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Spurious Radiation from Microstrip Interconnects 
M. 1. Aksun and Raj Mittra, Fellow, IEEE 

Abstract- The level of spurious radiation from microstrip 
interconnects, which are modeled here as either single or asym- 
metric parallel microstrip lines terminated by arbitrary complex 
load impedances, is investigated in this paper. The calculation 
of the spurious radiation requires a knowledge of the current 
distributions on the microstrip lines, and the first step is to 
compute these distributions efficiently. This is carried out here 
by using the method of moments in conjunction with closed- 
form spatial domain Green’s functions that circumvent the need 
for time-consuming evaluation of Sommerfeld integrals. Once 
the current distributions on the etches have been obtained, the 
level of spurious radiation, which is defined as the radiated 
power crossing the plane parallel to the plane of interconnects, 
is calculated. The dependence of the spurious radiation on the 
lengths of the lines and on the termination impedances of the 
etches is also studied. 

I. INTRODUCTION 
HE estimation of spurious radiation from microstrip T interconnects, and a systematic design of the layouts of 

these interconnects ensuring that the radiation level is below 
the specifications set by the regulatory agencies, are important 
problems that arise in the electrical design of the packages for 
digital and communication circuits. One approach to estimat- 
ing the spurious radiation level is to use static or quasi-static 
approximations and calculate the capacitance and inductance 
parameters [ 11 of the interconnect configuration. The current 
distribution of the etches is obtained next and the spurious 
radiation is computed by using the current distribution. While 
the procedure just outlined is frequently used in practice, it 
does not adequately take into account the dispersive nature 
of etches, or the retardation phenomenon, which might have a 
significant effect on the result. The rigorous analysis of printed 
circuit elements, such as microstrip interconnects terminated 
by complex loads, microstrip discontinuities, patch antennas 
and printed dipoles (see Fig. l), requires the use of the vector 
and scalar Green’s functions for a substrate layer backed by a 
ground plane [2]. It is well known that the Green’s functions 
for microstrip geometries are improper integrals [3], also called 
Sommerfeld integrals, whose integrands are oscillatory and 
slowly decaying functions; hence, their calculation is very 
time-consuming for many practical configurations of interest. 
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Fig. 1.  Substrate-superstrate geometry. 

However, recently a novel approach to circumventing this 
problem has been developed [4],[5], one that employs closed- 
form expressions for the spatial domain Green’s functions 
corresponding to the vector and scalar potentials associated 
with a horizontal electric dipole (HED) located over a thick 
substrate. This technique has been further extended [6],[7] to 
microstrip geometries with both a substrate and a superstrate, 
whose thicknesses can be arbitrary. The closed-form Green’s 
functions have been used in a method of moments formulation 
to analyze planar microstrip structures and substantial savings 
in computation time has been realized [8]. In this paper, we 
briefly discuss the derivation of these closed-form Green’s 
functions and then employ them to address the problem of 
spurious radiation calculation from microstrip interconnects, 
modeled herein as single or double microstrip lines terminated 
by complex loads. Though the numerical results presented in 
this paper pertain to microstrip etches in printed circuit boards 
with substrates only, the method of analysis applies equally 
well to the case where a superstrate is also present, as for 
instance in Fig. 1. 

11. DERIVATION OF CLOSED-FORM GREEN’S 
FUNCTIONS FOR A GENERAL MICROSTRIP GEOMETRY 

One of the most commonly used numerical techniques 
for solving electromagnetic problems is the MOM, which 
is based upon the transformation of an operator equation 
into a matrix equation. Although the MOM is preferred over 
differential equation methods for the microstrip circuit and 
radiation problems, because it is relatively efficient in terms 
of computation time, it is still quite time-consuming due to 
the slow convergence of the integrals involved. In view of 
this, it would be instructive to demonstrate the difficulties that 
one might face in the application of the conventional moment 
method approach to microstrip geometries before presenting 
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the derivation of the closed-form Green’s functions for the 
vector and scalar potentials. It is well known that the MOM 
can be applied either in the spatial domain [9] or in the spectral 
domain [lo], although the latter is more suitable for microstrip 
geometries. Both approaches will be examined here from the 
point of view of computational efficiency. 

A. Conventional Method of Moments (MOM) 
Consider a general microstrip structure at z = 0 plane 

and assume that the substrate layer extends to infinity in the 
transverse directions (zy-plane). Let the thickness and the 
permittivity of the substrate be denoted by di-1 and q . i - 1 ,  

respectively. 
The tangential electric fields on the plane of the patch 

( 2  = 0) can be written in terms of the Green’s functions for the 
vector and scalar potentials, G$s=z,y) and G,, respectively, 
as 

1 d  E, = -jwG& * J,  + --[G, * V .  J ]  (1) gw dz 

where * denotes spatial convolution; and J is the surface 
current density on the conducting etches. 

Using the basis functions J,, and Jy,, and the testing func- 
tions T,, and T,,, and following the MOM procedure one 
obtains the following equations for the unknown coefficients 
A ,  and B, of the expansion functions J,, and Jyn,:  

~ 
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where D ( T )  and D ( B )  represent the domain of the testing 
and expansion functions, respectively, and 

The evaluation of the inner products in (6) is very time- 
consuming because of the oscillatory nature and the slow 
convergence behavior of the integrands of the Green’s func- 
tions. 

An alternative approach to solving the current distribution 
problem using MOM is to work in the spectral domain in- 
stead, where the necessary Green’s functions can be expressed 
in closed forms. Nevertheless, the integrals for the matrix 
elements now span over infinite ranges and can be highly 
oscillatory in nature [ 1 I]. As a consequence, these integrals 
are still very expensive to evaluate and this prompts us to look 
for ways by which this process could either be accelerated or 
circumvented. 

B. Closed-Form Green’s Functions for the 
Vector and ScalarPotentials 

One remedy for the aforementioned convergence problem is 
to express the spatial domain Green’s functions in closed forms 
so that the inner products become two-dimensional integrals 
over a finite range, and the time-consuming part of the moment 
method in the spatial domain, which is the evaluation of the 
Green’s functions, is completely avoided. The Sommerfeld 
integrals for the Green’s functions corresponding to the vector 
and scalar potentials are written as 

(3) 

(4) 

The first inner product term in (3) is written below as an 
example 

where 
GA 
spectral domain, 
Gq 
spectral domain, 
HL2) 
SIP 
The procedure for deriving closed-form expressions for the 

Green’s functions entails the following steps: 
1) Obtain the Green’s functions for the vector and scalar 

potentials in the spectral domain. 
2) Find the quasi-static images (real images) and their 

contributions by using the Sommerfeld identity. 
3) Find the surface-wave poles and calculate their contri- 

butions analytically. 
4) Approximate the remaining integrand, which is now 

a smooth and relatively rapidly decaying function of 
the integration variable I C ,  in (7), in terms of complex 
exponentials, say by using the least-square Prony or the 
pencil-of-function method. 

The derivation of the closed-form Green’s functions for the 
vector and scalar potentials for a horizontal electric dipole 
located at the interface between the substrate and superstrate, 
as shown in Fig. 1,  has been presented in some detail in [6] 

the Green’s function of the vector potential in the 

the Green’s function of the scalar potential in the 

the Hankel function of the second kind, 
the Sommerfeld integration path (see [ 1 11). 
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and [7], and will be omitted here. We merely give below the 
closed-form expressions for the pertinent Green’s functions 

(9) 

where K t , z + 1  = ( E r , - E r i + l ) / ( € r , + E r Z + l ) .  K z - 1 , i  = ( E r i - 1 -  

E ~ , ) , / ( E ~ ~ - ~  + E ~ , ) ;  NTE and NTM are the numbers of TE and 
TM surface-wave poles k p p ( l ) ;  Nl and N2 are the numbers of 
complex images for the vector and scalar potentials, respec- 
tively; ( b l 1 .  7.1,)  and ( b z Z r  rz1)  are the coefficient and complex 
distance pairs of the complex images for the vector and scalar 
potentials, respectively; and 

For further details and explanations of notation, the reader is 
referred to [6] and [7] cited above. 

We consider an example of a microstrip geometry for which 
the relative dielectric constant and the substrate thickness are 
4.0 and 0.0203 cm (=8 mils), respectively. The frequency of 
operation is chosen to be 1 GHz. For these parameters, the 
substrate thickness is 0.00135 in terms of the wavelength in 
the medium and there exists only one TM surface-wave pole 
located at k p  = 0.20944. In this example, we have used two 
and four complex images for the closed-form representations 
of the Green’s functions for the vector and scalar potentials, 
respectively, Le., have chosen N1 = 2 and NZ = 4 in (8) 
and (9). As can be seen from Figs. 2 and 3, the closed-form 
Green’s functions and the numerically integrated Sommerfeld 
integrals are found to be in very good agreement up to a 
moderate distance between the observation and source points, 
beyond which the closed-form approximation begins to deviate 
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Fig. 2. The Green’s function for the vector potential; magnitude and phase. 
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Fig. 3. The Green’s function for the scalar potential; magnitude and phase. 
= ~ . ( ) . e ~ . ~  = 1.0. d t p l  = 0.02032 cm, frequency = 1.0 GHz. e ,  

somewhat from the exact Green’s functions. The Sommerfeld 
integrals themselves were evaluated using accurate quadrature 
schemes after the surface wave poles were extracted and their 
contributions evaluated analytically. 

It is possible to employ far-field approximations [12] to 
derive a more accurate representation of the Green’s functions 
for large p. However, this is often unnecessary because the 
size of the conductors on a substrate is usually on the order 
of a wavelength or less, and the closed-form representations 
of the Green’s functions are usually adequate. 

It should be noted that the procedure given above is quite 
general and is applicable to a wide range of frequencies and 
material parameters. And yet, its use results in savings of 
computation time in the calculation of the Green’s functions as 
well as in the application of the MOM to microstrip problems. 

Before closing this section, we would like to mention that 
small argument approximations of the Sommerfeld integrals 
have been introduced recently by Mosig and Gardiol [13]. 
However, i t  is believed that the closed-form Green’s functions 
presented here have a wider range of applicability, needed 
in the present analysis, than could be realized by using the 
Mosig and Gardiol expressions. 
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Fig. 4. Geometry of a microstrip line terminated by complex loads. 

111. MICROSTRIP LINE TERMINATED BY COMPLEX LOADS 
In this section, we investigate the problem of spurious 

radiation from a microstrip etch by considering the geometry 
of a microstrip line on a substrate as shown in Fig. 4. Since 
our ultimate goal is to access the level of spurious radiation 
from an integrated circuit, we start with the calculation of 
the radiated power from an interconnect. The interconnect is 
modeled here as a microstrip line that is fed by a current source 
and terminated by complex loads at both ends. The location 
of the current source is arbitrary as are the complex load 
impedances terminating the line. Our objective is to compute 
the current distribution on the line and the level of spurious 
radiation as a function of the length of the line and the load 
impedances. 

A. Current Distribution on a Microstrip Line 
Terminated by Complex Loads 

Fig. 4 shows the geometry of a microstrip line fed by an 
arbitrarily located current source and terminated by complex 
impedances at both ends. The substrate is assumed to be 
infinitely wide in the 2- and y-directions, to have a thickness 

The electric field along the line (z-direction) are given 
in (1) in terms of the current densities J ,  and Jy. For this 
problem, the y-component of the current density is assumed 
to be negligible because the width of the microstrip line w is 
much smaller than the wavelength in the dielectric medium. 
Therefore, only the 2-directed current density is represented 
in terms of the expansion functions, expressed as 

and a relative permittivity eTz- l .  

JZ(2. Y )  = L J m ( x ,  Y )  + J d x ,  Y) (10) 
R 

where I ,  is the unknown coefficient of the expansion function, 
and J ,  is the expansion function for the current source. By 
substituting ( 1  0) into ( 1 )  and testing the resulting equations 
using the expansion functions Jxm (Galerkin’s method of 
moments), the following algebraic equation is obtained for 
the coefficients I ,  for each m: 

(C) 

Fig. 5 .  Expansion functions representing the current density (a) on the line, 
(b) at the source, and (c) at the load terminals. 

If the number of equations, i.e., m, is less than the number of 
unknowns n, additional equations must be provided in order 
to realize a square matrix and to obtain a unique solution for 
the coefficients I,. 

The expansion functions, apart from those that represent the 
source and load currents, are chosen to be rooftops, which are 
triangular functions in the longitudinal direction, uniform in 
the transverse direction, and are defined mathematically as 

I o .  
where h, is the support of the expansion functions (see 

Fig. 5). 
The source and load contributions to the current density 

on the microstrip line are taken into account by employing 
suitable expansion functions for them and relating them to 
the other equations. The expansion functions for the current 
distribution associated with the source and loads are given by 
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performed analytically, which is the case for the choice of the 
expansion functions given in (12), (13a), and (13b), the inner 
products in (14) reduce to double integrals over finite domains. 

lY l  5 5  
elsewhere 

(1 3b) 
and plotted in Fig. 5(b) and 5(c), respectively. The source 
basis functions model the excitation of the microstrip line 
by a coaxial cable with its center conductor attached to 
the etch whose width is much smaller than the wavelength. 
These expansion functions have been chosen to be compatible 
with the rooftops (12), which have already been employed to 
represent the current density on the microstrip line. However, 
these functions are piecewise continuous while the rooftops are 
piecewise differentiable functions. Consequently, the integrals 
corresponding to the expansion functions of the source and 
loads in ( 1  1 )  would be divergent unless some physical require- 
ments are imposed upon them to render them convergent [14]. 
The problem of piecewise continuous functions as expansion 
functions for the current density is the discontinuity that gives 
rise to infinite, nonphysical charge density, Le., a singularity 
in its derivative that needs to be inserted in (1 1). Once this 
singularity is removed, a process that can be justified on 
physical principles of conservation of charge at the source 
and load terminals, the integrals involving these expansion 
functions become convergent. 

Upon choosing the expansion functions given above, and 
deleting the nonphysical singularities caused by the divergence 
of the current, it becomes possible to justify the step of 
integration by parts and to transfer the derivatives in front 
of the convolution integrals in (1 1 )  over to the functions .Izm. 
Equation (1 1) can then be rewritten as 

where the number of equations (N1 + N, + 3) exceeds the 
number of unknowns (N1 + N ,  + 1) by two. However, as 
detailed in the next section, two additional equations can be 
obtained by enforcing the necessary boundary conditions at 
the load terminals. 

Each inner product term in (14) is a four-dimensional 
integral provided that the closed-form Green’s functions are 
used. Since the numerical integration of a four-dimensional 
integral is quite expensive, even though the integration is over 
a finite domain, the convolution between the Green’s function 
and the expansion functions is transferred over to the two 
expansion functions involved in each term. If the expansion 

B. Additional Equations for the Load Expansion Functions 

In order to relate the coefficients of the load expansion 
functions to the rest of the expansion functions, we need 
to invoke two additional boundary conditions at the load 
terminals. Since the product of the load impedance and the 
line current is the voltage difference between the line and the 
ground, the voltages at the load terminals can be expressed 
in terms of the load impedances, the coefficients of the 
load expansion functions, and the coefficients of the other 
expansion functions defined on the microstrip line. Next, 
a simple’ and computationally efficient approach, based on 
transmission line analysis, can be used to relate the load 
impedances to the surface current density on the line. In 
transmission line analysis, it is well known that the total 
voltage V(z) and the total current I ( z )  on the line are related 
by the following first-order differential equations: 

where Y = j/?/Z, and Z = j /?& are the shunt admittance 
and series impedance per unit length of the line, respectively. 
The characteristic impedance 2, and propagation constant /? 
of the line are calculated by using empirical formulas based 
on a quasi-static analysis [15]. If the derivatives in (15) are 
approximated by finite differencing and the resulting equations 
are related to each other for the load terminals at 2 = z1 and 
z = x,, the following equations are obtained [see Fig. 5(a) 
and 5(c)]: 

where V(-X~)/~(-XI) = -2~1 and V(xv ) / l ( z , )  = ZL, 
are employed. Note that (16) and (17) are dependent upon 
the finite-difference approximation. By supplementing ( 14) 
with these two terminal conditions and solving for I ,  using 
matrix methods, the current distribution on the microstrip line 
terminated by the complex load impedances Zh1 and ZL, is 
obtained. The results thus obtained are presented in the next 
section and are compared with those derived by using a simpler 
transmission line approach. 

C. Spurious Radiation 

After solving for the current distribution on the microstrip 
line, whether by using the TL approach or the MOM, both 
the near- and far-field components can be calculated by using 
appropriate Green’s functions. The spurious radiated power 
can then be obtained by integrating the Poynting vector over 

functions have been chosen such that their convolution can be ‘The question of using a more rigorous approach has been discussed in [SI. 
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a closed surface, which could be chosen as a rectangular box 
enclosing the microstrip line. 

In this paper, the spurious radiated power is defined as 
the total power crossing a plane parallel to the plane of the 
substrate. This power is expressed as 

Since the calculation of the field components requires a 
convolution integral for each expansion function that is used 
to represent the current density on the microstrip line, imple- 
menting (18) in the spatial domain becomes computationally 
expensive. Therefore, the field components in (1 8) are trans- 
formed into the spectral domain, and the total power is 
expressed in the spectral domain as 

' [( G,E, Jx, (G,H, 3, ) *  - 

(19) 

where the Green's functions for the electric and magnetic fields 
are obtained by using the immittance approach [16]. 

D. Results and Discussions 

In this section, we present a few representative numerical 
results for the current distribution and spurious radiated power 
from microstrip etches. The following parameters have been 
chosen for the examples given below: the dielectric constant 
of the medium E ~ ~ - ~  = 4.0; the ratio of the width of the 
microstrip line w to the thickness di-1 of the substrate = 4.0; 
the thickness of the substrate d,-l = 8.0 mils (0.0203 cm); and 
the frequency of operation = 1.0 GHz. The source is located 
approximately 1 .0 cm from the left edge of the microstrip line 
and has an amplitude of 2 Amps. 

The current distribution on a line can often be predicted 
intuitively for standard terminations e.g., a match, open circuit, 
or short circuit. This prompts us to use these cases as examples 
of our calculations. Excellent agreement is observed between 
the current distributions calculated by the TL approach (see [7] 
for details) and the MOM for a microstrip line terminated at 
both ends by matched loads, open or short circuits, excepting 
in the vicinity of the resonance for the last two cases [7], 
[8]. This behavior is attributable to the difference in the 
resonant lengths of the line predicted by the MOM and the 
TL approaches. As an example of a complex termination, 
we have chosen a resistance of 20K in parallel with a 8- 
pF capacitance, which represents the typical input impedance 
of a 'ITL gate. The current distributions for this termination 
have been calculated by using both the TL and the MOM 
approaches, and are exhibited in Fig. 6. It is observed that the 
current calculated by the TL approach is slightly different from 
that of the MOM, because, as mentioned above, the length of 
the line is close to the resonant length for this load termination. 

A study of the current distributions for different lengths of 
the line leads us to conclude that in general, the TL approach 
predicts the current distribution reasonably well, provided that 
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Fig. 6.  Magnitude of current distribution obtained by using MOM and TL 
approaches for a complex load termination ZL = (20W8pF). Discontinuity 
at .r = 0 is due to the attachment of the current source. 
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the frequency of operation is not too close to the resonant 
frequency of the resonator represented by the truncated line. 

The spurious power, as defined by (19), is calculated for: 1)  
a microstrip line terminated by matched loads; 2) open circuits 
at both terminals; and 3) a matched load on the left and a 
complex load of 8 pF//20 KO on the right terminal. For the 
power calculations, the source current amplitude is assumed 
to be 1 mA. The results for the radiated power are shown 
in Figs. 7-9, respectively. As seen from Fig. 7, the radiation 
from a microstrip line terminated by a pair of matched loads is 
very small in comparison to those for other loads. The highest 
radiation occurs for the open-circuited transmission lines of 
resonant length, for which the radiated power reaches the level 
of 1 .0 yW for a 1 mA source current (see Fig. 8). The radiated 
power has a sharp peak around the resonance length of the 
line, and it becomes essentially negligible for off-resonance 
lengths. Fig. 9 shows that for the combination of matched and 
complex load terminations, the total radiated power is slightly 
larger than that of matched load termination case (Fig. 7). 

The spurious radiated powers for open and short circuit 
terminations have been measured for test boards and are shown 
in Fig. 10(a) and (b). For measurement purposes it was more 
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Fig. 8. Radiated power as a function of the length of the line for open-circuit 
termination at both ends. 
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load and a complex load Z L  = (20W8 pF) terminations. 

convenient to investigate the variation of the radiated power 
as a function of frequency and to choose the dimension of 
the etch as follows: length = 7.6 cm; width = 0.22 cm; 
substrate E, = 2.62; thickness of substrate = 0.0794 cm. Also, 
the measured data was taken only in the principal plane and 
normalized at one frequency before comparing them with the 
calculated data that assumed an input current of 1 mA. We note 
that the frequency variations of the radiated power agree quite 
well with the calculated results, especially for the open-circuit 
case, which is easier to realize in practice. 

IV. ASYMMETRIC PARALLEL MICROSTRIP LINES 
TERMINATED BY ARBITRARY COMPLEX LOADS 

Coupled planar transmission lines with equal line lengths 
have been extensively investigated in the past two decades 
by using quasi-static approaches [ 171, and full-wave analyses 
[ 181, [ 191. The quasi-static approximations avoid extensive 
numerical calculations required in the conventional full-wave 
analysis, but often do not provide sufficiently accurate results 
for radiation problems. 

Parallel microstrip etches can be used either as coupled lines 
or as interconnects for digital circuits. As interconnects, they 

30 . 

Computed 
20 -k 

-_- - - 

-40 L-1 
1.5 2 2.5 3 3.5 4 4.5 5 5.5 

Frequency (GHz) 

(b) 
Fig 10 Companson of numencal and experimental (normalized) results for 
spurious radiated power as a function of frequency Line length = 7 6 cm, 
width = 0 22 cm, 5, = 2 62, substrate thickness = 0 079 cm (a) open circuit 
at both ends, (b) short circuit at both ends 

may, in general, have different lengths and be terminated by 
different complex loads. Therefore, in this work, we investi- 
gate the problem of determining the current distribution and 
radiation leakage from parallel microstrip edges, which consist 
of two parallel microstrip lines with arbitrary lengths and 
terminations. Since the lengths of the lines can be different, 
their relative positions can be adjusted arbitrarily as long as 
they remain parallel to each other. 

A. Formulation of the Problem 

The geometry of an asymmetric parallel microstrip lines is 
shown in Fig. 1 1, where line - 1 is fed by an arbitrarily located 
current source through the substrate. The lengths and widths 
of the lines are denoted by 1 1 , 1 2  and w1, w2, respectively; the 
center-to-center spacing and the gap between the two lines 
are defined as the parameters Ay and s, respectively; Ax 
defines the amount of the shift in the longitudinal direction. 
The substrate thickness is &-I, and the relative permittivity 
is ~ ~ i - 1 .  

As in the case of a single line described in Section 111-A, the 
y-component of the current density is assumed to be negligible 
while the 2-component of the current density is expanded in 
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where the LzJ ' s  and CL3's are the Maxwellian inductances and 
capacitances per unit length of the coupled line, which can be 
calculated by using a quasi-static approach [20]. 

By introducing the finite-difference approximation in (2 1 ), 
we obtain the following desired supplementary terminal con- 
ditions: 

Line-I 

1 c 2 2  

j w h x  A, 
Fig. 1 I .  Geometry of asymmetric parallel lines. 

terms of the expansion functions as 

J x ( s .  w )  = ~ l n J l x n ( ~ . Y )  + Js(,. Y) + I2nJ2x71(.& w )  

(20) 
where Ilrl and 1 2 n  are the unknown coefficients of the ex- 
pansion functions used on the active and passive lines, re- 
spectively; and J,,, and J ,  are the expansion functions for 
the current density on the line and at the source terminal, 
respectively, whose mathematical representations have been 
given in (1 2 )  and (1  3). By following the same procedure as 
described in Sections 11-A and 111-A, simultaneous equations 
for the unknown coefficients of the expansion functions can 
be obtained. However, for the two-line case, the number of 
resulting equations is less than the number of unknowns by 
four (in contrast to two for the single-line case). As before, 
we impose the boundary conditions at the load terminals to 
obtain the four requisite equations involving the complex load 
terminations. The applications of the load boundary conditions 
are discussed in detail in the next section. 

n 71 

B. Imposing the Boundary Conditions at the Loud Terminals 

We now discuss an extension of the procedure given in 
Section 111-B that leads to the four supplementary equations 
needed to obtain a unique solution for the current distributions 
on the coupled-line system. In general, the geometry of the two 
etches under consideration is asymmetric. Thus, each of the 
four terminals of the parallel line system may be regarded as 
belonging to a single- or coupled-line system depending upon 
the relative length of the passive line and the longitudinal shift 
Ax. For instance, if -.cl1 < -:rl2 + AT and x,1 < 2,2 + A.c, 
then the terminals -1 and -4 are treated as though they are 
terminals of single lines, to be handled separately, while the 
terminals -2 and - 3  are associated with the coupled line 
system. 

The differential equations for a coupled-line system are 
given by 

where /31,Zol and j12.Zo2 are the propagation constants and 
the characteristic impedances of the isolated active and passive 
lines, respectively; and A, = C11C22 - C12C21. 

The current distributions and the spurious radiated power 
for coupled lines are presented in the next section. 

C. Results and Discussions 

The following parameters have been chosen for the ex- 
amples given below: the dielectric constant of the medium 
~ ~ ~ - 1  = 4.0; the thickness of the substrate di-1 = 8.0 mils 
(0.0203 cm); the widths of the lines 711 = w1 = 1112 = 4d-1; 
and the frequency of operation ,f = 1.0 GHz. The location of 
the source is chosen to be 0.4 cm away from the left edge of 
line -1, i.e., :xl1 = 0.4 cm, unless stated otherwise. 

The current distribution on a coupled line system, for which 
both the active and passive lines have equal lengths (A:r = O), 
and all terminated by an open circuit at all the load terminals, 
is obtained for some typical spacings s(  = A:y - T U )  between the 
lines. The current distributions on the active and passive lines 
are given in Fig. 12 for two different spacings between the 
lines (the source current is still 2 Amps as before). Although 
the typical spacing between the lines is equal to the width 
of the lines, we have chosen the spacing s equal to half and 
twice the width of the lines, in order to illustrate the effect of 
the spacing on the coupling. As expected, when the spacing 
between the lines is large compared to the thickness of the 
substrate, the coupling to the passive line is very small, and 
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Fig. 12. Current distribution on a coupled line terminated by open circuits. 
length = 9.0 cm, f = 1.0 GHz, crz - l  = 4.0.d,-1 = 8.0 mils, 
u'1 = u'p = 32 mils. 

there is little effect on the current distribution on the active 
line. However, it is observed that the coupling to the passive 
line and the change in the current distribution on the active 
line are more pronounced when the lengths of the lines are 
close to the resonant length. 

To complete the study of the coupled-line interconnect 
system, we investigate complex impedances that represent 
typical terminations for interconnects used in digital circuits. 
In this example, the active and passive lines, which are 
separated by the distance w/2, are terminated by matched 
loads on the left terminals and complex impedances of 20- 
kR resistance paralleled with 8-pF capacitance on the right 
terminals. The magnitude and phase of the current distribution 
on the coupled line with the specified terminations is given 
in Fig. 13, which shows that the active line seems to have 
a resonance behavior even though one of the terminations is 
matched to the characteristic impedance of the single line. 

The spurious radiated power has been calculated, for an 
input current of I mA, for the coupled-line system terminated 
by open circuits, matched loads, and complex impedances. 
These are presented in Figs. 14-16, respectively. For the 
open-circuit terminations, the level of the spurious radiation 
from a single microstrip line that has the same dimensions 
as the coupled lines is also given in Fig. 14 for the sake of 
comparison. The spurious radiation is lower than -30 dBp 
for most of the lengths of the lines when terminated by open 
circuits; however it goes up significantly, to 2 4  dBp, at 
around the resonant lengths. The radiated power increases with 
the length of the lines and saturates at the level of -40 dBp for 
the matched load terminations, which is less than the amount 
of radiation at the off-resonance lengths from the coupled line 
with open-circuit terminations. 

In general, the microstrip lines that are used as interconnects 
may have different lengths and their starting and end terminals 
may be shifted with respect to each other, such lines are 
designated here as asymmetric parallel lines. Fig. 17 gives 
the current distribution on asymmetric parallel microstrip lines 
terminated by open circuits at all four terminals. Each line is 
8.0 cm long, shifted by 4.0 cm, and the spacing s is equal 

0.5 + -----Passivehe \ / t 

-2 0 2 4 6 8 10 
x k m )  

(3 
I I I 1 I I 
I I I I I 

-200 
-2 0 2 4 6 8 10 

x(cm) 

(b) 

Fig. 13 Current distribution on a coupled line, (a) Magnitude, (b) Phase 
Z ~ l i  = Z,r i r  = Z O . Z L , ~  = Z L ~ ~  = (201iR/8pF).f = 1 GHz, 
E, L p l  = 4 0 .  d t p l  = 8 mils, 71'1 = U ~ Y  = 3 2  mils, s = 16 mils. 
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Fig. 14. Radiated power as a function of the length of the single and 
coupled lines for open circuit termination at all terminals. f = 1.0 GHz, 
c7.t-1 = 4.0. d,- l  = 8.0 mils, u'L = ti12 = 32 mils, s = 32  mils. 

to the line width w. Note that the current distributions on 
the active and passive lines are in phase, and this causes an 
increase in the level of spurious radiation compared to that 
from a single line with the same dimensions as the active 
line. To assess the effect of the passive line on the level of 
radiation, the power of spurious radiation is calculated as a 
function of the length of the passive line while the length of 
the active line is kept constant at 8.0 cm, as shown in Fig. 
18. For comparison purposes, we note, by referring to Fig. 8, 
that a single microstrip line of 8.0 cm in length and terminated 
by open circuits at both ends radiates around -15.3 dBp. In 
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r(cm) 
Fig. 15. Radiated power as a function of the length of the coupled 
line for matched load termination at all terminals. f = 1.0 GHz, 
~ , . - l  = i .O.d,- l  = 6.0 mils, u'1 = U I ~  = 3 2  mils, s = 32 mils. 

Fig, 17. Current distribution on asymmetric parallel lines for open circuit 
terminations at all terminals, f = 1.0 GHz, cr t - l  = 4.0.d,-l = 8.0 mils, 
u'1 = u'z = 3 2  mils, .s = 32 mils, 11 = 8.0 cm, (2 = 8.0 cm, Ar = 1.0 cm. 
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Fig. 16. Radiated power as a function of the length of the coupled line. 4 6 8 10 12 14 16 18 20 
2 ~ 1 1  = 2 ~ 1 2  = Z O . Z L ~ . ~  = Z L ~ ~  = (20KR/8pF).f  = 1.0 GHz, Length-2 (cm) 
C , - ~ - I  = 4.0. d , - l  = 6.0 mils, = u.2 = 32 mils, s = 16 mils. 

Fig. 18. Radiated power from asymmetric parallel lines for open circuit 
terminations at all terminals. f = 1.0 GHz, E , - ~ - I  = 4.0. d z - l  = 8.0 mils, 

the vicinity of the resonance, the level of radiation increases 
up to -9.5 dBp as the length of the passive line approaches 
the resonant length due to the in-phase coupling, and goes 
down to -20 dBp as soon as the coupling is out of phase. 
However, for off-resonance lengths, the level of radiation is 
almost equal to that from a single microstrip line. Another 
example is given for an asymmetric line system terminated by 
a matched load on the left and the complex load (20 kR/8 pF) 
on the right terminals of the active line, while the terminals on 
the passive line are left open-circuited. The spurious radiation 
from this geometry is presented in Fig. 19, where the length 
of the passive line is used as an independent variable. 

us1 = ~ ' 2  = 3 2  mils, .s = 32 mils, ( I  = 8.0 cm, 3 . r  = 4.0 cm. 

4 6 8 10 12 14 16 
Length-2 (em) V. CONCLUSIONS 

class of microstrip geometries have been presented in closed 
forms and have been used to analyze single and coupled 
microstrip lines terminated by complex loads. 

The use of the closed-form spatial domain Green's functions 
in the method of moments formulation reduces the com- 
putation time significantly as compared to the conventional 
formulation carried out in the spectral domain. For instance, in 
a numerical experiment with 40 rooftop expansion functions, 
the computation time for the current distribution is on the order 

In this work, spatial domain Green's functions for a general Fig. 19. Radiated power from asymmetric parallel lines 2 ~ 1 1  = 20. ZI,, 1 

= (20  k R / 8 p F ) . 2 1 , , ~  = Z L r 2  = open-circuited, f = 1.0 GHz, 
~ ~ . , - l  = 4,0.d,-l= 8.0 mils, 
cm, 3.r  = 4.0 cm. 

= = 32 mils, = 3 2  mils, l l  = 8.0 

of 1-min CPU time on DEC station 5100 when the closed-form 
Green's functions are used, whereas it takes on the order of 
10-20 min on the CrayNMP for the same calculation using 
the spectral domain moment method in conjunction with an 
acceleration technique. 
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The investigation of the radiation leakage from a microstrip 
line terminated by complex loads has shown that the highest 
radiation occurs when the length of the line is near resonance, 
and the terminations are open circuits. It was also found that 
by using a passive line parallel to the active one can reduce 
the radiation significantly, provided that the coupling is out 
of phase. This information could be potentially useful to a 
designer engaged in the planning of the layout of a low- 
radiation module for a digital circuit. 

The frequency variation of the spurious radiated power was 
validated by experimental measurements. 
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