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1. Introduction. An independence system (V, I) is the association of a finite
set V = {1, . . . , n} and a nonempty family I of subsets such that whenever I ∈ I
and J ⊂ I we have J ∈ I. The members of I are called independent sets and
those of 2V \ I dependent sets. A minimal dependent set is called a circuit, and an
independence system is fully characterized by its family of circuits. Consider now the
situation where a weight is associated with every element of V . The independence
system problem (ISP) consists of finding an independent set with maximum total
weight.

In this paper, we study the polytope associated with the independence system
problem. We present procedures to obtain facet-defining inequalities for this polytope.
These procedures are defined for inequalities which are not necessarily rank inequal-
ities. We illustrate the use of these procedures by deriving strong valid inequalities
for the acyclic induced subgraph, triangle free induced subgraph, bipartite induced
subgraph, and knapsack polytopes.

We denote a hypergraph with node set V and (hyper-)edge set E ⊆ 2V by H =
(V, E). A hypergraph where all the edges are of cardinality two is called a graph.
For an independence system (V, I), we define the hypergraph H = (V, E) as the
intersection (or conflict) hypergraph, where E is the set of all circuits of (V, I). A
subset I of V is called independent in H if |I ∩ e| ≤ |e| − 1 for every edge e ∈ E.
Observe that there is a one-to-one correspondence between node subsets that are
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independent in H and the independent sets of (V, I). In what follows, we use the
intersection hypergraph to define an independence system.

For a given hypergraph H = (V, E), let P (H) be the convex hull of the incidence
vectors x of the independent sets in H (xi = 1 if node i is in the independent set
and xi = 0 otherwise). We refer to the polytope P (H) as the independence system
polytope of H .

When every dependent set of an independence system is of cardinality two, ISP is
called the stable set (or vertex packing or anticlique) problem. A stable set of a graph
is a set of pairwise nonadjacent nodes. The stable set problem consists of finding a
stable set of maximum weight; see [5, 9, 11, 12, 13, 14, 15, 27, 30, 31, 34, 38] for results
on the stable set polytope.

Another important special case of ISP is the knapsack problem, where indepen-
dent sets are subsets of V whose incidence vectors satisfy the knapsack constraint∑

i∈V aixi ≤ α with ai > 0 for all i ∈ V . The knapsack problem consists of finding an
independent set with maximum weight. The dependent sets are called covers and cir-
cuits are called minimal covers. The knapsack polytope has been studied extensively
(see, e.g., [1, 4, 23, 24, 28, 35, 36]).

Consider an independence system defined by hypergraph H = (V, E). For S ⊆ V
and a ∈ R

|S|, we define

rH
a (S) = max

{∑
i∈I

ai : I ⊆ S and |I ∩ e| ≤ |e| − 1 for all e ∈ E

}

to represent the maximum weight of an independent set in H whose node set is
completely contained in S. Clearly, the inequality

∑
i∈S aixi ≤ rH

a (S) is a valid
inequality for P (H).

If each entry of vector a is one, then the function

rH(S) = max{|I| : I ⊆ S and |I ∩ e| ≤ |e| − 1 for all e ∈ E}
is called the rank function and its value is equal to the maximum cardinality of an
independent set in H whose node set is completely contained in S. The correspond-
ing valid inequality

∑
i∈S xi ≤ rH(S) for P (H) is called a rank inequality (or boolean

inequality). For instance, cover inequalities for the knapsack polytope are rank in-
equalities.

Most of the facet-defining inequalities known for the independence system poly-
tope are rank inequalities that are based on some structured subhypergraphs. They
generalize the rank facet-defining inequalities of the stable set polytope. For exam-
ple, clique inequalities were generalized to P (H) by Euler, Jünger, and Reinelt [19],
Nemhauser and Trotter [27], and Sekiguchi [33]. Odd cycle inequalities were also
generalized to P (H) in [19] and [33], while anticycle inequalities were generalized to
P (H) in [19]. Laurent [25] generalizes the antiweb inequalities to P (H). Conforti
and Laurent [17] study the facial structure of the independence system polytope by
decomposing the underlying independence system into a union of matroids. Euler
and Mahjoub [20] introduce a composition technique of independence systems by cir-
cuit identification and discuss its implications for the associated polyhedra. More
recently, Easton, Hooker, and Lee [18] give a new definition of rank inequalities as
hyperclique inequalities and propose a heuristic separation method for these inequali-
ties. Müller and Schulz [26] study the polytope associated with the transitive packing
problem which generalizes ISP. Their results, when reduced to the case of ISP, further
generalize the rank inequalities of Euler, Jünger, and Reinelt [19] and Laurent [25].
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ISP is known to be equivalent to the set covering problem (SCP). Given a finite
set V and a family F of subsets of V , a set cover is a subset C of V which intersects
every subset in the family F . SCP is to find a set cover of minimum weight. It can also
be written as min{cx : Ax ≥ em, xj ∈ {0, 1} ∀ j ∈ V }, where A = [aij ] is an (m, n)
matrix with aij ∈ {0, 1}, c ∈ R

n and em is the vector in R
m in which all the entries are

one. For a given independence system (V, I), let F be the family of circuits of (V, I).
Then I ⊆ V is independent if and only if V \ I is a set cover. Balas and Ng [2, 3]
study the facet-defining inequalities of the set covering polytope that have coefficients
of 0, 1, and 2. In [32], Sassano studies an equivalent formulation of SCP obtained by
associating with the (0, 1)-matrix A of the problem a bipartite graph G = (V, U, E)
with V = {v1, . . . , vn}, U = {u1, . . . , um}, and (vi, uj) ∈ E if and only if aij = 1. By
associating a weight equal to ci with every node vi ∈ V and zero with every node in
U , SCP is equivalent to finding a minimum weight node subset C ∈ V such that every
node in U is adjacent to at least one node in C. Using this formulation, Sassano [32]
derives several classes of rank facet-defining inequalities for the set covering polytope
and also discusses some lifting procedures. In [29], Nobili and Sassano describe further
facets and lifting procedures for the set covering polytope.

In this paper, we present facet-generating procedures for the independence system
polytope. We first prove some general results based on sequential lifting. These
are then applied in particular cases and yield some procedures which can be used
to derive facet-defining inequalities for the polytopes associated with hypergraphs
obtained from other hypergraphs by adding a set of nodes and edges. Then we
propose some other procedures that involve adding, replacing, or splitting a set of
nodes or edges. We generalize similar procedures proposed by Wolsey [38] for the
stable set polytope. Finally, we derive a new family of facet-defining inequalities for
the independence system polytope by adding a set of edges to antiwebs. We apply our
procedures to the polytopes associated with the acyclic induced subgraph, triangle
free induced subgraph, bipartite induced subgraph, and knapsack problems and obtain
facet-defining inequalities.

The paper is organized as follows. In section 2, we give the definitions and the
notation that are used throughout the paper. We present lifting results in section
3 with a set of applications to special cases. In section 4, we give further facet-
generating procedures and generalize the results of [38]. A new family of facet-defining
inequalities called ghost inequalities is also introduced in this section. We conclude
the paper in section 5 with directions for future research.

2. Definitions and notation. Consider a hypergraph H = (V, E). For S ⊆ V ,
define E(S) to be the set of all edges of H whose nodes are subsets of S. A hypergraph
(S, E

′
) with S ⊆ V and E

′ ⊆ E(S) is called a subhypergraph of H . The hypergraph
H(S) = (S, E(S)) is the subhypergraph induced by S. This is the hypergraph that
remains when the nodes of V \S are deleted together with the edges containing nodes
of V \ S. Consequently, the independent sets of H that do not contain any node of
V \ S are exactly the independent sets of H(S).

For an independent set S ⊂ V , we define the neighborhood of S as

NH(S) = {i ∈ V \ S : ∃ e ∈ E with i ∈ e and e \ {i} ⊆ S},
that is, the set of nodes each of which forms an edge with subsets of S. Observe that
an independent set which contains all nodes of S cannot contain any node of NH(S).

Consider the hypergraph HS = (V
′
, E

′
), where V

′
= V \ (S ∪ NH(S)) and

E
′
= {e \ S : e ∈ E and e ∩ NH(S) = ∅}. We call HS the hypergraph reduced by S
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Fig. 1. An example of a reduced and induced hypergraph.

from H . Observe that HS is not a subhypergraph of H . The hypergraph reduced by
S is the hypergraph that remains when the nodes of S are forced into independent
sets. In other words, the independent sets of H that contain all nodes of S are exactly
the sets I ∪ S, where I is an independent set of HS .

For S1, S2 ⊂ V such that (S1 ∪ NH(S1)) ∩ S2 = ∅, HS1(S2) is the hypergraph
reduced by S1 and induced by S2. In Figure 1(a), we see the hypergraph H = (V, E),
where V = {1, . . . , 11} and E = {e1, e2, e3, e4, e5, e6}. Let S1 = {4, 7}. Note that
NH(S1) = {11}. Figure 1(b) corresponds to the reduced graph HS1 . We can see that
the cardinalities of edges e2, e3, and e4 have reduced by one as they contained a node
of S1. Moreover, edges e5 and e6 have been deleted because they contain a node of
NH(S1). Let S2 = {2, 3, 5, 6, 8, 9, 10}. The graph HS1(S2) is given in Figure 1(c). As
node 1 is in V \ (S1 ∪ S2 ∪NH(S1)), it does not appear in HS1(S2). Also edge e1 has
been deleted as node 1 belongs to this edge.

Suppose that we assign a weight to each node i ∈ V . For S1, S2 ⊂ V such that
(S1 ∪ NH(S1)) ∩ S2 = ∅, finding an independent set that contains all nodes in S1,
that does not intersect V \ (S1 ∪ S2), and that has maximum weight is equivalent to
finding a maximum weight independent set in HS1(S2). Moreover, this leads to the
following remark, which we will often implicitly use for proving that an inequality is
facet-defining for P (H).

Remark 2.1. Let S1, S2 ⊂ V such that (S1 ∪ NH(S1)) ∩ S2 = ∅. Then the
polytope P (HS1(S2)) is a face of P (H) with xi = 1 for i ∈ S1 and xi = 0 for
i ∈ V \ (S1 ∪ S2).

We use our facet-generating procedures to derive facet-defining inequalities for
some particular independence system polytopes. We end this section with the defini-
tions of these problems.

Let D = (V, A) be a directed graph. An induced subgraph is called acyclic
if it does not contain a directed cycle. If each node of V has a weight, then the
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acyclic induced subgraph problem (AISP ) is to find an acyclic induced subgraph with
maximum weight. AISP can be seen as a generalization of the stable set problem.
In fact, if G = (V, E) is an undirected graph, the maximum stable set problem in
G can be reduced to AISP in a digraph D = (V, A), where each edge {i, j} ∈ E is
replaced by the arcs (i, j) and (j, i). Barahona and Mahjoub [7, 8] have considered
AISP in the context of signed graphs. In particular, the authors have studied the
acyclic induced subgraph polytope AISP (D), that is, the polytope whose extreme
points are the incidence vectors of the node sets of the acyclic induced subgraphs of
D. In [7], the authors introduce various classes of facets for AISP (D). In [8], they
describe composition procedures for deriving facet-defining inequalities for AISP (D).

Given a graph G = (V, E), a triangle-free induced subgraph is an induced subgraph
containing no K3. If we associate weights with the nodes in V , the triangle-free induced
subgraph problem (TFISP ) is to find a triangle-free induced subgraph whose weight is
maximum. This problem can be seen as a relaxation of the bipartite induced subgraph
problem [7, 8, 21]. We define TFISP (G) to be the polytope associated with TFISP
on graph G. To our knowledge, there is no study on TFISP (G). The edge version of
this problem has been studied in [10, 16]. In [16], the authors consider the Ki-cover
problem. Given a graph G = (V, E), an integer 1 ≤ i ≤ |V |, and weights associated
with the Ki−1’s of G, the problem is to find a set of Ki−1’s of minimum weight that
covers all the Ki’s of G. A K3-cover is the complement of a triangle-free graph. The
authors establish some complexity results and study the corresponding polytope. In
[10], composition techniques are investigated.

A graph is called bipartite if its node set can be partitioned into two nonempty
disjoint sets V1 and V2 such that no two nodes in V1 and no two nodes in V2 are
linked by an edge. Given a graph G = (V, E) and weights on its nodes, the bipartite
induced subgraph problem (BISP ) is to find a bipartite subgraph (W, E(W )) of G of
maximum weight. We define BISP (G) to be the polytope associated with BISP on
graph G. In BISP , the dependents are the odd cycles of G. Barahona and Mahjoub
[7] exhibit some basic classes of facet-defining inequalities of BISP (G) and describe
lifting methods. In [9], they study a composition technique for BISP (G) in graphs
which are decomposable by two-node cutsets. Fouilhoux and Mahjoub [21] describe
further classes of facet-defining inequalities and develop a branch-and-cut algorithm
for the problem.

3. Sequential lifting and some extension procedures for ISP . In this sec-
tion, we present some theoretical results based on sequential lifting (see, e.g., Gomory
[22], Padberg [30], and Wolsey [37]) and their applications for generating facet-defining
inequalities for the independence system polytope.

In what follows, we assume that all dependent sets have at least two elements.
With this assumption, it is easy to see that the independence system polytope is
full dimensional. We call the facet-defining inequalities of the form xi ≥ 0 trivial
facet-defining inequalities. In the remaining part of this paper, we refer to nontrivial
facet-defining inequalities simply as facet-defining inequalities. It is known that for
an independence system polytope, if inequality

∑
i∈V aixi ≤ α is facet-defining, then

ai ≥ 0 for all i ∈ V and α > 0; see [28].

3.1. Sequential lifting results. Here, we first present a general family of valid
inequalities and then provide sufficient conditions for a particular class of these in-
equalities to be facet-defining for the independence system polytope.

Theorem 3.1. Let H = (V, E) be a hypergraph, let V1 ⊂ V , and let V2 ⊆ V \V1.
Let a ∈ R

|V1|, α = rH
a (V1), and β = rH(V2). Let S1, . . . , Sm be all independent sets
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of V2 of cardinality β, and let α
′
= maxl=1,...,m rHSl

a (V1). Then inequality

∑
i∈V1

aixi + (α − α
′
)
( ∑

j∈V2

xj − β + 1
)

≤ α(1)

is valid for P (H).
Proof. Let x be the incidence vector of an independent set in H . The fact that

β = rH(V2) implies
∑

j∈V2
xj ≤ β. We can now consider two cases. In the first case,∑

j∈V2
xj = β. In this case, {j ∈ V2 : xj = 1} = Sk for some k ∈ {1, . . . , m} and

therefore
∑

i∈V1
aixi ≤ rHSk

a (V1). It follows that inequality

∑
i∈V1

aixi + (α − α
′
)
( ∑

j∈V2

xj − β

)
≤ rHSk

a (V1)

≤ max
l=1,...,m

rHSl

a (V1)

= α
′ ≤ α

is satisfied by x. In the second case,
∑

j∈V2
xj ≤ β − 1. In this case, it is easily seen

that
∑

i∈V1
aixi ≤ rH

a (V1) = α. Therefore, since α
′ ≤ α, the inequality

∑
i∈V1

aixi + (α − α
′
)
( ∑

j∈V2

xj − β + 1
)

≤ α

is satisfied by x.
Note that if V2 is an independent set, then α

′
= rHV2

a (V1) and inequality (1)
becomes ∑

i∈V1

aixi + (α − rHV2

a (V1))
( ∑

j∈V2

xj − |V2| + 1
)
≤ α.(2)

Moreover, inequality (2) can also be written as

∑
i∈V1

aixi + (α − rHV2

a (V1))
( ∑

j∈V2

(xj − 1)
)

≤ rHV2

a (V1),

which suggests that it can be obtained by lifting the inequality
∑

i∈V1
aixi ≤ α se-

quentially with the variables xj for j ∈ V2, under some conditions. These conditions
are given in the following theorem.

Theorem 3.2. Let H = (V, E) be a hypergraph, let V1 ⊂ V , and let V2 = V \ V1

be an independent set. Let a ∈ R
|V1|, α = rH

a (V1), and α
′
= rHV2

a (V1). Inequality (2)
is facet-defining for P (H) if

(i)
∑

i∈V1
aixi ≤ α

′
is facet-defining for P (HV2(V1)),

(ii) rHV2\{j}

a (V1) = α for all j ∈ V2.
Proof. Order V2 as (j1, j2, . . . , j|V2|) and fix the variables xj1 = xj2 = · · · =

xj|V2 | = 1. Next we lift the inequality
∑

i∈V1
aixi ≤ α

′
(which is known to be facet-

defining for P (HV2(V1)) by assumption) sequentially to obtain

∑
i∈V1

aixi +
|V2|∑
l=1

γjl
(xjl

− 1) ≤ α
′
.D
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We will next prove that γjl
= α − α

′
for l = 1, . . . , |V2| by induction on l. We

consider the base case first. The optimal lifting coefficient of xj1 is given by

γj1 = max
x∈P (HV2\{j1}(V1))

∑
i∈V1

aixi − α
′
= rHV2\{j1}

a (V1) − α
′
.

By assumption (ii), γj1 = α − α
′
.

Let 2 ≤ m ≤ |V2|. Assume that γjl
= α − α

′
for l = 1, . . . , m − 1. The optimal

lifting coefficient of xjm is

γjm = max
x∈P (HV2\{j1,...,jm}(V1∪{j1,...,jm−1}))

( ∑
i∈V1

aixi +
m−1∑
l=1

(α − α
′
)(xjl

− 1)
)
− α

′
.

First observe that

∑
i∈V1

aixi +
m−1∑
l=1

(α − α
′
)(xjl

− 1) − α
′ ≤ (α − α′)

( m−1∑
l=1

xjl
− (m − 2)

)
,(3)

because
∑

i∈V1
aixi ≤ rH

a (V1) = α. The right-hand side of (3) is nonpositive for all
solutions x ∈ P (HV2\{j1,...,jm}(V1∪{j1, . . . , jm−1})) for which

∑m−1
l=1 xjl

≤ m−2. On
the other hand, if we consider solutions with

∑m−1
l=1 xjl

= m − 1, then

max
x∈P (HV2\{j1,...,jm}(V1∪{j1,...,jm−1})):

∑m−1
l=1 xjl

=m−1

( ∑
i∈V1

aixi +
m−1∑
l=1

(α − α
′
)(xjl

− 1)
)
− α

′

= max
x∈P (HV2\{jm}(V1))

∑
i∈V1

aixi − α
′
= rHV2\{jm}

a (V1) − α
′
.

Now, by assumption (ii), rHV2\{jm}

a (V1)−α
′
= α−α

′
and this quantity is nonnegative.

Hence γjm = α − α
′
.

Next we provide another set of sufficient conditions for inequalities (2) to be facet-
defining for P (H). As in the proof of the above theorem, we again use sequential lifting
to obtain this result.

Theorem 3.3. Let H = (V, E) be a hypergraph, let V1 ⊂ V , and let V2 = V \ V1

be an independent set. Let a ∈ R
|V1|, α = rH

a (V1), and α
′
= rHV2

a (V1). Inequality (2)
is facet-defining for P (H) if

(i)
∑

i∈V1
aixi ≤ α is facet-defining for P (H(V1)),

(ii) there exists j1 ∈ V2 such that HV2\{j1}(V1) = H(V1),
(iii) rHV2\{j}

a (V1) = α for all j ∈ V2.
Proof. We first prove that inequality∑

i∈V1

aixi + (α − α
′
)xj1 ≤ α(4)

is facet-defining for P (HV2\{j1}(V1 ∪ {j1})). First observe that N(V2 \ {j1})∩ V1 = ∅
due to assumption (ii). If xj1 = 0, then (4) simplifies to

∑
i∈V1

aixi ≤ α, which is
valid by assumption. If xj1 = 1, then xi = 0 for all i ∈ N(V2) and

∑
i∈V1\N(V2) aixi ≤

rHV2

a (V1) = α
′
. So (4) is valid for P (HV2\{j1}(V1 ∪ {j1})).
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Since, by assumption (i),
∑

i∈V1
aixi ≤ α is facet-defining for P (H(V1)) and the

dimension of P (H(V1)) is |V1|, there exist independent sets Q1, . . . , Q|V1| in H(V1)
whose incidence vectors are affinely independent and satisfy

∑
i∈V1

aixi = α. Let
Q

′

m = Qm∪V2 \{j1} for m = 1, . . . , |V1|. It follows from the definition of α
′
that there

exists an independent set Q in HV2(V1) whose incidence vector satisfies
∑

i∈V1
aixi =

α
′
. Let Q

′

|V1|+1 = Q∪ V2. The sets Q
′

1, . . . , Q
′

|V1|+1 are independent in HV2\{j1}(V1 ∪
{j1}). Further, their incidence vectors are affinely independent and satisfy (4) at
equality. So inequality (4) is facet-defining for P (HV2\{j1}(V1 ∪ {j1})).

Now we order V2 as (j1, j2, . . . , j|V2|). We will lift inequality (4) with respect to
xj2 , . . . , xj|V2 | sequentially to obtain

∑
i∈V1

aixi + (α − α
′
)xj1 +

|V2|∑
l=2

γjl
(xjl

− 1) ≤ α.

We will prove that the optimal lifting coefficient of xjl
, γjl

, is α − α
′

for l =
2, . . . , |V2| by induction on l. Consider the base case first. The optimal lifting coeffi-
cient of xj2 is given by

γj2 = max
x∈P (HV2\{j1,j2}(V1∪{j1}))

( ∑
i∈V1

aixi + (α − α
′
)xj1

)
− α.

We consider separately the cases where xj1 = 0 and xj1 = 1. Let

γ0
j2 = max

x∈P (HV2\{j1,j2}(V1))

∑
i∈V1

aixi − α

and

γ1
j2 = max

x∈P (HV2\{j2}(V1))

∑
i∈V1

aixi − α
′
.

Then γj2 = max{γ0
j2 , γ

1
j2}.

Since γ0
j2 = rHV2\{j1,j2}

a (V1)−α ≤ rH
a (V1)−α = 0 and γ1

j2 = rHV2\{j2}

a (V1)−α
′
=

α − α
′
by assumption (iii), γj2 = α − α

′
.

We now prove the induction step. Let 3 ≤ m ≤ |V2|. Assume that the optimal
lifting coefficient of xjl

is α − α
′

for l = 2, . . . , m − 1. The optimal lifting coefficient
of xjm is given by

γjm = max
x∈P (HV2\{j1,...,jm}(V1∪{j1,...,jm−1}))

( ∑
i∈V1

aixi + (α − α
′
)xj1

+
m−1∑
l=2

(α − α
′
)(xjl

− 1)
)
− α.

Again, we consider the two cases where xj1 = 0 and xj1 = 1. Let

γ0
jm

= max
x∈P (HV2\{j1,...,jm}(V1∪{j2,...,jm−1}))

( ∑
i∈V1

aixi +
m−1∑
l=2

(α − α
′
)(xjl

− 1)
)
− α
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c)
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1
4

32

5

G

HV2(V1)

H

Fig. 2. A facet-defining inequality for the bipartite induced subgraph polytope.

and

γ1
jm

= max
x∈P (HV2\{j2,...,jm}(V1∪{j2,...,jm−1}))

( ∑
i∈V1

aixi +
m−1∑
l=2

(α − α
′
)(xjl

− 1)
)
− α

′
.

Then γjm = max{γ0
jm

, γ1
jm

}.
Observe that γ0

jm
≤ 0 and

∑
i∈V1

aixi +
∑m−1

l=2 (α − α
′
)(xjl

− 1) ≤ α
′

for any
x ∈ P (HV2\{j2,...,jm}(V1 ∪ {j2, . . . , jm−1})) with

∑m−1
l=2 xjl

≤ m − 3. So we have that
γ1

jm
= maxx∈P (HV2\{jm}(V1))

∑
i∈V1

aixi − α
′
. By assumption (iii), γ1

jm
= α − α

′
.

Hence, γjm = α − α
′
.

Example 3.4. Figure 2 gives an application of Theorem 3.2 for the bipartite
induced subgraph polytope. Let G = (W, F ) be the graph of Figure 2(a), where
W = {u1, . . . , u6}. Let V1 = {u1, . . . , u5}, which induces an odd cycle, and V2 = {u6},
which is adjacent to every node of V1. Figure 2(b) gives the conflict hypergraph H
corresponding to the circuits of G. Note that the circuit corresponding to the odd
cycle induced by {1, 2, 3, 4, 5} is represented by a gray area. Moreover, Figure 2(c)
gives HV2(V1). We can see that all the circuits of HV2(V1) are of cardinality two,
and consequently P (HV2(V1)) is the stable set polytope for an odd cycle of 5 nodes.
It is well known that

∑5
i=1 xi ≤ 2 is facet-defining for that polytope, and if we set

a1 = · · · = a5 = 1, then rHV2

a (V1) = 2. Moreover, rH
a (V1) = 4 = rHV2\{u6}

a (V1). The
assumptions of Theorem 3.2 are verified, and

∑5
i=1 xi + 2x6 ≤ 4 defines a facet of

BISP (G).
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1 2

3
a) b)

2

4 5

3

1

4 5

T ′ H ′

Fig. 3. A facet-defining inequality for TFISP (T
′
).

3.2. Applications: Extension procedures. In general, it may not be easy to
compute α

′
used in Theorems 3.1, 3.2, and 3.3. In this section, we apply the above

lifting results in particular cases where the computation of α
′

is simple. We refer to
the resulting procedures as extension procedures as they extend the initial hypergraph
by adding a set of nodes and a set of edges.

Let V1, V2 ⊂ V , V1 ∩ V2 = ∅. Let k be a natural number such that k ≤ |V1|. V2 is
called k-universal to V1 if S ∪ V2 is an edge of H for every S ⊆ V1 with |S| = k.

3.2.1. Extension with a 1-universal independent set.
Corollary 3.5. Let H = (V1, E) be a hypergraph and

∑
i∈V1

aixi ≤ α be a facet-
defining inequality for P (H). Let V2 be a new node set and consider the hypergraph
H

′
= (V

′
, E

′
), where V

′
= V1 ∪ V2 and E′ = E ∪ {V2 ∪ {i} : i ∈ V1}. Then

∑
i∈V1

aixi + α

( ∑
i∈V2

xi − |V2| + 1
)

≤ α(5)

is facet-defining for P (H
′
).

Proof. Since α
′
= rH

′V2

a (V1) = 0 and H
′V2\{j}(V1) = H for every j ∈ V2, it follows

from Theorem 3.3 that (5) is facet-defining for P (H
′
).

This result provides a generalized description of the wheel inequalities for several
polytopes such as the stable set polytope, the bipartite subgraph polytope [6], and
the bipartite induced subgraph polytope [21].

Example 3.6. Figure 3 gives an example of a facet-defining inequality for the
polytope associated with TFISP . Let T = (V, E) be a triangle, where T = {1, 2, 3}.
Inequality

∑3
i=1 xi ≤ 2 is facet-defining for TFISP (T ). We add a node set V2 = {4, 5}

and edges such that these two nodes form a triangle with every other node of the
triangle induced by V . Thus we obtain the graph of Figure 3(a) which we refer to as
T

′
. Figure 3(b) gives the conflict hypergraph representation H

′
of T

′
. By Corollary

3.5, inequality
∑3

i=1 xi + 2(x4 + x5) ≤ 4 is facet-defining for TFISP (T
′
).

3.2.2. Extension with a 1-universal clique. Applying Corollary 3.5 repeat-
edly, we can handle the case where a clique is added such that every node of the clique
is 1-universal to the nodes of the initial hypergraph.

Corollary 3.7. Let H = (V1, E) be a hypergraph and
∑

i∈V1
aixi ≤ α be a

facet-defining inequality for P (H). Consider a new set of nodes V2 and the hypergraph
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1
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b)a)

6 7
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D′ H ′

Fig. 4. A wheel facet-defining inequality for AISP (D).

H
′
= (V

′
, E

′
), where V

′
= V1 ∪ V2 and E

′
= E ∪ {{i, j} : i ∈ V2, j ∈ V1 ∪ V2, i �= j}.

Then inequality ∑
i∈V1

aixi + α
∑
j∈V2

xj ≤ α(6)

is facet-defining for P (H
′
).

Proof. The result can be obtained by repeatedly applying Corollary 3.5.
Example 3.8. Let p ≥ 2 and D = (V1, A), where V1 = {1, . . . , p} and A =

{(i, i+1) : i ∈ V1 \ {p}}∪{(p, 1)}. Here we use our result for defining a class of wheel
inequalities for AISP (D). Inequality

∑p
i=1 xi ≤ p− 1 is facet-defining for AISP (D).

We add a diclique of q nodes V2 = {p + 1, . . . , p + q} and arcs such that each node
of V2 forms a diclique of two nodes with every other node of the cycle induced by
V1. For p = 5 and q = 2, we obtain the graph of Figure 4(a), which we refer to as
D

′
= (V = V1 ∪ V2, E

′
). Figure 4(b) gives the corresponding conflict hypergraph H

′
.

By Corollary 3.7, inequality

(7)
p∑

i=1

xi + (p − 1)
q∑

i=p+1

xi ≤ p − 1

is facet-defining for AISP (D
′
). These inequalities will be called acyclic wheel inequal-

ities.

3.2.3. Extending a rank inequality with a k-universal independent set.
Finally, we consider the case where a rank inequality is extended by adding an inde-
pendent set that is k-universal to the initial set of nodes.

Corollary 3.9. Let H = (V1, E) be a hypergraph and
∑

i∈V1
xi ≤ α be a facet-

defining inequality for P (H). Consider a new node set V2, a positive integer k ≤ |V1|,
and the hypergraph H

′
= (V

′
, E

′
), where V

′
= V1 ∪ V2 and E

′
= E ∪ {V2 ∪ S : S ⊆

V1, |S| = k}. Then inequality

∑
i∈V1

xi + max{0, α− k + 1}
( ∑

i∈V2

xi − |V2| + 1
)

≤ α(8)D
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1 2

34

5 6

Fig. 5. A facet-defining inequality for the multidimensional knapsack polytope.

is facet-defining for P (H
′
).

Proof. Since α
′

= rH
′V2 (V1) = min{α, k − 1} and H

′V2\{j}(V1) = H for every
j ∈ V2, it follows from Theorem 3.3 that (8) is facet-defining for P (H

′
).

Example 3.10. In order to illustrate Corollary 3.9 we present in this example a
facet-defining inequality for the polytope associated with the multidimensional knap-
sack problem, which is a generalization of the knapsack problem, by considering several
knapsack constraints. Consider first the set V = {1, . . . , 4} of items and the knapsack
constraint

∑4
i=1 xi ≤ 3, which is a facet-defining cover inequality for the knapsack

polytope. Let V2 = {5, 6} be two additional items and add to the problem the 6
inequalities xi + xj + x5 + x6 ≤ 3 for every pair (i, j) of distinct items in V . Figure 5
gives the corresponding conflict hypergraph (where the 6 new edges are drawn both
in dashed and solid lines). By Corollary 3.9, inequality

∑4
i=1 xi + 2x5 + 2x6 ≤ 5 is

facet-defining for the multidimensional knapsack polytope.

4. Further facet-generating procedures for ISP . In this section, we present
some further facet-generating procedures for the independence system polytope. Some
of the procedures of this section involve extending the hypergraph by adding a set of
nodes and edges as in the procedures of the previous section. But we also propose
other procedures where some of the nodes and edges of the initial hypergraph are
replaced with new ones.

We first give a substitution procedure where a node of the hypergraph is replaced
with an independent set of nodes. We later use this procedure often to prove other
results. Then we propose a second procedure where an independent set of nodes is
added with the same edges as the ones of another independent set. This procedure
generalizes the idea of creating a copy of a node. The next four procedures are based
on the results of Wolsey [38] on the stable set polytope. The first procedure extends
the hypergraph by adding p + 1 independent sets. The second procedure replaces an
edge with a path of three edges. The last two procedures involve splitting nodes and
sets of nodes. We conclude this section with a new family of facet-defining inequalities
that are obtained by adding edges to antiwebs.

4.1. Substitution of an independent set for a node. First, we present a
substitution procedure which is helpful in proving most of the results in this section.
This procedure consists of replacing a node with an independent set of nodes.
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Theorem 4.1. Let H = (V, E) be a hypergraph and
∑

i∈V aixi ≤ α be facet-
defining for P (H). For j ∈ V , construct H

′
= (V

′
, E

′
) such that V

′
= V \ {j} ∪ S,

where S is a new nonempty node set and E
′
= E \ {e ∈ E : j ∈ e}∪ {e \ {j}∪ S : e ∈

E, j ∈ e}. Then inequality

∑
i∈V \{j}

aixi + aj

( ∑
i∈S

xi − |S| + 1
)

≤ α(9)

is facet-defining for P (H
′
).

Proof. The validity of inequality (9) is trivial. Therefore we prove only that
(9) is satisfied at equality by sufficiently many feasible solutions. Let Q1, . . . , Q|V |
be independent sets of H whose incidence vectors satisfy

∑
i∈V aixi = α and are

affinely independent. Denote the elements of S by {l1, . . . , l|S|}. Consider the sets
Q

′

i = Qi \ {j} ∪ S if j ∈ Qi and Q
′

i = Qi ∪ S \ {l|S|} otherwise for i = 1, . . . , |V |. In
addition, consider the sets Q

′

|V |+i = Qm∪S \{li} for some m ∈ {1, . . . , |V |} such that
j �∈ Qm and for all i = 1, . . . , |S|−1. As inequality

∑
i∈V aixi ≤ α is facet-defining for

P (H), Qm exists. It is easy to see that the sets Q
′

1, . . . , Q
′

|V ′ | are independent sets of

H
′
. Moreover, their incidence vectors are affinely independent and satisfy inequality

(9) at equality.

4.2. Copying the dependencies of a set of nodes. Here we present an exten-
sion procedure where a new independent set of nodes which copies the dependencies
of an existing independent set is added to the hypergraph. In case both sets are
singletons, this procedure can be interpreted as cloning a node. The result is based
on Theorems 3.3 and 4.1.

Corollary 4.2. Let H = (V, E) be a hypergraph and
∑

i∈V aixi ≤ α be a
facet-defining inequality for P (H). Let V1 ⊂ V such that ai = σ for all i ∈ V1

and there exists an independent set Q in H such that V1 ⊆ Q and
∑

i∈Q ai = α.
Consider a new node set V2 and the hypergraph H

′
= (V

′
, E

′
), where V

′
= V ∪ V2,

E
′
= E ∪ {(e \ V1)∪ V2 : e ∈ E, e∩ V1 �= ∅} ∪ {e1}, and e1 = V1 ∪ V2. Then inequality

∑
i∈V

aixi + σ

( ∑
i∈V2

xi − |V2| + 1
)

≤ α(10)

is facet-defining for P (H
′
).

Proof. Consider the case where V2 is a singleton. Observe first that the conditions
of Theorem 3.3 are satisfied. Because of edge e1, rH

′V2
a (V1) = σ(|V1| − 1). Let Q1

be an independent set in H
′V2(V1) with total weight σ(|V1| − 1). As H ′V2(V \ V1) =

HV1(V \ V1) and there exists an independent set Q in H such that V1 ⊆ Q and∑
i∈Q ai = α, then rH

′V2

a (V \ V1) = α − σ|V1|. Let Q2 be an independent set in
H

′V2(V \ V1) with total weight α − σ|V1|. Observe first that Q1 ∪ Q2 is independent
in H

′V2(V ) and so has maximum weight. Hence α
′
= α − σ. Now replace the single

node of V2 with an independent set using Theorem 4.1.
Example 4.3. We give an illustration of Corollary 4.2 for the acyclic induced

subgraph problem. We start from a directed cycle G of 5 nodes V = {1, 2, 3, 4, 5}
given in Figure 6(a). The inequality

∑5
i=1 xi ≤ 4 is facet-defining for AISP (G). We

now copy the dependency of nodes V1 = {1, 2} for a new node set V2 = {6, 7}. We then
construct the graph G

′
of Figure 6(a) by adding the nodes of V2 such that {1, 6, 7, 2}
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6 7 6 7

b)a)

1 2

3

4

5

1 2

35

4

G′ H ′

Fig. 6. Copying the dependencies of a set of nodes.

and {6, 7, 5, 4, 3} form two directed cycles; i.e., V2 forms one circuit with V1 and one
with V \ V1. Figure 6(b) gives the conflict hypergraph associated with G

′
. Since V1

is contained in the independent set Q = {1, 2, 3, 4}, it follows from Corollary 4.2 that
inequality

∑7
i=1 xi ≤ 5 defines a facet of AISP (G

′
).

In [38], Wolsey gives three facet-generating procedures for the stable set poly-
tope and mentions that these are also valid for independence systems. In the next
three theorems, we generalize these procedures. The corresponding proofs use ideas
developed in [38].

4.3. Extension with p + 1 independent node sets. The first procedure is
an extension procedure where p + 1 independent node sets and 2p edges are added to
the initial hypergraph.

Theorem 4.4. Let H = (V, E) be a hypergraph and V1, . . . , Vp be a partition of V
such that Vj is independent for j = 1, . . . , p. Suppose that inequality

∑
i∈V aixi ≤ α

is facet-defining for P (H) and for j = 1, . . . , p all elements of Vj have the same
coefficient; i.e., ai = σj for all i ∈ Vj for some scalars σj. Suppose each maximal
independent set of H uses at least |Vj |−1 nodes of Vj for j = 1, . . . , p. Consider p+1
new nonempty disjoint node sets T0, T1, . . . , Tp. Let H

′
= (V

′
, E

′
) be the hypergraph

obtained from H in such a way that V
′
= V ∪p

j=0 Tj and E
′
= E∪{e1, . . . , e2p}, where

ej = Vj ∪ Tj and ep+j = Tj ∪ T0 for j = 1, . . . , p. Then inequality

∑
i∈V

aixi +
p∑

j=1

σj

( ∑
i∈Tj

xi − |Tj | + 1
)

+
( ∑

i∈V

ai − α

)( ∑
i∈T0

xi − |T0| + 1
)

≤
∑
i∈V

ai

(11)

is facet-defining for P (H
′
).

Proof. We give the proof for the case where T0, T1, . . . , Tp are singletons, namely
Tj = {tj} for i = 0, 1, . . . , p. The proof for the general case is obtained using Theo-
rem 4.1.

Let Q be an independent set in H
′
. If t0 ∈ Q, then Q does not contain tj for

j = 1, . . . , p, and then Q \ {t0} is independent in H . Thus the incidence vector of Q
satisfies inequality (11). Now suppose that t0 �∈ Q. If Q contains tj , then it cannot
contain all nodes of Vj for j = 1, . . . , p. Therefore, inequality (11) is satisfied.
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Fig. 7. Adding p + 1 independent node sets.

Let Q1, . . . , Q|V | be independent sets of H whose incidence vectors satisfy∑
i∈V aixi = α and are affinely independent. Consider the sets Q

′

i = Qi ∪ {t0}
for i = 1, . . . , |V |. As inequality

∑
i∈V aixi ≤ α is facet-defining for P (H), for

j = 1, . . . , p, there exists a maximal independent set Q such that Vj ⊆ Q. For
each l = 1, . . . , p such that l �= j, remove a node of Vl ∩ Q if Vl ⊆ Q and add tl to
obtain Q

′

|V |+j. Now, Q
′

|V |+j ∩ Vj = Vj , |Q′

|V |+j ∩ Vl| = |Vl| − 1 and tl ∈ Q
′

|V |+j for all
l = 1, . . . , p with l �= j. Finally consider an independent set Q of H which includes
exactly |Vl| − 1 nodes of Vl for each l = 1, . . . , p. Let Q

′

|V |+p+1 = Q ∪ {t1, . . . , tp}.
Sets Q

′

1, . . . , Q
′

|V |+p+1 are independent in H
′
, their incidence vectors satisfy inequal-

ity (11) at equality, and they are affinely independent. Therefore inequality (11) is
facet-defining for P (H

′
).

Next we give an illustration of this result for the polytope associated with TFISP .
Example 4.5. Consider the wheel G given in Figure 7(a) and the corresponding

TFISP polytope. Figure 7(b) shows the associated conflict hypergraph H . It is
shown in [16] that inequality

∑5
i=1 xi + 3x6 ≤ 5 defines a facet of TFISP (G). The

graph G
′

of Figure 7(b) is obtained from G by adding the node sets T0 = {19},
T1 = {7, 8}, T2 = {9, 10}, T3 = {11, 12}, T4 = {13, 14}, T5 = {15, 16}, and T6 =
{17, 18} such that Ti forms a triangle with Vi = {i} and T0 for i = 1, . . . , 6. Note that
σj = 1 for j = 1, . . . , 5 and σ6 = 3. Figure 7(d) represents the corresponding conflict
hypergraph H

′
except the edges of H . It follows from Theorem 4.4 that inequality∑5

i=1 xi +
∑16

i=7 xi + 3x6 + 3x17 + 3x18 + 3x19 ≤ 16 defines a facet of TFISP (G
′
).D
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4.4. Replacing an edge with a path of three edges. In the next procedure,
we add two independent sets and replace an edge with a path of three edges. Different
from the extension procedures presented so far, here we modify the edge set of the
initial hypergraph. This is also the case for the following two procedures.

Theorem 4.6. Let H = (V, E) be a hypergraph and
∑

i∈V aixi ≤ α be facet-
defining for P (H). Let e0 ∈ E, and let S1 and S2 be a partition of e0 into two
nonempty independent sets. Suppose that inequality

∑
i∈V aixi ≤ α is different from∑

i∈S1∪S2
xi ≤ |S1 ∪ S2| − 1 and that each maximal independent set of H intersects

Si in at least |Si| − 1 nodes for i = 1, 2. Now consider the hypergraph H
′
= (V

′
, E

′
),

which is obtained from H as follows. Consider two new nonempty disjoint node sets
T1 and T2 and let V

′
= V ∪T1 ∪T2 and E

′
= E \ e0∪{e1, e2, e3}, where e1 = S1 ∪T1,

e2 = T1∪T2, and e3 = T2∪S2. Let Z be the maximum weight of an independent set of
the hypergraph (V, E \{e0}), where node i has weight ai for i ∈ V , and let α

′
= Z−α.

Suppose there exists a solution of weight Z that contains S1 and S2. Then inequality

∑
i∈V

aixi + α
′
( ∑

i∈T1

xi − |T1| + 1
)

+ α
′
( ∑

i∈T2

xi − |T2| + 1
)

≤ α + α
′

(12)

is facet-defining for P (H
′
).

Proof. We give the proof for the case where T1 and T2 are singletons, i.e., T1 = {t1}
and T2 = {t2}. The general case can be obtained using Theorem 4.1.

Let Q be an independent set in H
′
. If t1 ∈ Q, then t2 �∈ Q and |Q∩S1| ≤ |S1|−1.

So Q \ {t1} is independent in H and
∑

i∈Q\{t1} ai ≤ α. Hence the incidence vector
of Q satisfies inequality (12) since

∑
i∈T1

xi = |T1| and
∑

i∈T2
xi = [T2| − 1. The case

where t2 ∈ Q is similar. If t1 and t2 are not in Q, then Q is an independent set in
the hypergraph (V, E \ {e0}) and the weight of Q is at most Z = α + α

′
. Therefore

inequality (12) is satisfied.
Let Q1, . . . , Q|V | be independent sets of H whose incidence vectors satisfy∑

i∈V aixi = α and are affinely independent. Consider the sets Q
′

i = Qi ∪ {t1} if
S1\Qi �= ∅ and Q

′

i = Qi∪{t2} otherwise for i = 1, . . . , |V |. As inequality
∑

i∈V aixi ≤
α is facet-defining for P (H) and different from

∑
i∈S1∪S2

xi ≤ |S1 ∪ S2| − 1, it is sat-
isfied at equality by a point for which

∑
i∈S1∪S2

xi ≤ |S1 ∪ S2| − 2. Since each
maximal independent set of H intersects Si in at least |Si| − 1 nodes for i = 1, 2,
this point corresponds to an independent set Q in H such that |Q ∩ S1| = |S1| − 1
and |Q ∩ S2| = |S2| − 1 and

∑
i∈Q ai = α. Consider the set Q

′

|V |+1 = Q ∪ {t2}. Let

Q
′

|V |+2 be an independent set in the hypergraph (V, E \ {e0}) that contains S1 and

S2 and that has weight equal to Z. Now the sets Q
′

1, . . . , Q
′

|V ′ | are independent sets

of H
′
, their incidence vectors satisfy inequality (12) at equality, and they are affinely

independent. Hence inequality (12) is facet-defining for P (H
′
).

We give an illustration of this result by lifting a diclique inequality for the
AISP (D).

Example 4.7. Figure 8(a) shows a diclique D on four nodes which is the support
graph of the facet-defining inequality

∑4
i=1 xi ≤ 1 for AISP (D). The corresponding

conflict hypergraph is given in Figure 8(b). Let e0 = {1, 2}, S1 = {1}, S2 = {2},
T1 = {5, 6}, and T2 = {7, 8}. We obtain a new graph D

′
(see Figure 8(c) on 8 nodes

by deleting the arcs between nodes 1 and 2 and adding three directed cycles (1, 5, 6),
(5, 6, 7, 8), and (2, 7, 8). The corresponding hypergraph is given in Figure 8(d). By
Theorem 4.6, inequality

∑8
i=1 xi ≤ 4 is facet-defining for AISP (D

′
). By sequential
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Fig. 8. Adding two independent node sets.

application of this operation, we obtain the graph of Figure 8(e). It follows from
Theorem 4.6 that

∑20
i=1 xi ≤ 13 is facet-defining for the associated polytope.

4.5. Two splitting procedures. Here we present a result on splitting a set of
nodes. Then we give a corollary, where we first split a node and then replace it with
an independent set.

Theorem 4.8. Let H = (V, E) be a hypergraph and S ⊆ V be an independent
set such that e ∩ S is either S or the empty set for all e ∈ E. Suppose that each
maximal independent set of H contains at least |S| − 1 elements of S. Suppose also
that the inequality

∑
i∈V aixi ≤ α is facet-defining for P (H) and ai = σ for all i ∈ S

for some scalar σ. Let E1 and E2 be a partition of edges that contain S. Let S1 and
S2 be two new nonempty node sets and consider the hypergraph H

′
= (V

′
, E

′
) such

that V
′
= V ∪S1 ∪S2 and E

′
= E \ (E1 ∪E2)∪{e∪S1 \S : e ∈ E1}∪{e∪S2 \S : e ∈

E2} ∪ {e1, e2}, where e1 = S ∪ S1 and e2 = S ∪ S2. Suppose that there exists Qj ⊆ V
whose incidence vector satisfies

∑
i∈V aixi = α and Qj ∪S1 ∪S2 \ {lj} is independent

in H
′
for some lj ∈ Sj for j = 1, 2. Then inequality

∑
i∈V

aixi + σ

( ∑
i∈S1

xi − |S1| + 1
)

+ σ

( ∑
i∈S2

xi − |S2| + 1
)

≤ α + σ(13)

is facet-defining for P (H
′
).

Proof. Consider the case where S = {s}, S1 = {s1}, and S2 = {s2} are singletons.
The general result is obtained using Theorem 4.1.

Let Q be an independent set in H
′

such that {s1, s2} ∩ Q = ∅. Then Q \ {s}
is an independent set for H , and so

∑
i∈Q\{s} ai ≤ α. Therefore inequality (13) is

satisfied. Now let Q be an independent set in H
′
containing node s1 but not node s2.

Then s �∈ Q. Again as
∑

i∈Q∩V ai ≤ α, inequality (13) is satisfied. The case where
Q contains s2 but not s1 is similar. Finally, let Q be an independent set in H

′
that

contains both s1 and s2. Remark that Q \ {s1, s2} ∪ {s} is independent in H . Hence∑
i∈V ∩Q ai ≤ α − σ and the incidence vector of Q satisfies inequality (13).
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Fig. 9. Splitting a set of nodes.

Let Q1, . . . , Q|V | be independent sets of H whose incidence vectors satisfy∑
i∈V aixi = α and are affinely independent. If s ∈ Qi, then let Q′

i = Qi∪{s1, s2}\{s}
and otherwise let Q

′

i = Qi ∪ {s} for i = 1, . . . , |V |. Let Q
′

|V |+i = Qi ∪ {s1, s2} \ {si}
for i = 1, 2. Observe that the sets Q

′

1, . . . , Q
′

|V |+2 are independent in H
′
, their inci-

dence vectors are affinely independent, and they satisfy inequality (13) at equality.
So inequality (13) is facet-defining for P (H

′
).

Example 4.9. Figure 9(a) shows a diclique D of 4 nodes. Inequality
∑4

i=1 xi ≤
1 is facet-defining for AISP (D). Let S = {1}. In Figure 9(b), which gives the
corresponding conflict hypergraph, the edges in dotted and dashed lines indicate a
partition of the edges containing S. Let S1 = {5, 6} and S2 = {7, 8}. We remove all
directed cycles containing S and introduce new directed cycles as seen in Figure 9(c).
These operations are also shown in the hypergraph representation of Figure 9(d). Let
D

′
be the new digraph obtained after this operation. By Theorem 4.8, inequality∑8

i=1 xi ≤ 4 is facet-defining for AISP (D
′
).

Corollary 4.10. Let H = (V, E) be a hypergraph and let s ∈ V . Suppose that
inequality

∑
i∈V aixi ≤ α is facet-defining for P (H). Let E1 and E2 be a partition

of edges that contain s. Let S1, S2, and S3 be three new nonempty node sets and
consider the hypergraph H

′
= (V

′
, E

′
) such that V

′
= V \ {s} ∪ S1 ∪ S2 ∪ S3 and

E
′
= E \ (E1 ∪E2)∪ {e∪ S1 \ {s} : e ∈ E1} ∪ {e∪ S2 \ {s} : e ∈ E2} ∪ {e1, e2}, where

e1 = S3 ∪ S1 and e2 = S3 ∪ S2. Suppose that there exists Qj ⊆ V whose incidence
vector satisfies

∑
i∈V aixi = α and Qj ∪ S1 ∪ S2 \ {lj} is independent in H

′
for some

lj ∈ Sj for j = 1, 2. Then inequality

∑
i∈V \{s}

aixi + as

( ∑
i∈S1

xi − |S1| + 1
)

+ as

( ∑
i∈S2

xi − |S2| + 1
)

+ as

( ∑
i∈S3

xi − |S3| + 1
)

≤ α + as(14)
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1502 P. FOUILHOUX, M. LABBÉ, A. R. MAHJOUB, AND H. YAMAN

6

5

1

2

43

1

2

3 4

5
6

1’ 1"

8

7

6

52

43

6

3 4

52
6

1’ 1"
7

8

a)

b)

c)

d)

e)

G

S1 S2

S3

G
′′

H

G
′

H
′

Fig. 10. Splitting a node.

is facet-defining for P (H
′
).

Proof. By Theorem 4.8, inequality∑
i∈V

aixi + as

( ∑
i∈S1

xi − |S1| + 1
)

+ as

( ∑
i∈S2

xi − |S2| + 1
)

≤ α + as

is facet-defining for P (H
′′
), where H

′′
= (V

′′
, E

′′
), V

′′
= V ∪S1∪S2, E

′′
= E \ (E1∪

E2) ∪ {e ∪ S1 \ {s} : e ∈ E1} ∪ {e ∪ S2 \ {s} : e ∈ E2} ∪ {e′

1, e
′

2}, e
′

1 = {s} ∪ S1, and
e
′

2 = {s}∪S2. Now we replace s with S3 using Theorem 4.1 to obtain the result.
Example 4.11. Figure 10(a) shows the support graph G of the inequality

∑5
i=1 x1+

3x6 ≤ 5 which induces a facet of TFISP (G). Figure 10(b) gives the corresponding
conflict hypergraph. We can lift this inequality by applying Corollary 4.10 on node
1. We then obtain the graph of Figure 10(c), where node 1 is replaced by the three
sets S1 = {1′}, S2 = {7, 8}, and S3 = {1′′}. We call this new graph G

′
. Inequality

x1′ +x1′′ +x2 +x3 +x4 +x5 +3x6 +x5 +x8 ≤ 7 is facet-defining for TFISP (G
′
). The

corresponding hypergraph is shown in Figure 10(d). We can also repeat iteratively this
operation for every node i = 2, . . . , 5 and obtain the graph of Figure 10(e). Let G

′′
be

this graph and V be the set of nodes of G
′′
. Then inequality 3x6 +

∑
i∈V \{6} xi ≤ 15

is facet-defining for TFISP (G
′′
).

4.6. Adding edges to antiwebs. Finally, we propose an extension procedure
which keeps the same set of nodes and adds new edges. We use this idea to derive a
family of facet-defining inequalities that we call ghost inequalities for the independence
system polytope.

Laurent [25] gives the following class of facet-defining inequalities for the in-
dependence system polytope. Let n, t, q be integers such that n ≥ t ≥ q ≥ 2,
W = {1, . . . , n}, and W i = {i, i+1, . . . , i+ t−1} for all i ∈ {1, . . . , n} (the indices are
taken modulo n). The hypergraph (W,AW(n, t, q)) is called an (n, t, q)-generalized
antiweb if

AW(n, t, q) =
{
C ⊆ W : |C| = q and C ⊆ W i for some i ∈ {1, . . . , n}} .
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This large class of hypergraphs contains many special cases known in the litera-
ture: the antiwebs (when q = 2) [34], the generalized cliques (when n = t) [19], the
generalized odd cycles (when q = t and t does not divide n) [19], and the generalized
anticycles (when n = qt + 1) [19].

Laurent [25] proves that the inequality

(15)
∑
i∈W

xi ≤
⌊

n(q − 1)
t

⌋

is valid for P ((W,AW(n, t, q))) and defines a facet of this polytope if and only if n = t
or t does not divide n(q − 1).

We present next a family of facet-defining inequalities for hypergraphs which
include antiwebs with q = 2 and additional edges.

Theorem 4.12. Let W = {1, . . . , n}, t ≥ 2, and k = 
n
t � ≥ 3 and consider the

hypergraph H = (W,AW(n, t, 2)∪ e1 ∪ · · · ∪ en), where ei = {i, i + t, . . . , i + (k − 1)t}
(the indices are taken modulo n) for i = 1, . . . , n. The ghost inequality

∑
i∈W

xi ≤ k − 1(16)

is facet-defining for P (H).
Proof. We first prove that (16) is valid for P (H). The cardinality of the largest

independent set in (W,AW(n, t, 2)) is k. As edges e1 ∪ · · · ∪ en cover all independent
sets of cardinality k of (W,AW(n, t, 2)), the independence number reduces to k − 1.

We now prove that (16) is facet-defining for P (H). For i = 1, . . . , n, consider sets
S1

i = {i, i+ t, . . . , i+(k−2)t} and S2
i = S1

i \{i+(k−2)t}∪{i+(k−2)t+1}. Observe
that there are n − (k − 2)t − 2 nodes from node i + (k − 2)t + 1 to node i excluding
these two nodes. This number is greater than or equal to t as n − kt = n − 
n

t �t ≥ 0
and t ≥ 2. As a result nodes i and i+(k−2)t+1 do not form an edge of the antiweb.
Since, in addition, |ej ∩ S1

i | ≤ k − 1 and |ej ∩ S2
i | ≤ k − 1 for all j = 1, . . . , n, we can

conclude that sets S1
i and S2

i are independent sets.
Assume by contradiction that all vectors x ∈ P (H) which satisfy

∑
i∈W xi = k−1

also satisfy ax = α, which is not a multiple of
∑

i∈W xi = k−1. For i ∈ {1, . . . , n}, as
the incidence vectors of both S1

i and S2
i satisfy

∑
i∈W xi = k−1, we have ai+(k−2)t =

ai+(k−2)t+1. This proves that ai = ρ for all i = 1, . . . , n and for some ρ ∈ R. Then
α = (k − 1)ρ. So ax = α is a multiple of

∑
i∈W xi = k − 1, which is the desired

contradiction.
Note that the antiweb inequality is facet-defining if and only if n = t or t does not

divide n, whereas we do not need any condition on n with respect to t for inequality
(16) to be facet-defining.

Example 4.13. Figure 11(a) shows the support graph D of a ghost inequality with
n = 6 and t = 2 for AISP (D). The corresponding hypergraph is depicted in Figure
11(b). If we remove arcs (1, 5), (5, 3), (3, 1), (6, 4), (4, 2), and (2, 6), the remaining
graph D

′
defines a generalized antiweb where n = 6, t = 2, and q = 2. The correspond-

ing antiweb inequality
∑6

i=1 xi ≤ 3 is not facet-defining for AISP (D
′
). However, if

the removed arcs are considered, we can obtain the ghost inequality
∑6

i=1 xi ≤ 2
which defines a facet of AISP (D).

5. Conclusion. In this paper, we have presented new procedures to derive facet-
defining inequalities for the independence system polytope. We first used sequential
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Fig. 11. Support graph of a ghost inequality for AISP .

lifting to derive general results and then considered particular cases where the com-
putation of the best lifting coefficients was simple. As a result of this investigation,
we obtained three extension procedures. Then we presented other procedures, some
of which involved extending the initial hypergraph whereas others involved replacing
and splitting nodes and edges.

The facet-generating procedures introduced in this paper have two important fea-
tures. First, they can be applied to both rank and nonrank facet-defining inequalities.
As most of the results on the facets of the independence system polytope known so far
are on rank inequalities, these procedures have the potential of generating new fam-
ilies of nonrank facet-defining inequalities. Second, the existing procedures consider
adding or replacing a single node or nodes that are contained in edges of cardinality
two. Our lifting procedures permit the modification of an hypergraph by adding or
replacing sets of nodes (not necessarily singletons) and edges with cardinality different
from two. Such procedures can prove to be useful in problems such as the triangle
free-induced subgraph problem, where all circuits have cardinality three.

Our procedures can be helpful in practice for generating new families of facet-
defining inequalities for known or unknown particular independence system polytopes,
like we have done in this article for several polytopes. The generated inequalities
may then be used to solve instances of the independence system problems within the
framework of cutting-plane based methods. The key ingredients of these methods are
separation algorithms. The separation problem for a class of inequalities consists of
deciding whether a given vector x̄ ∈ R

|V | satisfies the inequalities of this class and, if
not, finding an inequality that is violated by x̄.

In what follows, we devise a polynomial time algorithm for the acyclic wheel
inequalities (7) when q is fixed. This polynomial time separation algorithm gives an
example of how the the facet-defining inequalities generated by our procedures can
be identified and used in practice. Similar separation algorithms can be devised for
other generated inequalities and then be integrated in cutting-plane based methods
dedicated to particular independence system problems.

For a given vector x̄ ∈ R
|V | and a given q, separating the acyclic wheel inequalities

consists of finding, in an oriented graph G = (V, A), two disjoint node sets C and K
such that C induces a directed cycle and K a diclique of q nodes such that each node
of K forms a two-node diclique with the nodes of C and x̄(C)+(|C|−1)x̄(K) > |C|−1.
This can be done by testing the node subsets of q nodes to induce a diclique. First note
that one may suppose that the diclique inequalities x̄(K) ≤ 1, induced by dicliques
K of size q + 1, are all satisfied by x̄. Now, for a given diclique K0 of q nodes, we
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set σ0 = x̄(K0) and define W0 to be the set of nodes w such that K0 ∪ {w} induces
a diclique. Let x

′
(w) = 1 − σ0 − x̄(w) for every node w ∈ W0. Clearly, x

′
(w) is

nonnegative. The separation problem then reduces to finding a node subset C in W0,
inducing a directed cycle and satisfying x̄(C)+|C|σ0 > |C|−1+σ0, i.e., x

′
(C) < 1−σ0.

Thus our separation problem reduces to finding in W0 an induced directed cycle C∗

whose weight with respect to x
′

is minimum. In fact, if x
′
(C∗) < 1 − σ0, then

we have found an acyclic wheel inequality violated by x̄; otherwise no acyclic wheel
inequality is violated by x̄. Such a cycle can be found in the subgraph of G induced
by W0 by searching, for every node u ∈ W0, the shortest path tree from u to every
predecessor of u. As x

′
is nonnegative, each tree can be found using Dijkstra’s shortest

path algorithm in O(|A| + |V |log(|V |)) time. Thus the whole procedure consists of
finding, for every diclique of size q, a shortest directed cycle, which can then be
done using |V | times a shortest path algorithm in O(|V ||A| + |V |2log(|V |)) time.
Consequently, our separation algorithm, for acyclic wheel inequalities (7), runs in
O(|V |q+1|A| + |V |q+2log(|V |)) time when q is fixed.

One future research direction is to devise separation algorithms for the classes of
inequalities presented in this paper and to investigate their computational potential
in solving independent set problems. These algorithms may be tested on well-known
problems that have very specific structure like the knapsack and stable set problems
as well as on other independence system problems.

Another interesting direction is to devise new facet-generating procedures on hy-
pergraphs with particular structures and investigate the possibilities of generating
new families of facet-defining inequalities for known independence system polytopes.

Acknowledgment. The authors would like to thank both anonymous referees
for their comments. They are particularly grateful to one of the referees for numerous
suggestions that improved the presentation.
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