-one mapped with ensuring the

adjacency of nodes. Given two graphs G1 and G2 there exists a function f such

that:

∀a, b ∈ V1, (a, b) ∈ E1 ⇔ (f(a), f(b))) ∈ E2, (4.1)

where V1 is the vertex set of G1 and E1,E2 are the edge sets of G1 and G2

respectively [75].

The worst case of the algorithm is O(n!), n being the number of nodes of G1

or G2 where they should be equal for the graphs to be isomorphic.

Figure 4.12 shows some different graph representations which are isomorphic.

As it can be observed from the examples (such as Figure 4.12 (c)), graph matching

is rotation and scale invariant.

62

,

(a)

,

(b)

,

(c)

Figure 4.12: Example sub-patterns with their graph representations, the graph

pairs are isomorphic. (a) La sub-pattern (b) Lillah sub-pattern (c) Muhammed

sub-pattern

Although graph isomorphism has many advantages, there are also some bot-

tlenecks. Full graph isomorphism is based on a strict condition, where the two

graphs should have the same number of nodes and there should be a one-to-one

mapping between them. For our problem, the components which have the same

number of limbs can be matched easily using isomorphism although they can

differ in shape, scale or rotation. However, there are also sub-patterns with the

same meaning but they differ in few limbs. This kind of sub-patterns cannot be

matched with full isomorphism (see Figure 4.13).

(a) (b) (c) (d)

Figure 4.13: Example sub-patterns with their graph representations. Although

the pairs are same sub-patterns their graphs are not isomorphic. (a) and (b) Leh

sub-pattern (c) and (d) Su sub-pattern

To solve this problem, a partial graph matching approach is crucial. Thus, we

applied a sub-graph isomorphism based approach. Although sub-graph isomor-

phism is NP-complete, it can be solved in polynomial time for certain cases such

as when graphs are planar [76] as in our case.

63

In the sub-graph isomorphism problem, given two graphs G1 and G2, one

must either detect an occurrence of G1 as a sub-graph of G2, or vice versa. For

any two planar graphs, with n and m vertices, the decision problem can be solved

in polynomial time O(nm) [76].

Directly applying sub-graph isomorphism to match the Kufic patterns rises

some problems. Different sub-patterns can be matched due to one of them being

part of another although they do not have the same meaning. To illustrate, the

Figure 4.13 (a) and (c) are going to be sub-graph isomorphic although they are

different sub-patterns. To eliminate this situation, we did not directly applied

sub-graph isomorphism to match sub-patterns. We computed the difference be-

tween the numbers of nodes of the two graphs and checked if the difference exceeds

a pre-defined threshold value. If the difference is smaller we applied sub-graph

isomorphism else we said that the graphs are not isomorphic. With this kind of

an approach Figure 4.13 (c) and (d) are going to be a true match and Figure (a)

and (c) are not going to be matched.

64

Chapter 5

Kufic Pattern Matching

Experiments

5.1 Dataset Description

As there is no existing Kufic dataset, we have constructed our own dataset by

collecting images from the Internet (mostly from [1]) and from a book on callig-

raphy [7]. Some square Kufic images from our dataset can be seen In Figure 5.1.

In total, there are 218 Kufic images in the dataset.

65

Figure 5.1: Some example square Kufic images. On the first row, the 4th image

from the left has four Allah and Muhammed patterns, while the 5th image has

four Masaallah patterns. Note that in the second row, the 2nd and 5th images

have very small sub-patterns and their outer contours also form Allah patterns.

The 3rd and 6th images in the second row have patterns which have some zig-zags

on the contours, which make line extraction process difficult. On the first row,

the 1st,4th,5th and 6th images are from [7], the 2nd image is from [6], and the

3rd image is from [8]. The second row images are from [1].

5.2 Other Approaches

To give comparative results, we examined previous methods that match patterns

in Kufic Images. As a baseline system we experimented with profile based fea-

tures [77] and we employed a second method which uses descriptors extracted

from contours and exploits sequence matching [9]. In the following, we describe

the details of each method.

5.2.1 Profile based features with DTW matching

Due to the difficulties in character segmentation, recently word spotting tech-

niques have been proposed to match words as a whole. In word spotting, profile

based features have been commonly used [78]. Since the two problems resemble to

each other, profile based features from [77] are used as a baseline for comparison.

66

The baseline system utilizes the features used in [78]. Namely, the projection

profile (that is the count of foreground pixels for each horizontal coordinate value),

upper and lower profiles (which are similar to projection profile but they consider

only the pixels above and below the figure baseline) and lastly the ink transitions

(the number of foreground-background ink transitions) are used.

Profile features are compared using Dynamic Time Warping (DTW). Without

normalization, DTW algorithm may favor the shorter signals. In the literature a

post-normalization is performed after calculating the distance. In this study [77],

signals are normalized before inputting them into the algorithm.

Since profile based features are not rotation invariant, registration is per-

formed by rotating the query sub-patterns in 45 degrees, and the lowest dissimi-

larity value over all rotations is considered as the matching score.

5.2.2 Sequence matching based on contour representation

The method [9] uses a representation, based on lines to describe sub-patterns

in square Kufic images. Firstly, contours are extracted from sub-patterns and

points on these contours are approximated to lines using the Douglas-Peucker

line approximation algorithm [79] as in [80] (see Figure 5.2).

The Douglas-Peucker line approximation algorithm is a polygonal approxima-

tion method which is used for the description of the boundaries as a sequence of

straight lines [81]. The Douglas-Peucker algorithm reduces the number of points

in a curve by approximating it by a series of points. First, between a start and

an end point, a sequence of points is approximated with a line segment. If the

distance of the farthest point from the line is less than a threshold, the algo-

rithm stops, otherwise it recursively divides the line into two from the farthest

point [82]. The parameter τ used in the Douglas-Peucker algorithm can be de-

fined as approximation accuracy, tolerance value, or compression factor. It serves

for the determination of key points when fitting lines into points. The greater

values of τ result in a smaller number of lines and sharper segments, while smaller

values of τ result in a greater number of lines and smoother segments.

Can et al. [80] exploited Douglas-Peucker algorithm to describe words in hand-

written documents as a set of lines. A line is described by its position, orientation

and length as in [83]. They compute the matching score between two word images

67

as the sum of scores obtained from each matching line pair, normalized with the

number of the matches and total number of lines in each word image. The lines

with minimum dissimilarities are considered as the matching pairs.

In Kufic images, the composition of the lines in the sub-patterns are very im-

portant, while size and position of the lines may largely vary. Moreover, instances

of a sub-pattern in different images may be approximated into different number of

lines due to the variations in lighting conditions and sizes. Therefore, the method

used in [80] is thought to be unfeasible for matching Kufic patterns [9].

As an alternative, in [9] they propose a new method for matching lines in

sub-patterns based on chain code representation [84], by introducing a penalty

for the gaps. Each Kufic sub-pattern I is represented as a set of line descriptors,

as I = {`1, `2, ..., `N}, where N is the number of lines approximated for that sub-

pattern. Then, using these lines as descriptors, for each extracted sub-pattern,

an eight-connected chain code representation [85] is constructed. The proposed

method is scale invariant because the length information of the lines is not used.

In Figure 5.2, two sub-patterns and their chain code representations are given.

(a) (b) (c)

Figure 5.2: (a) and (b) Two Allah patterns in different shapes and the outputs

of the line simplification process. Start-end points of lines are shown with small

slashes. The chain code representation of sub-pattern A is 0246424642460646, B

is 0246, C is 02465324653246 and D is 0246. (c) Output of the string matching

algorithm for sub-patterns A-C and B-D. (The images are taken from [9])

Chain code representation depends on the start point. Circular movement

algorithm, –where the start points are changed in a circular way, and the order in

which chain codes form the possible smallest integer is taken–, is generally used

68

as a solution [85]. This method is thought to be unfeasible since the same sub-

pattern may be approximated into different number of lines in different images,

and the missing lines may result in incorrect matches by the choice of wrong

starting point. Thus, in [9] it starts extracting chain codes at the upper left

corner of each sub-pattern, but it rotates the sub-pattern by 45 degrees, and

takes the match with the best score.

Chain code matching is performed utilizing a sequence matching algo-

rithm [86]. Matching score of two chain code representations is calculated as

follows:

D(I, J) = max

D(I(i), J(j − 1))

D(I(i− 1), J(j))

D(I(i− 1), J(j − 1))

 + d(I(i), J(j)). (5.1)

Here I and J are two chain code representations, and D is the score matrix;

I(i) is the ith element of chain code representation I (same for J(j)). d(I(i), J(j))

is the distance between I(i) and J(j). It is 3 when I(i) and J(j) are the same, -2

when they are different and 1 when there is a gap. At the end of this step, the

matching scores between each pair of sub-patterns are obtained and later used in

experiments. A similar scoring approach is adapted as in [86], where aminoacid

sequences are tried to be matched. However, when a chain code is matched a

higher score is given, since a match is valuable, while a gap less than a mismatch

is penalized, since there may be some additional lines in different instances of a

same pattern because of drawbacks of dataset.

For example, in Figure 5.2, sub-patterns A and C are matched with score 20.

At the end of this step, they have a matching score for each pair of sub-patterns

and these scores are used in experiments.

5.3 Experiments

In the following, we will provide the experimental results for query retrieval, for

indexing and for finding repeated patterns. In all experiments, True Positive

(TP), False Positive (FP), True Negative (TN) and False Negative (FN) values

69

are obtained with respect to the parameters set (see Section 3.2). Throughout

this section we will refer to the baseline method which matches profile based

features as profile, the second comparative method which represents the lines ex-

tracted from contours as chain codes and utilizes sequence matching with penal-

ties for gaps as sequence matching, and our own method which represents the

sub-patterns as graphs and exploits graph isomorphism for matching as graph

matching.

5.3.1 Query retrieval

We firstly perform experiments to find different instances of a query pattern in

the entire collection. In this experiment, given a query pattern and a threshold,

candidate patterns that have a matching score greater than this threshold are

retrieved.

First, all of the 1398 labeled instances are used as the query sub-patterns.

Recall that, we focus on four patterns, and use only discriminative sub-patterns to

represent the patterns. Muhammed pattern has only one sub-pattern. Although

Allah pattern has two sub-patterns, only the sub-pattern lillah is used as the

discriminative sub-pattern, discarding Alif sub-pattern. For Resul pattern, su

sub-pattern is the discriminative one. La ilahe illa Allah pattern, has lillah,and

leh as discriminative sub-patterns, while again Alif sub-pattern being discarded.

While Allah, Resul and Muhammed patterns can be retrieved through searching

for a single sub-pattern, for La ilahe illa allah we count only the results containing

all of the discriminative sub-patterns as correct.

Note that, sub-patterns in the query and dataset images are automatically

extracted, and therefore the proposed approach can be applied to any pattern.

The restriction for four query types in the experiments are due to the difficulty

of labeling.

In Table 5.1, we compare the proposed method with profile and sequence

matching on query retrieval task based on Area Under ROC Curve (AUC) and

F1 scores. AUC value calculates the area between ROC curve and the x axis.

F1 metric is the harmonic mean of Precision and Recall values. As seen from

the results our graph matching method outperforms both profile and sequence

matching methods.

70

Feature AUC F1

Graph matching 0.85 0.79

Sequence matching 0.73 0.38

Profile 0.65 0.27

Table 5.1: Comparison of three methods on query retrieval based on Area Under

ROC Curve (AUC) and F1 values.

In Figure 5.3, sequence matching and graph matching are compared based on

their True Positive Rates (TPR) and False Positive Rates (FPR). Results show

that graph matching method is better than sequence matching. In Table5.2, TPR

and FPR values are given for each of the four patterns separately.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

Line Matching

Graph Matching

Figure 5.3: This Figure shows average TPR vs FPR results for all types of query

patterns in dataset. Results show that sequence matching is good at finding

instances of a pattern but it can not easily eliminate false matches, while graph

matching can discriminate false matches.

71

Sequence Matching Graph Matching

TPR FPR TPR FPR

Allah 0.5662 0.2066 0.9552 0.2933

Muhammed 0.5046 0.0429 0.4882 0.1107

LIIA 0.2961 0.0205 0.9267 0.4535

Resul 0.3016 0.5367 0.9833 0.3215

Table 5.2: Recall and precision values of query retrieval task performed by two

different approaches: sequence matching and Graph matching.

In sequence matching method, the lowest score is retrieved with La ilaha illa

Allah pattern due the number of sub-patterns it has. Resul pattern also has a

low score since it is formed by sub-pattern su, which has a large variety between

its instances. Note that graph matching method is good at discrimination of

different pattern models, while at the same time it can successfully retrieve dif-

ferent instances of the same pattern. One other reason that graph matching out-

performs sequence matching is the connected sub-patterns problem. Connected

sub-patterns problem occur when more than one instance of a sub-pattern is con-

nected to each other and they are extracted as only one sub-patterns (see Figure

5.4). In chain code representation, these connected sub-patterns and query sub-

pattern have different representations and their sequence matching dissimilarity

is large. We could also perform local matching in our sequence matching method,

but in that case number of false matches would be much higher.

Figure 5.4: Connected pattern examples that our sequence matching method can

not detect (The images are taken from [7]).

72

In graph matching method, graphs of connected patterns can be partially

matched to query graphs with sub-graph isomorphism. To test our theory of

graph matching detecting connected patterns more accurately, we performed a

small test where we generated Lillah and Muhammed queries and searched them

in images that contain the same patterns but in a connected form. Also, to

understand the effect of sub-graph isomorphism we tried the same experiment

with different threshold values explained in Section 4.4.3. The results are shown

in Figure 5.5. When k is large enough sub-graph isomorphism is applied to every

connected pattern instead of graph isomorphism and each query pattern is found

inside the same pattern’s connected graph.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k−threshold

R
ec

al
l

Figure 5.5: Connected pattern detection experiment results by graph matching.

Similarly, the ROC curve in Figure 5.3 shows that, as the threshold value

increases true positive rate increases too. The reason is, the algorithm applies sub-

graph isomorphism to more number of sub-patterns instead of graph isomorphism,

which is a strict condition to obtain. Therefore, for high values of threshold, the

number of matches increase which results in an increase for true positives and

73

false positives. As a result, the algorithm manages to find the true positives with

full sub-graph isomorphism however, it fails for false positives.

The below Table 5.3 shows the 10-fold cross-validation results for subgraph-

isomorphism applied on query retrieval task. The values show the accuracy com-

puted for each run and for each pattern. Only the Resul pattern has unstable

results but other patterns show stability in their detection rate. The overall ac-

curacy is effected from the Resul pattern’s accuracy. We believe that the low

results of Resul comes from the fact that it has less number of examples in the

dataset.

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

Allah 0.9733 0.9467 0.9610 0.9481 0.9625 0.9853 0.9714 0.9851 0.9726 0.9677

Muhammed 1.0000 1.0000 0.9412 1.0000 1.0000 0.9130 0.9000 1.0000 1.0000 0.9200

LIIA 0.6578 0.6489 0.6537 0.6494 0.6542 0.6618 0.6571 0.6617 0.6575 0.6559

Resul 1.0000 0.3333 0.3333 0 0 0.3333 0 0.3333 0 0

Mean 0.9078 0.7322 0.7223 0.6494 0.6542 0.7233 0.6321 0.7450 0.6575 0.8859

Table 5.3: 10-fold cross validation, graph isomorphism accuracy results for query

retrieval.

5.3.2 Image indexing

In another experiment, we relaxed the matching criteria, and when any instance

in an image with the query sub-pattern is retrieved we assumed that the image

is correctly indexed. This experiments is performed to show that the proposed

approach could be used in indexing the images without localizing the patterns.

Table5.4 shows TPR and FPR values for each of the four patterns separately.

Sequence Matching Graph Matching

TPR FPR TPR FPR

Allah 0.5188 0.0762 0.9802 0.2855

Muhammed 0.8727 0.2240 0.5383 0.1065

LIIA 0.5875 0.2702 0.9053 0.4231

Resul 0.3728 0.3650 0.9734 0.2965

Table 5.4: Image categorization success rates with line and graph matching

methods. Graph matching method again outperforms sequence matching method.

74

5.3.3 Repeating pattern detection

In the last experiment, we automatically detect repeating sub-patterns in a given

image without using a query pattern. Any sub-pattern that exists at least twice

in a Kufic image is accepted as a repeating sub-pattern. For example, in Figure

5.6, the image on the left has two repeating patterns and the others have more,

because they are symmetrical.

Figure 5.6: Repeating pattern examples (The images are taken from [1]).

Given a candidate image, all sub-patterns’ in an image are assumed to be

queries and searched in the same image. When the similarities are above some

predefined threshold, then they are considered as repeating patterns.

This experiment is performed on a subset of our dataset, which has images

having at least one of our four patterns (since other patterns are not labeled in

our dataset). In Table 5.5, True Positive Rates (TPR) and False Positive Rates

(FPR) are given for each category.

Sequence Matching Graph Matching

TPR FPR TPR FPR

Allah 0.8223 0.2367 0.9113 0.0542

Muhammed 0.9125 0.2696 0.8069 0.0620

Resul 0.5714 0.0238 0.9813 0.0336

Table 5.5: Repeating pattern detection by sequence matching and graph match-

ing methods. We didn’t provide results for La ilaha illa Allah, because at most

only one instance of that pattern in images, which makes it non-repeating pattern.

75

Repeating sub-patterns with different shapes in the same image can not be

retrieved. For example, returning to Figure 4.6, in the second image from the left

in the first row contains three Allah patterns (in gray), but as their shapes are

different from each other, they can not be detected as repeating patterns.

The advantage of detecting repeating sub-patterns is that we can automat-

ically find possible words in a given Kufic image without the usage of a query

pattern. In this way, the meaningful patterns can be deciphered in these calli-

graphic images and a fully automatic indexing schema can be developed.

5.4 Discussion

In this study, we present a shape-based analysis of Kufic calligraphy images for

indexing and retrieval of these image collections. The proposed method is based

on graph representation and patterns are matched by a graph matching algorithm,

also a detailed feature analysis is provided. We show that our graph matching

algorithm gives promising results with matching Islamic patterns in Kufic images.

Although our method works well for most of the queries, querying less-common

shapes is not as successful. Also, because two different letters may share the same

shape in a Kufic design, precision rates in the experiments are low. Our method

can not retrieve instances of a query pattern when the patterns are created in

different shapes as in Figure 5.7.

Figure 5.7: Muhammed patterns in different formats that our proposed method

can not match.

76

Chapter 6

Conclusion

In the first part of this thesis, segmentation of Ottoman documents is studied.

First layout segmentation which aims to detect regions consisting of text lines

written with different orientations is explored. A Log-Gabor filtering based ap-

proach is used where maximum Gabor response per cell is computed for segmenta-

tion. Experiments are done on an Ottoman dataset constructed with documents

which has multi-oriented lines. An accuracy rate of 96.01% is computed from the

results. Wrong labeled connected components are discovered and different types

of errors are observed. It is concluded that using different number of scales or

orientations might solve some problems. However, it is argued that using less

number of scales might bring up different issues such as loosing scale indepen-

dency. Another solution suggested to eliminate problems is to use language based

rules which requires language experts.

Second segmentation task is line segmentation where four different approaches

are proposed. First one is a traditional line segmentation method, called projec-

tion profile. Second line segmentation algorithm is an hybrid approach based

on both connected components and vertical projection profile. Projection profile

based methods are simple, easy to implement and can deal with a certain amount

of curve. Besides, connected component based approaches are successful for more

complicated documents whose interline distances vary or baseline skews are in-

consistent. Thus, by extracting baseline pixels from connected components and

then using the projection profile information the algorithm manages to segment

the lines from both handwritten and printed Ottoman documents.

77

The last 2 line segmentation methods are based on Log-Gabor filtering like

the layout segmentation and they support script independency. First one uses

region intersection while line fitting is preferred for the second one.

The 4 line segmentation algorithms are tested on a mixed dataset including

English, Greek, Bangla and Ottoman documents to obtain comparative results

on different languages. The results show that projection profile has the worst

performance and Gabor filtering with region intersection has the best performance

having similar results with line fitting. The effectiveness of the Gabor filtering

with region intersection is demonstrated on different languages and it is shown

that the algorithm is successful for different writing styles and writers. Also, the

results showed that the algorithm is script-independent.

Last segmentation task is word segmentation where a simple morphological

method is applied. Promising results are obtained on English, Greek and Bangla

documents.

To increase the segmentation results, language based rules or supervised tech-

niques can be applied. At the same time, we believe that using more advanced

techniques for pre-processing steps such as binarization, diacritics detection and

noisy component removal will improve the segmentation results.

Second part of this thesis focused on Islamic pattern matching on Kufic im-

ages. The approach involved four main steps: (i) foreground extraction, (ii)

sub-pattern extraction, (iii) representation and matching, (iv) analysis. A new

method, graph matching is proposed to match Islamic patterns in Kufic image

collections. 3 different experiments are constructed. First experiment is to find

different instances of a query pattern in the entire collection. In this experiment,

given a query pattern and a threshold, candidate patterns that have a matching

score greater than this threshold are retrieved. In the second experiment, the

matching criteria is relaxed, and when any instance in an image with the query

sub-pattern is retrieved it is assumed that the image is correctly indexed. The

experiment showed that the proposed approach could be used in indexing the im-

ages without localizing the patterns. The last experiment is about automatically

detecting repeating sub-patterns in a given image without using a query pattern.

The experiments showed that graph matching algorithms give promising re-

sults with matching Islamic patterns in square Kufic images. To increase the

78

success rates, the problem of connected sub-patterns can be solved. Using a slid-

ing window approach that would detach patterns will make the matching easier.

Besides, Kufic dataset which is constructed by images collected from the Internet

can be extended in order to study different and longer words.

79

Bibliography

[1] “Kufic info,” 2009. www.kufic.info/.

[2] “Coin image,” As of 6 May 2013. http://en.wikipedia.org/wiki/File:

Hafsids_Bougie_Algeria_1249_1276_ornemental_Kufic.JPG.

[3] “Tombstone image,” As of 6 May 2013. http://www.smb.museum/

roadsofarabia/index.php?id=17&L=1.

[4] “The art of arabic calligraphy,” 1993. www.sakkal.com/

ArtArabicCalligraphy.html.

[5] “Kufic,” 2009. en.wikipedia.org/wiki/Kufic.

[6] “Kufic example 2,” 2009. www.waterholes.com/~dennette/1995/islam/

shahada.htm.

[7] S. Ozpalabiyiklar, Bir Yazi Sevdalisi: Emin Barin. Yapi Kredi, 2002.

[8] “Kufic example 1,” 2009. www.farm4.static.flickr.com/3377/

3318123762_ea07344f17.jpg?v=0.

[9] D. Arifoglu, “Historical Document Analysis Based On Word Matching,”

Master’s thesis, Bilkent University, Turkey, 2011.

[10] E. Ataer and P. Duygulu, “Retrieval of ottoman documents,” in Proceedings

of the 8th ACM international workshop on Multimedia information retrieval,

pp. 155–162, 2006.

[11] A. Amin, “Off line arabic character recognition: a survey,” in Proceedings of

the Fourth International Conference on Document Analysis and Recognition,

vol. 2, pp. 596–599, IEEE, 1997.

80

www.kufic.info/
http://en.wikipedia.org/wiki/File:Hafsids_Bougie_Algeria_1249_1276_ornemental_Kufic.JPG
http://en.wikipedia.org/wiki/File:Hafsids_Bougie_Algeria_1249_1276_ornemental_Kufic.JPG
http://www.smb.museum/roadsofarabia/index.php?id=17&L=1
http://www.smb.museum/roadsofarabia/index.php?id=17&L=1
www.sakkal.com/ArtArabicCalligraphy.html
www.sakkal.com/ArtArabicCalligraphy.html
en.wikipedia.org/wiki/Kufic
www.waterholes.com/~dennette/1995/islam/shahada.htm
www.waterholes.com/~dennette/1995/islam/shahada.htm
www.farm4.static.flickr.com/3377/3318123762_ea07344f17.jpg?v=0
www.farm4.static.flickr.com/3377/3318123762_ea07344f17.jpg?v=0

[12] R. G. Casey and E. Lecolinet, “A survey of methods and strategies in char-

acter segmentation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 18, no. 7, pp. 690–706, 1996.

[13] S. Impedovo, L. Ottaviano, and S. Occhinegro, “Optical character recogni-

tion: a survey,” International Journal of Pattern Recognition and Artificial

Intelligence, vol. 5, no. 01n02, pp. 1–24, 1991.

[14] S. Mori, C. Y. Suen, and K. Yamamoto, “Historical review of ocr research

and development,” Proceedings of the IEEE, vol. 80, no. 7, pp. 1029–1058,

1992.

[15] N. Aouadi, “Word spotting for arabic handwritten historical document re-

trieval using generalized hough transform,” 2011 The Third International

Conferences on Pervasive Patterns and Applications, vol. 1, no. c, pp. 67–

71, 2011.

[16] A. Bhardwaj, S. Setlur, and V. Govindaraju, “Keyword spotting techniques

for sanskrit documents,” in Sanskrit Computational Linguistics (G. Huet,

A. Kulkarni, and P. Scharf, eds.), vol. 5402 of Lecture Notes in Computer

Science, pp. 403–416, Springer-Verlag, 2009.

[17] J. Lladós, P. Pratim-Roy, J. A. Rodŕıguez, and G. Sánchez, “Word spotting

in archive documents using shape contexts,” in Proceedings of the 3rd Iberian

conference on Pattern Recognition and Image Analysis, Part II, (Berlin, Hei-

delberg), pp. 290–297, Springer-Verlag, 2007.

[18] “Ottoman text archive project (otap),” 2008. http://courses.

washington.edu/otap/.

[19] R. Saabni and J. El-Sana, “Language-independent text lines extraction us-

ing seam carving,” in International Conference on Document Analysis and

Recognition (ICDAR), pp. 563–568, IEEE, 2011.

[20] X. Du, W. Pan, and T. D. Bui, “Text line segmentation in handwritten

documents using mumford–shah model,” Pattern Recognition, vol. 42, no. 12,

pp. 3136–3145, 2009.

81

http://courses.washington.edu/otap/
http://courses.washington.edu/otap/

[21] A. Alaei, U. Pal, and P. Nagabhushan, “A new scheme for unconstrained

handwritten text-line segmentation,” Pattern Recognition, vol. 44, no. 4,

pp. 917–928, 2011.

[22] S. S. Bukhari, F. Shafait, and T. M. Breuel, “Script-independent handwritten

textlines segmentation using active contours,” in 10th International Confer-

ence on Document Analysis and Recognition, pp. 446–450, IEEE, 2009.

[23] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger, “Script-independent text line

segmentation in freestyle handwritten documents,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 30, no. 8, pp. 1313–1329,

2008.

[24] Y. Lu, “Machine printed character segmentation: An overview,” Pattern

Recognition, vol. 28, no. 1, pp. 67–80, 1995.

[25] N. Tripathy and U. Pal, “Handwriting segmentation of unconstrained oriya

text,” in Ninth International Workshop on Frontiers in Handwriting Recog-

nition, pp. 306–311, IEEE, 2004.

[26] S. Jaeger, G. Zhu, D. Doermann, K. Chen, and S. Sampat, “Doclib: a

software library for document processing,” in Electronic Imaging 2006,

pp. 606709–606709, International Society for Optics and Photonics, 2006.

[27] A. Simon, J.-C. Pret, and A. P. Johnson, “A fast algorithm for bottom-

up document layout analysis,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 19, no. 3, pp. 273–277, 1997.

[28] Y. Li, Y. Zheng, and D. Doermann, “Detecting text lines in handwritten

documents,” in 18th International Conference on Pattern Recognition, vol. 2,

pp. 1030–1033, IEEE, 2006.

[29] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis, “Text line and

word segmentation of handwritten documents,” Pattern Recognition, vol. 42,

no. 12, pp. 3169–3183, 2009.

82

[30] V. Papavassiliou, T. Stafylakis, V. Katsouros, and G. Carayannis, “Hand-

written document image segmentation into text lines and words,” Pattern

Recognition, vol. 43, no. 1, pp. 369–377, 2010.

[31] E. Öztop, A. Y. Mülayim, V. Atalay, and F. Yarman-Vural, “Repulsive at-

tractive network for baseline extraction on document images,” Signal Pro-

cessing, vol. 75, no. 1, pp. 1–10, 1999.

[32] P. P. Roy, U. Pal, J. Lladós, and F. Kimura, “Multi-oriented english text

line extraction using background and foreground information,” in The Eighth

IAPR International Workshop on Document Analysis Systems, pp. 315–322,

IEEE, 2008.

[33] U. Pal, S. Sinha, and B. B. Chaudhuri, “Multi-oriented text lines detection,

their skew estimation.,” in ICVGIP, 2002.

[34] N. Ouwayed, A. Beläıd, et al., “Multi-oriented text line extraction from

handwritten arabic documents,” in 8th IAPR International Workshop on

Document Analysis Systems-DAS’08, pp. 339–346, 2008.

[35] J. Zhang, J. Gao, and M. Zhou, “Extraction of chinese compound words:

an experimental study on a very large corpus,” in Proceedings of the second

workshop on Chinese language processing: held in conjunction with the 38th

Annual Meeting of the Association for Computational Linguistics-Volume

12, pp. 132–139, Association for Computational Linguistics, 2000.

[36] J. H. Huang and D. Powers, “Chinese word segmentation based on contextual

entropy,” in Proceedings of the 17th Asian Pacific conference on language,

information and computation, pp. 152–158, 2003.

[37] W.-Y. Ma and K.-J. Chen, “A bottom-up merging algorithm for chinese un-

known word extraction,” in Proceedings of the second SIGHAN workshop on

Chinese language processing-Volume 17, pp. 31–38, Association for Compu-

tational Linguistics, 2003.

[38] Y. Dai, T. E. Loh, and C. S. Khoo, “A new statistical formula for chinese

text segmentation incorporating contextual information,” in Proceedings of

83

the 22nd annual international ACM SIGIR conference on Research and de-

velopment in information retrieval, pp. 82–89, ACM, 1999.

[39] A. Rosenfeld and A. C. Kak, Digital picture processing. Morgan Kaufmann,

1982.

[40] S. Bochner and K. Chandrasekharan, Fourier Transforms.(Am-19), vol. 19.

Princeton University Press, 1949.

[41] “Gabor filter,” 2013. http://en.wikipedia.org/wiki/Gabor_filter.

[42] F. W. Campbell and J. Robson, “Application of fourier analysis to the visi-

bility of gratings,” The Journal of Physiology, vol. 197, no. 3, p. 551, 1968.

[43] J. R. Movellan, “Tutorial on gabor filters,” Open Source Document, 2002.

[44] J. G. Daugman, “Two-dimensional spectral analysis of cortical receptive field

profiles,” Vision research, vol. 20, no. 10, pp. 847–856, 1980.

[45] J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional ga-

bor filter model of simple receptive fields in cat striate cortex,” Journal of

Neurophysiology, vol. 58, no. 6, pp. 1233–1258, 1987.

[46] D. J. Field et al., “Relations between the statistics of natural images and

the response properties of cortical cells,” J. Opt. Soc. Am. A, vol. 4, no. 12,

pp. 2379–2394, 1987.

[47] A. Zahour, L. Likforman-Sulem, W. Boussalaa, and B. Taconet, “Text line

segmentation of historical arabic documents,” in Ninth International Con-

ference on Document Analysis and Recognition, vol. 1, pp. 138–142, IEEE,

2007.

[48] A. Zahour, B. Taconet, L. Likforman-Sulem, and W. Boussellaa, “Overlap-

ping and multi-touching text-line segmentation by block covering analysis,”

Pattern analysis and applications, vol. 12, no. 4, pp. 335–351, 2009.

[49] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger, “Script-independent text line

segmentation in freestyle handwritten documents,” IEEE Transactions on

84

http://en.wikipedia.org/wiki/Gabor_filter

Pattern Analysis and Machine Intelligence, vol. 30, no. 8, pp. 1313–1329,

2008.

[50] L. Likforman-Sulem, A. Zahour, and B. Taconet, “Text line segmentation of

historical documents: a survey,” International Journal of Document Analysis

and Recognition (IJDAR), vol. 9, no. 2-4, pp. 123–138, 2007.

[51] “Bangla semantics,” 2013. http://banglasemantics.net/.

[52] “Kuficpedia,” 2009. www.kuficpedia.com.

[53] S. J. Abas, “Islamic geometrical patterns for the teaching of mathematics

of symmetry,” Symmetry in ethnomathematics, vol. 12, no. 1-2, pp. 53–65,

2001.

[54] “Maghribi kufic,” 2009. calligraphyqalam.com/styles/kufic-maghribi.

html.

[55] A. Amin, “Off Line Arabic Character Recognition - A Survey,” in Proceedings

of the 4th International Conference on Document Analysis and Recognition,

(Washington, DC, USA), pp. 596–599, 1997.

[56] J. Chan, C. Ziftci, and D. Forsyth, “Searching off-line Arabic documents,”

in Proceedings of the 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, (Washington, DC, USA), pp. 1455–1462,

2006.

[57] M. S. Khorsheed, “Off-line arabic character recognition: a review,” Pattern

analysis & applications, vol. 5, no. 1, pp. 31–45, 2002.

[58] A. Amin, “Segmentation of Printed Arabic Text,” in Proceedings of the Sec-

ond International Conference on Advances in Pattern Recognition, (London,

UK), pp. 115–126, 2001.

[59] H. Moustapha and R. Krishnamurti, “Arabic calligraphy: A computational

exploration,” Mathematics and Design, pp. 294–306, 2001.

85

http://banglasemantics.net/
www.kuficpedia.com
calligraphyqalam.com/styles/kufic-maghribi.html
calligraphyqalam.com/styles/kufic-maghribi.html

[60] C. Grana, D. Borghesani, and R. Cucchiara, “Picture extraction from digi-

tized historical manuscripts,” in Proceeding of the ACM International Con-

ference on Image and Video Retrieval, (New York, NY, USA), pp. 1–8, 2009.

[61] J. Landre, F. Morain-Nicolier, and S. Ruan, “Ornamental letters image clas-

sification using local dissimilarity maps,” in Proceedings of the 2009 10th

International Conference on Document Analysis and Recognition, (Washing-

ton, DC, USA), pp. 186–190, 2009.

[62] B. Zitova, J. Flusser, and F. Sroubek, “An application of image processing

in the medieval mosaic conservation,” Pattern Anal. Appl., vol. 7, no. 1,

pp. 18–25, 2004.

[63] E. Roman-Rangel, C. Pallan, J.-M. Odobez, and D. Gatica-Perez, “Analyz-

ing ancient maya glyph collections with contextual shape descriptors,” Int.

J. Comput. Vision, vol. 94, pp. 101–117, August 2011.

[64] D. Dunham, “An algorithm to generate repeating hyperbolic patterns,” in

Proceedings of ISAMA 2007, pp. 111–118, 2007.

[65] C. S. Kaplan, “Computer generated islamic star patterns,” in Proc. Bridges

2000: Mathematical Connections in Art, Music and Science, p. 4, 2000.

[66] C. S. Kaplan, Computer graphics and geometric ornamental design. PhD

thesis, 2002.

[67] F. Albert, J. M. Gomis, and M. Valor, “Analysis and reconstruction of the

tiling of Alcazar in Seville using computer vision tools,” in Proceedings of

the 3rd International conference on Computer graphics and interactive tech-

niques in Australasia and South East Asia, (New York, NY, USA), pp. 127–

130, 2005.

[68] A. M. Aljamali and E. Banissi, “Grid method classification of Islamic geo-

metric patterns,” Geometric modeling: techniques, applications, systems and

tools, pp. 234–254, 2004.

86

[69] M. Djibril and R. Thami, “Islamic geometrical patterns indexing and classi-

fication using discrete symmetry groups,” Computing and Cultural Heritage,

2008.

[70] V. Ostromoukhov, “Mathematical tools for computer-generated ornamental

patterns,” in In Electronic Publishing, Artistic Imaging and Digital Typog-

raphy. In Lecture Notes in Computer Science, pp. 193–223, Springer-Verlag,

1998.

[71] M. Valor, F. Albert, J. M. Gomis, and M. Contero, “Textile and tile pattern

design automatic cataloguing using detection of the plane symmetry group,”

Computer Graphics International Conference, vol. 0, p. 112, 2003.

[72] S. A. H. Minoofam and A. Bastanfard, “A novel algorithm for generat-

ing Mohammad pattern based on cellular automata,” in Proceedings of the

13th WSEAS International conference on Applied mathematics, pp. 339–344,

2008.

[73] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary

images by border following,” vol. 30, pp. 32–46, April 1985.

[74] “Intel opencv library.” http://opencvlibrary.sourceforge.net/, August 2008.

[75] S. Fortin, “The graph isomorphism problem,” tech. rep., MIT, 1996.

[76] D. Eppstein, “Subgraph isomorphism in planar graphs and related prob-

lems,” in Proceedings of the sixth annual ACM-SIAM symposium on Dis-

crete algorithms, SODA ’95, (Philadelphia, PA, USA), pp. 632–640, Society

for Industrial and Applied Mathematics, 1995.

[77] D. Arifoglu, E. Sahin, H.Adiguzel, P. Duygulu, and M. Kalpakli, “Matching

islamic patterns in kufic images,” Pattern Analysis and Applications, under

review.

[78] T. M. Rath and R. Manmatha, “Features for word spotting in historical

manuscripts,” in Proceedings of the 7th International Conference on Docu-

ment Analysis and Recognition, pp. 218–223, 2003.

87

[79] D. Douglas and T. Peucker, “Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature,” The Canadian

Cartographer 10(2), pp. 112–122, 1973.

[80] E. Can and P. Duygulu, “A line-based representation for matching words in

historical manuscripts,” Pattern Recognition Letters, vol. 32, pp. 1126–1138,

June 2011.

[81] P. K. Agarwal and K. R. Varadarajan, “Efficient algorithms for approxi-

mating polygonal chains,” Discrete and Computational Geometry, vol. 23,

pp. 273–291, 2000.

[82] P. S. Heckbert and M. Garland, “Survey of polygonal surface simplifica-

tion algorithms,” tech. rep., School of Computer Science, Carnegie Mellon

University, Pittsburgh, USA, 1997.

[83] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent contour

segments for object detection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence., vol. 30, no. 1, pp. 36–51, 2008.

[84] G. Lu, “Chain code-based shape representation and similarity measure,” in

Visual Information Systems, (London, UK), pp. 135–150, Springer-Verlag,

1997.

[85] H. Freeman, “Computer processing of line-drawing images,” Computing Sur-

veys, pp. 6(1):57–97, March 1974.

[86] S. B. Needleman and C. D. Wunsch, “A general method applicable to the

search for similarities in the amino acid sequence of two proteins.,” Journal

of molecular biology, vol. 48, pp. 443–453, March 1970.

88

Appendix A

Layout Segmentation Results

89

90

91

92

93

94

95

96

97

98

99

100

101

	Introduction
	Segmentation of Ottoman Documents
	Motivation
	Related Work
	Methodology
	Pre-processing
	Layout Segmentation
	Line Segmentation
	Projection Profile
	A Hybrid Approach
	Gabor Filtering with Region Intersection
	Gabor Filtering with Line Fitting

	Word Segmentation

	Segmentation Experiments
	Dataset Descriptions
	Ottoman Dataset with Multi-Oriented Lines
	Ottoman Dataset with Similarly Oriented Lines
	ICDAR Dataset

	Evaluation Strategies
	Experiments and Discussion
	Ottoman Document Segmentation Experiments
	Layout Segmentation Experiments
	Line Segmentation Experiments

	Script-Independent Document Segmentation Experiments
	Line Segmentation Experiments
	Word Segmentation Experiments

	Matching Islamic Patterns in Kufic Images
	Motivation
	Challenges in Kufic patterns
	Related work
	Our approach
	Extraction of foreground pixels
	Extraction and labeling of sub-patterns
	Sub-pattern matching

	Kufic Pattern Matching Experiments
	Dataset Description
	Other Approaches
	Profile based features with DTW matching
	Sequence matching based on contour representation

	Experiments
	Query retrieval
	Image indexing
	Repeating pattern detection

	Discussion

	Conclusion
	Layout Segmentation Results

