
Turk J Math
36 (2012) , 560 – 577.
c© TÜBİTAK
doi:10.3906/mat-1011-535

Structure theory of central simple Zd-graded algebras

Cemal Koç, Yosum Kurtulmaz

Abstract

This paper investigates the structure theory of �d- central simple graded algebras and gives the complete

decomposition into building block algebras. The results are also applied to generalized Clifford algebras,

which are motivating examples of �d-central simple graded algebras.
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1. Introduction

Central simple Z2 -graded algebras were introduced and studied by Wall in [10]. Brauer equivalence
classes of central simple Z2 -graded algebras form an abelian group that is usually called the Brauer-Wall group.
Knus [7] has generalized the results of Wall, replacing the grading group Z2 by a finite abelian group G . His
notion of central simple graded algebra not only depends on the base field F and the grading group G , but
also on the choice of a symmetric bilinear map G × G → F ∗ . In this paper, we are interested in the case
where G is the cyclic group of order d , and F contains a primitive d -th root ω of 1. Symmetric bilinear

maps G × G → F ∗ are then in bijective correspondence with the d−th root of 1, and we choose the bilinear 1
map corresponding to ω . The corresponding Brauer group has been determined completely in the case where
d is a primary number, see [1, Prop. 3.9]. Central simple Zd -graded algebras have also been considered in [9].

Other results on the Brauer group of Knus may be found in [2] and [3]. We would like to point out that the
construction due to Knus is only the first in a long list of generalizations that appeared in the literature, where
one considers algebras with actions and/or grading by groups and even Hopf algebra, and a survey can be found

in [4]. Most results in the literature focus on the Brauer group, that is, central simple graded algebras are
studied up to Brauer equivalence. In this note, we develop a decomposition theory for the algebras themselves.
At some places, there is a partial overlap with the results in the literature, but, on the other hand, our methods
are elementary and self-contained.

Throughout this paper, F will stand for a field containing ω , a primitive dth root of unity and d ≥ 2, a
fixed integer. By an algebra we shall mean a finite dimensional associative algebra with identity over the field
F. By a graded algebra A , we shall mean a Zd -graded algebra,

A = A0 ⊕ A1 ⊕ · · · ⊕ Ad−1,
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KOÇ, KURTULMAZ

where the suffices are integers mod d , such that AiAj ⊆ Ai+j for all i, j ∈ Zd . For any k ∈ Zd , each

a ∈ Ak is said to be homogeneous of degree k and written ∂a = k ; the set
d−1⋃
k=0

Ak of all homogeneous

elements is denoted by H(A). A graded subspace V of a graded algebra is a subspace that can be expressed as

V =
∑d−1

i=0 (V ∩Ai). A subalgebra (respectively an ideal) of A is said to be graded if it is graded as a subspace.

For example, for any H ⊂ H(A) the centralizer CA(H) is a graded subalgebra and the ideal 〈H〉 generated

by H is a graded ideal. In particular the center Z(A) is a graded subalgebra. When A has no proper graded

ideals, it is called a simple graded algebra (SGA). A map ϕ : A → B is called a graded homomorphism if

ϕ is a homomorphism such that ϕ(Ak) ⊂ Bk for all k ∈ Zd. For any graded algebra the unique algebra

homomorphism for which φ(h) = ω∂hh where h ∈ H(A) is a graded automorphism and it is called the main

automorphism (associated with ω ). The graded center Ẑ(A) of the graded algebra is defined as the subalgebra

spanned by homogeneous elements c ∈ H(A) such that ch = ω∂c∂hhc for all h ∈ H(A). When Ẑ(A) = F

the graded algebra is called a central graded algebra (CGA). Our main concern will be central simple graded

algebras (CSGA)s. In the next section, we shall establish some results related with graded tensor products
of CSGAs and describe some examples that we are going to use as building block algebras in the structure
theorems of the last section.

2. Building block algebras and their combinations

To begin with, we give an elementary proposition to set up a grading on a given algebra.

Proposition 2.1 Let A be an algebra, φ be an algebra automorphism of A and let

Ak = {a ∈ A|φ(a) = ωka}; k = 0, 1, . . . , d− 1.

If A =
∑d−1

k=0 Ak , then A becomes a Zd -graded algebra with homogeneous components Ak. Further in the

case where φ is an inner automorphism determined by z , the subalgebra A0 is the centralizer of z in A and

Ẑ(A) = (Z(A))0 .

Proof. The subsets Ak are the eigenspaces of φ belonging to the eigenvalues ωk and hence A =
∑d−1

k=0 Ak

is a direct sum. Considering φ as a ring homomorphism we see that AkAl ⊆ Ak+l . As for the last statement
we note first that if
φ(a) = z−1az for all a ∈ A , then a ∈ A0 if and only if az = za , that is A0 = CA(z), in particular zεA0. Further,

c is a homogeneous element contained in Ẑ(A) only if cz = ω∂c∂zzc = zc. This implies that c ∈ A0 ∩ Z(A),

that is to say, Ẑ(A) = Z(A)0. �

Corollary 2.2 Every inner automorphism φΩ of Mn(F ) determined by a diagonal n × n matrix Ω whose

diagonal entries are the dth roots of unity in F induces a grading on Mn(F ) for which Mn(F ) is a CSGA.

The same is also true for Mn(F ) and the matrix
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KOÇ, KURTULMAZ

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 a
ω−1 0 · · · 0 0

0
. . .

...
...

. . . . . .
...

0 · · · 0 ω−d+1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

for any a ∈ F.

Proof. For the usual matrix units Eij we have Ω−1(Eij)Ω = ω−li+lj (Eij) where ωli and ωlj are the

ith and the jth diagonal entries of Ω, respectively. Since Mn(F ) =
∑
i,j

FEij , by the previous proposition

φΩ induces a grading on Mn(F ) whose kth homogeneous component is
∑

lj−li=k

FEij and graded center is

Ẑ(Mn(F )). Since the matrix algebra is simple as an ungraded algebra, it is a CSGA . The last statement

follows from the equality Ω = E−1
1 E2 where

E1 =

⎡
⎢⎢⎢⎣

1
ω 0

. . .
0 ωd−1

⎤
⎥⎥⎥⎦ and E2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 a
1 0 · · · 0 0

0
. . .

...
...

. . . . . .
...

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For (as algebra) Md(F ) is generated by E1, E2 satisfying E1E2 = ωE2E1, consequently Ω−1E1Ω = ωE1

and Ω−1E2Ω = ωE2 . �

The above proposition and its corollary allow us to exhibit building block algebras that will be used to
describe all CSGAs:

(1) For any algebra A , φ= identity gives the grading, A0 = A,

A1 = · · · = Ad−1 = 0. This grading is said to be trivial and the algebra A with this trivial grading is denoted

by (A). If A is central simple as an ungraded algebra then (A) becomes a CSGA .

(2) If D is a central division algebra over F which contains an element z for which D =
∑d−1

k=0 Dk where

Dk = {a ∈ D|z−1az = ωka} , then D is a CSGA.

(3) For any nonzero element a ∈ F the factor algebra K of F [x] by the ideal generated by xd − a is

a graded algebra corresponding to the F -automorphism φ for which φ(x) = ωx. It is a CSGA when a �= 0.
When a = 0 the algebra is neither graded central nor graded simple.

(4) The graded algebra Mn(F ) obtained from the inner automorphism associated with

Ω =

⎡
⎢⎢⎢⎣

1
ω 0

. . .
0 ωn−1

⎤
⎥⎥⎥⎦

has homogeneous elements M of degree k whose (i, j )-entry is Mij = 0 when j − i is not congruent to

k (mod d). This grading is the generalized form of the checker-board grading of Mn(F ) and this graded algebra
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is denoted by M̂n(F ). This can be extended to M̂n(A) by means of the identification Mn(A) = Mn(F ) ⊗ A

for any graded algebra A.

(5) When n = d , the matrix algebra Md(F ) with grading associated with

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 a
ω−1 0 · · · 0 0

0
. . .

...
...

. . . . . .
...

0 · · · 0 ω−d+1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

is graded isomorphic to the generalized quaternion algebra (a,1
F

)ω (see [6]).

After constructing CSGA building blocks, we establish certain results to combine them conveniently, by

means of graded tensor products, to produce new CSGAs. The graded tensor product A⊗̂B of the graded
algebras A and B is the same as A ⊗ B as a vector space and it has multiplication given by

(a ⊗ b)(c ⊗ d) = ω∂b∂c(ac) ⊗ (bd)

for a, c ∈ H(A) and b, d ∈ H(B) .

Proposition 2.3 If A and B are central graded algebras so is A⊗̂B.

Proof. Let γ =
∑m

i=1 ai ⊗ bi be a homogeneous generator of Ẑ(A⊗̂B) and suppose that the bi are linearly

independent. Then all the degrees ∂ai + ∂bi are equal and

γ(a ⊗ b) = ω∂γ∂(a⊗̂b)(a ⊗ b)γ

for all a ∈ H(A), b ∈ H(B). Taking b = 1 we obtain

m∑
i=1

ω∂bi∂aaia ⊗ bi =
m∑

i=1

ω(∂ai+∂bi)∂aaai ⊗ bi

for all a ∈ H(A).

Linear independence of the bi implies that ai ∈ Ẑ(A) for all i. Since A is assumed to be central we

deduce that ai ∈ F for all i and hence γ = 1 ⊗ b′ where b′ = a1b1 + · · ·+ ambm. Substituting this γ into the
above equality with a = 1, it follows that

(1 ⊗ b′)(1 ⊗ b) = ω∂b
′
∂b(1 ⊗ b)(1 ⊗ b′)

for all b ∈ H(B) implying that 1⊗ bb′ = ω∂b
′
∂b1 ⊗ b′b and hence b′ ∈ Ẑ(B) = F. Therefore γ ∈ F (1⊗ 1), that

is Ẑ(A⊗̂B) = F as asserted. �

We remark that the following result already appears in [7, Prop. 2.1], but that the proof presented here
is different, and that it is given for the sake of completeness.

Theorem 2.4 If A is a CSGA and B is a SGA, then A⊗̂B is a SGA. In particular if A and B are both

CSGAs, then so is A⊗̂B.
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Proof. The second statement follows at once from the first one by Proposition 2.3. so that it is sufficient to

prove the first statement. To this end take a nonzero graded ideal I of A⊗̂B . It contains a nonzero homogeneous

element. Pick up one of these that has the form α =
∑r

i=1 ai⊗bi with ai ∈ H(A) bi ∈ H(B) where r is as small

as possible. We note that the ai (respectively the bi ) are linearly independent and ∂ai + ∂bi is independent of

i . Since A is a CSGA, the graded ideal generated by a1 is A and, hence, there exist a
′
k, a

′′
k ∈ H(A) such that

1 =
∑m

k=1 a
′
ka1a

′′
k with ∂a

′
k + ∂a1 + ∂ a

′′
k ≡ 0 (mod d) and this yields an element

α
′
=

m∑
k=1

ω−∂b1∂a
′′
k (a

′
k ⊗ 1) α(a

′′
k ⊗ 1) = 1 ⊗ b1 +

m∑
k=1

r∑
i=2

ω−∂b1∂a
′′
k +∂bi∂a

′′
k (a

′
kaia

′′
k ⊗ bi).

We observe that this element of I is of the form

α̃ = 1 ⊗ b1 +
r∑

i=2

∼

ai ⊗bi

where the ãi are homogeneous and ∂ãi + ∂bi = ∂b1 for all i. Since the bi are linearly independent we have
∼

α �= 0. The same process applied to b1 yields the element

α0 = 1 ⊗ 1 +
r∑

i=2

∼

ai ⊗
∼

bi

of I where the
∼

ai and the
∼

bi are homogeneous such that
∼

∂ai +∂
∼

bi= 0 and

{1,
∼

a1, . . . ,
∼

ar } is linearly independent. Now for each aεH(A) we obtain

(a ⊗ 1)α0 − α0(a ⊗ 1) =
r∑

i=2

(
∼

aai −ω∂
∼

bi∂a ∼

ai a)⊗
∼

bi

contained in I. The minimality of r forces

∼

aai −ω∂
∼

bi∂a ∼

ai a = 0 , i = 2, . . . , r,

and it follows from
∼

∂ai +∂
∼

bi= 0 that

∼

ai a = ω∂
∼

ai∂a ∼

aai , i = 2, . . . , r,

that is to say,
∼

ai∈ Ẑ(A) = F, contradicting linear independence of {1,
∼

a2, . . . ,
∼

ar } unless r = 1. Therefore r = 1

and α0= 1⊗ 1 is contained in I. Thus we proved that any nonzero graded ideal of A⊗̂B contains its identity

element, that is A⊗̂B is a SGA . �

Theorem 2.5 Let A and B be finite dimensional graded algebras. If there exists an invertible element z ∈ A

such that az = ω∂aza for all homogeneous elements a ∈ A , then A⊗̂B and A ⊗B are isomorphic. Further, if
z ∈ A0 this isomorphism is a graded isomorphism.
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Proof. We use the universal property of ordinary tensor product. To this end we construct homomorphisms

f : A �→ A⊗̂B and g : B �→ A⊗̂B so that
f(a)g(b) = g(b)f(a) for all a ∈ A and b ∈ B from which the existence of a homomorphism

h : A ⊗ B �→ A⊗̂B

satisfying h iA = f and h iB = g is deduced:

A
iA→ A ⊗ B

iA← B.
f↘ ↓ h g↙

A⊗̂B

In fact, define f(a) = a ⊗ 1 for all a ∈ A and

g(b) = g(b0 + b1 + · · ·+ bd−1) = 1 ⊗ b0 + z ⊗ b1 + · · ·+ zd−1 ⊗ bd−1

for bk ∈ Bk as the required homomorphisms. For ai ∈ Ai and bk ∈ Bk we see that

f(ai)g(bk) = (ai ⊗ 1)(zk ⊗ bk) = aiz
k ⊗ bk = ωikzkai ⊗ bk = (zk ⊗ bk)(ai ⊗ 1) = g(bk)f(ai),

which implies our requirement f(a)g(b) = g(b)f(a) for all a ∈ A and b ∈ B. Thus the ordinary homomorphism

h : A⊗B �→ A⊗̂B is established. This homomorphism is surjective since ai ⊗ bk = h(aiz
−k)for all ai ∈ Ai and

bk ∈ Bk. Comparing dimensions we see that h is an isomorphism. Finally in the case z ∈ A0 , the maps f and
g above become graded maps and we have

∂h(ai ⊗ bk) = ∂(f(ai)g(bk)) = ∂(ai ⊗ bk),

and hence h is a graded isomorphism. �

Corollary 2.6 If A is trivially graded, for any graded algebra B, then there exists a graded algebra isomor-
phism

M̂r(A)⊗̂B ∼= M̂r(A) ⊗ B.

Proof. By Corollary 2.2., the homogeneous elements of M̂r(A) are given by the property MΩ = ω∂MΩM.

Therefore assumptions of Theorem 2.5 are satisfied and the graded isomorphism is deduced. �

Corollary 2.7 If A is a graded algebra, then there are graded algebra isomorphisms

(a) M̂r(F )⊗̂A ∼= M̂r(F ) ⊗ A ∼= M̂r(A)

(b) M̂r(F )⊗̂M̂s(A) ∼= M̂r(F ) ⊗ M̂s(A) ∼= M̂rs(A).

Proof. We use the fact that F is trivially graded.

(a) The first isomorphism follows from the above corollary and the second one from the definition of

M̂n(A).

(b) The first isomorphism follows from (a) and the second one from the definition of the grading on

M̂n(A). �
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3. Classification of CSGAs

In this section we classify CSGAs and we shall use this classification to determine the structure of
generalized Clifford algebras. This classification will allow us to develop the structure theory of Zd -central
simple graded algebras in the last section. First we state 2 lemmas:

Lemma 3.1 Let d be any positive integer and let A be a Zd -SGA. If uk is any nonzero homogeneous element
in Ak , then for each t = 0, . . . , d− 1 we have

At =
∑

r+k+�≡t (mod d)

ArukA�.

Proof. Consider the graded subspace

L =
d−1∑
t=0

∑
r+k+�≡t (mod d)

ArukA�.

It is a nonzero graded ideal of A. Since A is graded simple it is equal to A =
∑d−1

t=0 At and the result

follows. �

Lemma 3.2 Let A be a simple Zd graded algebra with Ak �= 0 for some

k ≥ 1.Then A0 =
∑d−1

k=1 AkAd−k.

Proof. It is obtained at once by considering the graded ideal

A =
d−1∑
k=1

AkAd−k + A1 + ... + Ad−1,

which is nonzero by the assumption Ak �= 0 for some k ≥ 1. �

Now we are in a position to establish the crucial result in our investigation.

Theorem 3.3 Let A be a CSGA which is not simple as an ungraded algebra.Then Z(A) ∩ A0 = F and A

has a central homogeneous element u of degree
m �≡ 0 (mod d) such that

(i) ud ∈ Ḟ

(ii) for each k = mq + r we have Ak = Aru
q.

Proof. Since A is not simple, it has a proper ideal J. This ideal cannot contain a nonzero homogeneous
element because otherwise it would contain a nonzero homogeneous ideal and hence A would not be graded
simple. So J contains nonzero nonhomogeneous elements. Pick up one with least number of homogeneous
components, say j = j1 + j2 + · · ·+ jr ∈ J where 0 �= jk ∈ H(A), r ≥ 2 with distinct degrees. By Lemma 3.1.
we have

A0 =
∑

k+l+∂j1≡0(mod d)

Akj1Al,

which implies
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1 =
∑

k+l≡−∂j1(mod d)

akj1al; ai ∈ Ai.

Therefore J contains a nonzero element

u =
∑

k+l=−∂j1

akjal =
r∑

s=1

∑
k+l=−∂j1

akjsal = 1 + u2 + · · ·+ ur,

with nonzero homogeneous components 1, u2, . . . , ur of distinct degrees. In particular, ∂u2 �= 0. We claim first
that u2 is central in A. In fact since for each a ∈ H(A) the element

au − ua = (au2 − u2a) + · · ·+ (aur − ura)

is contained in J with less than r homogeneous components, it follows that

au2 − u2a = . . . = aur − ura = 0.

Secondly, u2 is not nilpotent, for um
2 = 0, m > 0 would imply that

um−1
2 u = um−1

2 + um
2 + um−1

2 u3 + · · ·+ um−1
2 ur

is contained in J with fewer than r homogeneous components and the minimality of r would give um−1
2 = 0

and eventually u2 = 0. Therefore we obtain

0 �= ud
2 ∈ Z(A) ∩A0 ⊂ Ẑ(A) = F,

which establishes Z(A)∩A0 = F, ud
2 ∈ Ḟ and also u2 is invertible. Clearly invertible elements in Z(A)∩H(A)

form a multiplicative group G and the degree function ∂ from this group into the additive group Zd is a
nontrivial homomorphism since ∂u2 �= 0. Now let ∂u be a generator of Im ∂ ; then for each k = q∂u + r ∈ Zd

we have by Lemma 3.1., that

Ak =
∑

s+t=r

Asu
qAt = (

∑
s+t=r

AsAt)uq = Aru
q

and the proof is completed. �

The following is an immediate consequence of the theorem.

Corollary 3.4 Let A be a CSGA. Then Z(A) = F if and only if A is central simple as an ungraded algebra.

Further if A has a homogeneous element z ∈ Z(A) of degree 1, then

(a) A = A0[z] = A0 ⊕ A0z ⊕ · · · ⊕ A0z
d−1,

(b) Z(A) = F ⊕ Fz ⊕ · · · ⊕ Fzd−1,

(c) A0 is central simple.

It follows from (b) that zd = a ∈ F , so that Z(A) ∼= F [X]/(Xd − a).
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This result can be applied to ω -Clifford algebras C = (a1, · · · , an)d
ω defined by generators e1, · · · , en

and relations
ed
i = ai for i = 1, · · · , n ; ejei = ωeiej for j > i,

where a1, · · · , an are nonzero elements of the base field F and ω is a specified primitive dth root of unity. For
this purpose (see [6]) it is enough to determine the center. Now, an element

z =
∑

ak1···knek1
1 · · ·ekn

n

of degree k ≡ k1 + · · ·+ kn (mod d) in C is central if and only if zei = eiz for all i = 1, · · · , n. This shows
that ak1···kn �= 0 only if

k1 + · · ·+ kn−1 + kn ≡ k (mod d)
k2 + · · ·+ kn−1 + kn ≡ 0 (mod d)

−k1 + k3 + · · ·+ kn−1 + kn ≡ 0 (mod d)
.......

−k1 − k2 − · · · − kn−1 + kn ≡ 0 (mod d)
−k1 − k2 · · · − kn−1 ≡ 0 (mod d).

Hence ki ≡ k if i is even and ki ≡ −k if i is odd.Thus Z(C) �= F if and only if n is odd and if

Z(C) = F if n is even.

Corollary 3.4. divides CSGAs into 2 classes. Regarding the cases in the above motivating example of
Clifford algebras, a CSGA is said to be of even type if it is central; equivalently, if it is simple as an ungraded
algebra, it is said to be of odd type.

4. Structure of Zd -CSGAs

To begin with we state the following theorem, which allows us to introduce even and odd type central
simple graded algebras.

Theorem 4.1. Let A be a CSGA , then it has a central homogeneous element z such that its degree ∂z = m

is a divisor of d and Z(A), the center of A , is of the form

Z(A) = F ⊕ Fz ⊕ · · · ⊕ Fzt−1,

where t = d/m.

Proof. We first note that
Z(A) ∩ A0 = Ẑ(A)0 = F.

Now let C be the set of nonzero central elements of A . Then for any c ∈ C the ideal cA is a nonzero
graded ideal and hence cA = A , that is, c is invertible. This shows that C is a multiplicative group and the
degree function ∂ : C → Zd is a homomorphism. Let m be the degree of the generator of the cyclic group C

and let z ∈ C be such that ∂z = m ; then each c ∈ C is of the form

c = cz−∂cz∂c where cz−∂c ∈ Z(A) ∩ A0 = F,

that is c ∈ Fz∂c . Since Z(A) is a graded subalgebra of A and

zt = zd/m ∈ Z(A) ∩ A0 = F , we deduce that Z(A) = F ⊕ Fz ⊕ · · · ⊕ Fzt−1. The last statement follows from
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Corollary 3.4. �

For the central element z in the above theorem, 2 extreme cases, ∂z = m = 1 or d , are of utmost
importance because it turns out that for generalized Clifford algebras of vector spaces, which are motivating
examples of CSGAs, this degree is either 1 or d , according to the vector spaces under consideration being odd
or even dimensional. The same situation occurs in the case that d is a prime number. Taking this into account
we can give the following definition.

Definition 4.2 A central simple graded algebra A is said to be of even type if its center is F, and it is said
to be of odd type if its center is

Z(A) = F [z] = F ⊕ Fz ⊕ · · · ⊕ Fzd−1,

where z is a homogeneous element of degree 1.
This definition comes from Wall’s paper [10] when d = 2 ; in Wall’s situation, every central simple graded
algebra is either even or odd, and this is obviously not true in our case.

Now our aim is to describe CSGAs of odd or even type by decomposing them into building block CSGAs.

Proposition 4.3 If A is a CSGA with a nontrivial grading such that A0 is central simple as ungraded algebra,
then A cannot be of even type.

Proof. Suppose A0 is central simple and Z(A) = F . Then A is central simple by Corollary 3.4. We know

that C := CA(A0) is graded subalgebra of A . By the double centralizer theorem C is also central simple and

there is an (ungraded) isomorphism
ϕ : A0 ⊗ C → A

so that ϕ(a0 ⊗ c) = a0c for all a0 ∈ A0 and c ∈ C . Therefore C �= C0 , Ak = A0Ck and

F = Z(A0) = CA(A0) ∩A0 = C0.

It follows from this that a homogeneous element h of C is either invertible or nilpotent, for hd ∈ C0 = F. In
the case Ck has no invertible elements Ck = 0, because otherwise for any 0 �= v ∈ Ck we would get

C = CvC =
∑
s,t

CsvCt,

and hence

F = C0 =
d−1∑
s=0

CsvCd−s−k.

This implies that CsvCd−s−k �= 0 for some s , say avb = α ∈ Ḟ . As we indicated above, a and b are either
invertible or nilpotent; if one of them is nilpotent, say am = 0, then

0 = amvb = αam−1

implies am−1 = 0, and eventually a = 0 which is impossible. That is to say a and b are both invertible, so
that v is also invertible, contradicting our assumption. Now let U be the group of invertible homogeneous
elements of C and let u ∈ U be of smallest degree r �= 0. This r is a divisor of d , for the degree map ∂ is a
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homomorphism from U to Zd , and further for any multiple l = qr we have Cl = (Clu
−q)uq ⊂ C0u

q = Fuq;

therefore Cl = Fuq and C = F + Fu + · · ·+ Fu
d
r −1. This contradicts the fact that C is a central F -algebra

and completes the proof. �

Theorem 4.4 Let A be a CSGA of odd type.Then

(i) A0 is central simple as an ungraded algebra;

(ii) A = A0[z] = A0 ⊕ A0z ⊕ · · · ⊕ A0z
d−1 and

CA(A0) = F [z] = F ⊕Fz ⊕ · · ·⊕Fzd−1 for some central homogeneous element z of degree 1 such that zd ∈ Ḟ ,

which is uniquely determined up to a scalar multiple with these properties;

(iii) There are graded isomorphisms

A ∼= (A0)⊗̂F 〈 d
√

a〉 ∼= (A0) ⊗ F 〈 d
√

a〉,

where F 〈 d
√

a〉 stands for the graded algebra F [x]/〈xd − a〉;
(iv)(a) If xd − a is irreducible over F , then A is central simple over the field F ( d

√
a),

(b) If xd − a has a root in F , then

Z(A) ∼= F × · · · × F︸ ︷︷ ︸
d−copies

and A ∼= A0 × · · · × A0︸ ︷︷ ︸
d−copies

.

Proof. (i) and (ii) Since A is of odd type , Z(A) = F + Fz + · · · + Fzd−1. Now for any homogeneous

element h of A we have h = (hz−∂h)z∂h ∈ A0 with (hz−∂h) ∈ (A0) so that

A = A0[z] = A0 + A0z + · · ·+ A0z
d−1,

showing also that Z(A) = CA(A0), and hence

F = Ẑ(A) = A0 ∩ Z(A) = Z(A0),

that is to say, A0 is central. As for simplicity, take a nonzero ideal I of A0 and form

J = I + Iz + · · ·+ Izd−1.

This J is a nonzero graded ideal of A and hence it must be equal to A; consequently I = A0. This proves (i).

To prove the remaining uniqueness part of (ii), we take another element z1 ∈ Z(A) ∩A1 with zd
1 = b ∈ Ḟ . We

have z1 ∈ Fz and hence z1 = cz for some c ∈ F . Therefore

b = zd
1 = cdzd = cda,

that is ba−1 = cd ∈ Ḟ d .
(iii) The homomorphism from F [x] to Z(A) = F [z] mapping to x to z yields the trivial graded

isomorphism

Z(A) ∼= F 〈 d
√

a〉 ∼= F [x]/〈xd − a〉.
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Since A0 and Z(A) = CA(A0) = F ⊕ Fz ⊕ · · · ⊕ Fzd−1 commute and A = A0[z] = A0Z(A), we obtain the
homomorphism

A ∼= A0 ⊗ Z(A)

as an ungraded isomorphism. Since A0 is trivially graded, this isomorphism yields the graded isomorphisms

A ∼= (A0) ⊗ Z(A) ∼= (A0)⊗̂Z(A).

(iv)(a) If the polynomial xd − a is irreducible then the ring F, 〈 d
√

a〉 is a field denoted by F ( d
√

a) and

A ∼= A0 ⊗ F ( d
√

a). Since A0 is central simple F -algebra and F ( d
√

a) is a simple F -algebra with center

Z(A) ∼= F ⊗ F ( d
√

a) ∼= F ( d
√

a),

A is a central simple algebra over F ( d
√

a).

(b) In the case a = cd ∈ Ḟ d, we have

xd − a = (x − c)(x − ωc) · · · (x − ωd−1c)

and hence
Z(A) = F [z] ∼= F [x]/〈xd − a〉 ∼= F × · · · × F︸ ︷︷ ︸

d−copies

which implies
A ∼= A0 ⊗ Z(A) ∼= A0 × · · · × A0︸ ︷︷ ︸

d−copies

.

�

To handle the even case we first give a lemma that might be interesting by itself.

Lemma 4.5 Let xd − a be an irreducible polynomial over F and let D be a central division F -algebra which

has no subfields isomorphic with F ( d
√

a). Then E = F ( d
√

a) ⊗ D is a central division algebra over F ( d
√

a).

Proof. We prove the assertion by induction on the number of prime divisors of d. Let d = p1p2 · · ·pm where
p1, p2, . . . , pm are prime numbers. To begin with we suppose m = 1, say d = p. Since xp − a is irreducible,
B ∼= F [x]/〈xp − a〉 is a field and E = B ⊗F D is central simple algebra over, B , and as such we can write

E ∼= Mr(S) where S is a central division algebra over B . To complete the proof it suffices to show that r = 1.
For this purpose, let s = dimBS and t = dimF D = dimBE and let M be the irreducible right E -module

then t = dimBE = r2s. Also we have

dimBM = dimSMdimBS = rs =
t

r
,

which gives

dimF M = dimBM dimF B =
pt

r
.

On the other hand , dimF M is a multiple of t = dimF D so that

dimF M = dimF D dimDM.
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Thus r must be either 1 or p. If r = p, then t = dimF M implies that M ∼= D as a left D -module. But
z ⊗ 1 ∈ B ⊗D commutes with 1⊗D so the left multiplication map f by 1⊗ z is a D -linear map on M. This
shows that f ∈ EndDM ∼= EndD(D) = Dop. Since zp = a we have fp = a and Dop contains a root of xp − a.

This contradicts the assumption of our lemma. Therefore r = 1 and hence T ∼= S is a central division algebra
over B. Suppose now that our assumption holds in the case where d has less than m prime factors. Letting

dk = pk+1pk+2 · · ·pm, α = d
√

a and αk = αdk

we form the tower
F = F0 ⊂ F1 ⊂ · · · ⊂ Fm,

where Fk = F (αk). An easy degree argument shows that each Fk is the splitting field of xpk − αk over Fk−1

of degree pk and that Fk is the splitting field of xp1p2···pk − a of degree p1p2 · · ·pk. Therefore xp1p2···pk − a is
irreducible over F and by the induction hypothesis Ek = Fk ⊗F D is a central division algebra over Fk for
each k < m. In particular, Em−1 is a central division algebra over Fm−1 , the polynomial xpm −a is irreducible

over Fm−1 , and we proved above that Fm ⊗Fm−1 Em−1 is a central division algebra over Fm = F ( d
√

a). Since

Fm ⊗Fm−1 Em−1 = Fm ⊗Fm−1 (Fm−1 ⊗F D) ∼= Fm ⊗F D

the proof is completed. �

In the following M̃n(D) will denote the graded algebra Mn(D) by assigning a matrix degree i , if all its
degree have i .

Theorem 4.6 Let A be a CSGA over F of even type with a nontrivial grading and let D be a central division
algebra over F such that A ∼= Mn(D) as ungraded algebras and characteristic of F does not divide d . Then

Z(A0) = CA(A0) = F ⊕ Fz ⊕ · · · ⊕ Fzd−1

for some z ∈ Z(A0) with zd = c ∈ Ḟ and the following statements hold:

(i) If c ∈ F d, then there is a graded space V =
⊕p−1

i=0 Vi such that

(a) A ∼= EndV ⊗̂(D) (as graded algebras),

(b) A0
∼= Mr0 (D) × · · · × Mrd−1 (D) where ri = dimVi, i = 0, . . . , d− 1,

(c) Z(A0) ∼= F × · · · × F︸ ︷︷ ︸
d−copies

.

(ii) If xd − c is irreducible over F and D has a subfield isomorphic with F ( d
√

c) ∼= Z(A0), then there
exists a grading on D such that

(a) A ∼= M̃n(D) ∼= M̃n(F )⊗̂D (as graded algebras),

(b) A0
∼= Mn(D0),

(c) A0 is central simple over Z(A0).

(iii) If xd − c is irreducible over F but D has no subfields isomorphic to F ( d
√

c) ∼= Z(A0), then

(a) n = dm and A ∼= (Mm(D))⊗̂(a, 1)(d)
ω (as graded algebras),

(b) A0
∼= Mm(D) ⊗ F ( d

√
c),
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(c) A0 is central simple over Z(A0).

Proof. We note first of all that since A is an even type CSGA , it is central simple as an ungraded algebra
and hence by the Noether-Skolem theorem the main automorphism φ is an inner automorphism determined by
an invertible element z of A . Writing

φ(a) = z−1az for a ∈ A

and using the fact that φd is identity we obtain zd ∈ Z(A) = F. Thus zd ∈ Ḟ . Further for an element

a = a0 + a1 + · · ·+ ad−1 in A with ak ∈ Ak we have a ∈ CA(z) if and only if φ(a) = a and this is the case if
and only if a = a0. Thus we obtain

F [z] ⊂ Z(A0) and A0 = CA(z)

and consequently
Z(A0) = CA(A0) ∩ A0 = CA(A0) ∩ CA(z) = CA(A0),

since z ∈ CA(z) = A0.

(i) Assume c = b
d

for some b ∈ F. Then replacing z by z
b

we may assume without loss of generality

that zd = 1. Letting

εi =
1
d

d−1∑
l=0

(ωiz)l; i = 0, . . . , d− 1

and using
d−1∑
k=0

ωik = { d if i = 0
0 if 1 ≤ i ≤ d − 1,

we see that ε0, . . . , εd−1 are orthogonal idempotents of A. They also satisfy

d−1∑
i=0

εi = 1 and
d−1∑
j=0

ω−jεj = z.

If we fix an isomorphism ϕ : A → Mn(D) and write Ei = ϕ(εi) we obtain orthogonal idempotents

E0, E1, . . . , Ed−1 in Mn(D). It is well known (see for example [5], p. 62) that there exists an invertible matrix

P ∈ Mn(D) such that the matrices P−1EiP are orthogonal idempotents:

P−1EiP = diag(0, . . . , 0; 1, 1, . . . , 1︸ ︷︷ ︸
ri−copies

; 0, . . . , 0)

for which
d−1∑
i=0

P−1EiP = I and r0 + r1 + · · ·+ rd−1 = n.

Thus considering the composition θ of the map ϕ and the inner automorphism of Mn(D) determined by P

we get the image θ(z) = Ω as the diagonal matrix whose diagonal blocks are Ir0 , ω
−1Ir1 , . . . , ω

−d+1Irk where
Irk stands for the rk × rk identity matrix. Since we have

Ak = {a ∈ A| φ(a) = ωka} = {a ∈ A| az = ωkza},
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the isomorphism θ : A → Mn(D) satisfies

θ(Ak) = {M ∈ Mn(D)|MΩ = ωkΩM}.

Using the building block algebra End(V ) constructed by Corollary 2.2. we can say that θ provides a graded

isomorphism between A and Mn(D) ∼= End(V )⊗̂(D) where V is a graded space with homogeneous components
Vi of dimension ri and that

A0
∼= Mr0 (D) × · · · × Mrd−1 (D) and Z(A0) ∼= F × · · · × F︸ ︷︷ ︸

d−copies

.

As for the cases where xd − c is irreducible over F and the subalgebra F [z] is a field, and hence applying the

double centralizer theorem to the central simple F -algebra A, and is a simple subalgebra F [z], we see that

A0 = CA(z) = CA(F [z]) is simple and its center is Z(A0) = CA(A0) = F [z].

(ii) In the case Z(A0) = F [z] is isomorphic to a subfield of the matrix algebra Mn(D), it contains a

scalar matrix ζI with ζ ∈ D such that F [ζ] ∼= F [z] ∼= F [ϕ(z)] where ϕ is the fixed isomorphism between A

and Mn(D). Thus by the Noether-Skolem theorem there is an inner isomorphism ψ of Mn(D). Let θ = ψϕ,

we have θ(z) = ζI. Since Ak = {a ∈ A|az = ωkza} , θ becomes a graded isomorphism with respect to the

grading of Mn(D) induced by the inner automorphism associated with ζI according to Corollary 2.2. In this

grading of Mn(D), a matrix M is homogeneous of degree k if and only if M(ζI) = ωk(ζI)M and, equivalently,

Mijζ = ωkζMij for all i, j. This shows that (Mn(D))k = Mn(Dk); k = 0, . . . , d − 1 if D is regarded as the

graded algebra with grading determined by the inner automorphism associated with ζ ∈ D. In particular, we
have A0

∼= (Mn(D))0 = Mn(D0), a central simple algebra over its center Z(A0).

(iii) In the case Z(A0) = F [z] is a field that cannot be embedded into D , the irreducible polynomial

xd−c has no root in the central division algebra D . It follows from Lemma 4.5. that E = F [z]⊗F D is a central

division algebra over F [z]. Let V be an irreducible right module over the central simple algebra A ∼= Mn(D).

Then by the Wedderburn-Artin Theorem, Dop ∼= EndA(V ), V is a left vector space over D naturally and

right vector space over Dop and also over Eop with the right action given by ν(
∑

bi ⊗ di) =
∑

diνbi where

di ∈ D, bi ∈ F [z]. Letting m = dimEV , this yields

n = dimDV = dimDE = dimF (F [z])dimEV = dm

and therefore
Mn(D) = Mdm(D) ∼= Md(F ) ⊗ Mm(D).

This gives an isomorphism ϕ from A to Md(F ) ⊗ Mm(D). On the other hand the latter contains an element
ζ ⊗ 1 where

ζ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 c
ω−1 0 · · · 0 0

0
. . .

...
...

. . . . . .
...

0 . . . 0 ω−d+1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

such that (ζ⊗1)d = c. It follows from Md(F )⊗Mm(D) containing 2 isomorphic subfields F (ϕ(z)) and F (ζ⊗1)
that the isomorphism between them can be extended to an inner automorphism by the Noether-Skolem theorem.
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Considering this inner automorphism with ϕ above, we obtain an isomorphism θ from A onto Md(F )⊗Mm(D)

such that θ(z) = ζ ⊗ 1 and it becomes a graded isomorphism if the gradings are determined by z and ζ ⊗ 1,
respectively. The grading of A is known to be determined by z , so it is enough to give a grading to the
second algebra by ζ ⊗1. It is easy to verify that with this grading, the algebra becomes graded isomorphic with

(a, 1)(d)
ω ⊗ (Mm(D)) since the second factor is trivially graded. The rest is obvious. �

5. Application to generalized Clifford algebras

As an immediate consequence of Theorem 4.4. and 4.6. we can give a complete description of generalized
Clifford algebras. In fact, let V = Fe1⊕Fe2⊕· · ·⊕Fen be a vector space with an ordered basis {e1, . . . , en} and

let C(V ) = (a1, . . . , an)(d)
ω be the generalized Clifford algebra associated with V , that is, the algebra generated

by e1, . . . , en subject to the relations

ed
i = ai and ejei = ωeiej when j > i where a1, a2, . . . , an ∈ F.

We have

(el1
1 el2

2 · · ·eln
n )(ek1

1 ek2
2 · · ·ekn

n ) = ω
�kilj

i<j ek1+l1
1 ek2+l2

2 · · ·ekn+ln
n

= ω
�kilj−likj

i<j (ek1
1 ek2

2 · · ·ekn
n )(el1

1 el2
2 · · · eln

n ),

which yields that C(V ) is a CSGA with ∂ei = 1, and that

z = e
(−1)0

1 e
(−1)1

2 · · ·e(−1)n−1

n is a central element of degree 1 or 0 according as n = dim(V ) is odd or even,

respectively. It satisfies the polynomial xd − a with

a = (−1)m(d−1)a
(−1)0

1 a
(−1)1

2 · · ·a(−1)n−1

n where m is the integral part of n
2 . Consequently Theorem 4.4. and 4.6.

yield the following structure theorems.

Theorem 5.1 Let C = C(V ) be the generalized Clifford algebra of a vector space V of odd dimension

n = 2m + 1 and let C0 = C0(V ) be its subalgebra consisting of homogeneous elements of degree zero. Then

(i) C0 is central simple as an ungraded algebra;

(ii) C = C0[z] = C0 ⊕ C0z ⊕ · · · ⊕ C0z
d−1 and CA(C0) = F [z] = F ⊕ Fz ⊕ · · · ⊕ Fzd−1 where z =

e1e
−1
2 · · ·e−1

n−1en and zd = a = (−1)m(d−1)a1a
−1
2 · · ·a−1

n−1an ;

(iii) There are graded algebra isomorphisms

C ∼= (C0)⊗̂F 〈 d
√

a〉 ∼= (C0) ⊗ F 〈 d
√

a〉

where F 〈 d
√

a〉 stands for the graded algebra F [x]/〈xd − a〉;
(iv)(a) If xd − a is irreducible over F , then C is central simple over the field F ( d

√
a);

(b) If xd − a has a root in F then

Z(C) ∼= F × · · · × F︸ ︷︷ ︸
d−copies

and C ∼= C0 × · · · × C0︸ ︷︷ ︸
d−copies

.

Proof. It follows from Theorem 4.4. and the facts indicated just above. �
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Theorem 5.2 Let C = C(V ) be the generalized Clifford algebra of a vector space V of even dimension

n = 2m and let C0 = C0(V ) be its subalgebra consisting of homogeneous elements of degree 0. Then C is a

central simple algebra over F , say C ∼= Mt(D) (as ungraded algebras) for some central division algebra D over
F , t = ds , and

Z(C0) = F ⊕ Fz ⊕ · · · ⊕ Fzd−1,

where
z = e1e

−1
2 · · · en−1e

−1
n and zd = a = (−1)m(d−1)a1a

−1
2 · · ·an−1a

−1
n

and the following statements hold:

(i) If a ∈ F d then we have

(a) C ∼= M̂t(D) (as graded algebras) where t is a power of d;

(b) C0
∼= Md(D) × · · · × Md(D) where r = t

d ;

(c) Z(C0) ∼= F × · · · × F︸ ︷︷ ︸
d−copies

.

(ii) If xd − a is irreducible over F and D has a subfield isomorphic with F ( d
√

a) ∼= Z(A0), then there
exists a grading on D such that

(a) C ∼= M̂n(D) ∼= M̂n(F )⊗̂D (as graded algebras),

(b) C0
∼= Mn(D0),

(c) C0 is central simple over F ( d
√

a).

(iii) If xd − a is irreducible over F but D has no subfields isomorphic to F ( d
√

a) ∼= Z(A0) , then

(a) n = dm and C ∼= (Mm(D))⊗̂(a, 1)(d)
ω (as graded algebras),

(b) C0
∼= Mm(D) ⊗ F ( d

√
a),

(c) C0 is central simple over F ( d
√

a) .

Proof. All we have to show is that t = ds and that the assertion (i)–(b) holds. The rest will follow

from Theorem 4.6. and the facts indicated just above. The first of these is obtained at once from dim(C) =

t2dim(D) = dn (see [6]). As for the second one, letting a = bd, b ∈ Ḟ , and z1 = z
b we see from the proof of

Theorem 4.6.(i) that the elements

εi =
1
d

d−1∑
l=0

(ωizl)l; i = 0, . . . , d− 1

are central orthogonal idempotents such that ε0 + · · ·+ εd−1 = 1 and hence the algebra C0 is semi-simple with
simple components C0εi. On the other hand for each fixed pair i, j , the linear map ϕ on V sending e1 to

ωj−ie1 and fixing all other ek extends to a graded automorphism of C and this automorphism of C0 sending
to εi to εj ; thus it gives an isomorphism between C0εi and C0εj . Now by Theorem 4.6.(i) we have

C0
∼= Mr0 (D) × · · · × Mrd−1 (D)

and we have just proven that the simple components Mri (D) are isomorphic, so that ri are equal; namely, they

are equal to r = t
d . �
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