
SOURCE-TO-SOURCE TRANSFORMATION
BASED METHODOLOGY FOR

GRAPH-PARALLEL FPGA ACCELERATORS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Cemil Kaan Akyol

August 2019

ABSTRACT

SOURCE-TO-SOURCE TRANSFORMATION BASED
METHODOLOGY FOR GRAPH-PARALLEL FPGA

ACCELERATORS

Cemil Kaan Akyol
M.S. in Computer Engineering

Advisor: Özcan Öztürk
August 2019

Graph applications are becoming more and more important with their widespread
usage and the amounts of data they deal with. Biological and social web graphs
are well-known examples which show the importance of efficient processing of
the graph analytic applications and problems. Addressing those problems in an
efficient manner is not a straightforward task. Distributing and parallelizing the
computation, and integrating hardware accelerators are the main approaches that
were tried during the last decade. However, these approaches mainly focus on
specific legacy algorithms and may not completely solve the problems. Therefore,
when there is an emerging need for a non-legacy algorithm targeting a specific
problem, the developer has to cope with the adversaries of the distribution, paral-
lelization techniques, and hardware specifications to parallelize and accelerate the
application. Our proposed source-to-source based methodology gives the freedom
of not knowing the low-level details of parallelization and distribution by trans-
lating any vertex-centric C++ graph application into pipelined SystemC model.
In order to support different types of graph applications, we have implemented
several features like non-standard application support, active set functionality,
multi-pipeline support, etc. The generated SystemC model can be synthesized
by High-Level Synthesis (HLS) tools to obtain the FPGA programming image,
i.e., the bitstream. Our accelerator development flow can generate two different
execution models, high-throughput (HT) and work-efficient (WE). Compared to
OpenCL counterparts of the algorithms, HT and WE models perform slightly
better in terms of execution time and throughput. WE model performed ap-
proximately 40% better than OpenCL in terms of work done and execution time.
Therefore, the proposed source-to-source based methodology is able to provide
more efficient hardware designs by only requiring a simple high-level language
description from the user.

iii

iv

Keywords: Source-to-Source Transformation, Hardware Accelerators, FPGA, Ac-
tive Set, Asynchronous Execution.

ÖZET

KAYNAKTAN KAYNAĞA DÖNÜŞÜME DAYALI
PARALEL ÇİZGE FPGA HIZLANDIRICILARI

YÖNTEMİ

Cemil Kaan Akyol
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özcan Öztürk
August 2019

Çizge uygulamaları, yaygın kullanım alanları ve ele aldıkları veri miktarları ile
gittikçe daha fazla önem kazanmaktadır. Biyolojik ve sosyal web çizgeleri, çizge
analitik uygulamalarının ve problemlerinin verimli işlenmesinin önemini gösteren
bilinen örneklerdir. Bu sorunların verimli bir şekilde ele alınması kolay bir iş
değildir. Hesaplamanın dağıtılması ve paralel hale getirilmesi ve donanım hız-
landırıcılarının eklenmesi, son on yılda denenen ana yaklaşımlardır. Bununla bir-
likte, bu yaklaşımlar temel olarak belirli eski algoritmalara odaklanır ve sorun-
ları tamamen çözemeyebilir. Bu nedenle, belirli bir sorunu hedefleyen yeni bir
algoritmaya ihtiyaç duyulduğunda, geliştirici, uygulamayı paralelleştirmek ve hı-
zlandırmak için dağıtım, paralelleştirme tekniklerinin ve donanım özelliklerinin
üstesinden gelmek zorundadır. Önerilen kaynaktan kaynağa temelli metodolo-
jimiz, düğüm merkezli herhangi bir C++ çizge uygulamasını boruhattı bazlı
SystemC modeline çevirerek paralellik ve dağıtımın düşük seviyeli ayrıntılarını
bilmeme özgürlüğünü verir. Farklı çizge uygulama türlerini desteklemek için
standart dışı uygulama desteği, etkin set fonksiyonu, çoklu boru hattı desteği
gibi çeşitli özellikleri uyguladık. Üretilen SystemC modeli, Üst Düzey Sentez
(HLS) araçları ile sentezlenebilir; FPGA programlama görüntüsü, yani bitstream
oluşturabilir. Hızlandırıcı geliştirme akışımız, yüksek verimli (HT) ve iş verimli
(WE) olmak üzere iki farklı uygulama modeli üretebilir. Algoritmalar OpenCL
benzerleri ile karşılaştırıldığında, HT ve WE modellerinin yürütme süresi ve ver-
imi bakımından biraz daha iyi performans gösterdiği görülmektedir. WE modeli,
yapılan iş ve uygulama süresi açısından OpenCL’den yaklaşık % 40 daha iyi per-
formans göstermiştir. Bu nedenle, önerilen kaynaktan kaynağa temelli metodoloji,
kullanıcıdan sadece basit bir üst düzey dil tanımı gerektirerek daha verimli do-
nanım tasarımları sağlayabilmektedir.

v

vi

Anahtar sözcükler : Kaynaktan Kaynağa Dönüşüm, Hızlandırıcı Donanımlar,
FPGA, Etkin Set, Eş Zamanlı Olmayan İşleme.

Acknowledgement

This thesis is the ultimate step of 3 intense years and innumerable sleepless nights
in obtaining my M.S. degree. By finishing this journey, I would like to thank all
the people who does not refrain their support and faith in me during my studies.

First and foremost, I would like to express my deepest appreciation to my
supervisor Prof. Dr. Özcan Öztürk for his constant support, kindness, and
encouragement during my entire graduate study process and providing me the
opportunity to work with him. I consider myself much lucky to have a supervisor
like him.

I would like to express my sincere thankfulness to Assoc. Prof. Dr. M. Mustafa
Özdal for guiding me to solve the problems and helping me find a way out of many
dead ends. Without his support and guidance, I would not complete this thesis.

The completion of my thesis would not have been possible without the support
and nurturing of my parents, Mehmet and Hatice, and my lovely sister İrem. I am
very grateful to my father who always stands beside me. Being a father like him
seems impossible to me, but I will do my best as I am learning from him. I am
also very grateful to my mother for her unending love and patience. I am blessed
to have been born to a great mother. Together, they always tried to present
me and my sister better life and to raise us as good individuals by overcoming
many difficulties and working hard. I am forever indebted to them for being an
incredible family.

I must express my gratitude to my beloved, Sevde. She was always by my
side, cheered me up and comforted me, helped me grow emotionally, supported
me when I feel anxious, distressed. I am lucky to have a companion like her.

I am also grateful to Ebru Ateş, for her endless kindness and help during my
8-year Bilkent life. Her door is always open to me whenever I need help.

Finally, I would like to thank my friends, Göktuğ Mert, Sevil Yaşar, Murateren

vii

viii

İlgar, Caner Mercan, Sinem Sav for their friendship, collaboration, and support.
They made me have a lot of fun.

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 4

2 Related Work 6

3 Background 10

3.1 Vertex-Centric Graph Processing 10

3.2 Gather-Apply-Scatter . 11

3.3 Synchronous vs Asynchronous Execution 11

3.4 Source-to-Source Transformation 12

3.5 Hardware Accelerator Research Program 12

4 Our Approach 13

4.1 High Level View . 13

ix

CONTENTS x

4.2 Programming Model . 16

4.2.1 Clang . 16

4.2.2 Fixed-Point . 22

4.2.3 Global Tables . 23

4.2.4 Component-Based Template 23

4.2.5 Vertex Program . 25

5 Source to Source Transformation 28

6 Accelerator Generation 31

6.1 Asynchronous Execution Support 31

6.2 Non-GAS Application Support . 32

6.3 Active Set Support . 33

6.4 Conditional Pipeline Support . 34

6.5 Non-Neighbor Data Access . 35

6.6 Multiple Pipeline Support . 36

6.7 User-Defined Types . 37

7 Experimental Evaluation 38

7.1 Experimental Setup . 38

7.1.1 Clang . 38

CONTENTS xi

7.1.2 SystemC . 39

7.1.3 CtoS . 39

7.1.4 Intel Accelerator Simulation Environment 40

7.1.5 Intel Quartus Prime . 40

7.1.6 Hardware Specifications 41

7.2 Graph Applications . 41

7.2.1 Breadth First Search (BFS) 41

7.2.2 Pagerank (PR) . 42

7.2.3 Maximal Independent Set (MIS) 42

7.3 Implementation . 42

7.4 Datasets . 43

7.5 Experimental Results . 44

7.5.1 High Throughput Execution 44

7.5.2 Work Efficient Execution 47

8 Conclusion 52

List of Figures

4.1 High level view of our approach from C++ to Bitstream. Color-
coding: light grey — user-code, dark grey — auto-generated mod-
els, white — used tools and libraries. 14

4.2 Basic architecture of a graph application implemented in SystemC. 15

4.3 Abstract Syntax Tree (AST) for a Gather Loop. 17

4.4 Example method for finding referenced Local Vertex Data fields. . 19

4.5 Thread communication graph for Breadth-First Search application. 20

4.6 Collected meta-data from Abstract Syntax Tree (AST). 21

4.7 Basic architecture of a SystemC application with reused modules. 25

4.8 Simple user code given as an input to our accelerator design flow.
Breadth First Search (BFS) algorithm functions are written in C++. 27

5.1 High level view of source-to-source transformation step 29

7.1 Comparison of OpenCL and HT in terms of throughput for BFS. 44

7.2 Comparison of OpenCL and HT in terms of a single iteration run-
time for BFS. 45

xii

LIST OF FIGURES xiii

7.3 Comparison of OpenCL and HT in terms of throughput for PR. . 45

7.4 Comparison of OpenCL and HT in terms of a single iteration run-
time for PR. 46

7.5 Comparison of OpenCL and HT in terms of throughput for MIS. . 46

7.6 Comparison of OpenCL and HT in terms of a single iteration run-
time for MIS. 47

7.7 Comparison of OpenCL, HT and WE in terms of number of pro-
cessed edges for BFS. 48

7.8 Comparison of OpenCL, HT and WE in terms of execution time
for BFS. 49

7.9 Comparison of OpenCL, HT and WE in terms of number of pro-
cessed edges for PR. 49

7.10 Comparison of OpenCL, HT and WE in terms of execution time
for PR. 49

7.11 Comparison of OpenCL, HT, and WE in terms of throughput for
BFS. 50

7.12 Comparison of OpenCL, HT, and WE in terms of throughput for
PR. 50

List of Tables

4.1 Most frequently used Clang data types and functions. 18

xiv

List of Algorithms

1 Non-Gas Application Support . 32

2 Active Set Support . 33

3 Conditional Pipeline Support . 35

4 Non-Neighbor Data Access Support 35

5 Multiple Pipeline Support . 36

6 User-Defined Types Support . 37

xv

Chapter 1

Introduction

The amount of data produced and stored per year grows in multi folds with the
advancements in Internet technologies, smart devices, and cloud services. One
form of storing and managing the data is to use graphs such as social networks
and web graphs. Analyzing these large graphs is done for different domains like
Bioinformatics, Machine Learning, Data Mining (MLDM), where there can be
millions of nodes with billions of connections between.

Many algorithms with different objectives are designed to analyze and process
those graphs. For example, PageRank [1] is a state-of-the-art ranking algorithm
calculating the vertices’ importance. Similarly, Breadth First Search (BFS) is a
graph traversal algorithm, to search vertices. While there are many other impor-
tant graph applications that target different problems, their common property is
that they suffer in terms of memory footprint and serial execution time. However,
the amount of data they need to operate on continuously increases.

Therefore, there is a great need for efficient processing of this rapidly growing
graph data. Improving the efficiency and optimizing the application may provide
huge performance gains, which in turn, will help the researchers and the devel-
opers. Thus, graph data processing started to gain more and more attention.

The most straightforward approach for graph processing is the parallelization

1

CHAPTER 1. INTRODUCTION 2

of applications by splitting the execution into multiple processors or machines.
Parallel computing can drastically reduce the runtime in theory, however, the
main bottleneck is the communication. More specifically, communication between
the processors and the communication required for memory accesses is critical.
If the application is not implemented efficiently, the runtime may not improve at
all.

Moreover, parallel programming is not an easy task considering the synchro-
nization requirements, potential race conditions, irregular memory accesses, and
load balancing problems. Therefore, it requires background knowledge, experi-
ence in implementation with deeper understanding. Especially, doing this at the
hardware level means a great deal of learning process and a huge investment in
resources and time.

There have been many efforts to make it easier to implement a parallel application
while increasing the efficiency. Software efficiency improvement, source-to-source
transformation, automatic parallelization, and hardware acceleration are some of
many techniques used in the literature. This thesis tries to combine these con-
cepts to create a source-to-source transformation based methodology for FPGA
acceleration.

We believe improving the user experience and enhancing the efficiency will have
a great impact in this domain due to wide spread usage and growing need.

1.1 Contributions

Given a simple high level language (C++) description of an application, our accel-
erator design flow generates the final hardware accelerator ready to be embedded
into the FPGA. During this process, the proposed application flow 1) creates an
intermediate representation of a vertex-centric graph application implemented in
C++ by extracting data from Abstract Syntax Tree (AST), 2) generates a Sys-
temC model using intermediate representation with the help of template-based

CHAPTER 1. INTRODUCTION 3

methodology [2], 3) creates RTL design of the generated SystemC model using
High Level Synthesis (HLS) flows, and 4) generates bitstream ready to be used
on FPGA boards.

Compared to other methodologies on graph parallel application acceleration
which will be discussed in detail in Chapter 2, our model widens the application
types and increases the efficiency by integrating source-to-source transformation.
With the help of this integration, the inexperienced users in hardware accelerators
and parallel applications can easily accelerate their applications, without dealing
with the low-level details like synchronization, race conditions, or hardware usage.

This thesis shows the lifetime of a graph application in our flow, from plain C++
code all the way to the FPGA board. Therefore, different support mechanisms
and improvements in application development flow constitutes our main contri-
butions which can be briefly described as follows:

• Ease of use: The development process of hardware accelerators demands
huge investment both in time and resources. Moreover, the core need is
deep knowledge of parallel execution and being able to deal with hard-
ware specifications and descriptions. These requirements are not usually
available for average developer who wants to speed up their long-lasting
graph-applications. On the other hand, without one of the above require-
ments, it is not straightforward to design and develop an accelerator. Even
if the accelerator is developed, it will most likely be an inefficient one.

Therefore, a key contribution provided by the source-to-source transforma-
tion based accelerator design flow is enabling the developer without dealing
with the low-level details, thereby saving time and manpower.

• Asynchronous execution support: For graph accelerators, asynchronous ex-
ecution is one of the major advancements in terms of efficiency. In syn-
chronous execution, there are strict barriers between the iterations, to avoid
the data dependency problems and provide synchronization. However, elim-
inating barriers improves the performance. Hence, with the help of local

CHAPTER 1. INTRODUCTION 4

data structures to circumvent data dependency problems and handle syn-
chronization, we support asynchronous execution in our model.

• Active set: In many of the graph applications, a set of vertices do not
require to be processed during the lifetime of the application, that is, they
may converge earlier than the others, or the termination condition may
be met, etc. This vertex set can be discarded from the next iteration,
thereby reducing the amount of work to do. This, in turn, will result with
a reduction in both time complexity and power consumption. However,
for some applications, it is necessary to process all the vertices until they
all converge. For such applications, our implementation will be as good as
other designs.

In order to meet these different execution requirements, we implemented
two different models, namely, work-efficient and high-throughput. The
work-efficient model operates only on the active vertices, whereas the high-
throughput version executes for all the vertices.

• Extended features: There are wide variety of graph applications, which may
require the developer to implement different features beyond the generic
gather, apply, scatter (GAS) functions. To support different graph algo-
rithms, our accelerator design flow includes various features such as condi-
tional iteration over the neighbor edges, supporting non-GAS applications,
enabling non-neighbor data access, multiple vertex program support, and
providing user-defined types. With these additional features almost all of
the vertex-centric graph parallel applications can be modelled by our accel-
erator design flow.

1.2 Outline

The remainder of this thesis is structured as follows. Next chapter gives a detailed
discussion of the related work on automatic parallelization, improving efficiency

CHAPTER 1. INTRODUCTION 5

of software applications, source-to-source transformation, and hardware accelera-
tors. Background information on vertex centric graph processing, Gather-Apply-
Scatter (GAS) programming abstraction model, synchronous vs asynchronous
execution, source-to-source transformation, and The Hardware Accelerator Re-
search Program (HARP) is given in Chapter 3. Chapter 4 presents our approach
in two main parts: the high-level view of our application flow and the program-
ming model. Source to source transformation details are given in Chapter 5. Our
accelerator details with supported features are discussed in Chapter 6. Chapter 7
presents the experimental setup, architectural settings, platforms used, graph ap-
plications tested for evaluations, and the results from our experiments. Chapter 8
concludes the thesis with a summary of our major observations.

Chapter 2

Related Work

There are many research directions to improve performance and efficiency of
computing systems including automatic parallelization of applications, source-to-
source transformations, distributed computing, and hardware accelerators. We
introduce these approaches and will discuss different techniques in these domains
that are relevant for our approach on the field.

From automatic parallelization perspective, there are various studies exploring
different directions. For example, Polaris compiler [3] is an automatic tool to par-
allelize and optimize the loops in sequential Fortran programs. Similarly, SUIF [4]
is a multi-language compiler that involves a set of development tools and supports
automatic loop level parallelism and optimization. Liao et al. [5] automatically
parallelize C++ applications using a multiple-language source-to-source compiler
that preserves high-level abstractions. There are also commercial compilers like
Intel C++/Fortran compiler [6], which is focused on vectorizing the loops by us-
ing SIMD (Single-Instruction-Multiple-Data) parallelism with OpenMP pragmas.
Our work is not targeting loop level parallelism, but rather trying to parallelize
the whole application by creating a pipeline structure while maintaining synchro-
nization between the modules.

Our contribution is not limited to the source-to-source transformation, but it is

6

CHAPTER 2. RELATED WORK 7

the first and foremost stage of our work. In previous studies, source-to-source
transformation is used for different goals. For example, Togpu [7] and GPSME
[8] are source-to-source transformation tools that converts C++ program into
CUDA program. The Vienna Fortran Compiler [9] is also a source-to-source
transformation and parallelization system that translates Fortran95 programs to
Fortran90 programs. This tool is similar to our work in terms of translation.
It consists of several modules, the first one being data collection using Abstract
Syntax Tree (AST) and the next one to generate the target-language code using
collected data. However, this work does not target hardware acceleration, it is
purely a software-level parallelization and optimization tool.

There are several studies on manipulating and using program AST and analyzing
the application beyond the source-to-source transformation, like easing paral-
lelization phase, generating some helper visuals, etc. Duffy et al. [10] develop a
tool using Clang Parser [11] to compute some metrics of code complexity. Schmidt
et al. [12] generate thread communication graphs from SystemC source code to
help the developers and system designers in understanding the libraries, legacy
codes. Pina VM [13] is a SystemC front-end that retrieves structural informa-
tion of the application. Chen et al. [14] implemented a tool to detect possible
race conditions and synchronization failures which arise from shared variable us-
age during parallel execution. Systemc-clang [15] is a static analyzer that can
identify communication structure in a SystemC model. Togpu [7] uses AST to
identify code sections of interest during automatic parallelization. Compass [16]
uses AST to detect software bugs with a recursive tree visitor function. In our
work, we created a tool similar to these which extract the meta-data and sections
of interest about the user’s C++ code and analyze it. Moreover, shared vari-
able usage, communication scheme across threads, read-write ports to memory
subsystem are extracted from input code using AST.

There are also lots of efforts for optimizing and accelerating graph applications.
Widely used technique is to distribute a large-scale graph across multiple ma-
chines and processors. Well-known multi-purpose distributed software frame-
works can be found in the literature like Pregel [17], GraphLab [18], and MapRe-
duce [19]. There are many extensions to these frameworks, however, their main

CHAPTER 2. RELATED WORK 8

goal is to provide an easy to use interface and to improve iterative application
performance.

In addition to software techniques, there are also hardware based approaches to
process big data problems. There are several hardware resources used for this
purpose including Graphics Processing Units (GPUs), Application Specific Inte-
grated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs). These
are used to accelerate a wide set of applications, such as deep learning-neural net-
works [20][21][22], bioinformatics [23][24][25], graph applications [2][26][27], and
cryptography [28].

To accelerate a given application on GPU, there are two different approaches.
The first approach is to use source-to-source transformation to generate CUDA
code. Like in Togpu [7], using only plain C++ code with some limitations,
one can generate CUDA code and accelerate the design on GPUs. The other
approach is directly writing CUDA application such as Manavski et al. [28] and
Nurvitadhi et al. [21]. The drawback of this approach is that the developer has
to be experienced in implementing parallel applications, since there are low-level
details like race conditions and data dependencies. Without deeper knowledge of
these concepts, the application will likely be inefficient.

ASIC is an integrated circuit produced for a particular use, with a single func-
tionality. Once it is designed and manufactured, it cannot be changed. Therefore,
it is not considered as a general-purpose hardware. For example, Samba [23] uses
ASIC as hardware accelerator alongside an FPGA. Similarly, Nurvitadhi et al.
[21] creates an ASIC accelerator for benchmarking purposes.

FPGAs are general-purpose chips that execute some set of algorithms to accel-
erate the applications. On the contrary to ASIC chips, no special design and
production process is needed and can be reconfigured easily. Therefore, FP-
GAs attract the community’s attention more than ASICs. There are lots of
research efforts on FPGA accelerators, since the other accelerators do not fulfill
the requirements of the community. For our specific graph-parallel application
acceleration domain, McGettrick et al. [26] develop an FPGA accelerator for

CHAPTER 2. RELATED WORK 9

Pagerank eigenvector problem. Cygraph [27], Betkaoui et al. [29], Umuroglu
et al. [30], Wang et al. [31] have implemented several variations of breadth-
first-search algorithms on FPGA. Jagadeesh et al. [32] have also created FPGA
accelerator for the single-source-shortest-path algorithm. There are also more
generic application frameworks, which can support multiple applications [33][34].
Even some of these frameworks can execute multiple algorithms, they cannot
implement non-legacy applications. For example, these works cannot handle ir-
regular graph applications in which there are lots of irregular memory accesses
and asynchronous execution.

Application development process on GPU is much easier than FPGA and ASIC.
Moreover, GPUs are more accessible, thereby having more impact and wider
usage in the community. On the other hand, FPGAs and ASICs with their limited
resources and bandwidths, can perform similar to GPUs while using lower energy.

It is shown that FPGA and ASIC implementations perform similarly [21]. In
this evaluation, they used different metrics for comparison, which shows that
ASIC implementations have slightly better results. However, ASIC chips are
customized for a particular use, so without long term execution and investment,
it is not viable to use them for accelerating generic applications.

Similar to our work, Ayupov et al. [2] addresses irregular graph application prop-
erties by creating a template-based design which supports active-vertex-set and
asynchronous execution. More specifically, user can customize the application by
providing user functions as an input to the design. However, there are still some
missing features that cannot be handled in this kind of template based design.
First, the user does not have the flexibility to create a wide range of applications,
because, the design specifically focuses on Gather-Apply-Scatter (GAS) applica-
tions. Moreover, user needs to change the data structures in the SystemC appli-
cation to be able to implement an efficient solution. In this work, we extend the
template based design by providing source-to-source transformation, thereby, al-
lowing the user to write plain C++ code. With this improvement, template-based
design for both GAS and non-GAS applications will automatically be generated.

Chapter 3

Background

3.1 Vertex-Centric Graph Processing

Traditional implementations of the graph algorithms consist of iteration over the
vertices and edges, using data structures to hold the data about those containers,
such as Dijkstra’s algorithm [35] in which priority queue is used. In such algo-
rithms, there is a broader goal while accessing all the data structures, edges, and
vertices.

However, in vertex-centric graph processing, the applications are implemented
using a single vertex point of view, that is why those type of applications have a
Vertex Program. Since the execution of that program takes place for each vertex,
it can be expressed as "Think-Like-A-Vertex" [17]. Vertex Program can read the
neighbor data, send or receive data using channels, update and change the local
data. In our accelerator flow, the application that is provided by the user should
be implemented in vertex-centric execution model.

10

CHAPTER 3. BACKGROUND 11

3.2 Gather-Apply-Scatter

Gather-Apply-Scatter (GAS) is a programming abstraction model presented by
PowerGraph [36], where graph problems are modelled in a "Think-Like-A-Vertex"
[17] manner. In such a scenario, computation for a graph is distributed on a
cluster to address the bottlenecks caused by high degree vertices. This is primarily
achieved by parallelizing the application over the edges. The GAS model consists
of three separate phases, where Gather phase collects the information over the
neighbor vertices. Using the edges, neighbor data is collected and accumulated to
construct the vertex data to be used by the processed vertex. Then, in the Apply
phase, the value in the vertex is updated using the accumulated data in the Gather
phase. Scatter is the last phase which informs the neighbor vertices and activates
them by using the value of the vertex that is currently being processed. There are
also variations of the GAS model, such as having an additional phase Add which
is about gathering the neighbor data and collecting into a data segment using
a function. Furthermore, for some applications Scatter phase is not mandatory
[37]. Note that, applications modelled with GAS abstraction needs the user to
specify those methods explicitly [2][37].

3.3 Synchronous vs Asynchronous Execution

Synchronous execution uses well-defined iterations with barriers in between. In
graph applications, synchronous execution allows neighbor data calculated at
iteration t-1 to be used at iteration t. On the contrary, in asynchronous execution,
well-defined iterations are eliminated, allowing the most recent data to be accessed
anytime. As explained in the literature, there are many problems which could
be solved either synchronously or asynchronously. Linear systems [38], belief
propagation [39], expectation maximization[40], Pagerank [41] [18], and stochastic
optimization [42][43] are some examples where synchronous execution converges
much slower than the asynchronous execution. More importantly, asynchronous
execution reduces the total work done. For example, for PageRank algorithm [44]

CHAPTER 3. BACKGROUND 12

this reduction is about %30.

3.4 Source-to-Source Transformation

A compiler that is capable of generating equivalent target programming-language
implementation using source code is called source-to-source compiler. Target pro-
gramming language may be the same as source code language or a completely dif-
ferent language. Unlike traditional compilers, the source-to-source compiler does
not translate higher-level application to the lower-level, e.g. Java to bytecode.
It translates the source languages into target languages that use the same level
of abstraction. For example, converting C++ applications into CUDA program
is source-to-source transformation. In our accelerator flow, C++ application is
translated into equivalent SystemC application.

3.5 Hardware Accelerator Research Program

The Hardware Accelerator Research Program (HARP) funded by Intel provides
faculty members and researchers different programming tools, operating systems
with Xeon Processors and FPGA systems, globally. The ultimate aim of this
program is speeding up the researches on accelerator-based computing systems.
This program also provides tutorials, technical support, etc. [45]. Our template-
based FPGA accelerators are generated with the provided synthesis tools and
executed on these computer clusters with the FPGA systems.

Chapter 4

Our Approach

4.1 High Level View

The proposed design flow is shown in Figure 4.1. As can be seen, different parts of
the design flow is separated by color codes. Specifically, light grey color represents
the user code, white color represents the tools, libraries, and implementations,
whereas, the dark grey color corresponds to automatically generated models in
the flow.

Our approach starts with the user code, on which we perform a series of operations
to translate it into the bitstream. User can write any type of graph application
with a wide set of features. As will be explained later, user can iterate over the
neighboring vertices a different number of times (Sec. 6.2), activate all neighbors
or some (Sec. 6.3), put conditionals (Sec. 6.4), access the data of any vertex
(Sec. 6.5) or write multiple applications and use them (Sec. 6.6).

Front-end parser and code generation tool are the tools that we implemented
where source-to-source transformation takes place. The parser is implemented to
search for VertexInfo requests, incoming or outgoing EdgeInfo requests, neigh-
bor VertexInfo requests, neighbor and self VertexData requests, LocalVertexData

13

CHAPTER 4. OUR APPROACH 14

Figure 4.1: High level view of our approach from C++ to Bitstream. Color-
coding: light grey — user-code, dark grey — auto-generated models, white —
used tools and libraries.

updates, conditional flows, variables used across the application, data types and
user-defined types, VertexData fields which can be shared among neighbor ver-
tices or private, etc. After collecting meta-data about the application, the ap-
plication is divided into smaller segments called threads. Using the data flow
across those threads, FIFOs are created. With the data flow and VertexData
fields, global tables are generated. Therefore, using those FIFOs, threads, and
meta-data, SystemC files are generated with small additions like taking input
from and sending to output FIFOs, reading from global tables, etc.

SystemC is the result of the source-to-source transformation. It is a widely used
hardware description language which uses a set of C++ classes and provides
modeling and simulation interface. The generated hardware description consists
of modules, namely, threads, inter-module FIFOs. In Figure 4.2 (see Section 4.2.4
for further details), the basic architecture of a simple graph application is given.
These modules do not only contain the code snippets from the user code, but
also contain some helper template structures [2] that handle the communication
between the accelerator unit and the memory interface which contains read and
write requests and responses, etc.

Generating SystemC code from C++ user code using the front-end parser and

CHAPTER 4. OUR APPROACH 15

Figure 4.2: Basic architecture of a graph application implemented in SystemC.

code generation tool is the main contributions of this thesis. The rest of the ac-
celerator flow involves generating intermediary-steps, validation, and verification.

SystemC simulation and functional validation steps are about comparing and
checking the results, whether generated parallel SystemC model and the serial
version implemented in C++ are matching.

Once the SystemC model is simulated and validated, RTL is generated using an
HLS tool. During this flow, timing characterizations are extracted like latency
and throughput. Using these values, the system-level performance model is auto-
matically produced for the accelerator. Produced model is then used for design
space exploration [2]. The synthesis of SystemC models to generate RTL is han-
dled by a standard HLS flow after the automatic template parameter tuning using
system-level performance model and the design space exploration.

High-Level-Synthesis tools [46][47] generally accept synthesizable subsets of
C/C++ and MATLAB, and perform source-to-source compilation to generate
an RTL design. It is a design abstraction to model the digital circuits in which
signals (data) flow across hardware registers and arithmetic operations are per-
formed on those signals (data). Once the RTL design is generated, it can be used
as a higher-level abstraction of the circuit or lower-level representations, in which
one can see actual components of the circuit and wiring can be derived.

The aim of accelerator functional unit simulation is to verify that RTL is gener-
ated without errors and designed correctly. RTL communicates with the hardware

CHAPTER 4. OUR APPROACH 16

interface of the simulation environment which pretends to be the FPGA. On the
other hand, the host code communicates with the software interface. When sim-
ulation finishes, verification of the system is handled by comparing the results of
RTL design and the host software. If there are no mismatches, it can be said
that RTL generation is successful and most likely the bitstream generation will
be successful as well since the simulation environment mimics FPGA using the
RTL.

FPGA Design Software is a logic synthesis tool [48] and synthesizes RTL designs.
The design that is generated by HLS tool and tested by accelerator functional
unit simulation is loaded to FPGA design software. After running a series of
algorithms on that, a device programming image is produced which can be loaded
and run on FPGA.

Once synthesis is completed and meets timing and resource constraints, the com-
piled programming image can be executed on FPGA. With bitstream, the host
code is also executed and once again, the results of bitstream execution and host
code execution are compared. If there are no mismatches, then it can be con-
cluded that, the bitstream is generated correctly. The ultimate aim of the whole
application flow is to generate the bitstream and verify that it runs correctly when
compared with the serial version of the application which is the user’s source code
in C++.

4.2 Programming Model

4.2.1 Clang

We have implemented a Clang [11] plugin to collect and extract the meta-data
about the C++ application provided by the user. Clang is a C/C++ compiler
that provides many useful source level tools and open-source LLVM front-end [49].
It is widely preferred in industry for fast compilation, better error reporting, and
expressive diagnostics. Moreover, there are many additional tools such as Clang

CHAPTER 4. OUR APPROACH 17

1
2 ForStmt 0x37982d0
3 |−DeclStmt 0 x3797f00
4 | ‘−VarDecl 0x3797d68 used e I t r ’ c l a s s EdgeIterator ’ c i n i t
5 | ‘−ExprWithCleanups 0x3797ee8 ’ c l a s s EdgeIterator ’
6 | ‘−CXXConstructExpr 0x3797eb0 ’ c l a s s EdgeIterator ’ ’ void (const c l a s s EdgeI te rator &)

throw () ’ e l i d a b l e
7 | ‘−Material izeTemporaryExpr 0x3797e98 ’ const c l a s s EdgeIterator ’ l v a l u e
8 | ‘− Impl ic i tCastExpr 0x3797e80 ’ const c l a s s EdgeIterator ’ <NoOp>
9 | ‘−CXXMemberCallExpr 0x3797e50 ’ c l a s s EdgeIterator ’

10 | |−MemberExpr 0x3797df0 ’<bound member func t i on type >’ . beg inEdge I te ra to r 0
x37965a0

11 | | ‘−DeclRefExpr 0x3797dc8 ’ c l a s s VertexHandle ’ l v a l u e ParmVar 0x37979c8 ’ vtx ’ ’
c l a s s VertexHandle &’

12 | ‘−DeclRefExpr 0x3797e28 ’EdgeType ’ EnumConstant 0x3795e60 ’IN_EDGE’ ’EdgeType ’
13 |−<<<NULL>>>
14 |−UnaryOperator 0 x3797fb8 ’_Bool ’ p r e f i x ’ ! ’
15 | ‘−CXXMemberCallExpr 0 x3797f78 ’_Bool ’
16 | ‘−MemberExpr 0 x3797f40 ’<bound member func t i on type >’ . isEnd 0x3795030
17 | ‘− Impl ic i tCastExpr 0 x3797fa0 ’ const c l a s s EdgeIterator ’ l v a l u e <NoOp>
18 | ‘−DeclRefExpr 0 x3797f18 ’ c l a s s EdgeIterator ’ l v a l u e Var 0x3797d68 ’ e I t r ’ ’ c l a s s

EdgeIterator ’
19 |−CXXOperatorCallExpr 0x3798070 ’ c l a s s EdgeIterator ’ l v a l u e
20 | |− Impl ic i tCastExpr 0x3798058 ’ c l a s s EdgeI te rator &(∗) (void) ’ <FunctionToPointerDecay>
21 | | ‘−DeclRefExpr 0x3798000 ’ c l a s s EdgeI te rator &(void) ’ l v a l u e CXXMethod 0x3795150 ’ operator

++’ ’ c l a s s EdgeI te rator &(void) ’
22 | ‘−DeclRefExpr 0x3797fd8 ’ c l a s s EdgeIterator ’ l v a l u e Var 0x3797d68 ’ e I t r ’ ’ c l a s s

EdgeIterator ’
23 ‘−CompoundStmt 0x37982b0
24 ‘−DeclStmt 0x37981a8
25 ‘−VarDecl 0x37980c0 used nvd ’ s t r u c t VertexData &’ c i n i t
26 ‘−CXXMemberCallExpr 0x3798180 ’ s t r u c t VertexData ’ l v a l u e
27 ‘−MemberExpr 0x3798148 ’<bound member func t i on type >’ . getNeighVertexData 0x3794e90
28 ‘−DeclRefExpr 0x3798120 ’ c l a s s EdgeIterator ’ l v a l u e Var 0x3797d68 ’ e I t r ’ ’ c l a s s

EdgeIterator ’

Figure 4.3: Abstract Syntax Tree (AST) for a Gather Loop.

Static Analyzer which finds bugs automatically [11]. For our specific needs, Clang
provides much more flexible and understandable Abstract Syntax Tree (AST)
compared to other alternatives such as GCC [50].

Our main purpose in using Clang is to extract necessary data about the user
code in order to translate it into SystemC. Therefore, AST is a very important
feature since it holds the code structure with many details in it. For example,
one can manually create completely different language version of any C-Language
program using AST. Figure 4.3 shows the printable version of an AST subtree,
which constructs the Gather loop in a graph application.

To extract the meta-data, we traverse each node in AST. Clang provides a vis-
itor, named as RecursiveASTVisitor. It does pre-order or post-order depth-first
traversal on an entire AST and visits each node. It also provides specialized
traversal on some types of nodes such as Stmt and Decl. Table 4.1 lists the most
frequently used data-types and functions in our implementation.

Therefore, using the meta-data, one can understand the AST structure and search

CHAPTER 4. OUR APPROACH 18

Types and Fuctions Description

Decl
Any C++ declaration. e.g.,
VarDecl -> int accum;
FunctionDecl -> void VertexProgram(vtx)

Stmt

Any C++ statement. e.g.,
IfStmt ->if (accum < vd.dist)
ForStmt -> GA_FOREACH_EDGE(vtx,eItr,IN_EDGE)
CompoundStmt -> {ovid++; vtx.getOtherVertexData(ovid);}

Expr
Sub-class of Stmt. e.g.,
MemberExpr -> vd.dist
CallExpr -> vtx.getVertexData(), etc.

TraverseDecl(...) Traverse all the declarations in the AST.
e.g, to find the LVD fields and accumulation variables

TraverseStmt(...) Traverse all the statements in the AST.
e.g, the LVD field usage (read-only or read-write)

Table 4.1: Most frequently used Clang data types and functions.

the tree to extract data. For example, Figure 4.3 shows that, the root of this
subtree is a ForStmt (Line 2) with a VarDecl and a type of EdgeIterator (Line
4). The declared variable is initialized to vtx.beginEdgeIterator() (Line 8). Rest
of the subtree shows the limit of the iteration (Line 14), increment (Line 19),
and the CompoundStmt (Line 23) executing the given Stmt for every iteration of
ForStmt. This AST shows the structural information of gather loop of the BFS
algorithm. This traversal only extracts the structural information which is not
sufficient for our goals.

Figure 4.4 shows a Clang plugin implemented to find the referenced LocalVertex-
Data fields and its usage (read-only or read-write). Moreover, if one of these fields
is referenced inside a gather loop, where a vertex uses its neighbors’ data, the
field is also shared. That information will be used while creating the local tables
and the data structure of VertexDataShared and VertexDataPrivate. We decided
to divide VertexData in such structures, because, when a neighbor requests the
data, only the required portion will be read from the memory subsystem.

Next step is the creation of the threads and the FIFOs. Since we aim to handle
all types of graph applications, we cannot directly create a complete structure.
Therefore, using gather loops, we divide the user code into smaller pieces. All

CHAPTER 4. OUR APPROACH 19

1

2 void recordUsageOfVertexDataFieldsUpstream (
3 MemberExpr ∗&foundExpr ,
4 SimpleVar iab le &sv
5) {
6 foundExpr = NULL;
7 f o r (i n t s i = nodeStack . s i z e () − 1 ; s i >= 0 ; −−s i){
8 i f (Stmt ∗ stmt = nodeStack [s i] . getStmt ()) {
9

10 IF_DYN_TYPE(stmt , MemberExpr , mexpr) {
11 i f (Dec lAccessPair dap = mexpr−>getFoundDecl ()) {
12 const CXXRecordDecl ∗ rd =
13 mexpr−>getBase()−>getBestDynamicClassType () ;
14 i f (rd && rd−>getName () == "VertexData "){
15

16 referencedLVDFieldsNodeIndexes .
17 push_back (simpleNodes . s i z e () − 2) ;
18 referencedLVDFieldsNodeIndexesVertexProgram .
19 push_back (inWhichVertexProgram) ;
20 bool isMutable =
21 searchModifyingOperatorUpstream (s i) ;
22

23 foundExpr = mexpr ;
24 sv = SimpleVar iab le (dap−>getName () ,
25 mexpr−>getType () , i sMutable) ;
26 addFieldToSet (sv , re ferencedLVDFie lds) ;
27 break ;
28 }
29 }
30 }
31 }
32 }
33 }

Figure 4.4: Example method for finding referenced Local Vertex Data fields.

CHAPTER 4. OUR APPROACH 20

Figure 4.5: Thread communication graph for Breadth-First Search application.

CHAPTER 4. OUR APPROACH 21

these pieces can be executed asynchronously when necessary data arrives from the
predecessor thread. In our case, most of the time, rowId is used to find the data
in global tables, which will be discussed further in Sec. 4.2.3. FIFO structures
are created since there needs to be communication among the threads. If there
is no conditional gather loop, the structure is simple for the user code. Every
thread receives data from the previous one and sends data to the next. On the
other hand, if there is a conditional gather loop, then the FIFO structure will
not be sequential. Figure 4.5 shows the threads and the FIFOs with the memory
subsystem interface for a simple application like BFS.

As can be seen in Figure 4.6, all required information is extracted and collected
from the AST. The communication with the memory subsystem, multiple vertex
programs, neighbor activation are all necessary to generate the SystemC code. In
our design, these are written in temporary object files.

After the execution of Clang tool, the next step is to create the SystemC files
and connections between the threads, to insert program code into thread files,
to specify data structures, and to generate arbiters to reuse the modules and
the ports of the memory subsystem. After binding the threads to the memory
subsystem ports, the SystemC model is ready to be tested and used.

Figure 4.6: Collected meta-data from Abstract Syntax Tree (AST).

CHAPTER 4. OUR APPROACH 22

4.2.2 Fixed-Point

Fixed-point representation is a number format, which holds the number in two
separate parts: the digits before and after the decimal point. These parts corre-
spond to the fractional part and integer part of a number. The term "fixed-point"
indicates that there is a fixed number of digits before or after the decimal point.

In the floating point representation, there is no such thing like fixed numbers
of digits before or after the decimal point. The "float" refers to the decimal
point which can be anywhere in the number and the place of the decimal point is
regarded as the exponent, so floating-point representation is similar to scientific
notation.

Therefore, using the same number of digits we can represent a wider range of
numbers with the floating point since the place of the decimal point can make
the number both large and small. However, floating point representation approx-
imates the numbers to their real values because they cannot be exactly expressed
and the gaps between the adjacent numbers vary which results in rounding a num-
ber to the nearest. Therefore, there is a trade-off between range and precision of
the numbers.

Moreover, floating-point operations make the design more complex and the area
required bigger [51] [52]. In general, FPGAs do not have floating point units,
whereas, an efficient implementation of a fixed-point unit exists for some of them.
Moreover, fixed-point is often used in hardware implementations because of its
cost-effectiveness, smaller memory requirement, and narrow bus [52]. Further-
more, for the currently produced FPGAs that support floating-point usage, it is
highly recommended switching to fixed-point for better performance [53][54].

Because of all these reasons, during source-to-source transformation, all the float
typed-variables are translated into fixed-point. By doing this, we ensure that, the
resulting source-to-source implementation and the latter stages of the framework
will be supported by the target hardware without any inefficiencies due to the
data type choices.

CHAPTER 4. OUR APPROACH 23

4.2.3 Global Tables

Since VertexProgram is mapped into a pipeline structure, a vertex follows all the
modules in that structure if there is not any conditional flow. An example pipeline
is shown in Figure 4.2. The application starts with a VertexInfo request, from
the vertex view. This data structure holds the edge information for its neighbors,
augmented data, etc. When memory responds with these data, they are stored in
the global tables, which can be accessed for both reading and writing by all the
modules. Therefore, using neighbor edge information in the VertexInfo, neighbor
VertexData is also requested. Potentially, there are many neighbors for each node
which will only be used once. Therefore, they are not saved on the tables, and
disposed after use. When the accumulation finishes, the vertex data in the tables
are updated by using both accumulation value and the variables used across the
application. These values are also held in global tables since they can be used
in different places. Data stored for a vertex is valid in the tables until there is
an update in which case it requires an invalidation. The basic global tables are
shown in Figure 4.2.

Due to the aforementioned reasons, the required data is kept in a special data
structure throughout the lifetime of a vertex in the pipeline. This way data will
not be requested from the memory every time.

4.2.4 Component-Based Template

In this section of the thesis, we will describe the template-based design methodol-
ogy. As explained in the literature [2], a template-based hardware accelerator can
potentially hide the latency emerging due to irregular communications, random
DRAM accesses, and limited data locality, etc. Moreover, the template can be
utilized for different graph applications, thereby eliminating the long design and
testing processes in RTL [2].

Template-based design [2], requires user to specify necessary methods to build

CHAPTER 4. OUR APPROACH 24

the graph application, namely, gather and apply. The user also specifies the data
structures that are used across the application. Therefore, using these specified
methods, data structures, and the underlying template design, SystemC-based
graph application can be created, with minimal effort. Thus, the user has the
flexibility about applications and freedom of not knowing and facing low-level
details such as message passing, synchronization, and parallelization.

As can be seen from Figure 4.2, Edge Loop Execution (ELExec) and Apply
modules correspond to user created gather and apply methods, respectively. The
other modules are part of the template-design used for creating the SystemC
model.

In this work, we extend the accelerator flow described in [2], by adding a source-
to-source transformation phase to provide more flexibility in types of accelerators
that can be designed and to make it much easier to use the design framework
from a user’s perspective. This way user can write any graph application without
being limited to GAS (see Sec. 4.2.1 for more details) and from that application
the SystemC model can be generated.

As mentioned previously, there are some helper modules in the final pipeline
structure used to support the template such as AllocRow, Prefetch, InitVertex,
etc. These modules are shown in Figure 4.2, where they are not relevant for
the user defined application details, nor the methods used for accelerator design
flow in the previous work [2]. Rather, these modules are automatically generated
modules to communicate with the memory interface and read from or write into
the global tables.

Similar to the previous work [2], these modules are automatically added to
pipeline structure. However, since we support multiple pipeline (see Sec. 6.6
for further details), some modules will be reused, such as WriteData, Scatter,
Edgeloop Setup (ELS). These modules perform common tasks needed by differ-
ent pipelines, such as requesting the neighbor data from memory, etc.

Since these modules are part of the template design and same for each application,

CHAPTER 4. OUR APPROACH 25

Figure 4.7: Basic architecture of a SystemC application with reused modules.

replicating them will be inefficient, in terms of complexity and area required in
the FPGA. Therefore, we do not regenerate those modules and make the design
as efficient as possible.

The best way of supporting multiple pipelines is not generating and duplicating
the whole pipeline multiple times, but generating the template modules only once
and reuse across other pipelines. Remaining modules like ELExec, Apply, which
can vary for different VertexPrograms will be used specifically for that pipeline.
Note that, there is a module named Thread1 with a prefix demonstrating the
pipeline. The aim of generating such module is to initialize the local variables
and handle the conditionals across the pipeline structure.

Figure 4.7 shows a small and simplified example of reusing the modules across the
application. Note that, Prefetch, InitVertex, ELSetup, WriteData are reused for
multiple pipelines. Therefore, we can support multiple pipelines without dupli-
cating all of the modules to make the application space smaller and more efficient.

4.2.5 Vertex Program

One critical component in a graph application provided by the user is Vertex-
Program. This is the part of the application that will be converted into pipeline
structure. Therefore, there are some rules and limitations to be considered.

First of all, the application is specified with the VertexProgram keyword. In case
if there are multiple VertexPrograms, the naming should be VertexProgramN
where "N" denotes the number of the "VertexProgram".

CHAPTER 4. OUR APPROACH 26

Additionally, user needs to specify the data structure of the VertexData including
members held by the VertexData object.

Reading VertexData is handled by VertexHandle object. This is a shim object
and is just used to make the application generic. Since this is an application
modelled in "Think-Like-A-Vertex" [17] model, the vertex reads its data using
getVertexData() function, which can be seen in Figure 4.8 Line 7.

For the gather part, user has to write a "for loop" over the INEDGES or OUT-
EDGES. This is the part where vertex gathers the data from its neighbors and
accumulates them into a variable. Line 10 in Figure 4.8 shows the details of a for
loop that iterates over the INEDGES.

Accumulating the neighbor data into a variable takes place in the for loop men-
tioned above. To do that, first, a vertex must request the neighbor data using
EdgeIterator. After the arrival requested data, the vertex can use the neighbor
data. Line 11 in Figure 4.8 shows the requests from the neighbors. Also, a ver-
tex can decide to activate the neighbor being processed, which is mentioned in
Section 6.3.

At the end of the vertex program, accumulated data is used to update the local
data fields of the corresponding vertex.

CHAPTER 4. OUR APPROACH 27

1

2 void VertexProgram1 (VertexHandle &vtx) {
3

4 double accumMin ;
5 accumMin = 10000000;
6

7 VertexData &vd = vtx . getVertexData () ;
8

9

10 GA_FOREACH_EDGE(vtx , e I t r , IN_EDGE) {
11 VertexData &nvd = e I t r . getNeighVertexData () ;
12 double newDist = nvd . d i s t + 1 ;
13

14 i f (newDist < accumMin) {
15 accumMin = newDist ;
16 }
17 }
18

19

20 i f (accumMin < vd . d i s t) {
21 vd . d i s t = accumMin ;
22 }
23 }

Figure 4.8: Simple user code given as an input to our accelerator design flow.
Breadth First Search (BFS) algorithm functions are written in C++.

Chapter 5

Source to Source Transformation

Program improvement can be achieved in many ways, one of which is to use
source-to-source transformation. Using a compiler or a code analysis tool, a pro-
gram written in a certain language can be optimized for the same language or
partly/completely translated into a different target language. However, improve-
ments can be beyond optimization and efficiency, such as enhancing the user
experience. Although hardware accelerators increase the efficiency in orders of
magnitude, the underlying implementation for these architectures such as GPU,
FPGA, and ASIC, are much harder when compared to a high level language such
as C++. Therefore, if a developer cannot use the accelerators due to cost of
hardware and adversities of the implementation, he or she will have to accept
the outcome of CPU execution. On the other hand, the existence of a tool that
accepts a simple C++ code and can execute on an FPGA will provide benefits
of both worlds and will allow executing on larger graphs.

As mentioned before, our ultimate aim is creating hardware accelerator framework
using source-to-source transformation to handle wider range of applications than
what has been previously proposed in the literature [2]. Therefore, in order to
provide both ease of development and flexibility in expressiveness, we have added
the source-to-source transformation on top of our model. With this, user can
write any kind of graph application in C++ with her/his desired data structure

28

CHAPTER 5. SOURCE TO SOURCE TRANSFORMATION 29

for vertices, and the application is translated into SystemC regardless of the
number of gather loops, the number of vertex programs, conditional memory
requests, or the neighbor activation required, etc.

Figure 5.1: High level view of source-to-source transformation step

Figure 4.8 illustrates the basic graph application given in C++. As can be seen,
the application starts with local variable declaration, initialization and Vertex-
Data object creation. Then, gather loop execution takes place in which neighbor
data is obtained and used to accumulate. This is followed by a state change for the
currently-processed vertex. While in this simple example, Breadth First Search
(BFS) algorithm within the GAS model is implemented, it is possible to sup-
port non-legacy applications, more complex structures that use multiple vertex
programs, multiple gather loops, conditional gather loops, etc. These additional
features will be discussed in detail.

As can be seen in Figure 5.1, our Source-to-Source Transformation tool takes
a Vertex Program from the user along with the template structures [2]. Using

CHAPTER 5. SOURCE TO SOURCE TRANSFORMATION 30

these inputs, tool generates a synthesizable SystemC FPGA model and a C++
host code. During the latter parts of the accelerator flow, SystemC model is
synthesized and used to generate the FPGA programming image and the host
code is used to run the FPGA model.

Chapter 6

Accelerator Generation

Accelerator generation involves different features including asynchronous execu-
tion, supporting non-GAS applications, active set, conditional iteration over the
neighbors, enabling non-neighbor data access, multiple vertex program support
and user-defined data types. These features will be highlighted in the following
sections.

6.1 Asynchronous Execution Support

Our proposed architecture establishes asynchronous execution on iterative graph-
parallel applications. Vertices gather the data from neighbors, calculate the ac-
cumulated data, change its state and write to the global table data structure
(see Sec. 4.2.3). Then, neighbors can access the data that is written on the
table which is the most recent calculated data. So, vertices are not forced to
accumulate using neighbor data from the previous iteration.

31

CHAPTER 6. ACCELERATOR GENERATION 32

6.2 Non-GAS Application Support

The main limitation in the GAS model is that there can only be one from each
stage. Therefore, user can only specify gather, apply, and scatter stage methods
only once. However, there can be applications in which user may want to gather
the incoming-edge neighbors and accumulate their data using a specific function
first, followed by a gather function on the outgoing edge neighbors and accumulate
their data using another function. Between neighbor iterations and at the end
of iterations, the user may want to write the collected data to its local state
using an apply function. In such circumstances, GAS abstraction does not fulfill
the needs of the user. On the other hand, our application interface gives user
the flexibility to implement applications beyond GAS model. More specifically,
user can develop not only GAS applications which can only include one for each
function described above, but also non-GAS applications with possibly multiple
gather, sum, apply, and scatter stages.

Algorithm 1: Non-Gas Application Support
1 foreach n in v.inNeighbors do
2 accum1 += v.field1
3 end
4 foreach n in v.inNeighbors do
5 accum2 += accum1 + v.field2
6 end
7 foreach n in v.inNeighbors do
8 accum3 += accum2 ∗ v.field1 + accum1 ∗ v.field2
9 end

Algorithm 1 shows the usage of non-GAS application support in pseudo-code.
Note that, there are multiple gather loops and between those, user can use the
collected data. Each gather loop may accumulate the data on a different variable
and use the data from another loop.

CHAPTER 6. ACCELERATOR GENERATION 33

6.3 Active Set Support

For a graph application, the number of iterations needed to converge for a ver-
tex can vary dramatically. The study on iteration number for the vertices on
PageRank shows that, 7.4% of the vertices converge in a single iteration, 51% of
the vertices converge in 36 iterations, whereas 99.7% converge in 50 iterations.
For the remaining part, 0.3% of the vertices require 27 more iterations [44]. The
same study shows that total work-done by processing only active vertices during
different iterations reduces the total computation by nearly 50% [44]. This study
clearly states that it is inefficient to process all the vertices in every iteration of
a graph application.

For example, Graph-Coloring is a vertex labeling problem in which two adjacent
vertices will not be assigned to the same color. Maximal Independent Set (MIS)
is used to solve this problem [55]. In every iteration, MIS is constructed and
assigned a new color, then a vertex is removed from the graph, until there is
no vertex left in the graph. Moreover, MIS algorithm [56] is used by Luby’s
classic parallel algorithm which uses conditional activation of the neighbors. The
algorithm starts with assigning random values to all the vertices and for each
vertex, checks whether the value for the vertex is the smallest among itself and
its neighbors. If so, removes the vertex from the graph and puts it into an
"independent set". If this is not the case, activates all the neighbors.

Algorithm 2: Active Set Support
1 foreach n in v.inNeighbors do
2 if some condition then
3 activateNeighbor(n)
4 end
5 end
6 if some condition then
7 v.activateNeighbors()
8 end

In our implementation, a vertex can have two different states: active or inactive.
At the beginning, all vertices are considered to be in the active set. During the

CHAPTER 6. ACCELERATOR GENERATION 34

computation, only vertices in the active set participate in the execution of the
VertexProgram. Once the iteration finishes, vertices are removed from the active
set, that is, a vertex will not participate in the calculation anymore unless it is
triggered (activated) by its neighbors. Therefore, during the execution, vertices
can activate their neighbors, causing these neighbors to be added to the active
set and processed during the next iteration. Vertex program will continue until
there are no active vertices or the maximum iteration number is reached.

Our application interface gives user the flexibility about the activation of neigh-
bors as well. The developer does not have to activate all the neighbors of the
currently processed vertex. Instead, a set of neighbors can be placed into the
active set. As seen in Algorithm 2, while iterating over the neighbors, the user
can select the neighbors according to one or more conditions. If needed, it is also
possible to allow a vertex to activate all the neighbors at once.

6.4 Conditional Pipeline Support

As explained before, Maximal Independent Set (MIS) is used in the implementa-
tion of Graph Coloring, where Color2MIS [57] works for a given vertex coloring
scheme. In this application, edge iteration over the neighbors of a vertex takes
place if the coloring of the vertex is equal to the currently processed color. There-
fore, the corresponding iteration will take place conditionally.

Similar to the above application, developer may want to implement edge-iteration
depending on a single condition or even multiple conditions. Our accelerator de-
velopment flow handles this case and converts such an application to a conditional
pipeline. When the conditional check takes place in this pipeline, data (rowId) is
placed into different FIFOs and sent to respective modules.

Algorithm 3 illustrates how the conditional pipeline design works. As clearly seen,
if the first condition is met, edge iteration over the neighbors takes place. Note
that, there is an additional condition when the edge iteration is not executed.

CHAPTER 6. ACCELERATOR GENERATION 35

Algorithm 3: Conditional Pipeline Support
1 if some condition then
2 foreach n in v.inNeighbors do
3 statement
4 end
5 else
6 if some condition then
7 statement
8 else
9 foreach n in v.inNeighbors do

10 statement
11 end
12 end
13 end

6.5 Non-Neighbor Data Access

To describe what we mean by non-neighbor data access, we will use Shiloach-
Vishkin algorithm [58] which aims to find connected components in a graph
structure. In this application, every vertex holds the id of non-neighbor ver-
tices, to compare its data with the non-neighbor vertex data. Therefore, the
need for accessing non-neighbor data is required for this problem.

Consider a similar application in which every vertex in the graph has an id of
another vertex, namely ovid, and searches for the neighbor which has the mini-
mum label value. Moreover, each vertex desire to access the vertex data with id
= ovid, where ovid is held by the neighbor vertex with minimum label.

In such a scenario, using a basic edge iterator loop over the InEdges, one can find
the minimum label among the neighbor vertices and accordingly update the ovid
variable. Once edge iteration over neighbors finishes, VertexData of the vertex
with the id = ovid can be gathered. Algorithm 4 shows the usage of non-neighbor
data access.

Algorithm 4: Non-Neighbor Data Access Support
1 VertexData& ovd = vtx.getOtherVertexData(ovid);

CHAPTER 6. ACCELERATOR GENERATION 36

This is not supported in a standard GAS application framework, thus, we provide
user a wider range of application development opportunities.

6.6 Multiple Pipeline Support

Hyperlink-Induced Topic Search (HITS) [59], or with the well-known name Hubs
and Authorities algorithm, is a ranking algorithm like PageRank [1]. However,
HITS works with not only in-links but also out-links of a vertex, and assigns each
vertex different scores, namely, hub and authority. The authority score is higher
if vertices are pointed by many links, otherwise, the hub score is higher. First,
using hub scores, authority score of all vertices are calculated and normalized.
Then, using authority scores, hub scores are calculated.

Algorithm 5: Multiple Pipeline Support
1 Function VertexProgram1(vtx)
2 foreach n in v.inNeighbors do
3 statement
4 end
5 end
6 Function VertexProgram2(vtx)
7 foreach n in v.outNeighbors do
8 statement
9 end

10 end
11 Function main()
12 foreach v in V do
13 VertexProgram1(v.vertexHandle)
14 end
15 foreach v in V do
16 VertexProgram2(v.vertexHandle)
17 end
18 end

Algorithms like HITS requires not only iterating over the edges multiple times
but also over the vertices. In our programming interface, as mentioned above, for
a given subset of vertices, the VertexProgram is executed. Moreover, every vertex

CHAPTER 6. ACCELERATOR GENERATION 37

program is converted into a pipeline structure, on which data (rowId) flows. So,
if the user implements an application with multiple VertexProgram, the whole
application is converted into a multi-pipeline structure. Algorithm 5 shows the
usage and interface of multiple pipelines or multiple vertex programs.

6.7 User-Defined Types

Fixed-point is basically a number representation using fixed digits before and
after the decimal point. As mentioned in section 4.2.2, during the SystemC code
generation, all float type variables are converted into fixed-point. The default
fixed-point consists of 16 bits of the integer part and 16 bits of the fractional
part.

Algorithm 6: User-Defined Types Support
1 typedef udt<24,1> udt1;
2 typedef udt<48,16> udt2;
3 udt2 variableName;

Therefore, this version of the fixed-point representation may not fulfill the needs
of the user, such as working with the positive numbers less than 1 which only
needs a fractional part, etc. For such circumstances, we propose user-defined
types. With the help of this feature, one can define a type with the desired
parameters. Algorithm 6 shows the definition and usage of the types. The first
parameter of the defined type is the total bit count, whereas the second parameter
shows the place of the decimal point. udt stands for user-defined type and it is
a shim data structure which is created to make type definitions generic. As it
can be seen, udt1 type has 24 bits, 23 bits of which represents fractional part,
whereas udt2 type has total of 48 bits with 32 bits of fractional part. After the
definition, the new type can be used to create variables across the application.

Chapter 7

Experimental Evaluation

In this section, we present our experimental evaluation. We first give the detailed
explanation of the platforms and architectures used to implement the flow. Then,
we describe our graph parallel benchmarks and their respective properties. We
also provide different implementation versions which we compare. Lastly, we give
our experimental results with different settings.

7.1 Experimental Setup

7.1.1 Clang

Clang is the most important part of the flow, used for Source to Source Trans-
formation (S2S). It is a front-end tool provided by LLVM Project [49] and it is
a compiler which has an active community and growing industry support [11]. It
can be used to parse C/C++ code, in our case, the user code. To translate the
user code into SystemC, we implemented our Clang parser plugin and transform
C++ source code into an Abstract Syntax Tree (AST) from which we extracted
the information that is used in SystemC like vertex data members such as read-
only data, read-write data, private data, shared data, edge-iterator loops.

38

CHAPTER 7. EXPERIMENTAL EVALUATION 39

7.1.2 SystemC

SystemC [60] is a hardware description language using a set of C++ classes.
It provides modeling and event-driven simulation interface for the developers
designing hardware systems. This language is similar to Hardware Description
Languages (HDL) like VHDL and Verilog in the aspects of designing the modules
and connections between, however SystemC is system-level modeling language in
contrast to HDLs which are register-level modeling.

SystemC is used with transaction-level abstraction, generally. Transaction-level
modeling (TLM) is the high-level abstraction of digital systems which allows
developers and designers not to concern about the low-level details of the com-
munication between the modules, instead, the focus is mostly on functionality,
performance, and verification of the communication [61].

In the latter parts of the design stage, transaction level modules are converted
into Register Transfer Level (RTL) design which can be any HDL like Verilog or
SystemVerilog, to analyze the performance in detail and verify the system.

7.1.3 CtoS

Cadence’s Stratus C-to-Silicone compiler [46] is a High-Level Synthesis(HLS) tool
which aims to create and design efficient and optimized hardware abstraction of
the given software which is algorithmic description in a high-level language such
as SystemC/C [62] with the module functionality and inter-module communi-
cation. Briefly, CtoS translates algorithmic behavior to register transfer level.
HLS consists of a number of activities such as algorithm optimization, schedul-
ing, register binding, etc. [62, 63]. After applying these series of algorithms on
given software, Register Transfer Level code (RTL) is generated which is design
abstraction modelling the digital circuit with the data flow between the hardware
registers [62].

CHAPTER 7. EXPERIMENTAL EVALUATION 40

7.1.4 Intel Accelerator Simulation Environment

The Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE)
is a hardware-software co-simulation environment [64]. The environment grants
the developers such features like fake physical memory, FPGA local memory
model, inter-process communicator that the developers simulate the FPGA board.
Such simulation reduces the development time for AFU hardware and software
by providing both functional validation and removing design problems like lock
conditions, data dependency hazards, pointer math errors and address mapping.

ASE provides 2 interfaces: the hardware side and the software side. Hardware
interface basically communicates with the RTL which is generated by CtoS and
mimics FPGA. On the other hand, software interface communicates with the host
code [64].

The main aim of the ASE simulation is to see whether there are some design
errors from the development or generation stages and solve those problems before
generating bitstream which takes a very long time.

7.1.5 Intel Quartus Prime

Quartus is the last step of the design flow. It is a logic synthesis tool like Xilinx
ISE [65] and is used to synthesize HDL and RTL designs, to analyze timing
performance, to inspect and simulate the designs and to generate the bitstream.

After successful completion of ASE, the generated RTL is considered most likely
to be correct. Therefore RTL code can be used to generate bitstream files. Bit-
stream generation consists of several steps like synthesis, device and resource
assignments, place and route by fitting the logic of design into the device, selec-
tion of interconnection paths, pins and logic cell assignments. The last step is
assembler which generates a device programming image, in our case, bitstream.
Eventually, the image can be loaded and executed on the FPGA. [48]

CHAPTER 7. EXPERIMENTAL EVALUATION 41

7.1.6 Hardware Specifications

We have used heterogeneous high-performance computing workstations consisting
of four 22-core Intel Xeon E5-2699 CPUs with the base frequency of 2.20 GHz
and Arria 10 GX1150 FPGA to evaluate our application and OpenCL imple-
mentations. These workstations are provided by Hardware Accelerator Research
Program (HARP), which is mentioned in Section 3.5.

7.2 Graph Applications

Our flow aims to perform better in two different metrics, the performance and
the work done. In order to support both objectives, we have implemented our
flow in two different modes, namely, high-throughput (HT) and work-efficient
(WE). Before giving details about these two modes, we first describe the legacy
algorithms implemented for experimental evaluation in the following sections.

7.2.1 Breadth First Search (BFS)

Breadth First Search is a graph traversal algorithm, which starts exploring from
a start node and assigns levels to the vertices. This algorithm is suitable for both
high-throughput and work-efficient models, since visited vertices can be excluded
from execution. HT version is straightforward, whereas in WE version, each
vertex has a flag showing whether the vertex is visited or not. If the vertex is
visited, then it will not be processed anymore, thereby working only on the active
vertices.

CHAPTER 7. EXPERIMENTAL EVALUATION 42

7.2.2 Pagerank (PR)

Pagerank is a well-known ranking algorithm for graph structures. This algorithm
is suitable for both models, too. In WE version, there is a control mechanism
that decides if the vertex converges to a rank. After the convergence, it will not
be processed anymore, unless some other vertex activates it.

7.2.3 Maximal Independent Set (MIS)

Maximal Independent Set finds the maximal set of a graph in which there are
no neighbor vertices. It is implemented in only HT execution model. In the WE
model, vertices deactivate the neighbors when they are selected for MIS. Since we
are not supporting deactivation right now, WE-MIS model cannot be efficiently
implemented. Instead, we modeled the application such that vertices decide not
to activate themselves using an additional field. However, reading an extra field
from the memory reduces the performance, so we decided not to implement MIS
for work-efficient model.

7.3 Implementation

We made experiments with three different versions of each application, which can
be summarized as follows:

• OpenCL: This is the base version against which we compare all the schemes.
This version is implemented in OpenCL for the chosen algorithms using
high throughput pull-based execution model and task parallelism with 4
kernels. Moreover, the accelerator frequency values obtained for this model
are approximately 210MHz, 190MHz, and 220 MHz for BFS, PR, and MIS,
respectively. Applications are evaluated using different number of kernels
and the best results are obtained from the accelerator with 4 kernels. In

CHAPTER 7. EXPERIMENTAL EVALUATION 43

this implementation, throughput values for all algorithms is 1 edge/cycle,
namely, in every cycle of a kernel execution, a result for a vertex pair is
calculated.

Moreover, OpenCL does not support a handy active-set, but it can be im-
plemented using push-based implementation model. However, due to ran-
dom nature of memory accesses over the neighboring vertices, the efficiency
and throughput drops significantly making this an unrealistic scenario. For
our experiments on push-based OpenCL implementation of WE-BFS algo-
rithm, the maximum throughput value we can achieve is 40 million edges
per second with approximately 180MHz accelerator frequency.

• HT: This represents an approach that is implemented in our flow with
high-throughput (HT) focus. In this version, all the vertices in the graph
structure are processed in every iteration of the graph application, that is,
we apply the synchronous execution model.

• WE: This represents a work-efficient (WE) scheme, which uses an active-
set to hold the vertices participating in the computation. The rest of the
vertices will not be processed in this scenario, achieving asynchronous exe-
cution.

Our HT version evaluation results will be compared to Base implementation to
show the performance of our approach. On the other hand, WE implementation
will be compared to both our HT version and Base implementations, to show
that there is unnecessary work-done for some specific graph applications.

7.4 Datasets

The generated graph structures for the evaluation purposes are Kronecker graphs
with different sizes and average vertex degrees [66]. For HT, we managed to use
larger graphs than WE, because the active-set can hold up to 8 millions of vertices

CHAPTER 7. EXPERIMENTAL EVALUATION 44

at most, due to the limitations of FPGA area. Therefore, smaller graphs are used
to evaluate WE.

7.5 Experimental Results

7.5.1 High Throughput Execution

Besides being more accessible, flexible and user-friendly for an inexperienced de-
veloper, our HT performs slightly better than OpenCL counterpart in terms of
throughput and runtime. Since it is ensured that OpenCL application is imple-
mented extremely efficiently, exceeding its performance is a good metric for our
application in terms of performance. Due to the low-level details of parallel ex-
ecution design, the development process in OpenCL is much harder than basic
C++. Moreover, our approach provides slightly better results in terms of effi-
ciency and speed. Therefore, we can conclude that our application outperforms
the OpenCL in vertex-centric graph applications.

Figure 7.1: Comparison of OpenCL and HT in terms of throughput for BFS.

Figures 7.1-7.6 compare OpenCL with HT for BFS, PR, and MIS algorithms.
Note that, results are given for different graph sizes with different average edges
per vertex. Bar-charts show the throughput (edges per second) of the execution,
whereas line-charts show the runtime of a single iteration (seconds). Since both

CHAPTER 7. EXPERIMENTAL EVALUATION 45

Figure 7.2: Comparison of OpenCL and HT in terms of a single iteration runtime
for BFS.

Figure 7.3: Comparison of OpenCL and HT in terms of throughput for PR.

CHAPTER 7. EXPERIMENTAL EVALUATION 46

Figure 7.4: Comparison of OpenCL and HT in terms of a single iteration runtime
for PR.

Figure 7.5: Comparison of OpenCL and HT in terms of throughput for MIS.

CHAPTER 7. EXPERIMENTAL EVALUATION 47

Figure 7.6: Comparison of OpenCL and HT in terms of a single iteration runtime
for MIS.

implementations are evaluated using the same graph structure, the throughput
values and iteration runtime of both HT and OpenCL implementations are pro-
portional to each other. As stated, our model performs slightly better both in
terms of throughput and execution time of a single iteration.

7.5.2 Work Efficient Execution

As stated in Section 6.3, different in and out degrees results in a varying num-
ber of iterations needed to converge for a vertex. Therefore, there may be un-
necessary processing for converged vertices, which will result in with both time
and energy cost. Since our accelerator development flow supports the active-set,
work-efficient version does significantly less work than both OpenCL and HT
counterparts. This also results in faster execution and convergence.

To fairly evaluate the models in terms of work done and runtime, we need to
determine the number of iterations since HT and OpenCL models will be executed
accordingly. We decided the maximum iteration numbers by running WE until
all vertices converge. The number of iterations obtained from WE is given as an
input to the other models, which ensures all the vertices will eventually converge
in the maximum number of iterations in the worst case.

CHAPTER 7. EXPERIMENTAL EVALUATION 48

Figure 7.7: Comparison of OpenCL, HT and WE in terms of number of processed
edges for BFS.

Figure 7.7 shows the comparison of 3 different models using the same graph struc-
ture and executing the BFS algorithm. Since HT and OpenCL counterparts do
not support active-set, all the vertices will be processed during the computation
until the maximum number of iterations. Unlike the other implementations, WE
excludes the converged vertices from the active-set in order not to process them
unnecessarily. On average, WE performs approximately 27% less computation for
the BFS algorithm. Moreover, Figure 7.8 shows the same experiments’ runtime.
As can be seen, due to the lower computation, WE reduces the execution time by
approximately 28% when compared to both HT and OpenCL implementations.
This reduction also represents the savings in work done.

The WE performs better for the PR algorithm than BFS, for both metrics, i.e.,
number of processed edges and execution time until global convergence. The
reason for this improvement is due to the fact that there are much more vertices
converging earlier in the PR algorithm. Thus, a smaller set remains after a few
iterations and that causes faster execution. Figure 7.9 compares the number of
edges processed for different graph structures and vertex degrees. The reduction
in work done is approximately 48%, on average. Figure 7.10 illustrates runtime
of the PR algorithm for different execution scenarios with around 49% decrease.

Using work-efficient implementation, we can also compare throughput values

CHAPTER 7. EXPERIMENTAL EVALUATION 49

Figure 7.8: Comparison of OpenCL, HT and WE in terms of execution time for
BFS.

Figure 7.9: Comparison of OpenCL, HT and WE in terms of number of processed
edges for PR.

Figure 7.10: Comparison of OpenCL, HT and WE in terms of execution time for
PR.

CHAPTER 7. EXPERIMENTAL EVALUATION 50

with HT and OpenCL counterparts. Figure 7.11 and Figure 7.12 compares the
throughput values of aforementioned models for different graphs, in terms of both
size and average vertex degree. Note that, the throughput is nearly same for HT
when compared to others, which shows that using an active-set and connecting it
to the memory subsystem to access the neighbors does not slow down the appli-
cation much. Moreover, for some average vertex degree values, WE version gives
better results due to faster convergence.

Figure 7.11: Comparison of OpenCL, HT, and WE in terms of throughput for
BFS.

Figure 7.12: Comparison of OpenCL, HT, and WE in terms of throughput for
PR.

The main metric showing the efficiency of the WE is the number of edges pro-
cessed until the convergence and execution time is directly affected by the number

CHAPTER 7. EXPERIMENTAL EVALUATION 51

of edges processed. Besides, by having the same level of throughput, WE out-
performs the OpenCL implementation, with approximately 40% less work done,
averaging PR and BFS results.

The performance of WE is expected to be higher in terms of work done and exe-
cution time when used on real-world graphs, such as social, biological networks,
etc. Because in those types of graphs, a higher portion of the vertices has lower
degree, so they will converge faster and only the small set of high degree vertices
will continue to be processed. However, HT will process those low-degree vertices
also until the high-degree vertices converge.

Therefore, WE is more functional when there is a control mechanism to discard
the vertices from the execution since it nearly performs as well as the HT. This
way, it reduces the work done and more importantly, the execution time.

Chapter 8

Conclusion

The ultimate goal of this thesis is to discuss the implementation details of gen-
erating FPGA accelerators for graph parallel applications. This implementation
uses a simple vertex-centric graph application representation given as a high-level
language description. The main focus of the work presented here is extracting the
necessary program information using abstract syntax tree (AST) and generating
the intermediary objects from plain C++ code. Once the meta-data is collected,
our architecture flow generates the SystemC model, which is followed by gener-
ating RTL and bitstream. Then the application can be directly executed on the
FPGA without going through the low level development processes.

Therefore, the main contribution of this thesis is to create graph parallel hardware
accelerators using source-to-source transformation. Any vertex-centric applica-
tion can be modelled using our framework, can successfully be translated into
SystemC, and can be executed on FPGA. There are various features in our ac-
celerator design flow which provides a great level of flexibility to the user. These
include asynchronous execution support, non-GAS application support, active set
support, conditional pipeline support, non-neighbor data access support, multiple
pipeline support and user-defined data types.

Based on our experimental results, by providing asynchronous execution with the

52

CHAPTER 8. CONCLUSION 53

active-set, accelerator performance increased approximately 40% percent in terms
of work done and total execution time when compared to its OpenCL counterpart
for applications like BFS and PR.

In conclusion, we provide an easy FPGA accelerator framework for users without
deeper knowledge of parallelization and optimization at the hardware level, but
willing to increase the performance of their vertex-centric graph applications.

Bibliography

[1] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[2] Andrey Ayupov, Serif Yesil, Muhammet Mustafa Ozdal, Taemin Kim, Steven
Burns, and Ozcan Ozturk. A template-based design methodology for graph-
parallel hardware accelerators. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 37(2):420–430, 2018.

[3] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoe-
flinger, Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill
Pottenger, Lawrence Rauchwerger, and Peng Tu. Parallel programming with
polaris. Computer, 29(12):78–82, December 1996.

[4] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Ama-
rasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-
Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. Suif: An
infrastructure for research on parallelizing and optimizing compilers. SIG-
PLAN Not., 29(12):31–37, December 1994.

[5] Chunhua Liao, Daniel J. Quinlan, Jeremiah J. Willcock, and Thomas Panas.
Extending automatic parallelization to optimize high-level abstractions for
multicore. In Matthias S. Müller, Bronis R. de Supinski, and Barbara M.
Chapman, editors, Evolving OpenMP in an Age of Extreme Parallelism,
pages 28–41, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

54

BIBLIOGRAPHY 55

[6] Aart Bik, Milind Girkar, Paul Grey, and X. Tian. Efficient exploitation of
parallelism on pentium iii and pentium 4 processor-based systems, 2001.

[7] Matthew Marangoni and Thomas Wischgoll. Paper: Togpu: Automatic
source transformation from c++ to cuda using clang/llvm. Electronic Imag-
ing, 2016(1):1–9, 2016.

[8] David Williams, Valeriu Codreanu, Po Yang, Baoquan Liu, Feng Dong,
Burhan Yasar, Babak Mahdian, Alessandro Chiarini, Xia Zhao, and
Jos BTM Roerdink. Evaluation of autoparallelization toolkits for commod-
ity gpus. In International Conference on Parallel Processing and Applied
Mathematics, pages 447–457. Springer, 2013.

[9] Siegfried Benkner. Vfc: The vienna fortran compiler. Sci. Program., 7(1):67–
81, January 1999.

[10] Edward B Duffy, Brian A Malloy, and Stephen Schaub. Exploiting the clang
ast for analysis of c++ applications. In Proceedings of the 52nd annual ACM
southeast conference, 2014.

[11] Clang: a C language family frontend for LLVM. http://clang.llvm.org/.
[Online; accessed 19-June-2019].

[12] Tim Schmidt, Guantao Liu, and Rainer Dömer. Automatic generation of
thread communication graphs from systemc source code. In Proceedings of
the 19th International Workshop on Software and Compilers for Embedded
Systems, pages 108–115. ACM, 2016.

[13] Kevin Marquet and Matthieu Moy. Pinavm: a systemc front-end based on
an executable intermediate representation. In Proceedings of the tenth ACM
international conference on Embedded software, pages 79–88. ACM, 2010.

[14] Weiwei Chen, Xu Han, and Rainer Dömer. May-happen-in-parallel analysis
based on segment graphs for safe esl models. In Proceedings of the conference
on Design, Automation & Test in Europe, page 287. European Design and
Automation Association, 2014.

http://clang.llvm.org/

BIBLIOGRAPHY 56

[15] Anirudh Kaushik and Hiren D Patel. Systemc-clang: An open-source frame-
work for analyzing mixed-abstraction systemc models. In Proceedings of the
2013 Forum on specification and Design Languages (FDL), pages 1–8. IEEE,
2013.

[16] Quinlan and D.J. Compass user manual (2008). http://www.

rosecompiler.org/compass.pdf. [Online; accessed 19-June-2019].

[17] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD In-
ternational Conference on Management of data, pages 135–146. ACM, 2010.

[18] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Ky-
rola, and Joseph M. Hellerstein. Distributed graphlab: A framework for ma-
chine learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716–
727, April 2012.

[19] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[20] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin,
Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating bina-
rized convolutional neural networks with software-programmable fpgas. In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 15–24. ACM, 2017.

[21] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh
Venkatesh, and Debbie Marr. Accelerating binarized neural networks: Com-
parison of fpga, cpu, gpu, and asic. In 2016 International Conference on
Field-Programmable Technology (FPT), pages 77–84. IEEE, 2016.

[22] Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. Dlau:
A scalable deep learning accelerator unit on fpga. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 36(3):513–517,
2016.

http://www.rosecompiler.org/compass.pdf
http://www.rosecompiler.org/compass.pdf

BIBLIOGRAPHY 57

[23] Pascale Guerdoux-Jamet and Dominique Lavenier. Samba: hardware accel-
erator for biological sequence comparison. Bioinformatics, 13(6):609–615,
1997.

[24] Jason Chiang, Michael Studniberg, Jack Shaw, Stephen Seto, and Kevin
Truong. Hardware accelerator for genomic sequence alignment. In 2006
International Conference of the IEEE Engineering in Medicine and Biology
Society, pages 5787–5789. IEEE, 2016.

[25] Azzedine Boukerche, Jan M Correa, Alba Cristina Magalhaes Melo, and
Ricardo P Jacobi. A hardware accelerator for the fast retrieval of dialign
biological sequence alignments in linear space. IEEE Transactions on Com-
puters, 59(6):808–821, 2010.

[26] Seamas McGettrick, Dermot Geraghty, and Ciaran McElroy. An fpga archi-
tecture for the pagerank eigenvector problem. In 2008 International Confer-
ence on Field Programmable Logic and Applications, pages 523–526. IEEE,
2008.

[27] Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and Joseph
Zambreno. Cygraph: A reconfigurable architecture for parallel breadth-
first search. In 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops, pages 228–235. IEEE, 2014.

[28] Svetlin A Manavski. Cuda compatible gpu as an efficient hardware accelera-
tor for aes cryptography. In 2007 IEEE International Conference on Signal
Processing and Communications, pages 65–68. IEEE, 2007.

[29] Brahim Betkaoui, Yu Wang, David B Thomas, and Wayne Luk. A recon-
figurable computing approach for efficient and scalable parallel graph explo-
ration. In 2012 IEEE 23rd International Conference on Application-Specific
Systems, Architectures and Processors, pages 8–15. IEEE, 2012.

[30] Yaman Umuroglu, Donn Morrison, and Magnus Jahre. Hybrid breadth-first
search on a single-chip fpga-cpu heterogeneous platform. In 2015 25th Inter-
national Conference on Field Programmable Logic and Applications (FPL),
pages 1–8. IEEE, 2015.

BIBLIOGRAPHY 58

[31] Qingbo Wang, Weirong Jiang, Yinglong Xia, and Viktor Prasanna. A
message-passing multi-softcore architecture on fpga for breadth-first search.
In 2010 International Conference on Field-Programmable Technology, pages
70–77. IEEE, 2010.

[32] George Rosario Jagadeesh, Thambipillai Srikanthan, and CM Lim. Field
programmable gate array-based acceleration of shortest-path computation.
IET computers & digital techniques, 5(4):231–237, 2011.

[33] Michael DeLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo, Ian Es-
lick, Raphael Rubin, Tomas E Uribe, F Thomas Jr, Andre DeHon, et al.
Graphstep: A system architecture for sparse-graph algorithms. In 2006 14th
Annual IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, pages 143–151. IEEE, 2006.

[34] Eriko Nurvitadhi, Gabriel Weisz, Yu Wang, Skand Hurkat, Marie Nguyen,
James C Hoe, José F Martínez, and Carlos Guestrin. Graphgen: An fpga
framework for vertex-centric graph computation. In 2014 IEEE 22nd An-
nual International Symposium on Field-Programmable Custom Computing
Machines, pages 25–28. IEEE, 2014.

[35] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[36] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 17–30, Hollywood,
CA, 2012. USENIX.

[37] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. High-level programming
abstractions for distributed graph processing. IEEE Transactions on Knowl-
edge and Data Engineering, 30(2):305–324, 2018.

[38] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed compu-
tation: numerical methods, volume 23. Prentice hall Englewood Cliffs, NJ,
1989.

BIBLIOGRAPHY 59

[39] Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. Residual splash for op-
timally parallelizing belief propagation. In Artificial Intelligence and Statis-
tics, pages 177–184, 2009.

[40] Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that
justifies incremental, sparse, and other variants. In Learning in graphical
models, pages 355–368. Springer, 1998.

[41] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin. Pager-
ank computation and the structure of the web: Experiments and algorithms.
In Proceedings of the Eleventh International World Wide Web Conference,
Poster Track, pages 107–117, 2002.

[42] William G Macready, Athanassios G Siapas, and Stuart A Kauffman. Criti-
cality and parallelism in combinatorial optimization. Science, 271(5245):56–
59, 1996.

[43] Alexander Smola and Shravan Narayanamurthy. An architecture for parallel
topic models. Proceedings of the VLDB Endowment, 3(1-2):703–710, 2010.

[44] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, Steven
Burns, and Ozcan Ozturk. Architectural requirements for energy efficient ex-
ecution of graph analytics applications. In 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 676–681. IEEE,
2015.

[45] Hardware accelerator research program. https://software.intel.com/

en-us/hardware-accelerator-research-program. [Online; accessed 19-
June-2019].

[46] Stratus High-Level Synthesis. https://www.

cadence.com/content/cadence-www/global/en_US/

home/tools/digital-design-and-signoff/synthesis/

stratus-high-level-synthesis.html. [Online; accessed 19-June-2019].

[47] Vivado Design Suite - HLx Editions. https://www.xilinx.com/products/
design-tools/vivado.html. [Online; accessed 19-June-2019].

https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

BIBLIOGRAPHY 60

[48] Intel R© Quartus R© Prime Pro and Standard Edition Software User Guides.
https://www.intel.com/content/www/us/en/programmable/products/

design-software/fpga-design/quartus-prime/user-guides.html.
[Online; accessed 19-June-2019].

[49] The LLVM Compiler Infrastructure. https://llvm.org/. [Online; accessed
19-June-2019].

[50] GCC, the GNU Compiler Collection. https://gcc.gnu.org/. [Online; ac-
cessed 19-June-2019].

[51] Nikolai Sorokin. Implementation of high-speed fixed-point dividers on fpga.
Journal of Computer Science & Technology, 6, 2006.

[52] Daniel Menard, Daniel Chillet, and Olivier Sentieys. Floating-to-fixed-point
conversion for digital signal processors. EURASIP journal on applied signal
processing, 2006:77–77, 2006.

[53] The industry’s first floating-point fpga. https://www.intel.

com/content/dam/www/programmable/us/en/pdfs/literature/po/

bg-floating-point-fpga.pdf. [Online; accessed 19-June-2019].

[54] Reduce power and cost by converting from floating point to fixed point.
https://www.xilinx.com/support/documentation/white_papers/

wp491-floating-to-fixed-point.pdf. [Online; accessed 19-June-2019].

[55] Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on
pregel-like systems. Proceedings of the VLDB Endowment, 7(7):577–588,
2014.

[56] Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM journal on computing, 15(4):1036–1053, 1986.

[57] David Peleg. Distributed computing: A locality-sensitive approach. SIAM
journal on computing, 01 2000.

[58] Yossi Shiloach and Uzi Vishkin. An o (log n) parallel connectivity algorithm.
Technical report, Computer Science Department, Technion, 1980.

https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/user-guides.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/user-guides.html
https://llvm.org/
https://gcc.gnu.org/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/bg-floating-point-fpga.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/bg-floating-point-fpga.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/bg-floating-point-fpga.pdf
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf
https://www.xilinx.com/support/documentation/white_papers/wp491-floating-to-fixed-point.pdf

BIBLIOGRAPHY 61

[59] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM (JACM), 46(5):604–632, 1999.

[60] Open SystemC Initiative. http://www.systemc.org/. [Online; accessed
19-June-2019].

[61] Adam Rose, Stuart Swan, John Pierce, Jean-Michel Fernandez, et al. Trans-
action level modeling in systemc. Open SystemC Initiative, 1(1.297), 2005.

[62] Philippe Coussy and Adam Morawiec. High-level synthesis, volume 1.
Springer, 2010.

[63] Michael C McFarland, Alice C Parker, and Raul Camposano. The high-level
synthesis of digital systems. Proceedings of the IEEE, 78(2):301–318, 1990.

[64] Intel R© Accelerator Functional Unit (AFU) Simulation Environment
(ASE). https://opae.github.io/0.13.1/docs/ase_userguide/ase_

userguide.html. [Online; accessed 19-June-2019].

[65] ISE Design Suite. https://www.xilinx.com/products/design-tools/

ise-design-suite.html. [Online; accessed 19-June-2019].

[66] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP bench-
mark suite. CoRR, abs/1508.03619, 2015.

http://www.systemc.org/
https://opae.github.io/0.13.1/docs/ase_userguide/ase_userguide.html
https://opae.github.io/0.13.1/docs/ase_userguide/ase_userguide.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html

