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Structure theory of central simple Z;-graded algebras

Cemal Ko¢, Yosum Kurtulmaz

Abstract
This paper investigates the structure theory of Z4- central simple graded algebras and gives the complete

decomposition into building block algebras. The results are also applied to generalized Clifford algebras,

which are motivating examples of Zq4-central simple graded algebras.
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1. Introduction

Central simple Zs-graded algebras were introduced and studied by Wall in [10]. Brauer equivalence
classes of central simple Zs-graded algebras form an abelian group that is usually called the Brauer-Wall group.
Knus [7] has generalized the results of Wall, replacing the grading group Zs by a finite abelian group G. His
notion of central simple graded algebra not only depends on the base field F' and the grading group G, but
also on the choice of a symmetric bilinear map G x G — F*. In this paper, we are interested in the case
where G is the cyclic group of order d, and F contains a primitive d-th root w of 1. Symmetric bilinear
maps G x G — F* are then in bijective correspondence with the d~*" root of 1, and we choose the bilinear 1
map corresponding to w. The corresponding Brauer group has been determined completely in the case where
d is a primary number, see [1, Prop. 3.9]. Central simple Z4-graded algebras have also been considered in [9)].
Other results on the Brauer group of Knus may be found in [2] and [3]. We would like to point out that the
construction due to Knus is only the first in a long list of generalizations that appeared in the literature, where
one considers algebras with actions and/or grading by groups and even Hopf algebra, and a survey can be found
in [4]. Most results in the literature focus on the Brauer group, that is, central simple graded algebras are
studied up to Brauer equivalence. In this note, we develop a decomposition theory for the algebras themselves.
At some places, there is a partial overlap with the results in the literature, but, on the other hand, our methods
are elementary and self-contained.

Throughout this paper, F' will stand for a field containing w, a primitive d*® root of unity and d > 2, a
fixed integer. By an algebra we shall mean a finite dimensional associative algebra with identity over the field

F. By a graded algebra A, we shall mean a Z,-graded algebra,

A=Ay DAL D - DAy,

2000 AMS Mathematics Subject Classification: 16W50, 15A66.

560



KOC, KURTULMAZ

where the suffices are integers mod d, such that A4;A4; C A;y; for all 4,j € Zyq. For any k € Zg, each
a € Ap is said to be homogeneous of degree k and written da = k; the set ZL_J: Ay, of all homogeneous
elements is denoted by H(A). A graded subspace V of a graded algebra is a subspace that can be expressed as
V= Zf:—ol (VN A;). A subalgebra (respectively an ideal) of A is said to be graded if it is graded as a subspace.
For example, for any H C H(A) the centralizer C4(H) is a graded subalgebra and the ideal (H) generated
by H is a graded ideal. In particular the center Z(A) is a graded subalgebra. When A has no proper graded
ideals, it is called a simple graded algebra (SGA). A map ¢ : A — B is called a graded homomorphism if
¢ is a homomorphism such that ¢(Ay) C By for all k € Z4. For any graded algebra the unique algebra
homomorphism for which ¢(h) = w?"h where h € H(A) is a graded automorphism and it is called the main
automorphism (associated with w ). The graded center Z (A) of the graded algebra is defined as the subalgebra

spanned by homogeneous elements ¢ € H(A) such that ch = w?"he for all h € H(A). When Z(A) = F
the graded algebra is called a central graded algebra (CGA). Our main concern will be central simple graded
algebras (CSGA)s. In the next section, we shall establish some results related with graded tensor products
of C'SGAs and describe some examples that we are going to use as building block algebras in the structure

theorems of the last section.

2. Building block algebras and their combinations

To begin with, we give an elementary proposition to set up a grading on a given algebra.

Proposition 2.1 Let A be an algebra, ¢ be an algebra automorphism of A and let
A = {a € Alp(a) =wra); k=0,1,...,d—1.

If A= Z;é Ay, then A becomes a Zg-graded algebra with homogeneous components Ay. Further in the
case where ¢ is an inner automorphism determined by z, the subalgebra Aqg is the centralizer of z in A and

Z(A) = (Z(A))o.

Proof. The subsets A, are the eigenspaces of ¢ belonging to the eigenvalues w* and hence A = Zz;é Ay

is a direct sum. Considering ¢ as a ring homomorphism we see that AxA; C Agy;. As for the last statement
we note first that if

#(a) = z7taz forall a € A, then a € Ay if and only if az = za, that is Ag = Ca(z), in particular zeAg. Further,
¢ is a homogeneous element contained in Z(A) only if ¢z = w??%z¢ = ze. This implies that ¢ € Ag N Z(A),

that is to say, Z(A) = Z(A)o. O

Corollary 2.2  Ewvery inner automorphism ¢q of M, (F) determined by a diagonal n x n matriz Q whose
diagonal entries are the d™ roots of unity in F induces a grading on M, (F) for which M, (F) is a CSGA.

The same is also true for M, (F') and the matriz
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0 0 0 a
-0 0 0
Q=10
0 0 w0
for any a € F.
Proof.  For the usual matrix units F;; we have Q7 1(E;;)Q = w™litli(E;;) where w! and w'i are the

ith and the j** diagonal entries of 2, respectively. Since M, (F) = S F E;;, by the previous proposition
0]
bq induces a grading on M, (F) whose k" homogeneous component is >, F E;; and graded center is
lj—li=k
Z (M,,(F)). Since the matrix algebra is simple as an ungraded algebra, it is a CSGA. The last statement

follows from the equality Q = E| 'E, where

0 0 0 a
1 1 0 0 0
w 0
E = . and Ey,=10
0 - wd—l : . . :
o --- 0 1 0

For (as algebra) My (F) is generated by E1, By satisfying E1FEs = wEsE7, consequently Q 1E1Q = wk;
and O 1EsQ =wE,. O

The above proposition and its corollary allow us to exhibit building block algebras that will be used to
describe all CSG As:

(1) For any algebra A, ¢= identity gives the grading, Ay = A,
Ay =---=A4-1 =0. This grading is said to be trivial and the algebra A with this trivial grading is denoted
by (A). If A is central simple as an ungraded algebra then (A) becomes a CSGA.

(2) If D is a central division algebra over F' which contains an element z for which D = Zz;é Dy, where
Dy = {a € D|z"taz = wFa}, then D is a CSGA.

(3) For any nonzero element a € F the factor algebra K of F[z] by the ideal generated by 2 — a is
a graded algebra corresponding to the F'-automorphism ¢ for which ¢(x) = wz. It is a CSGA when a # 0.

When a = 0 the algebra is neither graded central nor graded simple.

(4) The graded algebra M, (F) obtained from the inner automorphism associated with

1
w 0
Q =
0 wn—l
has homogeneous elements M of degree k whose (4, j)-entry is M;; = 0 when j — ¢ is not congruent to

k (mod d). This grading is the generalized form of the checker-board grading of M, (F') and this graded algebra
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is denoted by ML, (F). This can be extended to M, (A) by means of the identification M,(A) = M, (F)® A
for any graded algebra A.
(5) When n = d, the matrix algebra My(F) with grading associated with

0 0o - 0 a
-1 0 0

Q=10
0 0 w9

is graded isomorphic to the generalized quaternion algebra (“Tl)w (see [6]).

After constructing CSGA building blocks, we establish certain results to combine them conveniently, by

means of graded tensor products, to produce new CSGAs. The graded tensor product A®B of the graded

algebras A and B is the same as A ® B as a vector space and it has multiplication given by
(a®b)(c®d) =w?(ac) ® (bd)
for a,c € H(A) and b,d € H(B).

Proposition 2.3 If A and B are central graded algebras so is A®B.

Proof. Let v = Z:Zl a; ® b; be a homogeneous generator of Z (AQA@B) and suppose that the b; are linearly
independent. Then all the degrees da; 4+ 0b; are equal and

Wa @ b) = @@ b)y
for all a € H(A),b € H(B). Taking b =1 we obtain
Zwabiaaaia ® bi _ Zw(aai—kabi)aaaai ® bi
i=1 i=1

for all a € H(A).

Linear independence of the b; implies that a; € Z(A) for all i. Since A is assumed to be central we
deduce that a; € F for all i and hence v =1® b’ where b’ = a1by + - - - + a;nby,. Substituting this v into the
above equality with a = 1, it follows that

1ob)(1ob) =w® 21 eb)(1leb)

for all b € H(B) implying that 1® bb' = w? %1 @ b and hence b € Z(B) = F. Therefore vy € F(1®1), that
is Z(A®B) = F as asserted. 0

We remark that the following result already appears in [7, Prop. 2.1], but that the proof presented here

is different, and that it is given for the sake of completeness.

Theorem 2.4 If A is a CSGA and B is a SGA, then A®B is a SGA. In particular if A and B are both
CSGAs, then so is ARB.
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Proof. The second statement follows at once from the first one by Proposition 2.3. so that it is sufficient to
prove the first statement. To this end take a nonzero graded ideal I of A®B. It contains a nonzero homogeneous
element. Pick up one of these that has the form a = Y_._, a;,®b; with a; € H(A) b; € H(B) where r is as small
as possible. We note that the a; (respectively the b;) are linearly independent and da; + 0b; is independent of

i. Since A is a CSGA, the graded ideal generated by a; is A and, hence, there exist a;c, a; € H(A) such that
1= ZZ;l a;cala; with 8@}C +0a; +0 a; =0 (mod d) and this yields an element

=Y W (@@ 1) alay ®1)=10b+ Y Y WO (aay @ b).
k=1 k=114i=2
We observe that this element of I is of the form
a=1®b+ Y a; ®b;
i=2

where the a; are homogeneous and da; + 0b; = 0by for all i. Since the b; are linearly independent we have

a;ﬁ 0. The same process applied to b; yields the element

a0=1®1+zgi®bi
i=2

of I where the a; and the b; are homogeneous such that da; +0 b;= 0 and

{1,a,...,a,} is linearly independent. Now for each aeH(A) we obtain

T

(a®1ag—ap(a® 1) = Z(a?zi —wi% g% )@ l;:
i=2

contained in /. The minimality of r forces

aa; —w%% G0 =0, i=2,...,r,

and it follows from 6:11- +0 l;-: 0 that

8a;0a

a; 6 =w aa; , 1=2,...,1

that is to say, a;€ Z(A) = F, contradicting linear independence of {1, g, .. .,LTT} unless r = 1. Therefore r =1
and ap=1®1 is contained in I. Thus we proved that any nonzero graded ideal of A®B contains its identity

element, that is AQB is a SGA. O

Theorem 2.5 Let A and B be finite dimensional graded algebras. If there exists an invertible element z € A

such that az = w%%za for all homogeneous elements a € A, then A®B and A® B are isomorphic. Further, if

z € Ag this isomorphism is a graded isomorphism.
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Proof. We use the universal property of ordinary tensor product. To this end we construct homomorphisms
f: A~ A®B and ¢ : B — A®B so that
f(a)g(b) = g(b)f(a) for all a € A and b € B from which the existence of a homomorphism
h:A® B+ ARB

satisfying h i4 = f and hip = g is deduced:

A ™ AgB ¥ B

N L gy
A®B

In fact, define f(a) =a® 1 for all a € A and

g(b) =g(bo +b1+- +ba—1) =1®bg+2@by + -+ 2771 @bg_4

for by € By as the required homomorphisms. For a; € A;and by € By we see that
flai)g(b) = (a; ® 1)(2’“ ®by) = a; 2" @ by = w*2Fa; @ b, = (zk ®bg)(a; ®1) = g(bg) f(a;),

which implies our requirement f(a)g(b) = g(b)f(a) for all a € A and b € B. Thus the ordinary homomorphism
h: A®B — ARB is established. This homomorphism is surjective since a; ® by, = h(aiz_k)for all a; € A; and
by € By. Comparing dimensions we see that h is an isomorphism. Finally in the case z € Ay, the maps f and

g above become graded maps and we have
Oh(a; @ by) = 9(f(ai)g(br)) = 9(a; ® b),

and hence h is a graded isomorphism. a

Corollary 2.6 If A is trivially graded, for any graded algebra B, then there exists a graded algebra isomor-
phism

M, (A)&B = M, (A) ® B.
Proof. By Corollary 2.2., the homogeneous elements of M, (A) are given by the property MQ = w9MQM.

Therefore assumptions of Theorem 2.5 are satisfied and the graded isomorphism is deduced. O

Corollary 2.7 If A is a graded algebra, then there are graded algebra isomorphisms
(a) M,(F)®A = M, (F) ® A M, (A)
(b) N,(F)&M,(A) = NL.(F) © F,(4) = FI(A).

Proof. We use the fact that F' is trivially graded.

(a) The first isomorphism follows from the above corollary and the second one from the definition of

(b) The first isomorphism follows from (a) and the second one from the definition of the grading on

M, (A). O
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3. Classification of CSGAs

In this section we classify CSGAs and we shall use this classification to determine the structure of
generalized Clifford algebras. This classification will allow us to develop the structure theory of Z,;-central

simple graded algebras in the last section. First we state 2 lemmas:

Lemma 3.1 Let d be any positive integer and let A be a Zg-SGA. If uy is any nonzero homogeneous element
in Ay, then for each t =0,...,d—1 we have

Ay = Z AyugAg.
r+k+£=t (mod d)

Proof. Consider the graded subspace

d—1
L= Z Z ATukAg.

t=0 r+k+¢=t (mod d)

It is a nonzero graded ideal of A. Since A is graded simple it is equal to A = Zf;ol A; and the result
follows. =

Lemma 3.2 Let A be a simple Zy graded algebra with Ay # 0 for some
k> 1.Then Ag = 341 ApAq_i.
Proof. It is obtained at once by considering the graded ideal

d—1
A= ApAg gk + Ar+ o+ Ada,
k=1
which is nonzero by the assumption Ay # 0 for some k > 1. O

Now we are in a position to establish the crucial result in our investigation.

Theorem 3.3 Let A be a CSGA which is not simple as an ungraded algebra.Then Z(A)N Ag = F and A
has a central homogeneous element u of degree
m # 0 (mod d) such that

(i) u'e F

(ii) for each k = mq+r we have Ay = A, ul.
Proof. Since A is not simple, it has a proper ideal J. This ideal cannot contain a nonzero homogeneous
element because otherwise it would contain a nonzero homogeneous ideal and hence A would not be graded
simple. So J contains nonzero nonhomogeneous elements. Pick up one with least number of homogeneous
components, say j = ji1 + jo+ -+ jr € J where 0 # j, € H(A),r > 2 with distinct degrees. By Lemma 3.1.

we have

Ay = Z Arj1 Ay,
k41481 =0(mod d)

which implies
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1= Z agjrar;  a; € A;.
k+1=—87; (mod d)

Therefore J contains a nonzero element
s
u = E a/kja/l: E g a/kjsa/l:1+u2+"'+ur,
k+l=—0871 s=1 k+l=—0j1

with nonzero homogeneous components 1, us, ..., u, of distinct degrees. In particular, dus # 0. We claim first

that uo is central in A. In fact since for each a € H(A) the element
au — ua = (aug — uga) + - - - + (au, — ura)
is contained in J with less than r homogeneous components, it follows that
aQus — U = ... = al, — Upa = 0.
Secondly, ug is not nilpotent, for u5* =0, m >0 would imply that

m—1 m—1 m m—1 m—1
Uy U=1Uy ~ F Uy + Uy UFF - F Uy Uy

is contained in J with fewer than r homogeneous components and the minimality of r would give u’2"_1 =0

and eventually us = 0. Therefore we obtain
0#ud e Z(A)NAy C Z(A) = F,

which establishes Z(A)NAg = F, ud € F and also uy is invertible. Clearly invertible elements in Z(A)NH(A)
form a multiplicative group G and the degree function 0 from this group into the additive group Z4 is a
nontrivial homomorphism since dus # 0. Now let du be a generator of Im 0; then for each k = q0u +r € Zy

we have by Lemma 3.1., that

Ap= Y AaAy= (> AA)u! = Al

s+t=r s+t=r

and the proof is completed. O

The following is an immediate consequence of the theorem.

Corollary 3.4 Let A be a CSGA. Then Z(A) = F if and only if A is central simple as an ungraded algebra.
Further if A has a homogeneous element z € Z(A) of degree 1, then

(a) A= Ao[Z] =Ag® Aoz P - "@Aozd_l,
) Z(A)=FoFz@---@ Fzi1,

(c) Ay is central simple.

It follows from (b) that 2% = a € F, so that Z(A) = F[X]/(X? - a).
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This result can be applied to w-Clifford algebras C' = (ay,---,a,)% defined by generators ej,--- , e,
and relations
ef:ai for i=1,---,n ; eje; =wee; for j>i,
where ay,--- ,a, are nonzero elements of the base field F' and w is a specified primitive d™* root of unity. For

this purpose (see [6]) it is enough to determine the center. Now, an element

2= Ghek, e} ey

of degree k = k1 +---+ky, (mod d) in C is central if and only if ze; =e;z forall i=1,--- n. This shows
that ak,...x, # 0 only if

k1++kn—1+kn =k (mOdd)
byt oot hny+hkn =0 (mod d)
—k1+k3++kn—l+kn =0 (mOdd)
~ki—ky—- - —kp_1+k, =0 (mod d)

—k1—ko---—kp—1 =0 (mod d).
Hence k; = k if i is even and k; = —k if ¢ is odd.Thus Z(C) # F' if and only if n is odd and if
Z(C) =F if n is even.
Corollary 3.4. divides CSGAs into 2 classes. Regarding the cases in the above motivating example of
Clifford algebras, a CSGA is said to be of even type if it is central; equivalently, if it is simple as an ungraded
algebra, it is said to be of odd type.

4. Structure of Z;-CSGAs

To begin with we state the following theorem, which allows us to introduce even and odd type central
simple graded algebras.

Theorem 4.1. Let A be a CSGA, then it has a central homogeneous element z such that its degree 0z = m
is a divisor of d and Z(A), the center of A, is of the form

Z(A)=F@Fz®---& F71

where t =d/m.

Proof. We first note that
Z(A)NAg = Z(A), =F.

Now let C' be the set of nonzero central elements of A. Then for any ¢ € C the ideal cA is a nonzero
graded ideal and hence cA = A, that is, ¢ is invertible. This shows that C is a multiplicative group and the
degree function 0 : C — Zg4 is a homomorphism. Let m be the degree of the generator of the cyclic group C
and let z € C' be such that 0z = m; then each c € C is of the form

¢ = cz 929 where c27% € Z(A)N Ay = F,

that is ¢ € F29¢. Since Z(A) is a graded subalgebra of A and
2t = 2™ ¢ Z(A)N Ay = F, we deduce that Z(A) = F@® Fz @ --- @ Fz'~'. The last statement follows from
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Corollary 3.4. O

For the central element z in the above theorem, 2 extreme cases, 9z = m = 1 or d, are of utmost
importance because it turns out that for generalized Clifford algebras of vector spaces, which are motivating
examples of CSG As, this degree is either 1 or d, according to the vector spaces under consideration being odd
or even dimensional. The same situation occurs in the case that d is a prime number. Taking this into account

we can give the following definition.

Definition 4.2 A central simple graded algebra A is said to be of even type if its center is F, and it is said

to be of odd type if its center is
Z(A):F[Z]:F@Fz@...@de—l,

where z is a homogeneous element of degree 1.
This definition comes from Wall’s paper [10] when d = 2; in Wall’s situation, every central simple graded
algebra is either even or odd, and this is obviously not true in our case.

Now our aim is to describe CSGA s of odd or even type by decomposing them into building block CSGA:s.

Proposition 4.3 If A is a CSGA with a nontrivial grading such that Ag is central simple as ungraded algebra,
then A cannot be of even type.

Proof. Suppose Ap is central simple and Z(A) = F'. Then A is central simple by Corollary 3.4. We know
that C :=Ca(Ap) is graded subalgebra of A. By the double centralizer theorem C' is also central simple and

there is an (ungraded) isomorphism
p:AC— A

so that ¢(ag ® ¢) = agc for all a9 € Ag and ¢ € C'. Therefore C # Cy, Ay = AoCy and
F= Z(Ao) = CA(A()) NAy = Cy.

It follows from this that a homogeneous element h of C is either invertible or nilpotent, for h% € Cy = F. In

the case C} has no invertible elements Cj = 0, because otherwise for any 0 # v € Cy we would get

C=CvC =) CuCy,

s,t

and hence
d—1
F=Co=) CwCa sk

s=0

This implies that CsvCy_s_r # 0 for some s, say avb = a € F. As we indicated above, a and b are either

invertible or nilpotent; if one of them is nilpotent, say a™ = 0, then

0=a"vh=caa™!

implies ™! = 0, and eventually a = 0 which is impossible. That is to say a and b are both invertible, so
that v is also invertible, contradicting our assumption. Now let U be the group of invertible homogeneous

elements of C' and let w € U be of smallest degree r # 0. This r is a divisor of d, for the degree map 0 is a
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homomorphism from U to Zg4, and further for any multiple | = ¢r we have C; = (Ciu=%)u? C Cou? = Ful;

d
T

therefore C; = Fu? and C = F + Fu+ ---+ Fur—'. This contradicts the fact that C is a central F-algebra
and completes the proof. O

Theorem 4.4 Let A be a CSGA of odd type. Then

(i) Ao is central simple as an ungraded algebra;
(i) A= Ap[z] = Ao @ Az @ -+ ® Azt and
Ca(Ag) =F[2] =F @ Fz&---@F291 for some central homogeneous element z of degree 1 such that 2% € F,

which is uniquely determined up to a scalar multiple with these properties;

(iii) There are graded isomorphisms
A= (Ag)@F (Va) = (Ag) ® F(V/a),

where F{(/a) stands for the graded algebra F[z]/{z? — a);
(iv)(a) If z? — a is irreducible over F, then A is central simple over the field F({/a),
(b) If 2 — a has a root in F, then

ZA)ZFx---xF and A2 Ay x -+ x Ap.
N————— ————

d—copies d—copies

Proof. (i) and (ii) Since A is of odd type , Z(A) = F 4+ Fz + --- + Fz%~!. Now for any homogeneous
element h of A we have h = (hz=9")29" € Ay with (hz=9") € (Ap) so that

A= Aglz] = Ao+ Aoz + - + Agz® 1,
showing also that Z(A) = Ca(Ap), and hence
F=2Z(A) = Ao N Z(A) = Z(Ap),
that is to say, Ao is central. As for simplicity, take a nonzero ideal I of Ay and form

J=T+1Tz+ -+ 1241,

This J is a nonzero graded ideal of A and hence it must be equal to A; consequently I = Ag. This proves (i).

To prove the remaining uniqueness part of (ii), we take another element z; € Z(A) N A; with 2 =b € F. We

have z; € Fz and hence z; = cz for some ¢ € F'. Therefore

that is ba~! = ¢¢ € 7.
(iii) The homomorphism from Fz] to Z(A) = F[z] mapping to = to z yields the trivial graded

isomorphism

570



KOC, KURTULMAZ

Since Ag and Z(A) = C4(Ag) = F® Fz® - @ F2%"1 commute and A = Ag[z] = AgZ(A), we obtain the
homomorphism
A= Ay® Z(A)

as an ungraded isomorphism. Since Ag is trivially graded, this isomorphism yields the graded isomorphisms
A= (Ag) ® Z(A) = (A)BRZ(A).

(iv)(a) If the polynomial 2¢ — @ is irreducible then the ring F, ({/a) is a field denoted by F({/a) and
A2 Ay ® F(¥/a). Since Ay is central simple F-algebra and F(/a) is a simple F-algebra with center

Z(A) = F © F({/a) = F({/a),

A is a central simple algebra over F'({/a).

(b) In the case a = ¢? € F'¢, we have
and hence

which implies

To handle the even case we first give a lemma that might be interesting by itself.

Lemma 4.5 Let % —a be an irreducible polynomial over F and let D be a central division F -algebra which
has no subfields isomorphic with F(/a). Then E = F(¥a) ® D is a central division algebra over F(/a).

Proof. We prove the assertion by induction on the number of prime divisors of d. Let d = p1p2 - - - p,, Where
P1,P2,---,Pm are prime numbers. To begin with we suppose m = 1, say d = p. Since xP — a is irreducible,
B = Flx]/{zP — a) is a field and F = B ®p D is central simple algebra over, B, and as such we can write
E = M,.(S) where S is a central division algebra over B. To complete the proof it suffices to show that r = 1.
For this purpose, let s = dimpS and ¢ = dimgpD = dimpFE and let M be the irreducible right E-module

then t = dimpF = r2s. Also we have

t
dimpM = dimgMdimpS =rs = —,
,

which gives
t
dimpM = dimpM dimpB = p?.
On the other hand , dimgpM is a multiple of t = dimpgD so that

dimFM = dlmFD dlmDM
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Thus r must be either 1 or p. If » = p, then ¢t = dimpM implies that M = D as a left D-module. But
z®1 € B® D commutes with 1 ® D so the left multiplication map f by 1® z is a D-linear map on M. This
shows that f € EndpM = Endp(D) = D. Since 2P = a we have f? =a and D° contains a root of z? — a.
This contradicts the assumption of our lemma. Therefore » = 1 and hence T2 S is a central division algebra

over B. Suppose now that our assumption holds in the case where d has less than m prime factors. Letting

di
dr = Pr1Phi2 Pm, = Va and ap = o™

we form the tower
F=FyCF,C---CF,,

where Fj, = F(ay). An easy degree argument shows that each Fj is the splitting field of zP* — ay, over Fj_q
of degree pi and that F} is the splitting field of xP1P2" Pk — g of degree pips - - - pg. Therefore xP1P2"Pk — ¢ is
irreducible over F and by the induction hypothesis Ey = F; ®pg D is a central division algebra over F} for

each k < m. In particular, F,,_ is a central division algebra over Fj,_1, the polynomial xP™ — a is irreducible

over Fy,_1, and we proved above that F,, ®__, E,—1 is a central division algebra over F,, = F(/a). Since
Fr®p,_ 1 Em—1=Fn®p, , (Fm-1®r D)= F, @r D

the proof is completed. O

In the following M, (D) will denote the graded algebra M, (D) by assigning a matrix degree ¢, if all its

degree have i.

Theorem 4.6 Let A be a CSGA over F of even type with a nontrivial grading and let D be a central division
algebra over F such that A= M, (D) as ungraded algebras and characteristic of F does not divide d. Then

Z(Ag) =Ca(Ag)=FoFz@®-- @ Fz%!

for some z € Z(Ag) with 2 =c € F and the following statements hold:
(i) If c € F?, then there is a graded space V = @f:—ol Vi such that
(a) A= EndV&(D) (as graded algebras),
(b) Ao =M, (D) X ---xM,, , (D) where r;=dimV;,i=0,...,d—1,
(¢) Z(Ag) 2 F x---xF.
—_—
d—copies
(ii) If 2 — c is irreducible over F and D has a subfield isomorphic with F({/c) = Z(Ag), then there

exists a grading on D such that
(a) A~ M,(D)=M,(F)®D (as graded algebras),
(b) Ao = My (D),
(c) Ap is central simple over Z(Ayp).
(iii) If 2 — ¢ is irreducible over F but D has no subfields isomorphic to F(/c) = Z(Ay), then
(a) n=dm and A= (M,,(D))®(a, 1)81) (as graded algebras),
(b) A = M, (D) & F({2),
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(c) Ap is central simple over Z(Ayp).

Proof. We note first of all that since A is an even type CSGA, it is central simple as an ungraded algebra
and hence by the Noether-Skolem theorem the main automorphism ¢ is an inner automorphism determined by

an invertible element z of A. Writing
p(a) =z"taz for ac€A

and using the fact that ¢? is identity we obtain z¢ € Z(A) = F. Thus 2% € F. Further for an element
a=ap+a;+---+ag_1 in A with ar € Ay, we have a € Ca(z) if and only if ¢(a) = a and this is the case if
and only if @ = ag. Thus we obtain
Flz] C Z(Ap) and Ag=Ca(z)
and consequently
Z(Ao) = CA(A()) NAg = CA(A()) n CA(Z) = CA(AO),

since z € Ca(z) = Ao.

(i) Assume ¢ = b" for some b € F. Then replacing z by 7 we may assume without loss of generality

that 2¢ = 1. Letting

=
6=-) (W2l i=0,....,d—1
d
1=0
and using
d—1 . )
Zwik _ { d if 1=10
0 if 1<i<d-—1,
k=0
we see that €g,...,€e4_1 are orthogonal idempotents of A. They also satisfy
d—1 d—1
e, =1 and Zw_%j = z.
i=0 §=0
If we fix an isomorphism ¢ : A — M, (D) and write E; = ¢(¢;) we obtain orthogonal idempotents

Eo, Ey,...,Eq—1 in M, (D). Tt is well known (see for example [5], p. 62) that there exists an invertible matrix
P € M,,(D) such that the matrices P~1E;P are orthogonal idempotents:

P7'E;P = diag(0,...,0; 1,1,...,1; 0,...,0)

h\,.._/
T; —Ccopies
for which
d—1
ZP‘lEiP: I and ro+ri+---+7rq1=n.
1=0

Thus considering the composition 6 of the map ¢ and the inner automorphism of M,, (D) determined by P
we get the image 6(z) = Q as the diagonal matrix whose diagonal blocks are I,,,w I, ,...,w™ %I where

I, stands for the ry x 7 identity matrix. Since we have

A = {a € Al $(a) = wa} = {a € A| az = w*za},
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the isomorphism 6 : A — M, (D) satisfies
0(Ay) = {M € M,,(D)|MQ = w*QM}.

Using the building block algebra End(V) constructed by Corollary 2.2. we can say that 6 provides a graded
isomorphism between A and M, (D) = End(V)&(D) where V is a graded space with homogeneous components

V; of dimension r; and that

Ao =M, (D) x---xM,, , (D) and Z(A))=Fx---xF.
————

d—copies

d

As for the cases where 2% — ¢ is irreducible over F' and the subalgebra F'[z] is a field, and hence applying the

double centralizer theorem to the central simple F-algebra A, and is a simple subalgebra F[z], we see that
Ag = Ca(z) = Ca(F|z]) is simple and its center is Z(Ag) = Ca(Ap) = F|[z].

(ii) In the case Z(Ag) = F[z] is isomorphic to a subfield of the matrix algebra M, (D), it contains a
scalar matrix (I with ¢ € D such that F[(] & F[z] & F[p(z)] where ¢ is the fixed isomorphism between A
and M, (D). Thus by the Noether-Skolem theorem there is an inner isomorphism ¢ of M, (D). Let 6 = ¢,
we have 0(z) = (I. Since A, = {a € Alaz = w*za} , § becomes a graded isomorphism with respect to the
grading of M, (D) induced by the inner automorphism associated with I according to Corollary 2.2. In this
grading of M, (D), a matrix M is homogeneous of degree k if and only if M (¢I) = w*(¢I)M and, equivalently,
M;;¢ = wF¢M;; for all 4, j. This shows that (M, (D)) = M,,(Dx); k=0,...,d—1 if D is regarded as the
graded algebra with grading determined by the inner automorphism associated with ( € D. In particular, we
have Ap = (M,,(D))o = M,,(Dy), a central simple algebra over its center Z(Ay).

(iii) In the case Z(Ag) = Fz] is a field that cannot be embedded into D, the irreducible polynomial
2% —c has no root in the central division algebra D. It follows from Lemma 4.5. that E = F[2]®p D is a central
division algebra over F[z]. Let V' be an irreducible right module over the central simple algebra A = M, (D).
Then by the Wedderburn-Artin Theorem, D = Enda(V), V is a left vector space over D naturally and
right vector space over D and also over E°P with the right action given by v(}_b; ® d;) = > d;vb; where
d; € D,b; € F|z]. Letting m = dimgV , this yields

n =dimpV =dimpF = dimp(F[z])dimgV = dm

and therefore
M, (D) = My, (D) = My (F) @ M,, (D).

This gives an isomorphism ¢ from A to My(F) ® M,, (D). On the other hand the latter contains an element
¢ ®1 where

0 0 0 ¢
w0 0 0

¢= 0
0 ... 0 wHl g

such that ((®1)? = c. It follows from My (F)®M,, (D) containing 2 isomorphic subfields F(¢(z)) and F(¢(®1)

that the isomorphism between them can be extended to an inner automorphism by the Noether-Skolem theorem.
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Considering this inner automorphism with ¢ above, we obtain an isomorphism 6 from A onto My (F)®@M,, (D)
such that 6(z) = ( ® 1 and it becomes a graded isomorphism if the gradings are determined by z and (® 1,
respectively. The grading of A is known to be determined by z, so it is enough to give a grading to the

second algebra by (®1. It is easy to verify that with this grading, the algebra becomes graded isomorphic with
(a, 1)81) ® (M, (D)) since the second factor is trivially graded. The rest is obvious. O

5. Application to generalized Clifford algebras

As an immediate consequence of Theorem 4.4. and 4.6. we can give a complete description of generalized
Clifford algebras. In fact, let V = Fe;® Fea®- - - Fe,, be a vector space with an ordered basis {ey,...,e,} and

let C(V) = (aq,.. .,an)&d) be the generalized Clifford algebra associated with V', that is, the algebra generated

by e1,...,e, subject to the relations

ed

i =a; and eje; =weje; when j >4 where aq,a0,...,a, € F.

We have

kil
(elll 6122 .. ,ezl)(ellﬁ 6152 .. ,efln) _ wEKJ' ellﬁ-i-ll €§2+l2 .. ,efln-i'ln

kili—l;k;
Lyt 11 12 l

=whisl et ey e (el e en),

which yields that C(V) is a CSGA with Jde; = 1, and that

_ eg_l)oeé_l)l . (1)1

z en is a central element of degree 1 or 0 according as n = dim(V) is odd or even,

respectively. It satisfies the polynomial z¢ — a with

a= (—1)m(d_1)a§_1)0aé_1)1 o -a%_l)nil where m is the integral part of 5. Consequently Theorem 4.4. and 4.6.

yield the following structure theorems.

Theorem 5.1 Let C = C(V) be the generalized Clifford algebra of a vector space V' of odd dimension
n=2m+ 1 and let Co = Cy(V) be its subalgebra consisting of homogeneous elements of degree zero. Then

(i) Coy is central simple as an ungraded algebra;
(i) C =Colz] = Co @ Coz @ -+ ® Cpz¥ ! and Ca(Cp) = F[z] = FO Fz@ -+ ® F297! where 2 =
eregt e e, and 24 = a = (1) Vajayt - atan;

(iii) There are graded algebra isomorphisms
C = (Co)®F (Ya) = (Co) ® F(/a)

where F({/a) stands for the graded algebra F[x]/(x? — a);
(iv)(a) If % — a is irreducible over F, then C is central simple over the field F(/a);
(b) If % — a has a root in F then

Z(C)Z2Fx---xF and C=ZCyx---xC(Cj.
———— —_——
d—copies d—copies

Proof. It follows from Theorem 4.4. and the facts indicated just above. O
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Theorem 5.2 Let C = C(V) be the generalized Clifford algebra of a vector space V' of even dimension
n = 2m and let Cy = Co(V') be its subalgebra consisting of homogeneous elements of degree 0. Then C is a
central simple algebra over F, say C =2 My(D) (as ungraded algebras) for some central division algebra D over
F,t=d°, and

Z(C)=F@Fz@®-- @ Fz4 1,

where
z = 6162_1 .- -en_le;I and 24 =a = (—1)m(d_1)a1a2_1 .- -an_la;1
and the following statements hold:
(i) If a € F? then we have
(a) C = My(D) (as graded algebras) where t is a power of d;
(b) Co = My(D) x --- x My(D) where r =1;
(¢) Z(Co) 2 F x---x F.
d—copies
(ii) If 2% — a is irreducible over F and D has a subfield isomorphic with F({/a) = Z(Ao), then there
exists a grading on D such that
(a) C =M, (D) =M, (F)®D (as graded algebras),
(b) Co = M, (Dy),
(c) Cy is central simple over F({a).
(iii) If 2% — a is irreducible over F but D has no subfields isomorphic to F(/a) = Z(Ao), then
(a) n=dm and C = (M,,(D))®(a, 1)81) (as graded algebras),
(b) Co = My (D) & F({/a),
(c) Cy is central simple over F({/a).
Proof.  All we have to show is that ¢ = d® and that the assertion (i)—(b) holds. The rest will follow
from Theorem 4.6. and the facts indicated just above. The first of these is obtained at once from dim(C) =
t2dim(D) = d™ (see [6]). As for the second one, letting a = b%,b € F, and z = 7 we see from the proof of
Theorem 4.6.(i) that the elements

¥
L

€; =

(W i=0,...,d-1

IS
T
(=)

are central orthogonal idempotents such that eg+---+ €41 = 1 and hence the algebra Cj is semi-simple with
simple components Cge;. On the other hand for each fixed pair ¢, j, the linear map ¢ on V sending e; to
w?T%e; and fixing all other e extends to a graded automorphism of C' and this automorphism of Cy sending

to € to €;; thus it gives an isomorphism between Cye; and Cope;. Now by Theorem 4.6.(i) we have
Co = M, (D) x---x M,, (D)

and we have just proven that the simple components M, (D) are isomorphic, so that r; are equal; namely, they

are equal to r = g. O
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