A COLLABORATIVE SYSTEM FOR PROVIDING
ROUTES BETWEEN LOCATIONS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By
K. Ali Ulug
June, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. David Davenport (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Dr. Markus Schaal (Co-Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. H. Murat Karamiiftiioglu

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Savio S. H. Tse

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Dr. Kivang Dinger

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Science

i

ABSTRACT

A COLLABORATIVE SYSTEM FOR PROVIDING ROUTES
BETWEEN LOCATIONS

Kerem Ali Ulug
M.S. in Computer Engineering
Supervisor: Asst. Prof. Dr. David Davenport
Co-Supervisor: Dr. Markus Schaal
June, 2008

Many systems, such as in-car GPS devices and airline company web sites, provide route
information between locations. Although such systems are used widely and can provide route
information successfully, users of these systems cannot contribute to the data entry process. In
these systems, data is entered by the administrators and these systems cannot take advantage
of the route expertise of their users.

In this work, we present a collaborative system, which provides routes between locations
upon user queries. The data in the system is entered by the users of the system. We present a
model which is containing locations, links between locations and relationships between
locations (containment, neighborhood and intersection) in order to store the data. For the route
finding purpose, we present a customized version of the A* search algorithm. This customized
version, named A*CD (A* for Collaborative Data), uses heuristics for estimating the cost
remaining to the target location while processing the nodes. A*CD can also provide
alternative routes, exclude certain link types in the searches according to user preferences and
handle the problems associated with multiple stop transportation lines. As the cost models, we
use duration and financial cost.

We also present the intuitive connections concept. Even if a route does not exist between the
selected locations, the system can provide a route with missing links. The gap(s) between the
disconnected locations are filled by the help of the relationships between locations.

In order to evaluate the performance of the A*CD algorithm, we present automated tests.
These tests show that the costs of the routes that are provided by the A*CD algorithm are

close to the actual shortest routes. In order to demonstrate the intuitive connections concept,
we also present manual test queries.

Keywords: Heuristic search, collaborative systems, A* search

il

OZET

MEKANLAR ARASINDA ROTALAR SUNMAK ICIN KATILIMCI
BIR SISTEM

Kerem Ali Ulug
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Y. Dog. Dr. David Davenport
Yardimci Tez Yoneticisi: Dr. Markus Schaal
Haziran, 2008

Otomobiller icin GPS cihazlar1 ve havayolu sirketlerinin ag siteleri gibi bir ¢ok sistem,
mekanlar arasinda rota bilgileri sunmaktadir. Bu tip sistemler yaygin olarak kullanilmalarina
ve rota bilgilerini dogru bir sekilde sunmalarma ragmen, kullanicilarin veri girisine izin
vermemektedir. Bu tip sistemlerde tiim veri, sistem yoneticileri tarafindan girilmekte ve
sistemler kullanicilarinin rota tecriibelerinden faydalanamamaktadir.

Bu calismada, kullanic1 sorgular1 karsiliginda mekanlar arasinda rotalar sunan katilimci bir
sistem sunulmustur. Sistemdeki veriler kullanicilar tarafindan girilmektedir. Verilerin
saklanmas1 i¢in, mekanlarin, mekanlar arasindaki baglantilarin ve mekanlar arasindaki
iligkilerin (kapsama, komsuluk, kesisme) tanimlandigi bir model sunulmustur. Rotalari
bulabilmek i¢in, A* arama algoritmasinin 6zellestirilmis bir uyarlamasi sunulmustur. A*CD
(A* for Collaborative Data) olarak adlandirdigimiz bu uyarlama, arama esnasinda mekanlari
islerken, hedef mekana kalan tahmini bedeli hesaplamak i¢in bulugsal yontemler
kullanmaktadir. Ayrica alternatif rotalar sunmak, belli baglanti tiplerini hari¢ tutmak ve ¢ok
sayida duraga sahip tagim araglar1 ile ilgili sorunlara ¢oziim getirmek i¢cin A* arama
algoritmasi tizerinden yapilmis degisiklikler sunulmustur. Bedel modeli olarak seyahat siiresi
ve seyahat maliyeti (finansal) kullanilmaktadir.

Calismamizda, sezgisel baglantilar kavrami da sunulmustur. Secilen mekanlar arasinda bir
rota bulunamamasi durumunda bile, sistem eksik baglantilara sahip bir rota donebilmektedir.
Eksik baglantilar, mekanlar arasindaki iliskiler yardimiyla doldurulabilmektedir.

A*CD algoritmasinin performansini degerlendirmek amaciyla otomatik testler sunulmustur.
Bu testler A*CD algoritmasi ile bulunan rotalarin bedellerinin en diisiik bedelli rotaya ¢ok

yakin oldugunu gostermektedir. Sezgisel baglantilar kavramini orneklemek igin otomatik
olmayan testler sunulmustur.

Anahtar Sozciikler: Bulussal yontemlerle arama, katilimer sistemler, A* arama

v

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to Dr. Markus Schaal due to his suggestions,
and support during this research. I have learned a lot from him.

I am also indebted to Dr. David Davenport and Dr. H. Murat Karamiiftiioglu for their support
and comments.

I would like to thank Dr. Savio S. H. Tse and Dr. Kivang Dinger for accepting to read and
review this thesis.

CONTENTS

1 Introduction 1
1.1 Problem Definition.........ccceeiuiiiiiiiieeiieie ettt e 1
1.2 TheESIS OULIINE......ccoiiiiiiie ettt e st eesetee e e e e snnnnneaeeeeas 3

2 Incomplete Information and Virtual Links 4
2.1 A Base for Solution: Extended Unidirectional Graph............cccceeevveniiieeniiieeniieeienn. 4
2.2 Intuitive CONNECTIONS.ccuviieeieeiiieeiieeiieeiieeteestteeieeeeeeaeeseteesbeessaeeseesneeeseessnnseeesannees 5
2.3 VIATTUAL LANKS....eeiiiiiieie ettt et et e e e et e e e e e e enennaneas 10

2.3.1 Virtual Link TyPe-T....ccocuioiiiiiieieeiteeee ettt 10
2.3.2 VIirtual LinK TYPE-2.....uvieeiiieeiieeee ettt eeae e e 10
2.3.3 Virtual Link TYPE-3....cooiiiiiiieeieeie ettt sttt 11
2.3.4 VIirtual Link TYPE-4......oeeoiieeeeie ettt ettt ee e svee e e seraeae e e e e e 11
2.3.5 Virtual Link Maintenance.............cueeeueerireniienieniiienieeieeseeesieeeeieeeeessneeesennees 12
2.4 Accepted Target Set......cccciieiiiieiiieeiiee ettt et e e e e e naraaeas 16
2.5 Why These Virtual Link TYPes......ccceecuieiiiriiiiieiieeiiesee ettt 16

3 Problem Extensions 18
3.1 Multiple Stop Transportation Lines...........cceeecveerieriienieniieie e 18
3.2 AIETNative ROULES......ccoiiiiiiiieeiie ettt e e et e e e e e e nnennaeeas 19
33 Search PreferenCes......cc.uiiiiiiiiiiieie ettt 19

4 Search Algorithm 21
4.1 Related WOTK.......ooiiieiiiee ettt et e 21
4.2 A*CD Algorithm Details.........ccoouieiiiieiiiiecieeceeee e e e 23
4.3 Calculation of h-value and HeuriStics.cueevieriieiienieeiiese et 29
4.4 An Example EXecution SCENATIO.......cceeeeuiieeiieeiiieeeieeeeiee et eeree e e e e e e 34
4.5 Virtual Link Preference.........oooieiiiiiieiieiiieiecieee ettt 36

5 User Interface for Data Entry and Route Query 38
5.1 Searching LOCAtIONS.cc.ueeiieiieeiierie ettt ettt et sre et esaaeebeeenreee s 39
5.2 Entering @ NeW LOCatION........cuieiiuiieiiiieeiieeeee ettt e e e e e 39
53 Managing Location INformation..............ccceeeeiieiiieiiiienieeiieeeeeceee e 40
5.4 Managing Location Relationships.........c.ccecveeeiiiiiiiiiiiiiecieeceecee e 41
5.5 Managing LiNKS.......ccoooiiiiiiiiiiiieiee ettt 41
5.6 Logging MeChaniSm..........ccocvuiiiiiieiiiie ettt e e e ee e e e e e eneneaeeas 42
5.7 ROULE QUETY ...ttt et ettt sttt e e e e e seseeeeas 43

6 Search Algorithm Evaluation 45
6.1 IMISSEA CASES. c.venveenteeiieriienie ettt ettt st b et b e bt et sat ettt ebeesbeeanee e 45
6.2 EXamPle Data Set........ooeeiuiiiiiieeeiieeeee et 47
6.3 Effects Of HEUTISTICS. ...ccviiiiiiiieeieeiiece ettt e 48
6.4 AULOMALEd TESES...cuuiiiiiiiiiiiiiet ettt ettt 50

6.4.1 Comments 0N RESUILS.........cociiiiiiiiiiiieiice e 51
6.4.2 LIMITATIONS. 1...vvieeiiieeeiieeeiieeeieeeeieeeereessiaeeetaeestaeeesaeesseeesnsaeessseaeeessnsssseeeesens 52

7 Conclusion and Future Work 53

Bibliography 55

A Glossary 58

B Example Data Set 61
B.1 Bus Network in Ankara (EGO — Maintained by municipality)............cccceeeerineeenne 61
B.2 Bus Network in Istanbul (IETT — Maintained by municipality)...........cccceeerveeenneen. 64
B.3 Plane Network in Turkey (THY — A private corporation)..........c.ecccveeeeruveeeenvneeenne 66

vi

B.4 Intercity Bus Network in Turkey (Ulusoy — A private corporation).............c..ceeeenn.. 67
B.5 Ferry Network in Istanbul (IDO - A private corporation)...........ccceeveeeeuveeereveeennnnnn. 68
C Example Query Results for Testing Heuristics 70
D Automated Test Results 77
D.1 Duration: Example Query Results (ROULES).......cccoeieiieriiiiiienieeeiiee e 77
D.2 Duration: Values to Be Evaluated............ccoovieiiiiiiiiiiiececeeeeeee e 82
D.3 Financial Cost: Example Query Results (ROUtES).......c.cocvvereiiiriieeiiiieiniiieeeeiieeeae 84
D.4 Financial Cost: Values to Be Evaluated............ccccoooiiiiiiiieiiiieiieeeeeeeeee e 88

vil

Chapter 1

Introduction

The best way to learn how to get from one location to another is usually to ask a person who
knows the route. The route might consist of buses, taxis, sidewalks or any means of
transportation. A person with an expertise on the desired route will be able to combine
necessary transportation knowledge and offer the best route. On the other hand, a person has
expertise on a limited number of routes. This important drawback can be eliminated by
combining people’s knowledge in a collaborative system. In a collaborative system, all the
data is managed by the system’s users. Wikipedia and Facebook are two popular examples of
collaborative systems.

There are many systems that are providing routes between locations. In-car GPS devices
provide routes by using the city road and traffic information. National train network web sites
exploit train transportation information. Municipality web sites contain public bus and metro
transportation information to provide routes between selected locations. Although such
systems are widely used and can provide routes to the users successfully, they cannot take
advantage of the route expertise of their users.

Existing systems also have another important disadvantage. They cannot take advantage of
the relationships between locations. There might be different types of relationships between
locations such as containment (Ankara contains Bilkent University) or neighborhood (Bilkent
University and Middle East Technical University are neighbors). These relationships can be
used in order to provide useful information to the user even if a route cannot be found.
Consider the following scenario;

- User requests a route from Bilkent University (contained in Ankara) to Berlin Airport.
- There are two airports in Istanbul, Atatiirk Airport and Sabiha Gokcen Airport.

- There exists a route from Bilkent University to Atatiirk Airport.

- There exists a route from Sabiha Gokcen Airport to Berlin Airport.

- There is no route between Bilkent University and Berlin Airport.

In this scenario, the system can conclude that two airports are connected since they are both
contained in Istanbul. So, the route from Bilkent University to Atatiirk Airport and also the
route from Sabiha Gokcen Airport to Berlin Airport can be provided to the user together with
the containment information.

1.1 Problem Definition

In this thesis, our main problem is to provide users with routes between locations, using data
that has been entered by the users themselves. Gathering the data from the users is the
collaborative aspect of the context. This brings a new problem associated with the quality of

CHAPTER I. INTRODUCTION 2

the data. There might be missing links between locations although the links actually exist in
real life. In the following scenario, a link is missing (Middle East Technical University —
Bilkent University link)

- Aroute from Kizilay (a district in Ankara) to Bilkent University is requested

- There is a route from Kizilay to Middle East Technical University

- There is no route from Kizilay to Bilkent University

- Bilkent University and Middle East Technical University are neighbors. This
information has been entered by a user.

In this scenario, the system should be able to provide the route from Kizilay to Middle East
Technical University and also the neighborhood information.

Also, missing links might create problems because of the duplicate information in the system.
Two users might enter the same location with different names to the system. The following
scenario demonstrates a situation in which there is duplicate information; two users,
independent from each other, entered two locations to the system, which are both referring to
the same real world location. The missing link is between the duplicate locations in this
scenario.

- There are two locations named “Bilkent Engineering Building” and “Bilkent
University Engineering Building” in the system. They refer to the same real world
location.

- Both of these locations are contained in a location named “Bilkent University”. Data
for these relationships exists in the system.

- User requests a route from a location, Kizilay (a district in Ankara) to Bilkent
Engineering Building.

- There is a route from Kizilay to Bilkent University Engineering Building.

- There is no route from Kizilay to Bilkent Engineering Building.

In this scenario the system should be able to provide the information to the user indicating
that Bilkent Engineering Building can be reached from Kizilay by following the Kizilay to
Bilkent University Engineering Building route. Since both buildings are contained in the same
location, Bilkent University, the system should be able to conclude that they are connected.

Such data quality problems might be handled if additional information, such as relationships
between locations, exists in the system. Although there might be missing links, if the
relationships have been entered properly, a solution might still be provided. We name this
problem as missing links problem; there might be gaps in a route but these gaps can be filled
by the help of the relationships between locations.

The provided routes’ costs should be as close as possible to the actual lowest cost routes. We
don’t define a threshold for the ratio of the cost of a provided route to the actual lowest cost
route. On the other hand, applying tests for a large number of location pairs and presenting the
average cost ratio is in scope of this thesis.

In order to improve the running time of the algorithm, the route search should be guided by
taking advantage of the data in the system (geographic coordinates, location relationships,
etc.). The time and space complexity is not discussed in this work.

CHAPTER I. INTRODUCTION 3

Our problem definition also contains some extensions beyond the main problem. Users should
be able to request alternative routes from the system and specify either minimum duration or
minimum financial cost. This choice specifies if they are interested in a fast route that will
take minimum amount of time to travel or a cheap route in which they will pay less.
Additionally, the system should be able to handle the problems associated with transportation
lines with multiple stops.

1.2 Thesis Outline

In Chapter 2, we present details of the missing links problem and our solution to it. In Chapter
3, we give detailed descriptions of the extensions of the main problem and present solutions to
them. In Chapter 4, first we present the related work for graph search algorithms and then the
details of the search algorithm that we are using, A*CD (A* for Collaborative Data). In
Chapter 5, we explain our implementation, mainly the modules for data entry. In Chapter 6 we
present the results of our tests. We conclude the thesis with Chapter 7.

Chapter 2

Incomplete Information and Virtual Links

In this chapter, first we explain the extended unidirectional graph model for storing the data in
the system. This model contains locations, links and location relationships together with their
properties. Afterwards, we explain the situations in which we want to find intuitive
connections for missing links, despite data problems in the base graph. Finally, we present our
solution, virtual links, for the missing links problem.

2.1 A Base for Solution: Extended Unidirectional Graph

We are using a unidirectional graph as a base. A graph G is a pair (V, E). V is a set of nodes
(vertices). E is a set of links (edges) between the vertices,

Eciluv)|uveV}

Each node in the graph corresponds to a location in our system. A location can be of any type,
for example, it can be a country, a city, an office building or even an individual room.

Locations in our system have properties associated with them. Location type, explanation,
geographical coordinates are some examples of locations’ properties. These properties are
used for storing more information about a singe location.

Each edge in the graph corresponds to a unidirectional link between two locations. A link can
be of any type, e.g. an international flight or a 5 minute walk. If a reverse link also exists, this
is represented by another link in the system. Cycles of any length (number of nodes) are
allowed in our system.

Links have several properties associated with them. Guessed duration, guessed cost (money),
guessed cost currency and explanation are the link properties. We name these properties as
“guessed” in order not to create a confusion with the term “estimated”, which will be used in
the A*CD search algorithm.

Cost information is mandatory for links. Users should enter this information while entering a
link to the system. For the financial cost, we do not request the currency rate from the users.
We only take the financial cost and the currency. We maintain a currency rate table for
relating all currencies with Turkish Lira so that all financial costs can be converted to Turkish
Lira whenever required.

In addition to links, locations, link properties and location properties, location relationships
should also be stored. There are three kinds of relationships; containment, neighborhood and
intersection.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 5

We name two locations as parent and child if they are related with a containment relationship.
We name two locations as neighbor if they are related with a neighborhood relationship. We
say two locations intersect if they are related with an intersection relationship.

Lat: 48.95
Lng: -123.10
Type: Airport

&

Bus, 30 mins, 4 YTL Lat: 48.65

Lng: -123.62
B Type: Train Station
Plane, 50 mins :
70 EUR _ ‘ Train, 6 hours
Train, ¥ hours, 20 EU 30 EUR Lat: 44.22
= Lng: 89.44
— o T Type: City
o G 'L g P
o ' Kf E
/ Lat: 44.43 \{)
Lng: -77.88
\ Type: Airport /’\ /
b T
N
e T Lat: 42.20
e D Lng: 87.11
Type: City

Figure 2.1 — An instance of the base model. Nodes have latitude, longitude and type
information. Links have type, guessed duration and guessed financial cost. Node D contains
node C. Nodes D and E are neighbors.

2.2 Intuitive Connections

Location relationships have an important effect on the solutions provided by the system. They
help provide intuitive connections so that even if a complete sequence of user entered links
from the source node to the target node cannot be found, a solution can still be provided to the
user, in the form of the incomplete route together with the intuitive connection(s).

In order to present the details of the intuitive connections concept, we introduce basic routes.
A basic route is a sequence of user entered links. A route might consist of user entered links
and intuitive connections but a basic route contains only user entered links.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 6

7 2 g Basic Route 2

Basic Route 1 -
L4 T

Figure 2.2 — Intuitive connections.

Intuitive connections are used to fill the gaps between locations while finding routes. In order
to provide a solution to the user, the system might use more than one intuitive connection;
there might be two or more gaps in the route. Also, it is possible that S = L, This means that
the source node is connected to L, with an intuitive connection. It is possible that L,= T. This
means that the target node is reached from L; with an intuitive connection. Figure 2.2
illustrates intuitive connections. In this figure, there is no basic route from L, to L..

Figure 2.3 presents a scenario in which three intuitive connections are used. In this scenario,
for the first intuitive connection, S = L;. Second intuitive connection connects intermediate
nodes and for the third intuitive connection 7= L.

c

Figure 2.3 — A scenario in which three intuitive connections are used. S—4, B—Cand E—- T
routes are missing.

There are five types of intuitive connections.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS

Intuitive Connection 1 — Common Parent

If there is a location P such that

- L;is achild of P
- Lyisachild of P
4 B =

Figure 2.4 — Common parent intuitive connection.

The following scenario shows the usage of this type of intuitive connection..

- Aroute from Antalya Intercity Bus Station to Istanbul Airport is requested
- There is a basic route from Antalya Intercity Bus Station to Ankara Intercity Bus

Station (L)
- There is a basic route from Ankara Airport (L;) to Istanbul Airport

- There is no basic route between Ankara Intercity Bus Station and Ankara Airport
- Ankara Intercity Bus Station and the Ankara Airport are contained in Ankara

Intuitive Connection 2 — Containment-1

Figure 2.5 — Containment-1 intuitive connection.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 8

If there is a relationship between L; and L such that
- L;isachild of L,
The following scenario shows the usage of this type of intuitive connection..
- Aroute from Cayyolu (a district in Ankara) to Ulus (a district in Ankara) is requested
- There is a basic route from Cayyolu to Bilkent Bus Stop (L,)
- There is a basic route from Bilkent University (L,) to Ulus
- There is no basic route from Bilkent Bus Stop to Bilkent University
- Bilkent Bus Stop is contained in Bilkent University
Intuitive Connection 3 — Containment-2

If there is a relationship between L; and L such that

- L;isaparent of L,

™, e
‘ ™
/ ‘H‘““-.._,__‘_‘_ _._,__,a-/
L4 T -

Figure 2.6 — Containment-2 intuitive connection.
The following scenario shows the usage of this type of intuitive connection..
- A route from Cankaya (a district in Ankara) to Bestepe (a district in Ankara) is
requested
- There is a basic route from Cankaya to Kizilay (a district in Ankara — L))
- There is a basic route from Kizilay Metro Station (L;) to Bestepe
- There is no basic route from Kizilay to Kizilay Metro Station
- Kizilay Metro Station is contained in Kizilay
Intuitive Connection 4 — Neighborhood

If there is a relationship between L, and L, such that

- L;and L; are neighbors

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 9

Figure 2.7 — Neighborhood intuitive connection.
The following scenario shows the usage of this type of intuitive connection..

- A route from Cankaya (a district in Ankara) to Bestepe (a district in Ankara) is
requested

- There is a basic route from Cankaya to Kizilay Main Bus Station (L;)

- There is a basic route from Kizilay Metro Station (L) to Bestepe

- There is no basic route from Kizilay Main Bus Station to Kizilay Metro Station

- Kizilay Main Bus Station and Kizilay Metro Station are neighbors

Intuitive Connection 5 — Intersection
If there is a relationship between L, and L, such that

- L;and L; intersects

Figure 2.8 — Intersection intuitive connection.
The following scenario shows the usage of this type of intuitive connection..

- Aroute from Kemer Town Center (a town center in Antalya) to Antalya City Center is
requested

- There is a basic route from Kemer Town Center to Olympos Beach (L;) by a boat

- There is a basic route from Cirali (a town in Antaya — L;) to Antalya City Center by a
bus

- There is no basic route from Olympos Beach to Cirali

- Olympos Beach and Cirali intersects

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 10

2.3 \Virtual Links

In order to provide the intuitive connections, we came up with the idea of virtual links. A
virtual link is a special type of link, which is maintained by the system. The users cannot
maintain these links. Virtual links are maintained automatically; as users enter or delete data,
the system creates or deletes virtual links accordingly. There are four types of virtual links.
These types are described and illustrated in sections 2.3.1 — 2.3.4. Virtual link maintenance is
described in section 2.3.5.

2.3.1 Virtual Link Type-1

If location A4 is in location B and a link from 4 to C exists, virtual link is from B to C.

T

Figure 2.9 — Virtual Link Type-1. A link from A to C exists in the system. B is a parent of 4.
Virtual link is from B to C.

2.3.2 Virtual Link Type-2

This virtual link is inserted for each containment relationship. If there exists a containment
relationship such that; location A4 resides in location B, a virtual link from 4 to B is added to
the system.

This kind of virtual relationship “connects” the locations that are contained in the same parent
location. By this, even if the system cannot find a direct route for a query, it can supply a
route by using a location that is sharing a common parent.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 11

ol T
o A Py .
(—9
%
. %% b
L gl

Figure 2.10 — Virtual Link Type-2. B is a parent of 4. Virtual link is from A4 to B.

2.3.3 Virtual Link Type-3

This virtual link is inserted for each neighborhood relationship. If there is a neighborhood
relationship between two locations 4 and B, two virtual links are added; one from 4 to B and
the other from B to 4.

/ #f"’f.ﬁ:m._,ff/
)

—
-

& _

Figure 2.11 — Virtual Link Type-3. 4 and B are neighbors.

2.3.4 Virtual Link Type-4

This virtual link is inserted for each intersection relationship. If there is an intersection
relationship between two locations 4 and B, two virtual links are added; one from A4 to B and
the other from B to 4.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 12

Figure 2.12 — Virtual Link Type-4. 4 and B intersects.

2.3.5 Virtual Link Maintenance

The virtual links are all maintained by the system. Users cannot modify, delete or add virtual
links to the system. We have come up with two solutions to manage virtual links and decided
on the second one.

Batch Virtual Link Maintenance

In this approach, an automated script is executed and the script creates the type 1 and type 2
virtual links automatically. Before creation all the virtual links are deleted from the system.

The advantage of this approach is that, there are no extra operations during data entry of the
users. On the other hand, this approach leaves the database unsynchronized between script
executions. The virtual links are not created immediately after data entry.

The highly coupled nature of the virtual links makes it hard to implement virtual link
maintenance in real time. For the type-1 virtual links, if B is also a parent of C, the virtual link
is not created. The reason for eliminating such virtual link candidates is that, with those in the
system, the search algorithm gives results that are meaningless to human users.

Deletion and re-creation of around 10000 virtual links takes around 3500 ms, so running the
script frequently (in the order of minutes) even if the data increases rapidly, might decrease
the disadvantages due to this approach.

Real-Time Virtual Link Maintenance

This approach creates and deletes virtual links when a user-entered data is changed in the
system. Virtual links are affected by containment relationships between locations and links.
So, any change in these information changes the virtual links in the system. We have
categorized trigger changes as follows;

- Add containment relationship (effects type-1 & type-2)

- Delete containment relationship (effects type-1 & type-2)
- Add link (effects type-1)

- Delete link (effects type-1)

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 13

- Add neighborhood relationship (effects type-3)

- Delete neighborhood relationship (effects type-3)
- Add intersection relationship (effects type-4)

- Delete intersection relationship (effects type-4)

Adding Containment Relationships

Users can enter containment relationships to the system. We are considering an atomic
operation of relating a location with another, with relation type containment. Such a change in
the system effects both type-1 and type-2 virtual links. The following algorithm maintains
virtual links (type-1) upon entry of containment relationship.

AddContainment ManageTypel (child, parent)
for each Link p originating from child
if p is not a virtual link and destination(p) is not in parent
add a type 1 virtual link from parent to destination (p)
end if
end for

RecreateIncomingTypelLinks (child)

Figure 2.13 — Pseudo code for managing type-1 virtual links upon containment addition

First part of the algorithm creates type-1 virtual links that are originating from the parent. For
that, all links originating from child are retrieved.

RecreateIncomingTypelLinks (loc)
for each Link p ending at loc
if p is a type 1 virtual link
delete p
end if
end for

for each Link p ending at loc
if p is not a virtual link
for each parent of source(p)
if destination(p) is not in parent
add a type 1 virtual link from parent to
destination (p)
end if
end for
end if
end for

for each Location child in children(loc)
RecreateIncomingTypelLinks (child)
end for

Figure 2.14 - Pseudo code for recreating incoming type-1 virtual links

Second part, which is recreating type-1 virtual links, is a recursive algorithm. The rule of the
type-1 virtual links is that, as indicated before, if destination is also a child of the parent, the
link won’t be added. This is why type-1 virtual links that are ending at the new child and also
children of the new child should be checked upon entry of a new containment relationship.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 14

AddContainment ManageType2 (child, parent)
Add a wvirtual link from child to parent

Figure 2.15 - Pseudo code for managing type-2 virtual links upon containment addition
Deleting Containment Relationships

Users can delete containment relationships from the system. Such an operation effects both
type-1 and type-2 virtual links in the system.

The following algorithm is for maintaining virtual links (type-1) upon deletion of a
containment relationship.

DeleteContainment ManageTypel (child, parent)
for each Link p originating from parent
if p is a type 1 virtual link due to child parent relationship
delete p
end if
end for

RecreateIncomingTypelLinks (child)

Figure 2.16 — Pseudo code for managing type-1 virtual links upon containment deletion

In the first part of the algorithm, all type-1 virtual links that are created because of the
relationship between the child and parent are deleted from the system. Afterwards, incoming
type 1 virtual links to child are recreated.

The following algorithm maintains virtual links (type-2) upon deletion of a containment
relationship.

DeleteContainment ManageType2 (child, parent)
for each Link p ending at parent
if p is a type 2 virtual link originating from child
delete p
end if
end for

Figure 2.17 — Pseudo code for managing type-2 virtual links upon containment deletion
Adding Links

Users can add a link from any location to any other location. Upon such a data change, type-1
virtual links should be maintained.

The following algorithm maintains virtual links (type-1) upon addition of a link.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 15

AddLink ManageTypel (source, destination)
for each Parent parent of source
if destination is not a child of parent
add a type 1 virtual link from parent to destination
end if
end for

Figure 2.18 — Pseudo code for managing type-1 virtual links upon link addition
Deleting Links

Users can delete any link from the system. Upon such a data change, type 1 virtual links
should be maintained.

The following algorithm maintains virtual links (type-1) upon addition of a link.

DeleteLink ManageTypel (source, destination)
for each Link p ending at destination
if p is a type 1 virtual link that is generated due to source
destination actual link
delete p
end if
end for

Figure 2.19 - Pseudo code for managing type-1 virtual links upon link deletion
Adding Neighborhood Relationships

Users can add neighborhood relationships between locations. Upon adding these data, the
system should maintain type-3 virtual links.

AddNeighborhood ManageType3(locationl, location2)
add a type-3 virtual link from locationl to location2
add a type-3 virtual link from location2 to locationl

Figure 2.20 — Pseudo code for managing type-3 virtual links upon neighborhood addition
Deleting Neighborhood Relationships

Users can delete neighborhood relationships between locations. Upon deleting these data, the
system should maintain type-3 virtual links.

DeleteNeighborhood ManageType3 (locationl, location2)
delete the type-3 virtual link from locationl to location2
delete the type-3 virtual link from location2 to locationl

Figure 2.21 — Pseudo code for managing type-3 virtual links upon neighborhood deletion
Adding Intersection Relationships

Users can add intersection relationships between locations. Upon adding these data, the
system should maintain type-4 virtual links.

CHAPTER 2. INCOMPLETE INFORMATION AND VIRTUAL LINKS 16

AddIntersection ManageType3(locationl, location2)
add a type-4 virtual link from locationl to location2
add a type-4 virtual link from location2 to locationl

Figure 2.22 — Pseudo code for managing type-3 virtual links upon intersection addition
Deleting Intersection Relationships

Users can delete intersection relationships between locations. Upon deleting these data, the
system should maintain type-4 virtual links.

DeleteIntersection ManageType3 (locationl, location2)
delete the type-4 virtual link from locationl to location2
delete the type-4 virtual link from location2 to locationl

Figure 2.23 — Pseudo code for managing type-3 virtual links upon intersection deletion

2.4 Accepted Target Set

Accepted target set is used to provide intuitive connection 3 where L, = T and also provide
intuitive connection 1 where L, = T. This set stores each parent of the target node, which is
not a parent of the source node. We do not add parents of both the source and the target node
to the accepted target set since virtual link type-2 connects a child to its parent. Consider that
they are added to the target set and consider the following scenario.

- The search is from the node S to the node T
- There exists a node, P, which is a parent of both Sand T

In this scenario, S — P link (virtual link type-2) will be provided as a solution and this
information is not useful for the user.

2.5 Why These Virtual Link Types

The main drawback of virtual links is that they slow down the algorithm since they introduce
new edges to the graph. More edges means the algorithm will process more nodes and routes.

We had two main goals while designing virtual links;

- They should cover all intuitive connections.
- Their number should be kept at minimum. The reason is to reduce the search space as
much as possible. More links mean more processing.

Using these four types, it is possible to cover three intuitive connections that are described in
section 2.2. These virtual links cannot cover intuitive connection 1 and intuitive connection 3
completely. The cases where L, = T are missed since we do not have virtual links from parent
nodes to child nodes. In order to cover these cases, we have introduced the accepted target set.
Instead of such an approach, we could have defined another type of virtual link, type-5; A link
type that is from the parent location to the child location, i.e. the reverse of the type-2 virtual

CHAPTER 2.

INCOMPLETE INFORMATION AND VIRTUAL LINKS 17

link. By such a virtual link, the accepted target set would be unnecessary, but it would
increase the number of virtual links. As the number of links increases, the algorithm has to
process more links so the running time also increases. A comparison between the used
approach and the approach with the type-5 virtual links is given in Table 2.1.

We can say that the cost increase of the approach with type-5 virtual links is more than the
cost increase of the currently used approach.

Used Approach

Approach With Type-3 VL

Summary

Only four types of virtual links are used.

Accepted target set is also used.

Five types of virtual links are
used. Accepted target set is
not used.

Place of Extra

Whenever successor nodes of the

Whenever successor nodes of

Processing processed node are retrieved, due to the processed node are
virtual links, some extra nodes are retrieved, due to virtual links,
retrieved. Also, after target check, a some extra nodes are
check is done to see if the node is in the | retrieved.
accepted target set.

Cost of Extra Extra processing due to more successor Extra processing due to more

Processing nodes is omitted since four types of successor nodes that are

virtual links also affect the second
approach the same way. Checking
accepted target set is done in constant
time by the help of a hash table. So, if
number of processed nodes is P, the cost
will change from O(P * 1) to O(P * (1 +
c¢)) where c is a small constant.

connected to the processed
node by type-5 virtual links
increases the processing
time. If number of processed
nodes without type-5 virtual
links is P and if there are R
number of containment
relationships, the cost will
change from O(P) to O(P +
R).

Table 2.1 — Comparison between the applied approach and the approach with type 3 virtual

links

Chapter 3

Problem Extensions

In this chapter, we explain the three extensions in our problem definition. First we explain the
details of the multiple stop transportation line problem and present a solution. Then, we
explain the alternative routes problem and its solution. Finally, we explain the search
preferences problem and its solution.

3.1 Multiple Stop Transportation Lines

Until now, all links in the system are considered to be unrelated with each other. But in real
life, links between locations can be related.

Consider a bus line in Istanbul, that is connecting four bus stops;
Besiktas — Zincirlikuyu — Levent — Maslak

If the algorithm finds a route from source location to target location, in which there are two or
more links from the same bus line, it should display it as just one link. So,

Source Location - ... - Besiktas — Zincirlikuyu — Levent - ... - Target Location
is not a desired solution. Instead of this, the algorithm should provide the following route
Source Location - ... - Besiktas — Levent - ... - Target Location

In order to solve this problem we use a new property for the links, MultipleStopLineld. In our
approach, all links, which are due to a single transportation line, will share the same
MultipleStopLineld value. Other than these links, no other link will have the same value.
For the above example there will be three links in the system.

- Besiktas — Zincirlikuyu

- Zincirlikuyu — Levent

- Levent — Maslak
We solve this problem during the display of the data to the user. During display, if we realize
that two consecutive links, L/ and L2, in the solution has the same MultipleStopLineld, we

display these two links as one link in which the source is the source of L/ and the target is the
target of L2.

18

CHAPTER 3. PROBLEM EXTENSIONS 19

3.2 Alternative Routes

In addition to providing a route from the source location to the target location, the system
should also provide alternative routes to the users.

There might be alternative routes between the selected pair in different cities or countries,
using trains, using planes or using intercity buses. Inside the same city, same pair of locations
might be connected by buses, ferries or metro networks.

Although “k-shortest route (path) problem” [9, 12, 16, 17, 21, 23, 24, 28] in the literature is
generally studied in order to find the k optimal routes from a source to a target, it contains
many similarities with the problem at hand.

In order to provide more than one route, we have to process each node more than once. We
use a constant, &, in order to define the maximum number of times a node can be processed in
the search algorithm. This number defines the minimum number of routes the system can
provide if routes exist. It is the minimum number since there might be alternative routes that
are not sharing any common node other than the source and the target nodes.

B |
Figure 3.1 — Alternative routes example. There are four alternative routes from S to 7. Three

of them pass over the node B. If k = 1, two routes can be found. If k = 2, three routes can be
found. If k = 3, four routes can be found.

A

‘T

C

3.3 Search Preferences

The system will allow users to enter two search preferences, which will be the input of the
search algorithm.

CHAPTER 3. PROBLEM EXTENSIONS 20

The user should be able to exclude certain link types in his queries. For instance, a user should
be able to exclude planes and intercity buses if he wants to travel by trains between cities. In
order to provide this feature, we display a list of used link types to the user whenever a route
is provided. User can select any number of these link types as unwanted types. After this
selection user can request an alternative route. The search algorithm will this time discard a
link if its type is in the excluded link types list. Discarding is a trivial issue. While processing
the successors of a node in the search algorithm, types of the links that are connecting the
node to its successors are checked.

In addition to excluded link types, the user should be able to select his cost preference out of
two options. First option is the duration. Second option is the financial cost. So, the user
should be able to specify if he is interested in a fast route that will take minimum amount of
time to travel or a cheap route in which he will pay less. For each route search, user can select
one option out of these two. In the search algorithm, in order to calculate the cost till the
processed point, we add either durations together or the financial costs, according to the
preference of the user. Since all links in the system contain information for both cost models,
for any route search these two options are valid.

Throughout the thesis, whenever the cost of a link or the total cost of a route is mentioned, we
are referring to one of these options. Since in both options a route or a link with a lower cost
would be preferred over a higher cost route or link, it doesn’t matter which option the user has
chosen.

Chapter 4

Search Algorithm

In this chapter, we first present related work for graph search algorithms, mainly about the A*
graph search since our algorithm’s base is the A* search algorithm. Then we present the
details of our algorithm. Afterwards we present the details of the h-value calculation together
with our heuristics. After providing all the details of the algorithm, we explain the virtual link
preference conditions. We conclude this chapter with an example execution scenario.

4.1 Related Work

BFS (Breadth First Search) is one of the most common graph search algorithms. Using the
locations as vertices and links as edges, a graph representation is formed in memory and using
BFS, a route from source to destination is searched.

BEFS is an uninformed search algorithm which exhaustively searches all the nodes in the graph
until it finds the desired route. It starts with the source node, and at each stage it visit one level
up (source node is at level 0, successors of the source node are at level 1, etc...). On the first
stage it visits all the vertices at level 1 (relative to the source node). In the second stage it
visits all the vertices at level 2 and goes on like that. BFS can be considered as a “blind”
search since it does not give any priority to the nodes. There are also versions of this
algorithm for massive graphs [3].

DFS (Depth First Search) is very similar to BFS. Instead of processing a level after the
processing of the previous level is finished, DFS processes a branch till its deepest node.
There are versions [29] of this algorithm, which are handling the problems associated with
duplicate nodes.

There are many algorithms [2, 5, 10] that guarantee finding the fastest path. Dijkstra’s
algorithm [11] guarantees to find the fastest path (route). All nodes’ cost is initialized to a very
large constant and source node’s cost is initialized as 0. At each step, the node with the least
cost is processed. Whenever the target node is reached, the cost of the target node is the
minimum cost between the source and the target nodes. There are algorithms [6] that
guarantee to find the lowest cost route in graphs with negative weight edges. There are
algorithms [1] that find the lowest cost k-link route. There are also algorithms that are running
on dual graphs [30].

We do not consider these approaches as a base to our solution since they do not take
advantage of additional information in the graph. They are blind search strategies and not
guided. Being able to use heuristics is a mandatory requirement for us. Researches like [14]
present the performance advantages of guided search strategies over blind search strategies.

21

CHAPTER 4. SEARCH ALGORITHM 22

A* search algorithm [15] is accepted as one of the most efficient route finding algorithms for
graphs. The original algorithm uses a function f(n), that gives the cost of going from source
location to one of the target nodes through node n. The algorithm relies on heuristics. In the
pseudo code (shown in Figure 4.1), successors(p) returns the nodes that can be reached by
following a single link from p. It is assumed that the queue maintains an ordering by f-value
automatically.

f(n) = g(n) + h(n)

g(n) is the cost of the route so far (cost between the source node and n) and h(n) is the
estimated cost from n to the target node. In this h function, heuristics comes into play and
used for estimating the remaining cost. According to the value of f(n) a route is given higher
or lower priority.

With this algorithm, one can use several heuristics for prioritizing routes. The advantage is
that different heuristics can be added to the algorithm as new optimization ways are
discovered since the heuristic implementations are separated from the algorithm core.

A* (start,goal)
var closed <- the empty set
var g <- make queue (start)
while g is not empty
var p <- remove_ first(q)
var x <- the last node of p
if x in closed
continue
end if
if x = goal
return p
end if
add x to closed
for each y in successors (x)
enqueue (q, p, V)
end for
end while
return failure

Figure 4.1 — Pseudo code of the A* search algorithm

IDA* [18] is a modified version of the A* algorithm. In this version, iterative-deepening
approach [25] is applied to the A* algorithm. This algorithm suffers from the usage of only a
limited amount of memory. So, it suffers from excessive node regeneration.

RBEFS [19] is a recursive algorithm that attempts to mimic the operation of standard best-first
search using only linear space. Its structure is similar to recursive depth-first search. Instead
of continuing indefinitely down the current path, it keeps track of the f value of the best
alternative route available from any ancestor of the current node. If the current node exceeds
f-value limit, the recursion unwinds back to the alternative path. As the recursion unwinds,
RBFS replaces the f-value of each node align the path with the best f-value of its children. By
this, the algorithm remembers the f-value of the best leaf in the forgotten subtree. Similar to
IDA*, RBFS also suffers from excessive node generation.

CHAPTER 4. SEARCH ALGORITHM 23

MA* [8] is the memory bounded version of A* algorithm. In contrast to IDA*, its memory
limit is not fixed; the algorithm can take advantage of the whole available memory.

SMA* [26, 27] has some improvements over MA*. It proceeds just like A*. When the
memory is full, it discards the node with the worst f-value from the queue and backups the f-
value of the forgotten node to its parent. By this, the ancestor of a forgotten subtree knows the
quality of the best route in that subtree. When all the nodes in the queue have f-values greater
than the forgotten node’s f-value, the node is regenerated.

SMAG?* is a graph search extension of SMA*. This algorithm prunes a node whenever a
lower cost route from source to that node is found. By this way, its entire subtree is removed
from the search space and the node can be explored again.

A new algorithm which is similar to SMAG* is introduced in [31]. The difference of this
approach is to propagate the change instead of pruning when a lower cost route is found to a
previously explored node. The change is propagated to the node’s descendants. In [14], a new
approach which is using A* in combination with a technique based on landmarks and the
triangle inequality is presented.

4.2 A*CD Algorithm Details

There are many approaches and algorithms for finding routes in graphs. Among these
alternatives we have selected the A* search algorithm as the base. As explained in the
previous section, A* algorithm’s structure allows heuristics to be integrated to the search
algorithm.

A* search guarantees to find the fastest route if the heuristic function is monotone [15, 31]. A
heuristic function h is monotone if for each node n and successor node n,

h(n) < h(n') + ¢(n, n")

where ¢(n, n') is the cost of the link from n to n. Our heuristic function does not meet this
criteria so A*CD does not guarantee to find the fastest route.

A*CD starts from the source node and at each step successors of the current node are
retrieved from the database. Upon successor retrieval, heuristics are applied to the successor
nodes, some of them are eliminated and the others are added to the priority queue to be further
processed.

In the original A* algorithm heuristics are applied to estimate the cost to the target node.
Assume that we are processing a node that is corresponding to location L. Original A*
algorithm takes successors of L, and for each node S in successors(L) it applies the heuristics
and calculates an estimate; cost of the route with the lowest cost, which is passing through S

f(n) = g(n) + h(n)

where g(n) is the actual cost of the route so far and h(n) is the estimated cost to reach from the
current node to the target node. In the original A* algorithm, f value is calculated for all nodes

CHAPTER 4. SEARCH ALGORITHM 24

S in successors(L) and the successor is added to the queue together with its f value. As the f
value of a route decreases, it is more favorable since it means its cost estimate is lower. Lower
cost means better route.

In our approach, calculation of g-value is done according to the costs of the links used so far.
Assume that the algorithm is processing location L. This location has been retrieved from the
queue in order to be processed. For each location that is in the queue, the cost to reach from
the source location to that node is also stored. So, while processing successors of L, adding
the link cost to the cost of L is enough to calculate g-value.

B 9
S
cl-d2

" ‘ td‘ ‘33
= @

Figure 4.2 — An example scenario for g-value calculation.

For Figure 4.2, values near links indicate their cost. ¢ values are the costs (financial) of the
links and d values are the durations of the links. Assume that search is started from node S. L
is the currently processed node; it has been retrieved from the queue. There are three
successor nodes of L; Sy, S; and S;. For each successor, a g-value must be calculated. If the
user has selected duration as his point of interest, g-values will be as follows;

- gS)=dl+d2+d3
- gS)=dl+d2+d4
- gS5)=dl+d2+d5

If the user has selected financial cost as his point of interest, g-values will be calculated as
follows;

- gS)=cl+c2+c3
- gS)=cl+c2+c4
- gSy)=cl+c2+c5

CHAPTER 4. SEARCH ALGORITHM 25

Calculation of h-value is done in three steps. In the first step the distance between the
currently processed node and the target node is calculated by using the geographic coordinates
of the nodes.

This value is then normalized in order to match its unit (kilometers) with the unit of the g-
value (duration or financial cost, depends on the choice of the user).

This value is then increased or decreased by the heuristics [4, 7, 13, 20, 22]. According to the
data existing in the system, the algorithm modifies the value of the estimated cost.

All heuristics are combined together to modify the estimated cost value. We do not have any
constraint for the number of heuristics that are applied. They might be considered as rules [4]
which are affecting the estimated cost.

An important advantage of this approach is its flexibility. As the system operates, there will be
new ideas for collecting new information about locations and links. New heuristics, which are
relying on the new data, can easily be integrated to this system.

While one heuristic increases the estimated cost, another one might decrease it. It is like
saying, “This route uses very few numbers of hops and is cheap, but it takes too long”. By

using this approach, we believe we are reflecting the advantages and disadvantages of routes
to the algorithm in a suitable way.

o : 2

Bus

Dolmus

L1

’ b

Figure 4.3 — Multiple routes reaching to the same node.

Another important thing to be noted on the algorithm is its support for supplying alternative
routes. As indicated previously in Chapter 3, we want the algorithm to provide several
alternative routes to the user. In the classical A* search algorithm structure, no such support
exists. Whenever a node in successors set of the currently processed node is seen, the
algorithm checks to see if the node has been previously added to the queue. If so, the
successor node is skipped. Consider the graph in Figure 4.3. In this graph, there are two

CHAPTER 4. SEARCH ALGORITHM 26

alternative routes from S to T. Consider that Bus link is processed before Dolmus link. In this
case, Dolmus link won’t be processed by the algorithm, since the algorithm has already
reached L/ and L/ has already been added to the queue (containing S as its ancestor and Bus
link as its ancestor connecting link).

In order to modify this approach to support finding k-shortest routes, we are storing more than
one instance of the same node in the queue. For the above example, two instances of node L1
will be stored in the queue with our approach. One instance contains Dolmus as the ancestor
connecting link and the other instance contains Bus as the ancestor connecting link.

The queue (defined at line 6) is used to store the nodes that should be processed. The nodes in
this queue are ordered according to their f-value. For initialization, start node is added to the
queue. Queue might contain more than one instance of the same node if more than one route
has been found to that node.

The set “visitedNodes” is used to store nodes that have been reached in the search. This set
might be considered as a permanent backup location for nodes. As indicated, the queue stores
only nodes to be processed. So, if a node is processed it is removed from the queue. On the
other hand, we need removed nodes’ information (in order to track the route from the target to
the source by visiting ancestor node of each node). This set is used to provide this
information.

“excludedLinkTypes” is a set, in which elements are link types. This set is added to the
algorithm in order to give the user a chance to exclude one or more link types from the search.

Line 22 is related with accepted target set. The “incompleteResults” set in the algorithm stores
the found routes that are from source node to a node in the accepted target set. If no route
between source and target is found, these results are displayed to the user.

In the original A* algorithm goal check is done inside the body of the for loop that is starting
at line 26. Instead of this approach, we are doing this check inside the body of the while loop
that is starting at line 8. By this, when the target node is reached, it is again processed and
added to the priority queue. But this time its favorability is multiplied with a high constant (by
heuristic 7). By this, if a node has more than one link to the goal target, an order between
those two links can also be done by our system.

Also checks like the one at Line 2 of the “enqueue” method can be done by this approach.
Consider the case in we have locations S, P and T with the following conditions

- S is the source node

- Tis the target node

- There is a user entered link from Sto 7

- There is a type 2 virtual link from S to P (because of containment relationship)

- There is a type 1 virtual link from P to T (because of containment relationship and S —
T link)

In these conditions, if original A* approach is used, as the algorithm is processing node S, it
will find P — T link, and since it reaches us to the target, it will return the result immediately,
which is an incorrect behavior. But when we process this link by our regular procedures, it is
being eliminated because of the check at line 2 of the enqueue method.

CHAPTER 4. SEARCH ALGORITHM 27

1 A*CD (source, target, excludedLinkTypes)

2 var visitedNodes <- empty set

3 var acceptedTargets <- getAcceptedTargets (source, target)
4 var routes <- empty set

5 var incompleteResults <- empty set

9 var g <- make queue (source)

7 var k <- number of routes to be found

8 while g is not empty

9 var node <- remove first(q)

10 if (processedBefore (node))

11 continue

12 end if

13 addToVisitedSet (node)

14 if node == goal

15 addToFoundRoutes (routes, visitedNodes, node)

16 if (routes.Count == k)

17 return routes

18 else

19 continue

20 end if

21 end if

22 if node in acceptedTargets and L.getType() != virtual link
23 addToIncompleteResults (incompleteResults, visitedNodes, node)
24 end if

25 var routeFromSource <- createRouteFromSource (node)
26 for each Link L originating from node

27 if L.getType () in excludedLinkTypes

28 continue

29 end if

30 if L.getType() is virtual link and L.actualLink() .getType ()
31 in excludedLinkTypes

32 continue

33 end if

34 if L.getDestination() in routeFromSource.NodeSet
35 continue

36 end if

37 enqueue (node, L, routeFromSource)

38 end for

39 end while

40 add incompleteResults to routes set

41 return routes

Figure 4.4 — Pseudo code of A*CD algorithm

Whenever a node is retrieved from the queue, a check is done to see if the node has been
processed before (line 10). In this check, value of k is important. If the node has been visited k
times, it is considered to be processed before so it is skipped (pseudo code for that function is
provided in Figure 4.7).

If the node turns out to be the target node, the route from source node to the target node is
added to the found routes set (line 15). If the node turns out to be in the accepted target set, it
is added to the incomplete results set (line 23). There is an important difference between these
two cases. If the node is the target, the algorithm does not continue with the successors of the
node. On the other hand, if the node is in the accepted target set, it is added to the incomplete
results but in addition to that, successors of the node are also processed.

CHAPTER 4. SEARCH ALGORITHM

28

After the target checks, successors of the node are retrieved from the database. For each
successor, excluded link type check is done. If the successor passes this check, the route till
now (the route starting from the start node and ending at the currently processed node) is
checked; if the route contains the successor, successor is skipped. After passing these checks,

enqueue method is called.

1 enqueue (node, link)

2 if checkType2TypelVirtuallLinkChain () is true
3 return

4 end if

5 var newNode <- link.getTarget ()

6 newNode.ancestor <- node

7 newNode.ancestorConnectingLink <- 1link

8 var favorability <- applyAllHeuristics()

9 if (favorability < threshold)

10 return

11 end if

12 if (checkIndirectVirtualLinkLoop())

13 return

14 end if

15 var gVal <- node.distanceTillNow + link.cost
16 var fVal <- gVal + calculateHValue (node, newNode,
17 addToQueue (newNode, fVal)

link,

favorability)

Figure 4.5 — Pseudo code of enqueue method

B
&
' S

'}

~— ~

Figure 4.6 — Indirect virtual link loop. If node B is being processed, B-C-A route might occur
if this check is not done. The virtual link from B to C is created because of the B contains A4
relationship and A4 to C link. So, in the graph it is not a loop but when the actual links in real

life are considered, this condition is a loop.

CHAPTER 4. SEARCH ALGORITHM 29

1 processedBefore (node)

2 var tmpNodeArray <- visitedNodes.getNodeArray (node.Id)
3 if tmpNodeArray = null

4 return false

5 end if

6 if tmpNodeArray.Count < k

7 return false

8 end if

9 return true

1 addToVisitedSet (node)

2 var tmpNodeArray <- visitedNodes.getNodeArray (node.Id)
3 if tmpNodeArray = null

4 tmpNodeArray <- createEmptyArray ()

5 end if

6 tmpNodeArray.addElement (node)

7 visitedNodes.addNodeArray (tmpNodeArray)

1 createRouteFromSource (node)

2 var route <- emptyRoute

3 var currentNode <- node

4 var link <- null

5 route.addNode (node)

6 while currentNode != start node

7 link <- currentNode.getAncestorConnectingLink ()
8 currentNode <- currentNode.getAncestor ()
9 route.addNode (currentNode)

10 route.addLink (1ink)

11 end while

Figure 4.7 — Pseudo codes of the helper methods

Enqueue method first checks for virtual link chains (line 2). Figure 4.6 shows an example
virtual link chain. Then, the new node is created (line 5). This new node is the one that will be
added to the queue (if it passes the checks). Its ancestor is initialized as the currently
processed node and its ancestor connecting link is initialized as the currently processed link.

Than, at line 15, a favorability value is calculated. This is done by applying all heuristics one
by one. If the favorability value turns out to be lower than the favorability threshold, f, new
node is not added to the queue.

Finally, the f-value is calculated by adding g-value with h-value.

4.3 Calculation of h-value and Heuristics

h(n) is the estimated cost of reaching from node n to target. We are calculating this value in
three parts. First, we are calculating the geographical distance between node n and the target.
After this, we are normalizing this value since the distance is in miles but we need a cost
measure for summing h-value with g-value. Finally, we are applying several heuristic
functions in order to calculate a favorability value r(n). According to the data entered by the
users, this favorability value is increased or decreased. After this favorability value calculation
is done, it’s inverse (1 / r(n)) is multiplied by the normalized estimated cost in order to give
the final h(n) value.

CHAPTER 4. SEARCH ALGORITHM 30

Calculating Geographical Distance

var x <- 69.1 * (Lattitude, — Lattitudey)
var y <- 69.1 * (Longitude. - Longitude,) * Cosine (Lattitude. / 57.3)
var distance = SquareRoot (x? + y?)

Figure 4.8 — Distance calculation
Normalization of the Distance

The cost estimate is based on the geographical distance between the new node and the target
node. But this value, alone, is not enough for a proper estimate. The unit of this estimate is
kilometers; it is the distance between the new node and the target node. On the other hand,
unit of the cost till now is either a currency (financial cost) or time. So addition of these
values with different units won’t give us a proper overall f-value.

In order to normalize the value, we have developed two approaches. After developing and
testing the first approach, we have realized that it has some disadvantages. Because of this, we
have developed another approach.
Normalization — Approach 1
In this approach, we are normalizing the estimated cost by using three other values;

- Distance between the new node and the target

- Distance between the source and the new node
- Actual cost from the source node to the new node

s
‘ new node

/} // \\ C2 e, 07
f‘f /J 5 T ~
\"\“ s \\\ e M
S e
node <__ estimated cost

-
LS

Figure 4.9 — Normalizing the distance. c1 is the actual cost between the source node and the
currently processed node. There might be more than one link, only total cost of the route is
important. ¢2 is the actual cost of the link connecting node and new node. Normalized
estimated cost value is calculated according to cl, c2 and distance between new node and the
target node.

CHAPTER 4. SEARCH ALGORITHM 31

The aim of this approach is to exploit the existing information to estimate a cost. We know the
distance between the source node and the new node. We also know the cost between these
nodes. Also, we know the distance between the new node and the target node. So, by a simple
ratio calculation we can have a cost estimate between the new node and the target node.

distance(source, newNode) / (c1 + ¢2) = distance(newNode, source) / X

Although this approach seems as an applicable one, it has two main disadvantages. First of
all, since type-2 virtual links (the links from the child nodes to the parent nodes) have a cost
of 0, for nodes that are reachable by these links, the cost is underestimated.

Another disadvantage is the variable nature of the links. Consider that the query is between
two very distant nodes (like two locations in different countries). Also consider that the route
till now (route from the source node to the new node) contains only close locations to the
source node. In this case, the estimate will be very different from the actual cost since links
between close locations have different cost characteristics than links between distant
locations. To be more specific, consider that the user has selected duration as the cost model.
For close locations, x kilometers might take 2x minutes. On the other hand, for distant
locations, if a plane will be used, 800x kilometers take x minutes.

Normalization — Approach 2

This approach provides a hard-coded conversion between miles and cost. The pseudo-code is
given in Figure 4.10.

Normalize (distance)
if distance < t;
return distance * m;
else if distance < t,
return distance * m,
else if distance < t;
return distance * m;
else
return distance * m,
end if

Figure 4.10 - Pseudo code of the applied normalization approach

The threshold values (t values) and multiplier values (m values) are different for duration and
financial cost choices.

These are the hard-coded estimates. In a way, we are transferring our route expertise to the
system by this normalization method. For example, if the distance is below 100 miles, we can
say that the duration estimate will be distance * 1. Meaning each mile will take 1 minute to
travel.

Of course, this approach has also disadvantages. Consider two distance values, d, =t, — 1 and
d, = t, + 1. Although they have a very small difference, their cost estimate will be very
different.

CHAPTER 4. SEARCH ALGORITHM 32

Also, for long distances, the multipliers should be arranged such that planes, trains, intercity
buses, long distance ferries and such long distance links are all taken into consideration. Even
with considering all such links, there will still be erroneous estimates since the multiplier
would have been selected as an average of the several link types.

In spite of these disadvantages, this approach outperformed the first approach. Chapter 6
presents the results with this approach. When we have tested the system with the first
approach, percentage of the queries, that returned the same route for both algorithms, A*CD
and Dijkstra’s, was below 50% for both point of interests (duration and financial cost). As you
can see in that section, the percentages with the second approach are 65% for duration and
52% for financial cost.

In addition to the better results than the first approach, this approach has another important
advantage over the first one. Its performance can be improved by tuning the constants;
thresholds and multipliers. As the system is queried by the users, we will have many location
pairs and actual route costs for them. So we will have a big data set, from which we can
derive results to modify the constants.

Also, condition dependent applications can be applied by this approach. For example, if the
normalization is for two locations that are residing in a crowded city, the estimated cost (result
of the normalization) might be increased by multiplying it with a constant factor, which is
greater than 1. The increase is for reflecting the effect of the traffic to the estimated cost.

Heuristics

Heuristics are used for calculating the favorability value. The favorability value is initialized
as 1. Each heuristic updates this value by multiplying it (either with a value greater than 1,
meaning the favorability is increased or with a value smaller than 1, meaning the favorability
is decreased).

calculateFavorability ()
var favorability <- 1
for each Heuristic h
favorability <- applyHeuristic(h, favorability)
end for
return favorability

Figure 4.11 — Pseudo code of favorability calculation method

If the favorability value is under a certain threshold, the link is not processed and it is
discarded (Line 9 of enqueue method).

In the heuristic explanations below, /¢, indicates a heuristic constant.

Heuristic 1

Goal: In the searches that have the source and destination close to each other, long distance
links (such as planes) can be eliminated to reduce the search space.

How: Let d = distance between source and target locations.

- Multiply the favorability with O if the processed link is a Plane and d <= hc¢;
kilometers

CHAPTER 4. SEARCH ALGORITHM 33

- Let d, = the distance between route source and route destination. If d, > 5d, multiply
favorability by 0.
- Ifd,>2d, multiply favorability with hc,where hc,< 1

Notes: This heuristic is for reducing the search space. An important percentage of the
searches will be done for close source and target locations (in the same city, same district,
same campus or even same building) according to our estimates. For such searches, including
planes, increases the search space dramatically because with a plane hop, many new links and
locations that resides near the plane’s target location are introduced, which will slow down the
system dramatically.

Heuristic 2

Goal: When the processed link gives nearer results to the destination, the successor should be
given higher priority.

How: Let d,; = dist(linkTarget, routeTarget), d> = dist(linkSource, routeTarget)

- Ifd,/ d> < he;s, multiply favorability by Ac,
- Ifhe;<d,/ d> < hes, multiply favorability by Acs
- hes<hes<1 < hes<hey

Notes: This heuristic is for giving high priority to links that seem to get us closer to the route
destination. The heuristic is useful for both long distance searches and short distance searches.
For long distance, a plane that is landing to the destination location’s city will be promoted,
since it gets us closer. For short distance searches, since the ratio is important, the heuristic is
again applied successfully.

Heuristic 3
Goal: As the number of common parent locations between the processed link’s target location
and the route target location increases, give higher priority to the current route.

How: Iterate through parent lists of link’s target and route target. For each common one,
multiple favorability by sc; where hc;> 1.

Heuristic 4
Goal: Lower the priority of virtual links. They are less desirable and offered in the system for
supplying information when no direct route can be found.

How: If the processed link is a virtual link, multiply favorability by /4cswhere hcs<1.

Heuristic S
Goal: As number of links increases priority should be decreased. Minimum number of hops is
a general requirement for shortest routes.

How: Favorability is calculated by 1 — (kcy * numberOfLinks) where /¢y is a small constant
which is close to 0.

Notes: The influence of this heuristic is small. It is useful when two routes have not been
differentiated by the other heuristics. By this one, similar routes are ordered according to the
number of links that they contain.

CHAPTER 4. SEARCH ALGORITHM 34

Heuristic 6

Goal: Move the links that are reaching us to the goal to the first place in the priority queue.
As indicated before, at the end of the algorithm details section, our approach does not return
the result immediately; it first processes it as a regular partial route. As indicated before the
reason is to have an ordering if a node has two links to the target location.

How: Check current link’s destination. If it is goal location, multiply the favorability with a
high constant.

4.4 An Example Execution Scenario

Consider that the information (locations, links and relationships) in Figure 4.12 has been
entered to the system by the users. In this graph, consider that a route starting from Bilkent
and ending at Kadikoy is requested. Also assume that, k = 2, meaning 2 routes are requested.

The contents of the queue are given in Table 4.2. First value in the parentheses indicates the
ancestor of the node, second value indicates the ancestor’s instance number (as indicated
before, same node might be added to the queue if more than one route has been found to that
node). Asterisk near a node means that, the node has the lowest f-value. So it will be
processed next. Red entries indicate the new nodes that have been added while processing the
previous node.

At step five, first route to Kadikdy is found. Then the algorithm continues and at the next step,
it finds the second route. Found routes are as follows;

- Bilkent —ASTI:— Harem — Taksim — Kadikoy
- Bilkent — ASTI — Harem — Begiktas — Kadikoy

Step 1 Step 2 Step 3 . Step 4
Bilkent (-) * ASTI (Bilkent-1)* Harem (ASTI-1)* ODTU (Bilkent-1)
Ulus (Bilkent-1) ODTU (Bilkent-1) | Ulus(Bilkent-1)

Ulus (Bilkent-1) Besiktag(Harem-1)
Taksim(Harem-1)*

Step 5 Step 6

ODTU (Bilkent-1) ODTU (Bilkent-1)
Ulus (Bilkent-1) Ulus (Bilkent-1)
Besiktas (Harem-1)* Besiktas (Taksim-1)
Besiktasg-2 (Taksim-1) A. Airport(Taksim-1)
Kadikoy(Taksim-1) Taksim-2 (Besiktas-1)

A. Airport(Taksim-1) Kadikoy (Besiktas-1)

Table 4.1 — Queue contents

CHAPTER 4. SEARCH ALGORITHM 35

Ty ODTU

/
¥ Bl.flrent
/ '7
/ A§{: (Intercity Bus Station)

e

\UQ
Esenboga Aerort
e ‘ ‘

Ankara

Araru}kmr&" Taksim]I
\ Q\ |
\ ‘ /

Kadikéy /

#
@

— e

#T ey
Harem (Intercity BUS\Station)

Be;:.'n‘é;

.

Istanbul ™ - -
Figure 4.12 — Example graph. Ankara contains five locations in the upper left side. Istanbul
contains five locations in the lower right side. Actual links entered by the users are indicated
by arcs. Virtual links are not shown to simplify the example. We assume this data set has been
entered by the users.

Although this is a simple graph and a simple example, it gives us some important hints about
our search algorithm;

- Search continues in the destination city whenever a location in the destination city is
reached. Because of heuristic 3, favorability value of Harem is increased. This
decreases the estimated cost of reaching from Harem to the target location. So, the
system continues with Harem Bus Station instead of Ulus, which resides in Ankara.

- Multiple instances of the same node can be added to the queue. In this example, both
Begsiktas and Taksim are added to the queue two times. Because of this property, each
node stores both its ancestor and its ancestor’s instance number. Each node knows
that, “My ancestor is x" instance of node y” (each node also stores its ancestor
connecting link but we have skipped that detail for this example for the sake of
simplification).

CHAPTER 4. SEARCH ALGORITHM 36

- The algorithm avoids cycles in the routes. For example, while processing Harem Bus
Station, the algorithm skips the link starting from Harem and ending at AST7 because
it detects that the route till Harem contains ASTI already.

4.5 Virtual Link Preference

We have presented the heuristic four, which is decreasing the favorability value of the nodes
that are reached by virtual links. Preferring the routes without virtual links over the routes
with virtual links is not a rule without exception. There might be scenarios in which a route
with virtual link(s) might be preferred instead of a route without virtual links. Consider the
following scenario.

fqnsk%a SHogas ‘ Atatiirk
et SRS Airport
o J
Hacettepe Istanbul
Otogar (Harem)

e e T Bilkent Esenboga Airpao
- 9
/ Bilkent Bus Ty
(‘ Stop) e
N
Sy

e

‘onn‘i

Figure 4.13 — Virtual link preference. Black arrows indicate links that have been entered by
the users. Red dashed arrow from Bilkent to ODTU indicates a type-1 virtual link. We want a
route from Hacettepe to ODTU.

The user requests a route from Hacettepe to ODTU in the scenario, which is given in Figure
4.13. There is a route which is not containing virtual links;

Hacettepe — ASTI — Harem — Atatiirk Airport — Esenboga Airport — ODTU

But this route visits Istanbul. Instead of this route, there is another route which is using a
virtual link;

Hacettepe — Bilkent — ODTU

This route has a virtual link, Bilkent to ODTU. In this scenario, the route with the virtual link
would probably be much more useful to the user since the other route travels 500 kilometers
to another city (Istanbul) and then comes back to the city (4Ankara) that is containing the
source and the target locations.

CHAPTER 4. SEARCH ALGORITHM 37

Consider that we have two nodes, n; and n,. Consider that, for n,, a virtual link is being
processed and for #; a link that is not virtual is being processed. Node n, will be preferred if

g(n;) + nec(n;) > g(nz) + (nec(nz) / hes)

where nec(n) stands for “Normalized Estimated Cost” of node n and /c;s is the constant of
heuristic four. In this formulation, it is assumed that all other heuristics calculate the same
favorability value for »n; and n..

For the scenario in Figure 4.13, consider that Bilkent and Atatiirk Airport are being compared.
Since g-value of Atatlirk Airport will be much larger than the g-value of Bilkent (the actual
cost of the route from Hacettepe to Atatiirk Airport is greater than the actual cost of the route
from Hacettepe to Bilkent), the above formulation will hold. So, the system will prefer the
route with the virtual link and provide Hacettepe — Bilkent — ODTU route to the user.

Chapter 5

User Interface for Data Entry and Route Query

In this chapter, we provide the details of our system’s user interfaces. In the first five sections
we present the interfaces for data management. In section 5.6, we talk about how the data
management operations are logged. In the last section we present the route query screen.

The following is a list of features related with data management. A user can,

- Enter a new location by specifying its name, country, city, address, type and
explanation. Name, country, city and type are mandatory. Geographic coordinates
cannot be entered during entry of a new location. Geographic coordinates are
initialized with the same values that are used for the city selected.

- Enter a new link by selecting the source and the target locations, specifying the link’s
type, explanation, guessed duration, guessed financial cost and currency for guessed
financial cost. All properties except explanation are mandatory. A user cannot enter a
virtual link. As indicated before, virtual links are managed by the system.

- Enter a new relationship by selecting two locations and specifying the relationship
type. As mentioned before, there are three kinds of relationships, containment,
neighborhood and intersection.

- View all properties of a location.

- View all links that are originating from a location.

- View all links that are ending at a location.

- Update geographic coordinates of a location.

- Delete a location. In order to delete, the Delete hyperlink is used. Upon click, this
hyperlink deletes the location together with its relationships and links (both incoming
and outgoing). Countries cannot be deleted. There are no other constraints.

- Delete a link. Virtual links cannot be deleted. As indicated before, they are all
managed by the system.

- Delete a relationship between two locations. There is no constraint for relationship
deletion operation.

These features are explained in detail in the following sections.

38

CHAPTER 5. USER INTERFACE FOR DATA ENTRY AND ROUTE QUERY 39

5.1 Searching Locations

The collaborative data entry processes start with this feature. Users can search locations by
their name. If no location with the entered name exists, they can create a new location. If one
or more locations matching the query term are retrieved from the database, links are provided
to the user to manage information related with the locations (details, relationships and
incoming & outgoing links).

Search for Locations

Location Mame: [Bilkent Search i

4 results found

Bilkent Buly, (in &nkara) Mo of relations: 1 Mo of paths: 94
[Details] [Set as Source] [Set as Destination] [Add Relation] [Manage Outgoing Paths] [Manage Incoming Paths]

Bilkent Cad (in &nkara) Mo of relations: 1 Mo of paths: 48
[Details] [Set as Source] [Set as Destination] [Add Relation] [Manage Outgoing Paths] [Manage Incoming Paths]

Bilkent University (in Ankara) Mo of relations: 3 Mo of paths: 9
[Details] [Set as Source] [Set as Destination] [Add Relation] [Manage Outgoing Paths] [Manage Incoming Paths]

Bilkent Odeon (in Turkey) Mo of relations: 2 Mo of paths: 0O
[Details] [Set as Source] [Set as Destination] [Add Relation] [Manage Outgoing Paths] [Manage Incoming Paths]

Figure 5.1 — Screenshot of location search

Users can search locations according to their names. The system displays the results to the
user, together with links to manage information about the retrieved locations.

From this search screen users can go to location details page, location relationship
management page and link management page.

“Set as Source” and “Set as Destination” links are related with route finding.

Location Mame: [KaU Paintball Arena Search I

0 results found

Add new location with name “KAU Paintbhall Arena®

Figure 5.2 — Screenshot of location search. No result can be found.

Above screenshot shows the case in which no result can be found. In this case, a link is
provided to the user to enter a new location.

5.2 Entering a New Location

By following the link from the location search screen, a user can reach to the new location
entry screen.

The user can specify the name, country, city, address, type and explanation of the new
location. Name, country, city and type fields are mandatory.

CHAPTER 5. USER INTERFACE FOR DATA ENTRY AND ROUTE QUERY 40

Mame: IKAU Paintball Arena #
Country: [Turkey =l

City: I.C\nkara vl Add New City

Address: IKAU Painthall Arena, Cankavya, Ankara, Turkey

Tyvpe: Iother vl

Explanation: |A paintball arena, Contains a field for scenario plavs and a speedball field |

Figure 5.3 — Screenshot of new location entry.

5.3 Managing Location Information

Location information can be managed from the location details screen. As indicated before,
this page is reachable from the location search screen.

In #&nkara (Delete) , In Turkey (Delete), Contains Bilkent Odeon (Delete)
Has a path to ASTI (Dolmus (Shared Taxi)), Has a path to Ulus (Dolmus (Shared Taxi)), Has a path to 0DTU (Dolmus (Shared Taxi))
[Manage Dutgoing Paths] [Manage Incoming Paths] [Add Relation with Other Locations] [Delete]

\ il
" 3 A I:Ii'j’][' i i i Bzt - KullanAzm ACartlard:

Figure 5.4 — Screenshot of location details page. This screenshot is for Bilkent University.

Location details page contains the following information,

- Location relationships. Delete hyperlinks near each relation provide the deletion
feature of location relationships.

- Links originating from the location. There is a Delete hyperlink near each link. These
hyperlinks provide the deletion feature of links. Countries cannot be deleted as
indicated before. The system displays an error if the user tries to delete a county.

- Geographic coordinates of the location.

- A map, from which the user can change the geographical coordinates of the location.
This map service is provided by Google.

CHAPTER 5. USER INTERFACE FOR DATA ENTRY AND ROUTE QUERY 41

This page also displays hyperlinks for managing location relationships of this location,
managing outgoing links and managing incoming links. Also a delete hyperlink is provided
for the deletion of the location.

As a location is deleted, links originating from it, links ending at it and all its relationships are
also deleted.

5.4 Managing Location Relationships

Location relationships can be managed from the relationships page. This page is displayed for
a specific location. The user can search the second location according to its name, to relate
with. As the results are displayed, the user can add intersection, neighborhood or containment
relationship.

[All Details]

In &nkara, In Turkey , Contains Bilkent Odeon

Lacation Mame (to relate with): [oDTU Search I

QDT {in Turkey) [Details]
[Add Intersection Relation] [Add Neighbourhood Relation] [Add Containment Relation{contains)] [Add Containment Relation{in}]

Figure 5.5 — Screenshot of location relationships page.

In the above screenshot, location relationships page is opened for Bilkent University. In this
page, the existing relationships are displayed to the user.

For adding new relationships, a search text box exists. As the user types a name to this field
and clicks on the search button, locations are searched and retrieved according to their name.
For each retrieved location, links for adding relationships are also displayed. So, user can
relate any other location with the current location on screen.

5.5 Managing Links

For link management, there are two similar pages; one for managing incoming relationships
and the other one for managing outgoing links. Only difference between them is that one
displays incoming links and the other one outgoing links.

Screenshot in Figure 5.5 is the page in which outgoing links from Bilkent University is
displayed. User can delete the links by using the “Delete” hyperlinks. Delete operation does
not delete the reverse link if it exists.

CHAPTER 5. USER INTERFACE FOR DATA ENTRY AND ROUTE QUERY 42

[All Details]
In &nkara, In Turkey , Contains Bilkent Odeon
Paths Originating From Here
-To ASTI (by Dolmus {Shared Taxi)) (Delete)
-To Ulus {by Dolmus {Shared Taxi)) (Delete)
-To oDTU (by Dolmus (Shared Taxi)) (Delete)
Search by lacation name: [Tunus Search I
[T Tunus Caddesi (in Turkey) [Details]
Link Type: plBoat ;I ™ Enter New Type: I
Explanation: I
Guessed Duration (in minutes): I
Guessed Cost / Currency: I £ IEuro _v_I

Link Is walid For Reverse Direction: [

Add link for selected locations

Figure 5.6 — Screenshot of location relationships page.

From the search ficld, the user can enter a location name and search for locations to add new
links. After the location is selected after search (using the checkbox), the link type,
explanation, guessed duration (in minutes), guessed cost and its currency are entered. Also,
user can denote that the link is also valid for reverse direction. This feature is for entering bi-
directional links. On the data model, instead of a single bi-directional link, two uni-directional
links are stored as indicated before.

5.6 Logging Mechanism

For all data entered by the users of the system, we are logging the actions. We are using a
logging mechanism in which logs contain the following information;

1. Location ID: If the operation is related with a location, the ID of the location is
stored.

2. Link ID: If the operation is related with a link, the ID of the link is stored.

3. Relation ID: If the operation is related with a location relation, the ID of the relation
is stored.

4. User ID: ID of the user that has entered the information.

5. Date: Date of the operation.

6. Old data: This is stored as raw data in the database. The logging module forms and
parses this information when necessary. If the operation is link delete, all information
about the link (source location ID, target location ID, link type, guessed duration,
etc...) 1is stored in this field. Similarly, for location delete and relationship delete
operations, all data of the deleted entity is stored in this field. If the operation is
geographical coordinates update for a location, old coordinates are stored in this field.

7. New data: This is stored as raw data in the database. The logging module forms and
parses this information when necessary. For delete operations, this field is empty. For
entry of new entities (location, link, location relationship), this field contains all
information for the new entity. For geographical coordinate update of a location, this
field contains the new coordinates.

8. Log type: Type of data entry (examples are new location entry, new link entry, new
relationship entry, geographical information change, location deletion, link deletion
and relationship deletion)

CHAPTER 5. USER INTERFACE FOR DATA ENTRY AND ROUTE QUERY 43

Below are the event types that are logged in the system.

Addition of a new location

Addition of a new link

Addition of a new location relationship
Deletion of a location

Deletion of a link

Deletion of a location relationship
Geographical information change of a location

Nk L=

Since the system does not have update features for locations, links and relationships, there is
no event type other than the above seven event types.

5.7 Route Query

In order to query the system, the user should first select the source and the target locations.
Then the cost model preference (duration or financial cost) should be entered. This indicates if
the user is interested in a fast route or a cheap route.

User can also exclude certain link types and request alternative routes.

Search for Routes

1. Search Source & Destination 2. Select Source & Destination

From |Bilkent Eromny
" Bilkent Bulv.

" Bilkent Cad
E’il ¥ Bilkent University
" Bilkent Odeon

" Bilkent B Building
" Bilkent B Building

Ta IE-egiktag

To
@ Besiktas
Optimize For: | Duration -
Applied Heuristics
1V ¥ 3 a4 ¥ s¥ ¥
Search Route I

Figure 5.7 — Search results are displayed. User selects the cost model (duration or financial
cost). The selection of the applied heuristics is provided for test purposes.

As the user clicks on the “Search Route” button, the system searches for a route between the
selected locations and display the result to the user. The link types used in the provided route
are displayed to the user together with check boxes near them so that the user can exclude
those link types for the alternative route search.

CHAPTER 5. USER INTERFACE FOR DATA ENTRY AND ROUTE QUERY 44

Search for Routes

1. Search Source & Destination 2. Select Source & Destination ||3. Other Options

From |Bi||-<ent From [T Don't use paths of type: Dalmus (Shared Taxi)
" Bilkent Bulv.

" Bilkent Cad
Search | @ Bilkent University

" Bilkent Odeon

" Bilkent B Building

” Bilkent B Building

To |Be§ikta§ [T Don't use paths of type: Intercity Bus

To
¥ Besiktas

Cptirnize For: IDuration 'I

Applied Heuristics
iV 2V ¥ 4¥ 5¥ s ¥
Search for More Routes |J

Suggested route:

- Bilkent University to ASTI, Type: Dolmus (Shared Taxi), Explanation: Once in every 15 minutes, Cost: 40 mins, 4 YTL
- ASTI to Harern Otogar, Type: Intercity Bus, Cost: 300 mins, 30 ¥TL

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). Cost: 40 mins, 4 YTL

- Taksim to Besiktas, Type: Dolrus (Shared Taxi). Explanation: Once in every 10 minutes, Cost: 40 rmins, 4 YTL
Rours found in 1484 3845 mr. Queve query count: 141

Figure 5.8 — A route is provided to the user. Used link types can be excluded from the
alternative route search.

Chapter 6

Search Algorithm Evaluation

In this chapter, we first present the cases in which our algorithm misses an existing route.
Then, we give the details of the data set that we are using for automated and manual test.
Then, we present four example queries for which we query the system by disabling certain
heuristics. By these four queries, we discuss the effects of the heuristics over the algorithm
and the provided routes. Finally we present automated tests by which we are collecting
valuable information for evaluating the performance of our search algorithm.

6.1 Missed Cases

In order to present the missed cases, we have the following assumptions;

- There exists a route from the selected source location to the selected target location.
These locations are named S and 7.

- “Excluded solutions” is an empty set. As explained before, this set is used to exclude
solutions that are previously found. So we can assume it as empty since all searches
will start with this set empty.

- “Excluded link types” is an empty set. We will assume that all links can be accepted in
the resulting route.

Now, assume that, we do not have any skip code (continue lines) in the algorithm. Also
assume that enqueue method always adds the current link to the queue. With these
assumptions it is obvious that a route can be found by the algorithm. Because it starts from the
source node, exploits all links originating from source and adds partial routes that are formed
by adding the successor nodes to the source node to the queue. And it continues until queue is
empty.

So, what we have to do in order to continue the proof is to attack the continue lines and the
enqueue method.

We have five continue lines;

- Line 11: This skips the current partial route since the last location in the partial route
is in the closed set. If we analyze the operations on the closed set, we can see that
addition to this set is only executed at line 13. This means that, if algorithm skips the
current partial route due to line 11, it should have visited line 13 before. This
concludes that, the node has been processed before so it is not possible to miss a
solution because of this line.

45

CHAPTER 6. SEARCH ALGORITHM EVALUATION 46

- Line 28: This line skips the current link if current link is an element of excluded link
types. As indicated before, we can assume that this set is empty.

- Line 32: This line skips the current link if current link is a virtual link and the actual
link that is causing this virtual link has a type that exists in excluded link types. This
can also be ignored like Line 28.

- Line 35: Line 34 checks current link’s destination location. If it exists in the current
partial route the link can be skipped. This means that the route till now already
contains the destination location of the current link, meaning that this destination
location has already been processed. Routes formed by adding its successors to the
partial route might still exist in the queue waiting to be processed. So, no successor of
destination location can be missed.

- Line 19: This line is executed after the solution has been added to the found routes set
so missing a solution because of this line is impossible.

Since it is impossible to miss a solution because of a discard in the algorithm, we have to
check the enqueue function. As indicated before, it applies heuristic methods one by one and
calculates a favorability value for the processed partial node. We have also indicated that if
the calculated favorability value is under a certain threshold, f# (favorability threshold), the
node will be discarded. So, we have to analyze the heuristics that are decreasing the
favorability of the processed node.

- Heuristic 1
- Heuristic 4
- Heuristic 5

These three heuristics might decrease the favorability of the processed route. If the
favorability value is dropped under a threshold, f# (favorability threshold), the processed node
will be discarded. For values over ft, we do not have a problem since they will be added to the
queue. So, we have to analyze the cases in which favorability can drop under f#. These are the
cases in which, even if a route exists in the system from S to 7, the algorithm cannot find it.

Case 1 - Discard Due to 0 Favorability: This case is caused by heuristic 1. If the distance
between S and 7 is less than /Ac; kilometers and the processed link is a plane, favorability is
set to 0. If the existing route in the system has such a link, this route will be missed.

Case 2 - Discard Due to 0 Favorability: This case is caused by heuristic 1.

- d,; = distance between S and T

- d,= distance of the processed link

- dz >5x%xd I

- Existing route between S and T contains this link

In this case, the route will be missed.

Case 3 — Discard Due to Low Favorability: Such a case might occur if favorability value is
not set to 0 but dropped under fz.

Heuristic 1 may decrease the favorability by multiplying it by /c.. Heuristic 4 decreases the
favorability if the processed link is a virtual link, by multiplying it by Acs, which is smaller
than 1. Heuristic 5 initializes the multiplier from 1 and subtracts /¢y for each link in the route.

CHAPTER 6. SEARCH ALGORITHM EVALUATION 47

Now, consider that no heuristic increases the favorability. In that case, following situations
will discard a valid route from S to 7.

1. There exists a route R from source to destination. R contains at least one link L such
that;
a. L is avirtual link (meaning favorability will be multiplied by /cs)
b. hc, multiplier is applied by heuristic 1
c. Letn=route’s link count till L
d. 1x th X hCz>< (1 —(n X]’ng)) <ﬁ
2. There exists a route R from source to destination. R contains at least one link L such
that
a. L isa virtual link
b. Letn =route’s link count till L
c. 1xXhcsx(1—(nxhecy))<ft
3. There exists a route R from source to destination. R contains at least one Link L such
that
a. hc; multiplier is applied by heuristic 1
b. Letn=route’s link count till L
c. 1xhe;x(1—(nx hco))<fi

As a summary to unhandled cases, we can conclude that, only favorability decrease features
cause the system to miss some existing solutions. There are two cases in which favorability is
set to zero and cause a solution to be missed.

Also, there are three situations which decrease the favorability below threshold but these are
not very likely to occur.

There is another check in the beginning of the enqueue method. This check is at line 2 and
guarantees that no virtual link chain is used in the solution. If processed link’s target location
exists in the visited locations of the processed node’s route till source node, a loop is detected.
So missing a solution because of this case is not possible.

Other than these cases, system is able to find a route from source to destination if such a route
exists in the graph.

6.2 Example Data Set

In our example data set, we are using five sub data sets.

- Countries and cities

- Ankara bus network

- Istanbul bus network

- Istanbul ferry network

- Turkey domestic plane network (of a private company)
- Turkey intercity bus network (of a private company)

As a summary of all the added example data, we can say that three networks have been
formed; Turkey, Ankara and Istanbul.

CHAPTER 6. SEARCH ALGORITHM EVALUATION 48

Ankara network contains only bus stops. There are a total of 271 bus stops. Number of links is
around 1000.

Istanbul network contains bus stops and ferry bridges. There are around 300 locations and 600
links between these locations.

Turkey network consist airports and intercity bus terminals. There are around 125 locations
and 325 links. This network connects locations in Ankara and Istanbul.

The details of the example data set are given in appendix B.

Statistics for example data set
Number of locations ~ 4000

Number of links ~ 2000

This data set is used for all the tests in the following sections.

6.3 Effects of Heuristics

In order to demonstrate the effects of the heuristics, we present example queries. For each
example query, we get five alternative routes from the system by first disabling the tested
heuristic(s) and then get five alternative routes from the system by enabling the tested
heuristic(s).

There are two values for each suggested route; duration of search and number of nodes
extracted from the queue, the queue query count.

Execution time in milliseconds might be considered as a good measure for comparison but
there might be variations because of the other processes running in the operating system. On
the other hand, queue query count is a good measure for comparing the performances of
approaches. It indicates how many nodes have been extracted from the queue, giving us a
comparable measure. Only problem of this measure might be the unbalanced nature of the
edges. It is possible that some nodes contain more links than some other nodes. In this case,
processing of a node with more links will take longer than the processing of a node with fewer
links. The reason is the running time of each node processing, O(|L|) where |L| is indicating
the number of links originating from the node. We are ignoring this unbalanced link count
situation for the following queries.

The routes that the algorithm has found with and without the tested heuristics are provided in
appendix C.

UERY 1

In this example query, first the system is queried without heuristic 1, and five suggested routes
are retrieved from the system. These results are compared with the five suggested routes from
the system when all heuristics (including heuristic 1) are applied.

CHAPTER 6. SEARCH ALGORITHM EVALUATION 49

When the heuristic 1 is not applied, two suggested routes out of five contain locations that are
very far away from both source and target locations. Although source and target location are
close to each other and contained in the same city, these two routes pass from locations that
are in another city (Istanbul), which is far away from the search city (Ankara). This is not a
desired property of a fast route in our context.

UERY 2

This example query is executed in order to demonstrate the importance of heuristic 2. As
indicated before, heuristic 2 increases priorities of links that are getting the search closer to
the target node. This is done by multiplying the priority with a constant greater than 1
whenever the ratio of distance(linkTarget, routeTarget) to distance(linkSource, routeTarget) is
smaller than a threshold.

In order to demonstrate heuristic 2, we have turned off heuristic 3. Because with heuristic 3
turned on, the results were very close to each other. The reason of this is that, containment
information also exists in the system for the example data set, together with geographical
information. We did not want that location relationship information to affect the results and
we wanted an isolated test for heuristic 2.

The results present a huge difference when number of queue pops is compared. The algorithm
starts searching from the source node, “Cetin Emeg¢ Bulv.”, which resides in Ankara. It finds a
link to ASTI (Ankara bus terminal) after a while. When ASTI is processed, Harem Otogar
(Istanbul bus terminal) is added to the queue since there is a link from ASTI to Harem Otogar.
In the first execution, this newly found node is added to the queue without any decrease in its
estimated cost. On the other hand, in the second execution, heuristic 2 decreases estimated
cost by increasing the favorability value. With heuristic 2, algorithm sees that this link covers
an important ratio of the distance between source and target.

So, in the first execution, a route can be found after 1399 queue pops. On the other hand, in
the second execution it only takes 185 queue pops to find a route to the target. Alternative
routes are also found with less number of pops from the queue in the second execution.

QUERY 3

This query is executed in order to demonstrate the effects of heuristic 3. Similar to query 2, in
order to isolate the effects of heuristic 3, heuristic 2 is also turned off for this test. As indicated
before, these two heuristics behave very similar since both containment information and
precise geographical information are complete in our example data set.

Heuristic 3 takes advantage of location relationships, containments to be more specific. In this
query, we are searching for a route from Hosdere (in Ankara) to Kadikdy (in Istanbul).

In the first execution, heuristic 3 is not applied. It takes 31 queue pops to find a route to the
target. On the other hand, in the second execution it takes only 9 queue pops to find a route to
the target. In the second execution, whenever the algorithm finds a route to Atatiirk Airport,
which resides in Istanbul, it gives higher priority to this node since it contains a common
parent (Istanbul) with the target node. This leads the algorithm to the target node quickly. As it
can be checked from the results, this condition is also valid for alternative routes.

CHAPTER 6. SEARCH ALGORITHM EVALUATION 50

QUERY 4

This query is executed in order to demonstrate the effect of heuristic 4 on the algorithm.
Heuristic 4 is used to give lower priority to virtual links. As explained before, virtual links and
actual links are treated the same in the search algorithm. The algorithm does not differentiate
between these two. Since virtual links main purpose is to provide intuitive connections, they
seem unnecessary when there is a route from the source to the target, which is containing only
actual links.

The routes with virtual links should be found after the routes without virtual links (this
conditions has some exceptions, as explained in section 4.5). In order to accomplish this, we
have defined heuristic 4.

As seen in the results, heuristic 4 and this demonstration are not related with running time of
the algorithm. They are only related with the quality of the results. In this context, we are
defining the quality as the completeness of the search result.

In the first execution, heuristic 4 is not applied. First suggested route contains two virtual
links. Although this route seems as a valid answer from the system, it is using intuitive
connections. In the first suggested route, the information for reaching from Hosdere to
Esenboga Airport is missing. This situation is also valid for alternate routes in the first
execution. On the other hand, the results for the second execution contain complete
information. In the second execution, no route contains a virtual link (routes with virtual links
exist but routes without them are preferred first).

6.4 Automated Tests

Our main purpose in these tests is to test A*CD algorithm’s results’ (routes’) quality, by
comparing their cost with the costs of the actual lowest cost routes. In order find the lowest
cost routes, we have implemented the Dijkstra’s 1 - n shortest path algorithm [11].

For the implementation of the Dijkstra’s algorithm, we are not using any cache during the
execution of several searches. We are retrieving the links and locations from the database for
each execution. A*CD also runs without any cache.

We have selected one hundred random location pairs from the example data set for duration
cost model and one hundred random location pairs for financial cost model. Logged
information for each pair is as follows.

- Cost of the route provided by Dijkstra’s algorithm
- Execution duration of Dijkstra’s algorithm

- Queue query count of Dijkstra’s algorithm

- Cost of the route provided by A*CD algorithm

- Execution duration of A*CD algorithm

- Queue query count of A*CD algorithm

Test result details for duration cost model are given in Table 6.1 and details for financial cost
model are given in Table 6.2.

CHAPTER 6. SEARCH ALGORITHM EVALUATION 51

Percentage of queries that return same cost for both algorithms %065
Minimum cost ratio (A* / Dijkstra) 1
Maximum cost ratio (A* / Dijkstra) 1.404
Average cost ratio (A* / Dijkstra) 1.03
Minimum queue query count ratio (A*CD / Dijkstra) 0.002
Maximum queue query count ratio (A*CD / Dijkstra) 4.29
Average queue query count ratio (A*CD / Dijkstra) 0.93
Minimum search duration ratio (A*CD / Dijkstra) 0.002
Maximum search duration ratio (A*CD / Dijkstra) 1.32
Average search duration ratio (A*CD / Dijkstra) 0.32
Number of unanswered queries (Dijkstra) 11
Number of unanswered queries (A*CD) 11

Table 6.1 — Test results for duration cost model.

Percentage of queries that return same cost for both algorithms 52%
Minimum cost ratio (A* / Dijkstra) 1
Maximum cost ratio (A* / Dijkstra) 1.75
Average cost ratio (A* / Dijkstra) 1.27
Minimum queue query count ratio (A*CD / Dijkstra) 0.003
Maximum queue query count ratio (A*CD / Dijkstra) 4.04
Average queue query count ratio (A*CD / Dijkstra) 1.67
Minimum search duration ratio (A*CD / Dijkstra) 0
Maximum search duration ratio (A*CD / Dijkstra) 1.467
Average search duration ratio (A*CD / Dijkstra) 0.43
Number of unanswered queries (Dijkstra) 9
Number of unanswered queries (A*CD) 9

Table 6.2 — Test results for financial cost model

Results for all queries and example query results are provided in appendix D.

6.4.1 Comments on Results

Missed Solutions (Routes)

In our example queries, no route has been missed between the source and the target nodes
with A*CD algorithm. For the duration focused queries there are 11 pairs that do not have a
route between them. For the financial cost focused queries there are 9 pairs that do not have a
route between them. Since a route does not exist, Dijkstra’s algorithm could not find routes
between those pairs also. So we can say that, cases that are provided in the theoretical
capability analysis did not occur with the example data set and random queries.

Percentage of Ideal Results by A*CD

Although the term ideal result is very relative in our context, we can consider the cost as a
solid measure for the success of our algorithm. For the duration, %65 of the A*CD search
results returned the same route with the Dijkstra algorithm. For the financial cost, %52 of the
A*CD search results returned the same route with the Dijkstra algorithm. This means that, in
more than half of the queries, the actual shortest path is returned by our algorithm.

CHAPTER 6. SEARCH ALGORITHM EVALUATION 52

Worst Case Cost

For the duration criteria, the worst result gave us a ratio of 1.4. This means that the route
found by the A*CD algorithm has a cost which is, the cost of the actual shortest path
multiplied 1.4. For the financial cost criteria, the worst case cost ratio is 1.75.

Queue Query Count Comparison

Queue query count average is less for A*CD algorithm when the criteria is duration. On the
other hand, queue query count average is more for A*CD algorithm when the criteria is
financial cost. But average A*CD queue query count value is affected dramatically by the
pairs for which no route exist. For such pairs, A*CD queried the queue more than 2500 times
with our example data set.

6.4.2 Limitations

Our data set contains information from transportation provider’s systems. We convert this data
to our graph model’s format. So, structure-wise we do not have a problem with this data set.
On the other hand, content-wise this data set might differ from a data set that would have been
entered by the users collaboratively. As mentioned in Chapter 1, data quality cannot be
guaranteed in collaborative systems; there might be missing or duplicate information. Since
this is not the case for our data set, we could not demonstrate the intuitive connections that we
have presented.

Chapter 7

Conclusion and Future Work

In this thesis, we have presented the design of a collaborative route providing system which
can provide useful information to the users even if a route does not exist. The data of the
system is entered by the users of the system. For storing the data, we have presented a data
model which is containing locations, links between locations and relationships (containment,
neighborhood, intersection) between locations. The data model is an extended unidirectional
graph.

For the route finding purpose, we have presented a customized version of the A* search
algorithm. This customized version has been named as A*CD (A* for Collaborative Data).
The most significant customization is the calculation of the h-function in the A* search
algorithm. h(n) estimates the cost of the route from node »n to the goal node. We have
presented a three-step calculation for this function.

- Calculate the geographical distance
- Normalize this distance
- Apply heuristics to increase or decrease the estimated cost

We have presented six heuristics, which are guiding the search process. In order to test the
effects of the heuristics, we have executed example queries. For each query, we have executed
the algorithm first without the tested heuristic(s) and then with the tested heuristic(s). There
are two important results of these tests.

- A search with a certain heuristic can be seven times faster than the same search
without the heuristic. We have used the queue query count of the execution as a
measure.

- A heuristic can increase the usefulness of the results. For example, assume that a route
between two locations in the same city is requested. It is possible that there are certain
routes that are passing from locations in a distant city. A heuristic can insure that such
routes are not provided to the user.

We have also presented the intuitive connections concept. Even if a route does not exist
between the selected locations or only a route that is not sensible exists, the system can
provide a route with missing links. The gap(s) between the disconnected locations are filled
by the help of the relationships between locations. This has been accomplished by introducing
a new type of link. These links are called virtual links. They are managed by the system and
connect the related locations.

A*CD can also provide alternative routes, exclude certain link types in the searches according

to user preferences and handle the problems associated with multiple stop transportation lines.
We have used two cost models; duration and financial cost. For each route search, the user

53

CHAPTER 7. CONCLUSION AND FUTURE WORK 54

can specify if he is interested in a fast route that will take minimum amount of time to travel
or a cheap route in which he will pay less.

In order to evaluate A*CD algorithm’s results’ (routes’) quality, we have compared their cost
with the costs of the actual lowest cost routes. For 59% of the queries, A*CD algorithm
returned the lowest cost route. On average, the ratio of the cost of the route that has been
provided by the A*CD algorithm over the cost of the lowest cost route is 1.15.

Future work can be directed to improve the time and space complexities of the A*CD
algorithm. In this thesis, we have not presented a significant improvement over the formal
time and space complexities of the A* search algorithm. Another future work can be directed
to develop feedback, trust and rollback mechanisms in order to improve the quality of the data
that has been entered by the users.

The data dependency of our approach might be improved to a more flexible data model in a
future work. Currently, we rely on the costs of the links and also the geographical coordinates
of the locations. The f-function of the A*CD algorithm uses these data. A revised approach
might classify this information as optional instead of mandatory.

As a final word, the A* search algorithm is a highly customizable search algorithm, which can
be applied in collaborative contexts. Together with new heuristics and virtual links, a
customized version of it can be developed to provide routes to the user in a graph with
missing data in feasible running times.

Bibliography

[1] Aggarwal, A., Schieber, B. and Tokuyama T. Finding a minimum weight K-link path in
graphs with Monge property and applications. Proc. 9" Symp. Computational Geometry. 189
—197, 1993.

[2] Ahuja, R. K., Mehlhorn, K., Orlin, J. B. and Tarjan, R. E. Faster algorithms for the
shortest path problem. J. Assoc. Computing Machinery. 37: 213 — 223, 1990.

[3] Ajwani, D., Dementiev, R, Meyer, U; and Osipov, V. Breadth first search on massive
graphs. 9" DIMACS Implementation Challenge — Shortest Paths, 2006.

[4] Arsanjani, A. Rule Pattern Language 2001: A Pattern Language for Adaptive Manners and
Scalable Business Rule Design and Construction. 39th International Conference and
Exhibition on Technology of Object-Oriented Languages and Systems (TOOLS39), 0370,
2001.

[5] Azevedo, J. A., Costa, M. E., Madeira, J.J. and Martins, E. Q. An algorithm for the ranking
of shortest paths. European Journal of Operational Research, 69: 97 — 196, 1993.

[6] Bellman R.E. On a routing problem. Quarterly Applied Mathematics, 16: 87 — 90, 1958.

[7] Bulitko, V., Sturtevant, N., Lu, J. and Yau, T. Graph abstraction in real-time heuristic
search. Journal of Artificial Intelligence Research, 30: 51-100, 2007.

[8] Chakrabarti, P., Ghosh, S., Achaya, A. and DeSarkar, S. Heuristic search in restricted
memory. Artificial Intelligence, 47: 197-221, 1989.

[9] Chen, Y. L. An Algorithm for finding the k quickest paths in a network. Computers and
Operations Research, 20: 59 — 65, 1993.

[10] Cormen, T., Leiserson, C., Rivest, R. and Stein C. Introduction to Algorithms, Second
Edition. MIT Press, 2001.

[11] Dijkstra, E. W. A note on two problems in connection with graphs. Numer. Math., 1:269--
271, 1959.

[12] Eppstein, D. Finding the k shortest paths. Proc. 35 th Symp. Foundations of Computer
Science, IEEE, 154-165, 1994,

[13] Ghosh, S. and Mahanti, A. Bidirectional Heuristic Search with Limited Resources,
Inform. Process. Letters 40, 335-340, 1991.

[14] Goldberg, A.V. and Harrelson C. Computing the shortest path: A* search meets graph
theory. Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms,
156-165, 2005.

55

BIBLIOGRAPHY 56

[15] Hart, P, Nilsson, N and Raphael, B. A formal basis for the heuristic determination of
minimum cost paths. [EEE Transactions of Systems Science and Cybernetics, SSC-4(2): 100-
107, 1968.

[16] Ikeda, T and Imai, H. Enhanced A* Algorithms for multiple alignments: Optimal
alignments for several sequences and k-opt approximate alignments for large cases.
Theoretical Computer Science 210: 341-374, 1999.

[17] Katoh, N., Ibaraki, T. and Mine, H. An efficient algorithm for K shortest simple paths.
Networks 12(4): 411-427, 1982.

[18] Korf, R. Depth-first iterative deepening: An optimal admissable tree search. Artifical
Intelligence 27: 97-109, 1985.

[19] Korf, R. Linear-space best-first search. Artificial Intelligence 62: 41-78, 1993.

[20] Korf, R. and Zhang, W. Divide and conquer frontier search applied to optimal seqeuence
alignment. Proceedings of the Eighteenth National Conference on Artificial Intelligence, 910-
916, 2000.

[21] Kumar, N., Ghosh, R. K. Parallel algorithm for finding first K shortest paths. Computer
Science and Informatics 24 (3): 21-28 September 1994.

[22] Mero, L. A heuristic search algorithm with modifiable estimate. Artificial Intelligence 23:
13-27, 1984.

[23] Minieka, E. The K-th shortest path problem. ORSA/TIMS Joint National Mtg. Vol 23, p.
B/116, 1975.

[24] Pu, J., Manning, E., Shoja, G.C. and Srinivasan, A. A new algorithm to compute alternate
paths in reliable OSPF (ROSPF). Proceedings of PDPTA (the 2001 International Conference
on Parallel and Distributed Processing Techniques and Applications), Las Vegas, June 25-28,
299-304, 2001.

[25] Reinefeld, A, and Marsland, T. Enhanced iterative deepening search. IEEE Transactions
on Pattern Analysis and Machine Intelligence 16: 701-710, 1994.

[26] Russell, S. Efficient memory-bounded search methods. In Proceedings of he Tenth
European Conference on Artificial Intelligence (ECAI-92), 1-5, 1992.

[27] Russell S., Norvig P. Artificial Intelligence. A Modern Approach. Second Edition.
Pearson Education, Inc., Upper Saddle River, New Jersey, 2003.

[28] Santos, J. L. K shortest path algorithms. 9" DIMACS Implementation Challenge —
Shortest Paths, 2006.

[29] Taylor, L. A., and Korf R. Pruning Duplicate Nodes in Depth-First Search. National
Conference on Artificial Intelligence, 1993.

BIBLIOGRAPHY 57

[30] Winter, S. Route specifications with a linear dual graph. Advances in Spatial Data
Handling: Proc. 10th Int. Symp. Spatial Data Handling (SDH 2002), 2002.

[31] Zhou, R. and Hansen E.A. Memory-Bounded A* Graph Search. 15" International FLAIR
Conference, Pensacola, Florida, 2002.

Appendix A

Glossary

A* Search Algorithm: This algorithm is one of the most well known and widely used
informed (heuristic) search algorithms. It uses an f-value for each visited node, which is
indicating the cost of the best route from the start node to the target node, passing from the
visited node.

A*CD — A* for Collaborative Data: The route search algorithm of the system is used to
answer user queries for finding routes between locations. This algorithm is derived from A*
search algorithm. It uses several heuristics and geographic information for estimating
remaining cost. We have named the algorithm as A*CD (A* for Collaborative Data) since it is
running on top of a data model that is designed for storing information from the users.

Accepted Target Set: Accepted target set contains nodes that are related with the target node
such that if a route is found to an accepted node, that route can be provided as a solution to the
user. The routes from the source node to nodes in this set are provided to the user if no route
to the target node can be found.

Child Node: If two locations are related with a containment relationship, the contained node
is called a child node.

Basic Route: A basic route is a sequence of user entered links. Each link in the basic route
has the target location of the previous link as its source location. Assuming L,;, L, and L; are
locations, the definition of a basic route is as follows;

- L;—> L,is a basic route
- L;—> L, s a basic route if there is a user entered link from L, to L,
- L;—> L;1is a basic route if there exists a location L, such that

o L;—> L, is a basic route

o L,—> L;1is abasic route

Cost Model: While querying the system, users can select their point of interest for the cost
function. There are two options available, financial cost and duration. If the user selects
financial cost, the algorithm tries to optimize the result according to financial costs of links. If
the user selects duration, the algorithm tries to optimize the result according to durations of
links. The durations and financial costs of the links are entered by the users.

Distance between Locations: Distances between locations are defined in kilometers and are
calculated according to geographic coordinates. This information forms a base for the

estimated cost calculations. It is not the only information used for estimating costs.

Edge: An edge corresponds to a link in our data model.

58

APPENDIX A. GLOSSARY 59

Favorability Threshold (f7): Favorability threshold is the minimum value that a node can
have as its favorability value, to be added to the priority queue. If a node’s favorability value
is under this threshold, the node is discarded.

Geographic Coordinates: Geographic coordinates define a location’s geographic coordinates
on the world. There are two values for coordinates; latitude and longitude. We are not using
altitude.

Intersecting Location: If two locations are related with an intersection relationship, they
intersect with each other.

Intuitive Connection: An intuitive connection is a method suggested by the system for
reaching to a location from another location. The system can use location relationships to
provide intuitive connections even if there is no basic route between the connected locations.

Iterative Deepening Search (depth-first): Iterative deepening search is a search strategy in
which a series of independent depth-limited, depth-first searches are run. For each iteration,
depth limit is increased. Iterative deepening search combines the completeness of breadth-first
search with the depth-first search’s space efficiency.

Link: A link is a connection between two locations. Links are unidirectional. They define a
one-way connection from one location to another. Links can be entered by users.

Link Type: Link types define the type of the links. Types can be entered by users. Each link
has a link type. Boats, walking, planes, trains, intercity buses are some examples. New link
types can be entered by the users.

Location: A location defines a physical location in the world. Locations can be of any type;
countries, cities, districts, buildings, offices, theatres or even rooms in buildings. Locations
can be entered by users.

Location Relationship: A location relationship is used for relating two locations at a time.
There are three kinds of relationships; containment, neighborhood and intersection.
Relationships can be entered by users.

Missing Links Problem: Missing links problem is the problem of connecting two locations
whenever there is no basic route between them or the basic route between them is not
sensible. For example, the only basic route between two locations L; and L, might pass over
another location L;, which is thousands of kilometers away from L; although L. is only two
kilometers away from L;. Such a basic route is not sensible.

Neighbor Node: If two locations are related with a neighborhood relationship, they are
neighbors of each other.

Node: A node corresponds to a location in our data model.

Parent Node: If two locations are related with a containment relationship, the container node
is called a parent node.

APPENDIX A. GLOSSARY 60

Route: A route is a sequence of user entered links and intuitive connections. Each link /
intuitive connection in the route has the target location of the previous link / intuitive
connection as its source location. Assuming L,, L, and L; are locations, the definition of a
route is as follows;

- L;—>L;is aroute
- L;—> L, 1is aroute if there is a user entered link from L, to L,
- L;—> L, 1is aroute if there is an intuitive connection from L;to L
- L;—> L;is aroute if there exists a location L, such that
o L;—>L;is aroute
o L,—>L;isaroute

Source Node: Source node is the node from which the requested route will be started. It
indicates the starting point of the travel.

Target Node: Target node is the node at which the requested route will end. It indicates the
ending point of the travel.

Unidirectional Graph: A unidirectional graph G is a pair (V, E). V is a set of nodes
(vertices). E is a set of links (edges) between the vertices.

Ec{luvv)|uveV}

User: A user is a registered user of the system. A user has the ability to enter data to the
system and enter queries.

Virtual Link: A virtual link is a special type of link between two locations. Virtual links are
entered by the system itself according to the location relationships and links that are entered
by users. These links are used for providing intuitive connections to the user.

There are two types of virtual links. Type-1 virtual links are used whenever there exists an
actual link from location 4 to location B and there exist another location C, which has a
location relationship with 4 such that C contains 4. In this case, a virtual link from C to B is
added.

Type-2 virtual links are for connecting child locations to their parent. Whenever there exists a
location relationship between two locations 4 and B such that 4 contains B, a virtual link from
B to A is added.

Appendix B

Example Data Set

B.1 Bus Network in Ankara (EGO — Maintained by municipality)

Addition of this bus network is accomplished using “multiple stop line” concept. There are a
total of 53 bus lines. Each line contains 15 to 100 stops. Below is a piece of the raw data that
has been used. It contains 6 bus lines.

>>124-1

(1) OPERA HAREKET NOKTASI (2) ISTANBUL CAD 1 DURAK(3) HIPODRUM CAD 1.

DURAK (4) HIPODRUM CAD 2. DURAK(5) HIPODRUM CAD 3. DURAK(6) KONYA YOLU 1.
DURAK(7) KONYA YOLU 2. DURAK(8) KONYA YOLU 3. DURAK(9) KONYA YOLU 4.

DURAK (10) ESKISEHIR YOLU 1. DURAK(11) ESKISEHIR YOLU 2. DURAK(12) ESKISEHIR
YOLU 3. DURAK(13) ESKISEHIR YOLU 4. DURAK(14) ESKISEHIR YOLU 5. DURAK(15)
ESKISEHIR YOLU 6. DURAK(16) ESKISEHIR YOLU 7. DURAK(17) TURKCELL DURAGI (18)
TESTAS GENEL MUD. DURAGI (19) ARSIV GENEL MUDURLUGU (20) ATOM ENERJISI

KURUMU (21) TARIM KOY ISLERI MISAFIRHANESI (22) BEYTEPE KOPRUSU DURAGI (23)
UMITKOY KAVSAGI DURAGI (24) ESKISEHIR YOLU 15. DURAK(25) ESKISEHIR YOLU 16.
DURAK (26) ESKISEHIR YOLU 17. DURAK(27) ESKISEHIR YOLU 18. DURAK(28)
ESKISEHIR YOLU 19. DURAK(29) ESKISEHIR YOLU(30) ESKISEHIR YOLU 21.

DURAK (31) ESKISEHIR YOLU 22. DURAK(32) ESKISEHIR YOLU 23. DURAK(33)
ESKISEHIR YOLU 24. DURAK(34) ESKISEHIR YOLU 25. DURAK(35) ESKISEHIR YOLU
26. DURAK(36) ESKISEHIR YOLU 27. DURAK(37) ESKISEHIR YOLU 28. DURAK(38)
TEMELLI 1. DURAK(39) TEMELLI 2. DURAK(40) TEMELLI 3. DURAK(41) TEMELLI 4.
DURAK (42) TEMELLI 5. DURAK(43) TEMELLI 6. DURAK(44) TEMELLI 1. DURAK(45)
ESKISEHIR YOLU 28. DURAK(46) ESKISEHIR YOLU 27. DURAK(47) ESKISEHIR YOLU
26. DURAK(48) ESKISEHIR YOLU 25. DURAK(49) ESKISEHIR YOLU 24. DURAK(50)
ESKISEHIR YOLU 1. DURAK(51) ESKISEHIR YOLU 2. DURAK(52) ESKISEHIR YOLU 3.
DURAK (53) ESKISEHIR YOLU 4. DURAK(54) ESKISEHIR YOLU 5. DURAK(55) ESKISEHIR
YOLU 6. DURAK(56) MEKSIKA CAD 1. DURAK(57) MEKSIKA CAD 2. DURAK(58) MEKSIKA
CAD 3. DURAK(59) MEKSIKA CAD 4. DURAK(60) MEKSIKA CAD 5. DURAK(61)
ESKISEHIR YOLU 1. DURAK(62) ESKISEHIR YOLU UMITKOY KAVSAGI (63) HACETTEPE
KAVSAGI (64) ESKISEHIR YOLU(65) TARIM BAKANLIGI (66) ARSIV GENEL
MUDURGULU (67) DIYANET ISLERI BASKANLIGI (68) ATATURK HASTANESI (69) ELEKTIRIK
ETUT MERKEZI (70) ODTU(71) ESKISEHIR YOLU BALGAT YURDU DURAGI (72) MTA

DURAGI (73) ESKISEHIR YOLU ULUSOY DURAGI (74) KONYA YOLU 11. DURAK(75) KONYA
YOLU 3. DURAK(76) KONYA YOLU 12. DURAK(77) KONYA YOLU 13. DURAK(78) KONYA
YOLU ANKARA UNV.DISCILIK FAK.DURAGI (79) KONYA YOLU UST GECIT ALTI

DURAGI (80) HIPODRUM CAD 3. DURAK(81) HIPODRUM CAD 2. DURAK(82) HIPODRUM CAD
1. DURAK(83) OPERA HAREKET NOKTASI SONDURAK

>>160-1

(1) OPERA HAREKET NOKTASI (2) ULUS(3) OPERA(4) SIHHIYE(5) KIZILAY(6) ZIYA
GOKALP CAD. 1. DURAK(7) LIBYA CAD. 1. DURAK(8) LIBYA CAD. 2. DURAK(9)
BULBUL DERESI CAD. 1. DURAK(10) BULBUL DERESI CAD. 2. DURAK(11) BULBUL
DERESI CAD. 3. DURAK(12) BULBUL DERESI CAD. 4. DURAK(13) BULBUL DERESI CAD.
5. DURAK(14) BULBUL DERESI CAD. 6. DURAK(15) BAGLAR CAD. 1. DURAK (16)
BAGLAR CAD. 2. DURAK(17) BAGLAR CAD. 3. DURAK(18) YAVUZ EVLER SOK. 1.

DURAK (19) YAVUZ EVLER SOK. 2. DURAK(20) YAVUZ EVLER SOK. 3. DURAK(21)
SERHAT SOK. 1. DURAK(22) BAGLAR CAD. LISE DURAGI (23) ZAFER TEPE 1. CAD. 1.

61

APPENDIX B. EXAMPLE DATA SET 62

DURAK (24) ZAFER TEPE 1. CAD. 2. DURAK(25) ZAFER TEPE 1. CAD. 3. DURAK(26)
ZAFER TEPE 1. CAD. 4. DURAK(27) ZAFER TEPE 1. CAD. 5. DURAK(28) BAGLAR
CAD. (29) BAGLAR CAD. (30) BAGCILAR CAD. (31) LIBYA CAD(32) LIBYA CAD. (33)
ADNAN SAYGUN CAD. 1. DURAK(34) ADNAN SAYGUN CAD. 2. DURAK(35) OPERA SON
DURAK

>>170-1

(1) OPERA HAREKET NOKTASI (2) CANKIRI CAD.OKUL DURAGI (3) CANKIRI CAD.SSK
DURAGI (4) ETLIK CAD.KAYMAKAMLIK DURAGI (5) TURGUT OZAL BULVARI BENZ.BULV. (6)
TURGUT OZAL BULV.IS BANKASI DURAGI (7) KONYA YOLU EMNIYET MUD. DURAGI (8)
KONYA YOLU ETILER SITESI DURAGI(9) GAZI UNIV.ECZACILIK FAKU.DURAGI (10)
SILAHTAR CAD. OKUL DURAGI(11) M E B DERS ALETLERI YAPIM MERKEZI DURAGI (12)
SILAHTAR CAD. PARK DURAGI (13) SILAHTAR CAD.FIZIK TEDAVI DURAGI (14) SILAHTAR
CAD.OGUZLAR SOK.DURAGI (15) SILAHTAR CAD.SUT FABRIKASI DURAGI (16) SILAHTAR
CAD.PTT DURAGI (17) GUVERCINLIK CAD. TEKEL FABRIKASI DURAGI (18) GUVERCINLIK
CAD.FISEK FABRIKASI DURAGI (19) GUVERCINLIK SON DURAK (20) GUVERCINLIK
CAD.FISEK FABRIKASI DURAGI (21) GUVERCINLIK CAD.TEKEL FABRIKA DURAGI (22)
SILAHTAR CAD.PTT DURAGI (23) SILAHTAR CAD.SUT FABRIKASI DURAGI (24) SILAHTAR
CAD.OGUZLAR SOK.DURAGI (25) SILAHTAR CAD.FIZIK TEDAVI (26) SILAHTAR CAD.PARK
DURAGI (27) M E B DERS ALETLERI YAPIM MERKEZI DURAGI (28) SILAHTAR CAD OKUL
DURAGI (29) BANDIRMA SOK.DHMI DURAGI (30) GAZI UNIVERSITESI DURAGI (31) KONYA
YOLU ANKARA UNV.DISCILIK FAK.DURAGI (32) KONYA YOLU UST GECIT ALTI

DURAGI (33) KONYA YOLU TREN HATTI UST DURAGI (34) KONYA YOLU HIPODRUM

DURAGI (35) TURGUT OZAL BULVARI SHELL BENZINLIGI DURAGI (36) TURGUT OZAL
BUL.SANAYI DURAGI (37) ETLIK CAD.TCK DURAGI (38) ETLIK CAD 1 . DURAK(39)
CANKIRI CAD. SSK DURAGI (40) CANKIRI CAD.OKUL DURAGI (41) OPERA HAREKET
NOKTASI

>>171-1

(1) OPERA HAREKET NOKTASI (2) OPERA DURAGI (3) SIHHIYE DURAGI (4) KIZILAY
DURAGIT (5) BAKANLIK DURAGI (6) KARAYOLLARI DURAGI(7) MILLI KUTUPHANE
DURAGI (8) TURIZM BAKANLIGI DURAGI (9) HAZINE MUSTASARLIGI DURAGI (10) ARMADA
DURAGI (11) MTA DURAGI (12) BALGAT OGRENCI YURDU(13) ODTU DURAGI (14) CEPA
DURAGI (15) TEDAS ETUT IDARE DURAGI (16) 6.CAD DURAGI(17) 6.CAD DURAGI (18) 6.
CAD DURAGI (19) 7 CAD. DURAGI (20) MUSTAFA KEMAL DURAGI (21) 67. SOK

DURAGI (22) 6. CAD OKUL DURAGI (23) 6.CAD. MUSTAFA KEMAL DURAGI (24)
49.SOKMUSTAFA KEMAL DURAGI (25) 44. SOK.MUSTAFA KEMAL 3. DURAK (26) MUSTAFA
KEMAL OKUL DURAGI (27) 21.SOK MUSTAFA KEMAL DURAGI (28) 3.CAD DURAGI (29) 3.
CAD DURAGI (30) ESKISEHIR YOLU BALGAT YURDU DURAGI (31) ESKISEHIR YOLU MTA
DURAGI (32) ESKISEHIR YOLU ULUSOY DURAGI (33) ESKISEHIR YOLU DISISLER BAK.
DURAGT (34) ISMET INONU BULV. CAMI DURAGI (35) TARIM KOOP MERGKEZ
BIRL.DURAGI (36) KARA KUVETLER DURAGI (37) MESRUTIYET CAD.DURAGI (38)
MITHATPASA CAD. DURAGI (39) SIHHIYE DURAGI (40) OPERA DURAGI (41) OPERA
HAREKET NOKTASI

>>174-1

(1) OPERA HAREKET NOKTASI (2) OPERA DURAGI (3) SIHHIYE DURAGI (4) KIZILAY
DURAGIT (5) BAKANLIK DURAGI (6) KARAYOLLARI DURAGI(7) MILLI KUTUPHANE
DURAGI (8) TURIZM BAKANLIGI DURAGI (9) HAZINE VE DIS TICARET MUST.DURAGI (10)
ARMADA DURAGI (11) MTA DURAGI (12) BALGAT YURDU DURAGI (13) ODTU DURAGI (14)
CESA DURAGI (15) ELEKTRIK ISLERI ETUT DURAGI (16) ATATURK HASTANESI

DURAGI (17) TURKCELL DURAGI (18) TESTAS GENEL MUD. DURAGI (19) ARSIV GENEL
MUDURLUGU (20) ATOM ENERJISI KURUMU(21) TARIM KOY ISLERI MISAFIRHANESI (22)
HACETTEPE BEY. KAMP.YOLU(23) HACETTEPE BEY. KAMP.YOLU(24) ANGORA EVLERI 1.
DURAK (25) DICLE CAD. 1. DURAK(26) DICLE CAD. 2. DURAK(27) DICLE CAD. 3.
DURAK (28) 13. CAD. 1. DURAK(29) 12. CAD. 1. DURAK(30) 13. CAD. 2. DURAK(31)
13. CAD. 3. DURAK(32) ANKARA.CAD. .. 1. DURAK(33) ANGORA CAD. 2. DURAK (34)
ANGORA CAD. 3. DURAK(35) ANGORA CAD. 4. DURAK(36) SALTOGLU BULV. 1.

DURAK (37) SALTOGLU BULV. 2. DURAK(38) SALTOGLU BULV. 3. DURAK(39) SALTOGLU
BULV. 4. DURAK(40) HITIT BULV. 1. DURAK(41) HITIT BULV. 2. DURAK(42) HITIT
BULV. 2. DURAK(43) SALTOGLU BULV. 5 DURAK (44) SALTOGLU BULV. 6 DURAK(45)

APPENDIX B. EXAMPLE DATA SET 63

KEDI SEVEN CAD. 1. DURAK(46) KEDI SEVEN CAD. 2. DURAK(47) KEDI SEVEN CAD.
3. DURAK (48) OYKU CAD. 1. DURAK(49) SALTOGLU BLV. 1.CAD(50) SALTOGLU BLV.
DURAK (51) SALTOGLU BLV. DURAK(52) SALTOGLU BLV. DURAK(53) SALTOGLU BLV.
DURAK (54) ANGORA CAD. 4. DURAK(55) ANGORA CAD. 3. DURAK(56) ANGORA CAD. 2.
DURAK (57) ANKARA.CAD. .. 1. DURAK(58) 13. CAD. 3. DURAK(59) 13. CAD. 2.
DURAK(60) 12. CAD. 1. DURAK(61) 13. CAD. 1. DURAK(62) DICLE CAD. 3.

DURAK (63) DICLE CAD. 2. DURAK(64) DICLE CAD. 1. DURAK(65) ANGORA EVLERI 1.
DURAK (66) HACETTEPE BEY. KAMP.YOLU(67) HACETTEPE KAVSAGI (68) ESKISEHIR
YOLU (69) TARIM BAKANLIGI (70) ARSIV GENEL MUDURLUGU (71) DIYANET ISLERI
BASKANLIGI (72) ATATURK HASTANESI (73) ELEKTIRIK ETUT MERKEZI (74) ODTU(75)
ESKISEHIR YOLU BALGAT YURDU DURAGI (76) MTA DURAGI (77) ESKISEHIR YOLU ULUSOY
DURAGI (78) ESKISEHIR YOLU DISISLER BAK. DURAGI (79) ISMET INONU BULV. CAMI
DURAGI (80) TARIM KOOP MERGKEZ BIRL.DURAGI (81) KARA KUVETLER DURAGI (82)
MESRUTIYET CAD.DURAGI (83) MITHATPASA CAD. DURAGI (84) SIHHIYE DURAGI (85)
OPERA DURAGI (86) OPERA HAREKET NOKTASI SONDURAK

>>177-1

(1) OPERA HAREKET NOKTASI (2) SIHHIYE DURAGI (3) NECATIBEY CAD. 1. DURAK(4)
NECATIBEY CAD. 2. DURAK(5) NECATIBEY CAD. 1. DURAK(6) DEVLET SU ISLERI
GENEL MUDURLUGU (7) MILLI KUTUPHANE DURAGI (8) TURIZM BAKANLIGI DURAGI (9)
HAZINE VE DIS TICARET MUST.DURAGI (10) KONYA YOLU 10. DURAK(11) KONYA YOLU
9. DURAK(12) KONYA YOLU 8. DURAK(13) KONYA YOLU 7. DURAK(14) KONYA YOLU 6.
DURAK (15) KONYA YOLU 5. DURAK(16) KONYA YOLU 4. DURAK(17) KONYA YOLU 3.
DURAK (18) KONYA YOLU 2. DURAK(19) KONYA YOLU 1. DURAK(20) KONYA YOLU 4.
DURAK (21) KONYA YOLU 2. DURAK(22) KONYA YOLU 1. DURAK(23) 218. SOK 1.
DURAK (24) 218. SOK 2. DURAK(25) 218. SOK 3. DURAK(26) ILKOKUL SOK 1.

DURAK (27) ANKARA HAYMANA YOLU 1. DURAK(28) ANKARA HAYMANA YOLU 2. DURAK(29)
ANKARA HAYMANA YOLU 3. DURAK(30) HAYMANA YOLU DURAK (31) HAYMANA YOLU

DURAK (32) HACILAR KOYU DURAK (33) HACILAR KOYU DURAK (34) HACILAR KOYU

DURAK (35) MERKEZ KENT SITESI (36) MERKEZ KENT SITESI (37) MARTI KOY

SITESI (38) MERKEZ KENT SITESI (39) MERKEZ KENT SITESI (40) HAYMANA YOLU
DURAK (41) HACI HASAN KOYU DURAK (42) HACI HASAN KOYU DURAK (43) HACI HASAN
KOYU DURAK (44) HAYMANA YOLU DURAK (45) HAYMANA YOLU DURAK (46) CEVIK BIR CAD
DURAK (47) CEVIK BIR CAD DURAK(48) CEVIK BIR CAD DURAK(49) CEVIK BIR CAD
DURAK (50) KOPARAN KOYU DURAGI (51) KOPARAN KOYU DURAGI (52) KOPARAN KOYU
DURAGI (53) KOPARAN KOYU DURAGI (54) CEVIK BIR CAD DURAK(55) CEVIK BIR CAD
DURAK (56) CEVIK BIR CAD DURAK(57) CEVIK BIR CAD DURAK(58) HAYMANA YOLU
DURAK (59) HAYMANA YOLU DURAK (60) HACILAR KOYU DURAK(61) HACILAR KOYU

DURAK (62) MERKEZ KENT SITESI (63) MERKEZ KENT SITESI (64) MARTI KOY

SITESI (65) MERKEZ KENT SITESI (66) MERKEZ KENT SITESI (67) HAYMANA YOLU
DURAK (68) HAYMANA YOLU DURAK (69) ANKARA HAYMANA YOLU 3. DURAK(70) ANKARA
HAYMANA YOLU 2. DURAK(71) ANKARA HAYMANA YOLU 1. DURAK(72) ILKOKUL SOK 1.
DURAK (73) 218. SOK 3. DURAK(74) ANKARA CAD 1. DURAK(75) ANKARA CAD 2.
DURAK (76) ANKARA CAD 3. DURAK(77) KONYA YOLU DURAK (78) KONYA YOLU
DURAK (79) KONYA YOLU 3. DURAK(80) KONYA YOLU DURAK (81) KONYA YOLU
DURAK (82) KONYA YOLU 2. DURAK (83) KONYA YOLU DURAK (84) KONYA YOLU
DURAK (85) KONYA YOLU 5. DURAK (86) KONYA YOLU DURAK (87) KONYA YOLU
DURAK (88) KONYA YOLU 8. DURAK(89) KONYA YOLU 9. DURAK(90) KONYA YOLU 10.
DURAK (91) HAZINE DURAGI (92) ISMET INONU BULV. CAMI DURAGI (93) TARIM KOOP
MERGKEZ BIRL.DURAGI (94) KARA KUVETLER DURAGI (95) MESRUTIYET CAD.DURAGI (96)
MITHAT PASA CAD(97) MITHATPASA CAD. DURAGI (98) SIHHIYE DURAGI (99) OPERA
DURAGI (100) OPERA HAREKET NOKTASI SONDURAK

D =N

~

0 oy W i =

The lines starting with >> characters indicate the line number. Below these title lines, there
exists stop names. Each stop name is started by (X) where X denotes the stop number.

The algorithm first adds the stops as locations to the system. It relates these locations with
Ankara such that Ankara will contain the stops. If there exists a location with the same name
as the stop name, and the location is contained in Ankara, location insertion is not done. This
means that the stop has been previously added.

APPENDIX B. EXAMPLE DATA SET 64

After the insertion of the stops, for each consecutive link pair in the line, two links are added.
One link originates from one location and the other one originates from the other location of
the pair. So, number of links that will be added for a bus line will be

2x(m-1)

where 7 is the number of stops in the line. All these links are added with the same multiple
stop line ID meaning they are links of the same multiple stop line.

This data is gathered from the web site of EGO (http://web.ego.gov.tr/map/mapView.asp)

Statistics for this data extraction

Number of bus lines: 53

Number of locations (stops) added: 271

Number of links added: Around 1000

Randomized duration of links: Between 20 and 40 (minutes)
Financial cost of links: 3 YTL

B.2 Bus Network in Istanbul (IETT — Maintained by municipality)

There are a total of 347 lines in this network. But different than the Ankara bus network, this
information does not contain immediate stops. The raw information of this automatic data
extraction method contains only start and end stops of the lines. So a total of » links, where n
denotes the number of lines, is added to the database. Below is an example of the raw data. It
contains 100 bus lines.

10-Kadikdy-Maltepe-Cevizli
10B-Kadikéy-AltBostanci
I10E-Kadikby-Esatpasa
10M-KadikSy-Umraniye
10S-Kadikdy-AltBostanci
110-Kadikdy-Taksim
112-Bostanci-Taksim
11A-Altunizade-Alemdag
11C-Uskiidar-Emniyet Mahallesi
11CT-Polonezkdy Sapadi-Cavusbasi-Tepelisti
11¢CB-Tepelistii-Cavusbhasi-Kavacik
11D-Altunizade-Inkilap Mahallesi
11E-Uskiidar-Esatpasa
11G-Yenidogan-Umraniye
11H-Ortacesme-Umraniye
11K-Altunizade-Kazim Karabekir Mahallesi
11M-Altunizade-Mustafa Kemal Mahallesi
11P-Altunizade-Sarigazi Emek Mahallesi
11SM-Altunizade-Veysel Karani
11ST-Altunizade-Seyrantepe
11T-Uskiidar-Tiirkis Bloklari
11U-Uskiidar-Unalan Mahallesi
11US-Altunizade-Sultanbeyli
11y-Uskiidar-Yavuztiirk Mahallesi
12-Kadikdsy-Uskiidar
120-Kadikéy-Mecidiyekdy

http://web.ego.gov.tr/map/mapView.asp

APPENDIX B. EXAMPLE DATA SET

121A-Beykoz-Mecidiyekdy
121B-Kavacik-Mecidiyekdby
122B-YenidoJan-Mecidiyekdy
122C-Umraniye-Mecidiyekdy
122L-Umraniye-Metro-1. Levent
122M-S. Sahinbey-Mecidiyekdby
122S5-Sultanbeyli-4. Levent Metro
123U-Ugur Mumcu-Perpa
125-Kadikdy-Bogdazici Universitesi
127-Kadikdy-Topkapi
128-Altbostanci-Mecidiyekdy
129-Altunizade-Mediyekby
129K-Kozyatagi-Mecidiyekdy
129L-Kozyatagi-4. Levent Metro
129T-Kozyatagi-Taksim
12A-Kadikéy-Uskiidar
12C-Uskiidar-Polis Hastanesi
12H-Kadikdy-Harem
13-Kadikby-Cakmak Mahallesi-Atasehir
130-Kadikéy-Tuzla
130A-Kadikdy-Tuzla
131-Sultanbeyli-Umraniye

131A-A. Yesevi Mahalesi-Umraniye
131B-Ciftlik Mahallesi-Umraniye
131C-Sultanbeyli-Umraniye
131T-Tasdelen-Imes
131TD-Tasdelen-Umraniye-Santral
131V-Veysel Karani-Yakacik-Kartal
131YD-Yenidogan-Umraniye
131YS-Yenidofan-Imes
132-Kartal-Tepedbren
132A-Kartal-Sultanbeyli
132C-Sultanbeyli-Yakacik-Kartal
132F-Kartal-Esenler
132K-Kartal-Sultanbeyli
132P-Kartal-Veysel Karani Mahallesi
132S8-Kartal-Yenidogan
132V-Kartal-Kaynarca-Velibaba Mahallesi
133-Kartal-Glizelyali
133AP-Pendik-Akfirat
133D-Kartal-Tepedren
133F-Yeditepe Universitesi-Findikli Mahallesi
133G-Kartal-Giilensu
133K-Kartal-Kavakpinar
133P-Tepedbren-Tuzla
133S5-Kartal-Sifa Mahallesi
133T-Bostanci-Tuzla
134-Kartal-Aydos Hilal Konutlari
134BK-Kartal-Altbostanci
134DK-Kartal-Esenkent
134GK-Kartal-Gimiispinar Mahallesi
134K-Kartal-Kurfali Mahallesi
134TK-Kartal-Topselvi
134UK-Kartal-UJur Mumcu Mahallesi
134YK-Kartal-Yakacik
135-Kavacik-Poyrazkdy
135A-Kavacik-Gérele Mahallesi-Acarkent
135G-Tokatkdy-Cavusbhasi
135K-Ortacesme-Karliktepe
136-Kavacik-Ali Bahadir
137-Beykoz-Riva-Cumhuriyet KOyl

65

APPENDIX B. EXAMPLE DATA SET

138-Umraniye-Omerli-Hiiseyinli K&yu

139-Harem-Sile

139A-Harem-Sile-Agva
13A-Altunizade-Cakmak Mahallesi
13B-Kadikdy-Yenisehir
14-Kadikdy-Yenidogan

142-Bogazkdy Mahallesi-Yenibosna Metro
142A-Esenyurt-Yenibosna Metro
142F-Yesilkent-Yenibosna Metro
143-Kiigiikcekmece-Zeytinburnu Metro
145-Marmara Evleri-Aksaray
145M-Beylikdiizii-Mecidiyekdy (Cift Katli)

66

The first part of each line indicates the stop number. The second part indicates the start

location of the line and the third part indicates the end location of the line.
This data is gathered from the web site of IETT (http://www.iett.gov.tr/)

Statistics for this data extraction

Number of bus lines: 347

Number of locations (stops) added: 287

Number of links added: 547

Randomized duration of links: Between 30 and 60 (minutes)
Financial cost of links: 2 YTL

B.3 Plane Network in Turkey (THY — A private corporation)

This information is gathered from the THY web site (http://www.thy.com.tr). Its raw data is

simple;

Izmir
Bodrum
Dalaman
Denizli
Antalya
Konya
Bursa
Eskisehir
Samsun
Sivas
Kayseri
Trabzon
Kars

Agri
Erzincan
Erzurum
Elazig
Diyarbakir
Mardin
Batman
Kahramanmaras
Adiyaman
Malatya
Gaziantep
Sanliurfa

http://www.thy.com.tr/

APPENDIX B. EXAMPLE DATA SET

Adana

67

For each line in this raw data, a new location named X Airport is added to the data model.

Afterwards, for each line in this data, 4 links are added to the database;

- Alink from Esenboga Airport (Ankara) to X Airport
- Alink from X Airport to Esenboga Airport (Ankara)
- Alink from Atatiirk Airport (Istanbul) to X Airport
- Alink from X Airport to Atatiirk Airport (Istanbul)

Statistics for this data extraction

Number of locations (airports) added: 26

Number of links added: 104

Randomized duration of links: Between 50 and 70 (minutes)
Financial cost of links: 100 YTL

B.4 Intercity Bus Network in Turkey (Ulusoy — A private

corporation)

This information is gathered from the web site of Ulusoy (http:/www.ulusoy.com.tr). The
web site contains start and stop locations of each line. A piece from the raw data is given

below as an example;

ADANA-ANKARA
ADANA-CORUM
ADANA-GIRESUN
ADANA-ISTANBUL
ADANA-MERZIFON
ADANA-ORDU
ADANA-RIZE
ADANA-SAMSUN
ADANA-TRABZON
ALANYA-ANKARA
ALANYA-ISTANBUL
ANKARA-ADANA
ANKARA-AKCAABAT
ANKARA-ALANYA
ANKARA-ANTALYA
ANKARA-ARAKLI
ANKARA-ARDESEN
ANKARA-ARHAVI
ANKARA-ARSIN
ANKARA-BELEK
ANKARA-BESIKDUZU
ANKARA-BODRUM
ANKARA-BULANCAK
ANKARA-C.BASI
ANKARA-CARSAMBA
ANKARA-CAYKARA
ANKARA-DENIZLI
ANKARA-EDIRNE
ANKARA-ESPIYE
ANKARA-EYNESIL
ANKARA-FATSA

http://www.ulusoy.com.tr/

APPENDIX B. EXAMPLE DATA SET 68

ANKARA-FINDIKLI
ANKARA-G.YALT
ANKARA-GIRESUN
ANKARA-GORELE
ANKARA-HAVZA
ANKARA-HOPA
ANKARA-ISKENDERUN
ANKARA-ISTANBUL
ANKARA-IZMIR
ANKARA-KEMER
ANKARA-KESAP
ANKARA-MANAVGAT
ANKARA-MARMARIS
ANKARA-MERSIN
ANKARA-MERZIFON
ANKARA-MUGLA
ANKARA-OF
ANKARA-ORDU
ANKARA-PAZAR
ANKARA-PERSEMBE
ANKARA-PIRAZIZ
ANKARA-RIZE
ANKARA-SAMSUN
ANKARA-SERIK
ANKARA-SURMENE
ANKARA-TARSUS

Each line in the raw data indicates a bus line starting from an intercity bus station and ending
at another intercity bus station.

The algorithm first adds two intercity bus stops for each line if they do not exist. If the line is
X-Y, two locations named “X Otogar” and “Y Otogar” are added to the database. Afterwards,
a link, started from X Otogar and ending at Y Otogar is added to the database.

Statistics for this data extraction

Number of locations (intercity bus stops) added: 97

Number of links added: 223

Randomized duration of links: Between 300 and 600 (minutes)
Financial cost of links: 50 YTL

B.5 Ferry Network in Istanbul (IDO - A private corporation)

This data set is used to geneerate the ferry network in Istanbul. Raw data for this set is small,
it 1s as follows;

KARAKOY - HAYDARPASA - KADIKOY
KADIKOY - EMINONU

EMINONU - USKUDAR

Uskiidar - Karakdy - Eminéni - Eyip
KADIKOY - BESIKTAS

BESIKTAS - USKUDAR

KADIKOY - KABATAS

Eminoéni - Kavaklar

CENGELKOY - EMINONU

ANADOLU KAVAGI - RUMELI KAVAGI - SARIYER

APPENDIX B. EXAMPLE DATA SET 69

KUCUKSU - BESIKTAS
ISTINYE-EMIRGAN-KANLICA-A.HISARI-KANDILLI-BEBEK-CENGELKOY
KUCUKSU - TOKMAKBURNU

KABATAS - KADIKOY - BOSTANCI - ADALAR

MALTEPE - ADALAR

SIRKECI - HAREM

ESKIHISAR - TOPCULAR

ERDEK - MARMARA Adas1i - AVSA Adasi

SARAYBURNU - MARMARA - AVSA

The algorithm processes each line individually. The stops are separated by ‘- character. For
each pair of stops, the script adds two links, connecting both stops to each other.

The algorithm adds missing locations as districts and relates these districts with Istanbul with
a containment relationship.

Statistics for this data extraction

Number of locations (districts) added: 20

Number of links added: 60

Randomized duration of links: Between 20 and 40 (minutes)
Financial cost of links: 4 YTL

Appendix C

Example Query Results for Testing Heuristics

UERY 1

Start Location: Bilkent
End Location: ODTU
Point of Interest: Duration

Execution 1: Without Heuristic 1 — All other heuristics are applied

Suggested route 1:)
- Bilkent University to ODTU. Type: Dolmus (Shared Taxi). ID: 272542
Route found in 156.25 ms. Queue query count: 14

Suggested route 2:
- Bilkent University to Ulus. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:

39

- Ulus to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336712
Route found in 390.625 ms. Queue query count: 36

Suggested route 3:

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 32

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525

- Atatirk Airport to Esenboga Airport. Type: Plane (Domestic). ID: 308260

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336712

Route found in 359.375 ms. Queue query count: 37

Suggested route 4:
- Bilkent University to Ulus. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
39

- Ulus to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 120. ID: 330956
Route found in 453.125 ms. Queue query count: 38

Suggested route 5:)
- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:

31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 32

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). ID: 308260

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 120. ID: 330956
Route found in 421.875 ms. Queue query count: 39

Execution 2: With All Heuristics (Including Heuristic 1)

Suggested route 1:)
- Bilkent University to ODTU. Type: Dolmus (Shared Taxi). ID: 272542
Route found in 171.875 ms. Queue query count: 10

Suggested route 2:
- Bilkent University to Ulus. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes.

- Ulus to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336712

70

APPENDIX C. EXAMPLE QUERY RESULTS FOR TESTING HEURISTICS

Route found in 281.25 ms. Queue query count: 16

Suggested route 3:
- Bilkent University to Ulus. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
39

- Ulus to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 120. ID: 330956
Route found in 296.875 ms. Queue query count: 17

Suggested route 4:

- Bilkent University to Ulus. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
E>’?Jlus to Diyanet Isleri Bagkanhdi. Type: Public Transportation (Bus). Explanation: EGO - 120. ID:
?%?35:& isleri Baskanligi to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 175. 1ID:
2335 ecimd in 812.5 ms. Queue query count: 31

Suggested route 5:

- Bilkent University to Ulus. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
-3?Jlus to Diyanet Isleri Baskanhgi. Type: Public Transportation (Bus). Explanation: EGO - 120. ID:
E?D??asr?et Isleri Baskanligi to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 196-1. ID:
I::’guztg Eolund in 803.5 ms. Queue query count: 33

UERY 2

Start Location: Cetin Eme¢ Bulv. (in Ankara)
End Location: Kadikoy (in Istanbul)
Point of Interest: Cost (Money)

Execution 1: All heuristics except 2 and 3 are applied

Suggested route:

- Cetin Emeg Bulv. to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 154-1. ID: 345349
- Ulus to Bilkent University. Type: Dolmus (Shared Taxi). ID: 308258

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 4781.25 ms. Queue query count: 1399

Suggested route:

- Getin Emeg Bulv. to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 154-1. ID: 345349
- Ulus to Bilkent University. Type: Dolmus (Shared Taxi). ID: 308258

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Besiktas to Kadikdy. Type: Ferry. Explanation: Once in every 45 minutes. ID: 41
Route found in 4859.375 ms. Queue query count: 1401

Suggested route:
- Cetin Emeg Bulv. to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 154-1. ID: 345349

- Ulus to Bilkent University. Type: Dolmus (Shared Taxi). ID: 308258

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Besiktas to Kabatas. Type: Public Transportation (Bus). Explanation: IETT - 22E. ID: 316596

- Kabatas to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315946
Route found in 4875 ms. Queue query count: 1408

APPENDIX C. EXAMPLE QUERY RESULTS FOR TESTING HEURISTICS 72

Suggested route:

- Getin Emec Bulv. to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 161. ID: 346205
- ODTU to Bilkent University. Type: Dolmus (Shared Taxi). ID: 272541

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 4750 ms. Queue query count: 1416

Suggested route:)
- Cetin Emeg Bulv. to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 161. ID: 346205

- ODTU to Bilkent University. Type: Dolmus (Shared Taxi). ID: 272541

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Besiktas to Kadikdy. Type: Ferry. Explanation: Once in every 45 minutes. ID: 41
Route found in 4812.5 ms. Queue query count: 1418

Execution 2: All heuristics 3 are applied

Suggested route:

- Cetin Emeg Bulv. to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 154-1. ID: 345349
- Ulus to Bilkent University. Type: Dolmus (Shared Taxi). ID: 308258

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 2890.625 ms. Queue query count: 185

Suggested route:)
- Cetin Emeg Bulv. to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 161. ID: 346205

- ODTU to Bilkent University. Type: Dolmus (Shared Taxi). ID: 272541

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45

Route found in 2796.875 ms. Queue query count: 188

Suggested route:

- Getin Emeg Bulv. to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 162. ID: 348742
- ODTU to Bilkent University. Type: Dolmus (Shared Taxi). ID: 272541

- Bilkent University to ASTI. Type: Dolmus (Shared Taxi). Explanation: Once in every 15 minutes. ID:
31

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45

Route found in 2875 ms. Queue query count: 191

Suggested route:
- Cetin Emeg Bulv. to Hosdere Cad. Type: Public Transportation (Bus). Explanation: EGO - 107. ID:

327690

- Hogdere Cad to ASTI. Type: Public Transportation (Bus). Explanation: EGO - 167-1. ID: 353895
- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 4671.875 ms. Queue query count: 1338

Suggested route:
- Cetin Emecg Bulv. to Hosdere Cad.. Type: Public Transportation (Bus). Explanation: EGO - 107. ID:

327720

- Hosdere Cad. to ASTI. Type: Public Transportation (Bus). Explanation: EGO - 167-1. ID: 353897
- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

APPENDIX C. EXAMPLE QUERY RESULTS FOR TESTING HEURISTICS

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 4859.375 ms. Queue query count: 1341

QUERY 3

Start Location: Hosdere (in Ankara)
End Location: Kadikdy (in Istanbul)
Point of Interest: Duration

Execution 1: All heuristics except 2 and 3 are applied

Suggested route:

- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboga Airport to Atatlrk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 718.75 ms. Queue query count: 31

Suggested route:

- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatiirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Kadikdy. Type: Ferry. Explanation: Once in every 45 minutes. ID: 41

Route found in 781.25 ms. Queue query count: 33

Suggested route:

- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboga Airport to Atatirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Emindnii. Type: Ferry. Explanation: iDO. ID: 315932

- Emindnii to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315930

Route found in 859.375 ms. Queue query count: 39

Suggested route:

- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatlrk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Karakdy. Type: Ferry. Explanation: IDO. ID: 315933

- Karakdy to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315925
Route found in 843.75 ms. Queue query count: 41

Suggested route:
- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboga Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatiirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlrk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Begiktag to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Karakdy. Type: Ferry. Explanation: iDO. ID: 315933

- Karakdy to Kadikéy. Type: Public Transportation (Bus). Explanation: IETT - IDO2. ID: 316872
Route found in 859.375 ms. Queue query count: 42

Execution 2: All heuristics except 2 are applied

Suggested route:

- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817
- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatlrk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

73

APPENDIX C. EXAMPLE QUERY RESULTS FOR TESTING HEURISTICS

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524
- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 734.375 ms. Queue query count: 9

Suggested route:
- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatiirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Besiktas to Kadikdy. Type: Ferry. Explanation: Once in every 45 minutes. ID: 41
Route found in 718.75 ms. Queue query count: 11

Suggested route:
- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatlrk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Eminénii. Type: Ferry. Explanation: iDO. ID: 315932

- Emindnii to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315930

Route found in 703.125 ms. Queue query count: 17

Suggested route:
- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatiirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Karakdy. Type: Ferry. Explanation: IDO. ID: 315933

- Karakdéy to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315925
Route found in 703.125 ms. Queue query count: 19

Suggested route:
- Oran Sitesi to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 145. ID: 343817

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboga Airport to Atatlrk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Begiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Karakdy. Type: Ferry. Explanation: IDO. ID: 315933

- Karakdy to Kadikéy. Type: Public Transportation (Bus). Explanation: IETT - IDO2. ID: 316872
Route found in 796.875 ms. Queue query count: 20

QUERY 4

Start Location: Hosdere (in Ankara)
End Location: Kadikoy (in Istanbul)
Point of Interest: Duration

Execution 1: All heuristics except 4 are applied

Suggested route:

- Hosdere to Ankara. Type: Virtual Path. Explanation: Virtual Path (Hosdere resides in Ankara). ID:
326900

74

- Ankara to Atatlrk Airport. Type: Virtual Path. Explanation: Virtual path through Esenboga Airport (by

Plane (Domestic) - THY) (Virtual path through Esenboga Airport (by Plane (Domestic) - THY)). ID:
363583

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524
- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45

Route found in 328.125 ms. Queue query count: 5

Suggested route:
- Hosdere to Ankara. Type: Virtual Path. Explanation: Virtual Path (Hosdere resides in Ankara). ID:
326900

APPENDIX C. EXAMPLE QUERY RESULTS FOR TESTING HEURISTICS 75

- Ankara to Atatlrk Airport. Type: Virtual Path. Explanation: Virtual path through Esenboga Airport (by
Plane (Domestic) - THY) (Virtual path through Esenboda Airport (by Plane (Domestic) - THY)). ID:
363583

- Atatirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Besiktas to Kadikdy. Type: Ferry. Explanation: Once in every 45 minutes. ID: 41
Route found in 359.375 ms. Queue query count: 7

Suggested route:
- Hosdere to Ankara. Type: Virtual Path. Explanation: Virtual Path (Hosdere resides in Ankara). ID:

326900

- Ankara to Atatlrk Airport. Type: Virtual Path. Explanation: Virtual path through Esenboga Airport (by
Plane (Domestic) - THY) (Virtual path through Esenboga Airport (by Plane (Domestic) - THY)). ID:
363583

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Emindni. Type: Ferry. Explanation: iDO. ID: 315932

- Eminéni to Kadikdy. Type: Ferry. Explanation: IDO. ID: 315930
Route found in 437.5 ms. Queue query count: 13

Suggested route:
- Hosdere to Ankara. Type: Virtual Path. Explanation: Virtual Path (Hosdere resides in Ankara). ID:

326900

- Ankara to Atatlrk Airport. Type: Virtual Path. Explanation: Virtual path through Esenboga Airport (by
Plane (Domestic) - THY) (Virtual path through Esenboga Airport (by Plane (Domestic) - THY)). ID:
363583

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Begiktag to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Karakdy. Type: Ferry. Explanation: IDO. ID: 315933

- Karakdy to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315925
Route found in 406.25 ms. Queue query count: 15

Suggested route:
- Hosdere to Ankara. Type: Virtual Path. Explanation: Virtual Path (Hosdere resides in Ankara). ID:

326900

- Ankara to Atatlrk Airport. Type: Virtual Path. Explanation: Virtual path through Esenboga Airport (by
Plane (Domestic) - THY) (Virtual path through Esenboga Airport (by Plane (Domestic) - THY)). ID:
363583

- Atatlrk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44

- Begiktag to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Karakdy. Type: Ferry. Explanation: IDO. ID: 315933

- Karakdy to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - IDO2. ID: 316872

Route found in 421.875 ms. Queue query count: 16

Execution 2: All heuristics are applied (including heuristic 4)

Suggested route:

- Hosdere to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 189-1. ID: 361646

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatlrk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Kadikdy. Type: Dolmus (Shared Taxi). ID: 45
Route found in 1171.875 ms. Queue query count: 22

Suggested route:
- Hosdere to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 189-1. ID: 361646

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatlrk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Kadikéy. Type: Ferry. Explanation: Once in every 45 minutes. ID: 41

Route found in 1203.125 ms. Queue query count: 24

Suggested route:
- Hosdere to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 189-1. ID: 361646

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

APPENDIX C. EXAMPLE QUERY RESULTS FOR TESTING HEURISTICS

- Esenboga Airport to Atatirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Eminénii. Type: Ferry. Explanation: iDO. ID: 315932

- Eminéni to Kadikdy. Type: Ferry. Explanation: IDO. ID: 315930
Route found in 1312.5 ms. Queue query count: 30

Suggested route:
- Hosdere to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 189-1. ID: 361646

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboga Airport to Atatiirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskuidar to Karakdy. Type: Ferry. Explanation: iDO. ID: 315933

- Karakéy to Kadikéy. Type: Ferry. Explanation: iDO. ID: 315925

Route found in 1312.5 ms. Queue query count: 32

Suggested route:
- Hosdere to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 189-1. ID: 361646

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenboda Airport to Atatiirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlrk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Besiktas. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 44
- Besiktas to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315943

- Uskiidar to Karakdy. Type: Ferry. Explanation: IDO. ID: 315933

- Karakéy to Kadikéy. Type: Public Transportation (Bus). Explanation: IETT - IDO2. ID: 316872
Route found in 1296.875 ms. Queue query count: 33

76

Appendix D

Automated Test Results

D.1 Duration: Example Query Results (Routes)

SEARCH 1

From: Ciftlik Mahallesi - 110357
To: Konya Yolu Hipodrum - 113464
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Giftlik Mahallesi to Umraniye. Type: Public Transportation (Bus). Explanation: IETT - 131B. ID:
316490

- Umraniye to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 10M. ID: 363616
- Kadikdy to Taksim. Type: Dolmus (Shared Taxi). ID: 46

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Konya Yolu Hipodrum. Type: Public Transportation (Bus). Explanation: EGO - 148. ID: 344814
Search Duration (ms): 5578,125

Queue Query Count: 391

Total Cost: 271

A*CD

Suggested route:

- Ciftlik Mahallesi to Umraniye. Type: Public Transportation (Bus). Explanation: IETT - 131B. ID:
316490

- Umraniye to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 10M. ID: 363616
- Kadikdy to Taksim. Type: Dolmus (Shared Taxi). ID: 46

- Taksim to Atatiirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatlrk Airport to Esenboga Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Konya Yolu Hipodrum. Type: Public Transportation (Bus). Explanation: EGO - 148. ID: 344814
Search Duration (ms): 1500

Queue Query Count: 177

Total Cost: 271

SEARCH 2

From: Meciyekdy - 110522
To: Celal Bayar Bulv. - 113561
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Meciyekdy to Gokturk. Type: Public Transportation (Bus). Explanation: IETT - 48. ID: 316720
- Goktlrk to Topkapi. Type: Public Transportation (Bus). Explanation: IETT - 48A. ID: 363886

- Topkap! to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 83. ID: 316794

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Konya Yolu. Type: Public Transportation (Bus). Explanation: EGO - 148. ID: 344802

- Konya Yolu to Celal Bayar Bulv.. Type: Public Transportation (Bus). Explanation: EGO - 101.

77

APPENDIX D. AUTOMATED RESULTS 78

Search Duration (ms): 5562,5
Queue Query Count: 560
Total Cost: 300

A*CD

Suggested route:

- Meciyekdy to Goktirk. Type: Public Transportation (Bus). Explanation: IETT - 48. ID: 316720

- Gokturk to Topkapi. Type: Public Transportation (Bus). Explanation: IETT - 48A. ID: 363886

- Topkap! to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 83. ID: 316794

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525

- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Tarim Koop Mergkez Birl.. Type: Public Transportation (Bus). Explanation: EGO - 125. ID:
336760

- Tarim Koop Mergkez Birl. to Celal Bayar Bulv.. Type: Public Transportation (Bus). Explanation: EGO -
101. ID: 327141

Search Duration (ms): 1234,375

Queue Query Count: 61

Total Cost: 309

SEARCH 3

From: Beytepe Koyl - 113618
To: Atatlirk Hastanesi - 113420
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Beytepe Kdyu to Atatlirk Hastanesi. Type: Public Transportation (Bus). Explanation: EGO - 175. ID:
359362

Search Duration (ms): 5718,75

Queue Query Count: 17

Total Cost: 36

A*CD

Suggested route:

- Beytepe Kdyl to Atatlirk Hastanesi. Type: Public Transportation (Bus). Explanation: EGO - 175. ID:
359362

Search Duration (ms): 46,875

Queue Query Count: 2

Total Cost: 36

SEARCH 4

From: Mediyekdy - 110353

To: Gulvercinlik Cad. Tekel Fabrikasi - 113455
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Mediyekdy to Altunizade. Type: Public Transportation (Bus). Explanation: IETT - 129. ID: 363646
- Altunizade to Birlik Mahallesi. Type: Public Transportation (Bus). Explanation: IETT - 9. ID: 316818
- Birlik Mahallesi to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 14B. ID: 363698
- Kadikdy to Taksim. Type: Dolmus (Shared Taxi). ID: 46

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525

- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Konya Yolu Ankara Unv.discilik Fak.. Type: Public Transportation (Bus). Explanation: EGO -
148. ID: 344804

- Konya Yolu Ankara Unv.discilik Fak. to Givercinlik Cad. Tekel Fabrikasi. Type: Public Transportation
(Bus). Explanation: EGO - 170-1. ID: 354616

Search Duration (ms): 5625

Queue Query Count: 538

Total Cost: 308

A*CD
Suggested route:

APPENDIX D. AUTOMATED RESULTS 79

- Mediyekdy to Altunizade. Type: Public Transportation (Bus). Explanation: IETT - 129. ID: 363646

- Altunizade to Birlik Mahallesi. Type: Public Transportation (Bus). Explanation: IETT - 9. ID: 316818
- Birlik Mahallesi to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 14B. ID: 363698
- Kadikdy to Taksim. Type: Dolmus (Shared Taxi). ID: 46

- Taksim to Atatiirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525

- Atatirk Airport to Esenboga Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Cankiri Cad.okul. Type: Public Transportation (Bus). Explanation: EGO - 146. ID: 344106

- Cankini Cad.okul to Guvercinlik Cad. Tekel Fabrikasi. Type: Public Transportation (Bus). Explanation:
EGO - 170-1. ID: 354734

Search Duration (ms): 2218,75

Queue Query Count: 309

Total Cost: 321

SEARCH 5

From: ASTI - 110203

To: ihlas Marmara Evleri - 110552
Cost Choice: Duration

DIJKSTRA

Suggested route:

- ASTI to Simon Bolivar Blv. Type: Public Transportation (Bus). Explanation: EGO - 167-1. ID: 353898
- Simon Bolivar Blv to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 152. ID: 345029

- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenbogda Airport to Atatiirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Atakent Mahallesi. Type: Public Transportation (Bus). Explanation: IETT - 89T. ID: 363979
- Atakent Mahallesi to Bakirkdy. Type: Public Transportation (Bus). Explanation: IETT - 98T. ID: 316855
- Bakirkdy to Ihlas Marmara Evleri. Type: Public Transportation (Bus). Explanation: IETT - 76Y. ID:
363948

Search Duration (ms): 5453,125

Queue Query Count: 517

Total Cost: 261

A*CD

Suggested route:

- ASTI to Simon Bolivar Blv. Type: Public Transportation (Bus). Explanation: EGO - 167-1. ID: 353898
- Simon Bolivar Blv to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 152. ID: 345029
- Ulus to Esenboda Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 35

- Esenbogda Airport to Atatirk Airport. Type: Plane (Domestic). Explanation: THY. ID: 363582

- Atatlirk Airport to Taksim. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272524

- Taksim to Otogar. Type: Public Transportation (Bus). Explanation: IETT - 830. ID: 363960

- Otogar to Bakirkdy. Type: Public Transportation (Bus). Explanation: IETT - 980. ID: 316853

- Bakirkdy to ihlas Marmara Evleri. Type: Public Transportation (Bus). Explanation: IETT - 76Y. ID:
363948

Search Duration (ms): 5421,875

Queue Query Count: 1652

Total Cost: 261

SEARCH 6

From: Harem - 110380

To: Konya Yolu Ust Gegit Alti - 113426
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Harem to Pendik. Type: Public Transportation (Bus). Explanation: IETT - 16A. ID: 316566

- Pendik to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 16. ID: 363730

- Kadikdy to Taksim. Type: Dolmus (Shared Taxi). ID: 46

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatirk Airport to Esenboga Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Konya Yolu Ust Gegit Alti. Type: Public Transportation (Bus). Explanation: EGO - 148. ID:
344806

Search Duration (ms): 5421,875

APPENDIX D. AUTOMATED RESULTS 80

Queue Query Count: 397
Total Cost: 245

A*CD

Suggested route:

- Harem to Pendik. Type: Public Transportation (Bus). Explanation: IETT - 16A. ID: 316566

- Pendik to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 16. ID: 363730

- Kadikdy to Taksim. Type: Dolmus (Shared Taxi). ID: 46

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Konya Yolu Ust Gegit Alti. Type: Public Transportation (Bus). Explanation: EGO - 148. ID:
344806

Search Duration (ms): 1734,375

Queue Query Count: 261

Total Cost: 245

SEARCH 7

From: Sirintepe - 110449
To: Glizelyali - 110362
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Sirintepe to Kabatas. Type: Public Transportation (Bus). Explanation: IETT - 27E. ID: 316607
- Kabatas to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315946

- Kadikdy to Kartal. Type: Public Transportation (Bus). Explanation: IETT - 21A. ID: 316589

- Kartal to Guzelyali. Type: Public Transportation (Bus). Explanation: IETT - 133. ID: 316496
Search Duration (ms): 5765,625

Queue Query Count: 151

Total Cost: 118

A*CD

Suggested route:

- Sirintepe to Kabatas. Type: Public Transportation (Bus). Explanation: IETT - 27E. ID: 316607
- Kabatas to Kadikdy. Type: Ferry. Explanation: iDO. ID: 315946

- Kadikdy to Kartal. Type: Public Transportation (Bus). Explanation: IETT - 21A. ID: 316589

- Kartal to Glizelyali. Type: Public Transportation (Bus). Explanation: IETT - 133. ID: 316496
Search Duration (ms): 562,5

Queue Query Count: 47

Total Cost: 118

SEARCH 8

From: Eyip - 110601

To: Tedas Etiit idare - 113478
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Eylp to Uskiidar. Type: Ferry. Explanation: IDO. ID: 315936

- Uskiidar to Begiktas. Type: Ferry. Explanation: IDO. ID: 315944

- Besiktas to Taksim. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 43
- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525

- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Sihhiye. Type: Public Transportation (Bus). Explanation: EGO - 183. ID: 360613

- Sihhiye to Tedas Etiit idare. Type: Public Transportation (Bus). Explanation: EGO - 171-1. ID: 355839
Search Duration (ms): 5468,75

Queue Query Count: 467

Total Cost: 220

A*CD

Suggested route:

- Eylp to Uskiidar. Type: Ferry. Explanation: iDO. ID: 315936

- Uskiidar to Besiktas. Type: Ferry. Explanation: iDO. ID: 315944

APPENDIX D. AUTOMATED RESULTS 81

- Besiktas to Taksim. Type: Dolmus (Shared Taxi). Explanation: Once in every 10 minutes. ID: 43

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525

- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboga Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Eskisehir Yolu Balgat Yurdu. Type: Public Transportation (Bus). Explanation: EGO - 120. ID:
330992

- Eskisehir Yolu Balgat Yurdu to Tedas Etiit idare. Type: Public Transportation (Bus). Explanation: EGO -
171-1. ID: 355761

Search Duration (ms): 1937,5

Queue Query Count: 502

Total Cost: 229

SEARCH 9

From: Glrpinar - 110517
To: Klglkkoy - 110494
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Gurpinar to Yenibosna Metro. Type: Public Transportation (Bus). Explanation: IETT - 458. ID: 316714
- Yenibosna Metro to Emindnl. Type: Public Transportation (Bus). Explanation: IETT - 82. ID: 316792
- Emindnl to Kigukkdy. Type: Public Transportation (Bus). Explanation: IETT - 38E. ID: 363841
Search Duration (ms): 5515,625

Queue Query Count: 41

Total Cost: 110

A*CD

Suggested route:

- Gurpinar to Yenibosna Metro. Type: Public Transportation (Bus). Explanation: IETT - 458. ID: 316714
- Yenibosna Metro to Emindnl. Type: Public Transportation (Bus). Explanation: IETT - 82. ID: 316792
- Emindnl to Kiglkkdy. Type: Public Transportation (Bus). Explanation: IETT - 38E. ID: 363841
Search Duration (ms): 234,375

Queue Query Count: 15

Total Cost: 110

SEARCH 10

From: Opera - 113401
To: Alacath Cad. - 113648
Cost Choice: Duration

DIJKSTRA

Suggested route:

- Opera to Alacatli Cad.. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336936
Search Duration (ms): 5453,125

Queue Query Count: 199

Total Cost: 40

A*CD

Suggested route:

- Opera to Alacatli Cad.. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336936
Search Duration (ms): 375

Queue Query Count: 2

Total Cost: 40

APPENDIX D. AUTOMATED RESULTS

D.2 Duration: Values to Be Evaluated

82

Dijkstra |Dijkstra Search Dijkstra Queue A*CD |A*CD Search A*CD Queue Fastest Route
Cost Duration Query Count Cost Duration Query Count Hop Count

271 5578,125 391 271 1500 177 7 |
300 5562,5 560 309 1234,375 61 8 |
36 5718,75 17 36 46,875 2 1 |
308 5625 538 321 2218,75 309 9 |
261 5453,125 517 261 5421,875 1652 8 |
245 5421,875 397 245 1734,375 261 7 |
118 5765,625 151 118 562,5 47 4 |
220 5468,75 467 229 1937,5 502 8 |
110 5515,625 41 110 234,375 15 3 |
40 5453,125 199 40 375 2 1 |
161 5609,375 226 161 1281,25 203 4 |
279 5437,5 468 283 1562,5 227 8 |
27 5671,875 83 28 234,375 2 1 |
0 5421,875 140 0 46,875 7 0 |
0 5609,375 676 0 6671,875 2842 I |
197 5578,125 193 207 890,625 115 6 |
0 5375 351 0 15,625 5 0 |
47 5937,5 48 66 687,5 7 2 |
0 5437,5 205 0 15,625 5 0 |
119 5656,25 194 119 296,875 8 3 |
53 5468,75 174 53 531,25 12 2 |
201 5609,375 227 201 562,5 74 5 |
100 5375 74 100 281,25 6 3 |
145 5515,625 120 145 546,875 30 4 |
229 5500 280 229 1671,875 391 5 |
104 5515,625 113 106 312,5 8 3 |
191 5437,5 251 191 859,375 147 6 |
217 5593,75 427 228 5000 1100 7 |
242 5578,125 511 252 1406,25 125 7 |
46 5784,375 113 48 796,875 4 2 |
264 5546,875 528 264 5406,25 1672 7 |
125 5406,25 42 132 171,875 12 3 |
151 5796,875 196 151 656,25 17 3 |
0 5500 668 0 6765,625 2866 I |
0 5468,75 697 0 2281,25 1446 0 |
407 5562,5 605 517 4312,5 1564 4 |
351 5531,25 39 369 343,75 4 3 |
237 5468,75 253 237 1000 239 6 |
0 5531,25 477 0 15,625 1 0 |
144 5406,25 119 144 734,375 64 5 |
248 5562,5 445 256 1578,125 187 8 |
213 5671,875 346 215 1250 123 6 |
265 5484,375 343 275 1359,375 201 7 |

APPENDIX D. AUTOMATED RESULTS

47 5734,375 136 47 4375 6 2 |
240 5515,625 435 240 4593,75 1219 7 |
171 5625 368 171 484,375 10 5 |
218 5546,875 368 218 4406,25 898 6 |
186 5593,75 319 186 2656,25 909 4 |
271 5671,875 527 278 1593,75 227 8 |
224 5625 428 224 4656,25 959 7 |
57 5515,625 245 57 546,875 8 2 |
40 5687,5 133 40 640,625 12 2 |
110 5546,875 138 110 484,375 31 4 |
119 5703,125 117 119 281,25 8 3 |
60 6390,625 220 60 2250 27 2 |
259 5609,375 435 259 1468,75 162 7 |
225 5656,25 368 225 4421,875 1121 7 |
137 5640,625 92 137 671,875 57 4 |
128 5515,625 125 128 234,375 15 3 |
42 5718,75 111 52 281,25 4 2 |
0 5640,625 245 0 31,25 2 0 |
42 5656,25 49 55 1875 4 2 |
261 5593,75 423 263 1500 177 7 |
22 5671,875 15 27 125 2 2 |
190 6125 329 192 3890,625 723 5 |
40 5796,875 46 44 296,875 4 2 |
125 5484,375 115 125 234,375 5 3 |
298 5671,875 455 302 921,875 48 8 \
231 7093,75 492 231 4781,25 146 7 \
160 5546,875 192 160 703,125 52 4 |
215 5609,375 358 215 1265,625 143 6 |
283 5515,625 318 290 1828,125 313 7 |
213 5671,875 330 213 750 38 6 |
23 5562,5 15 23 140,625 2 2 |
43 5890,625 86 60 343,75 4 2 |
0 5578,125 698 0 7390,625 2866 I |
52 5500 126 60 343,75 8 2 |
43 6140,625 124 43 500 7 2 |
212 6046,875 319 212 1843,75 545 5 |
244 5859,375 497 244 5125 1421 7 |
256 5953,125 505 256 5109,375 1269 7 |
193 5843,75 136 193 375 28 5 |
232 6218,75 407 232 5109,375 1319 6 |
274 6390,625 493 274 2531,25 337 8 |
220 5968,75 400 220 843,75 46 6 |
227 5671,875 381 234 4468,75 1355 7 \
70 5687,5 249 70 750 37 3 |
0 5578,125 709 0 2875 1380 0 |
0 5843,75 711 0 6765,625 2866 0 |
40 6421,875 28 40 668,75 4 2 |

APPENDIX D. AUTOMATED RESULTS

50 5640,625 249 57 1125 32 2

220 5953,125 355 220 4734,375 1265 8
202 5765,625 513 220 2437,5 205 7
114 6515,625 164 114 2000 127 4
251 6406,25 479 270 2593,75 291 8
69 5796,875 260 82 1156,25 55 3
31 5765,625 35 35 93,75 2 1
218 5625 405 222 4375 950 7
211 5578,125 391 211 4906,25 1158 7
267 6937,5 284 267 4640,625 546 5

D.3 Financial Cost: Example Query Results (Routes)

SEARCH 1

From: Sultan Murat Mahallesi - 110420
To: Yesilbaglar - 110427

Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Sultan Murat Mahallesi to Uskiidar. Type: Public Transportation (Bus). Explanation: IETT - 15S. ID:
363725

- Uskiidar to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 12. ID: 363635

- Kadikéy to Yesilbadlar. Type: Public Transportation (Bus). Explanation: IETT - 16Y. ID: 316573
Search Duration (ms): 5703,125

Queue Query Count: 50

Total Cost: 6

A*CD

Suggested route:

- Sultan Murat Mahallesi to Uskiidar. Type: Public Transportation (Bus). Explanation: IETT - 15S. ID:
363725

- Uskidar to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 12. ID: 363635

- Kadikdy to Yesilbaglar. Type: Public Transportation (Bus). Explanation: IETT - 16Y. ID: 316573
Search Duration (ms): 265,625

Queue Query Count: 22

Total Cost: 6

SEARCH 2

From: Ankara Otogar - 110231
To: Sultangiftligi - 110470
Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Ankara Otogar to Istanbul Otogar. Type: Intercity Bus. Explanation: Ulusoy. ID: 316107

- Istanbul Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 308255

- Taksim to Dikilitas. Type: Public Transportation (Bus). Explanation: IETT - 43. ID: 316710

- Dikilitas to Emindnil. Type: Public Transportation (Bus). Explanation: IETT - 26. ID: 316604

- Eminéni to Sultanciftligi. Type: Public Transportation (Bus). Explanation: IETT - 336E. ID: 363805
Search Duration (ms): 5625

Queue Query Count: 484

Total Cost: 61

A*CD

APPENDIX D. AUTOMATED RESULTS

Suggested route:
- Ankara Otogar to Ulus. Type: Dolmus (Shared Taxi). ID: 308257

- Ulus to Kugulu Park. Type: Public Transportation (Bus). Explanation: EGO - 114-1. ID: 328882

- Kugulu Park to ASTI. Type: Public Transportation (Bus). Explanation: EGO - 167-1. ID: 353907

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Dikilitas. Type: Public Transportation (Bus). Explanation: IETT - 43. ID: 316710

- Dikilitas to Emindni. Type: Public Transportation (Bus). Explanation: IETT - 26. ID: 316604

- Eminonl to Sultanciftligi. Type: Public Transportation (Bus). Explanation: IETT - 336E. ID: 363805
Search Duration (ms): 5218,75

Queue Query Count: 1572

Total Cost: 102

SEARCH 3

From: Topselvi - 110372

To: Sultan Murat Mahallesi - 110420
Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Topselvi to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 16B. ID: 363732

- Kadikdy to Uskiidar. Type: Public Transportation (Bus). Explanation: IETT - 12. ID: 316469

- Uskiidar to Sultan Murat Mahallesi. Type: Public Transportation (Bus). Explanation: IETT - 15S. ID:
316560

Search Duration (ms): 5578,125

Queue Query Count: 137

Total Cost: 6

A*CD

Suggested route:

- Topselvi to Kadikdéy. Type: Public Transportation (Bus). Explanation: IETT - 16B. ID: 363732

- Kadikéy to Uskiidar. Type: Public Transportation (Bus). Explanation: IETT - 12. ID: 316469

- Uskiidar to Sultan Murat Mahallesi. Type: Public Transportation (Bus). Explanation: IETT - 15S. ID:
316560

Search Duration (ms): 437,5

Queue Query Count: 27

Total Cost: 6

SEARCH 4

From: Esenkent - 110369
To: Selimiye Cad - 113560
Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Esenkent to Kadikéy. Type: Public Transportation (Bus). Explanation: IETT - 21C. ID: 363756
- Kadikdy to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 316451

- Taksim to Istanbul Otogar. Type: Dolmus (Shared Taxi). ID: 308254

- Istanbul Otogar to Ankara Otogar. Type: Intercity Bus. Explanation: Ulusoy. ID: 316195

- Ankara Otogar to Ulus. Type: Dolmus (Shared Taxi). ID: 308257

- Ulus to Selimiye Cad. Type: Public Transportation (Bus). Explanation: EGO - 152. ID: 345036
Search Duration (ms): 5546,875

Queue Query Count: 459

Total Cost: 67

A*CD

Suggested route:

- Esenkent to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 21C. ID: 363756

- Kadikdy to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 316451

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatirk Airport to Esenboga Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Selimiye Cad. Type: Public Transportation (Bus). Explanation: EGO - 152. ID: 345036

Search Duration (ms): 2875

Queue Query Count: 1443

APPENDIX D. AUTOMATED RESULTS 86

Total Cost: 117

SEARCH 5

From: GoOzciibaba - 110566
To: Umitkdy 8. Cad. - 113653
Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- GOzclbaba to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 8A. ID: 363981
- Kadikdy to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 316451

- Taksim to Istanbul Otogar. Type: Dolmus (Shared Taxi). ID: 308254

- Istanbul Otogar to Ankara Otogar. Type: Intercity Bus. Explanation: Ulusoy. ID: 316195

- Ankara Otogar to Ulus. Type: Dolmus (Shared Taxi). ID: 308257

- Ulus to Umitkdy 8. Cad.. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336788
Search Duration (ms): 5687,5

Queue Query Count: 421

Total Cost: 67

A*CD

Suggested route:

- GOzclubaba to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 8A. ID: 363981
- Kadikdy to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 316451

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Umitkdy 8. Cad.. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336788
Search Duration (ms): 2812,5

Queue Query Count: 1359

Total Cost: 117

SEARCH 6

From: Filistin - 113550

To: Kavakpinar - 110366
Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Filistin to Ulus. Type: Public Transportation (Bus). Explanation: EGO - 114-1. ID: 328869

- Ulus to Ankara Otogar. Type: Dolmus (Shared Taxi). ID: 308256

- Ankara Otogar to Istanbul Otogar. Type: Intercity Bus. Explanation: Ulusoy. ID: 316107

- Istanbul Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 308255

- Taksim to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 363617
- Kadikdy to Kartal. Type: Public Transportation (Bus). Explanation: IETT - 21A. ID: 316589
- Kartal to Kavakpinar. Type: Public Transportation (Bus). Explanation: IETT - 133K. ID: 316499
Search Duration (ms): 5984,375

Queue Query Count: 544

Total Cost: 69

A*CD

Suggested route:

- Filistin to Kugulu Park. Type: Public Transportation (Bus). Explanation: EGO - 112-1. ID: 328744
- Kugulu Park to ASTI. Type: Public Transportation (Bus). Explanation: EGO - 167-1. ID: 353907
- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 363617

- Kadikdy to Kartal. Type: Public Transportation (Bus). Explanation: IETT - 21A. ID: 316589

- Kartal to Kavakpinar. Type: Public Transportation (Bus). Explanation: IETT - 133K. ID: 316499
Search Duration (ms): 6000

Queue Query Count: 1634

Total Cost: 97

SEARCH 7
From: Ballikumcu Kdéyu - 113543

APPENDIX D. AUTOMATED RESULTS 87

To: Kisirkaya - 110410
Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Ballikumcu K8yl to Konya Yolu Ankara Unv.discilik Fak.. Type: Public Transportation (Bus).
Explanation: EGO - 196-1. ID: 363443

- Konya Yolu Ankara Unv.discilik Fak. to Ulus. Type: Public Transportation (Bus). Explanation: EGO -
148. ID: 344805

- Ulus to Ankara Otogar. Type: Dolmus (Shared Taxi). ID: 308256

- Ankara Otogar to Istanbul Otogar. Type: Intercity Bus. Explanation: Ulusoy. ID: 316107

- Istanbul Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 308255

- Taksim to Sariyer. Type: Public Transportation (Bus). Explanation: IETT - 25T. ID: 363768

- Sariyer to Kisirkaya. Type: Public Transportation (Bus). Explanation: IETT - 152. ID: 316548
Search Duration (ms): 5750

Queue Query Count: 441

Total Cost: 70

A*CD

Suggested route:

- Ballikumcu Kdyi to ODTU. Type: Public Transportation (Bus). Explanation: EGO - 196-1. ID: 362385
- ODTU to Tarim Koop Mergkez Birl.. Type: Public Transportation (Bus). Explanation: EGO - 111. ID:
328094

- Tarim Koop Mergkez Birl. to ASTI. Type: Public Transportation (Bus). Explanation: EGO - 167-1. ID:
353893

- ASTI to Harem Otogar. Type: Intercity Bus. ID: 363578

- Harem Otogar to Taksim. Type: Dolmus (Shared Taxi). ID: 33

- Taksim to Sariyer. Type: Public Transportation (Bus). Explanation: IETT - 25T. ID: 363768

- Sariyer to Kisirkaya. Type: Public Transportation (Bus). Explanation: IETT - 152. ID: 316548
Search Duration (ms): 4875

Queue Query Count: 1405

Total Cost: 98

SEARCH 8

From: Bulgurlu Mahallesi - 110336
To: Hacilar Koyl - 113509

Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Bulgurlu Mahallesi to Uskiidar. Type: Public Transportation (Bus). Explanation: IETT - 11L. ID:
363626

- Uskiidar to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 12. ID: 363635

- Kadikdy to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 316451

- Taksim to Istanbul Otogar. Type: Dolmus (Shared Taxi). ID: 308254

- Istanbul Otogar to Ankara Otogar. Type: Intercity Bus. Explanation: Ulusoy. ID: 316195

- Ankara Otogar to Ulus. Type: Dolmus (Shared Taxi). ID: 308257

- Ulus to Mesrutiyet Cad.. Type: Public Transportation (Bus). Explanation: EGO - 189-1. ID: 361613
- Mesrutiyet Cad. to Hacilar Kdyl. Type: Public Transportation (Bus). Explanation: EGO - 177-1. ID:
360047

Search Duration (ms): 5578,125

Queue Query Count: 545

Total Cost: 72

A*CD

Suggested route:

- Bulgurlu Mahallesi to Uskiidar. Type: Public Transportation (Bus). Explanation: IETT - 11L. ID:
363626

- Uskiidar to Kadikdy. Type: Public Transportation (Bus). Explanation: IETT - 12. ID: 363635

- Kadikdy to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 110. ID: 316451

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525
- Atatirk Airport to Esenboga Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Opera. Type: Public Transportation (Bus). Explanation: EGO - 114-1. ID: 328846

- Opera to Hacilar Kéyl. Type: Public Transportation (Bus). Explanation: EGO - 177-1. ID: 359735
Search Duration (ms): 3000

APPENDIX D. AUTOMATED RESULTS 88

Queue Query Count: 1392
Total Cost: 122

SEARCH 9

From: Sokullu Mehmet Pasa 2. Durak - 113614
To: Rafet Canitez Cad. - 113599

Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Sokullu Mehmet Pasa 2. Durak to Dikmen Cad. Type: Public Transportation (Bus). Explanation: EGO -
140. ID: 343605

- Dikmen Cad to Rafet Canitez Cad.. Type: Public Transportation (Bus). Explanation: EGO - 185. ID:
361603

Search Duration (ms): 5484,375

Queue Query Count: 120

Total Cost: 6

A*CD

Suggested route:

- Sokullu Mehmet Pasa 2. Durak to Guvenpark. Type: Public Transportation (Bus). Explanation: EGO -
140. ID: 343565

- Guvenpark to Rafet Canitez Cad.. Type: Public Transportation (Bus). Explanation: EGO - 185. ID:
361225

Search Duration (ms): 343,75

Queue Query Count: 4

Total Cost: 6

SEARCH 10

From: Karliktepe - 110378
To: 3. Etap - 113604

Cost Choice: Financial Cost

DIJKSTRA

Suggested route:

- Karliktepe to Ortagesme. Type: Public Transportation (Bus). Explanation: IETT - 135K. ID: 363680
- Ortagesme to Umraniye. Type: Public Transportation (Bus). Explanation: IETT - 11H. ID: 316458
- Umraniye to Ustbostanci. Type: Public Transportation (Bus). Explanation: IETT - 19D. ID: 316579
- Ustbostanci to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 202. ID: 316588

- Taksim to Istanbul Otogar. Type: Dolmus (Shared Taxi). ID: 308254

- Istanbul Otogar to Ankara Otogar. Type: Intercity Bus. Explanation: Ulusoy. ID: 316195

- Ankara Otogar to Ulus. Type: Dolmus (Shared Taxi). ID: 308257

- Ulus to Hazine. Type: Public Transportation (Bus). Explanation: EGO - 125. ID: 336774

- Hazine to 3. Etap. Type: Public Transportation (Bus). Explanation: EGO - 111. ID: 328590
Search Duration (ms): 5750

Queue Query Count: 572

Total Cost: 74

A*CD

Suggested route:

- Karliktepe to Ortagesme. Type: Public Transportation (Bus). Explanation: IETT - 135K. ID: 363680
- Ortagesme to Umraniye. Type: Public Transportation (Bus). Explanation: IETT - 11H. ID: 316458
- Umraniye to Ustbostanci. Type: Public Transportation (Bus). Explanation: IETT - 19D. ID: 316579
- Ustbostanci to Taksim. Type: Public Transportation (Bus). Explanation: IETT - 202. ID: 316588

- Taksim to Atatlirk Airport. Type: Public Transportation (Bus). Explanation: HAVAS. ID: 272525

- Atatlirk Airport to Esenboda Airport. Type: Plane (Domestic). Explanation: THY. ID: 363580

- Esenboda Airport to Ulus. Type: Public Transportation (Bus). ID: 308264

- Ulus to Guvenpark. Type: Public Transportation (Bus). Explanation: EGO - 114-1. ID: 328854

- Guvenpark to 3. Etap. Type: Public Transportation (Bus). Explanation: EGO - 111. ID: 328600
Search Duration (ms): 3140,625

Queue Query Count: 1435

Total Cost: 124

APPENDIX D. AUTOMATED RESULTS

D.4 Financial Cost: Values to Be Evaluated

Dijkstra A*CD Fastest
Dijkstra | Queue A*CD Queue Route
Dijkstra | Search Query A*CD Search Query Hop
Cost Duration | Count Cost Duration | Count Count
6 5703,125|50 6 265,625 |22 3
61 5625 484 102 5218,75 | 1572 5
6 5578,125|137 6 437,5 27 3
67 5546,875 | 459 117 2875 1443 6
67 5687,5 421 117 2812,5 1359 6
69 5984,375 | 544 97 6000 1634 7
70 5750 441 98 4875 1405 7
72 5578,125| 545 122 3000 1392 8
6 5484,375|120 6 343,75 4 2
74 5750 572 124 3140,625] 1435 9
9 5593,75 | 273 9 3609,375| 767 3
12 5421,875| 224 12 1125 308 6
69 5734,375| 557 97 6406,25 | 1653 7
4 5500 21 4 187,5 3 2
74 5921,875|576 124 3109,375] 1420 9
70 5703,125|585 120 3312,5 1436 7
72 6203,125|502 122 3046,875| 1424 8
4 5500 46 7 78,125 3 2
6 5765,625|123 6 484,375 |4 2
69 5625 475 119 2812,5 1411 7
10 6796,875 |46 10 562,5 11 5
68 6187,5 538 118 3125 1444 6
3 6453,125|114 3 578,125 |2 1
6 6640,625|79 6 203,125 |8 3
8 5500 176 8 1140,625 |90 4
6 5781,25 129 6 875 20 2
6 5484,375|119 6 468,75 26 3
6 5671,875]| 31 6 484,375 |4 2
74 5750 558 124 3203,125] 1420 9
69 5468,75 | 384 119 2937,5 1443 7
0 5609,375| 454 0 31,25 5 0
70 5718,75 |612 120 3343,75 1462 7
65 5484,375| 355 93 3765,625| 351 5
6 6093,75 |231 6 1312,5 46 2
12 5609,375|289 12 1734,375| 283 4
72 5453,125]481 100 5343,75 |1501 8
69 5562,5 552 97 5921,875| 1648 7
8 5437,5 101 8 250 19 4
67 5875 386 95 4781,25 (1404 6
6 5453,125]209 6 1156,25 [111 3
8 5656,25 | 196 8 1000 112 4
108 5562,5 624 108 593,75 17 3
6 5703,125|53 6 281,25 22 3
69 6343,75 | 366 119 2953,125] 1439 6
6 7609,375|97 6 984,375 [21 3
8 5546,875| 153 8 500 33 4
6 5875 181 6 750 11 2
0 5968,75 |438 0 15,625 2 0

89

APPENDIX D. AUTOMATED RESULTS

70 5812,5 544 120 2953,125]1360 7
6 5781,25 153 6 578,125 |4 2
68 5593,75 343 96 3796,8751573 6
10 5609,375] 254 10 1343,75 [234 5
70 5687,5 525 120 3015,625]1372 7
74 5671,875|596 124 3453,125] 1442 9
0 5515,625| 260 0 0 1 0
72 6828,125]559 122 3359,375]1408 8
9 5843,75 | 246 9 2140,625| 106 3
67 5765,625| 373 95 4906,25 | 1404 6
72 5734,375]578 122 3171,875]1385 8
0 5718,75 |3 0 0 1 0
67 5750 487 117 2859,375]1371 6
0 5937,5 717 95 7296,875]2818 0
70 6156,25 |593 120 3515,625]1383 7
69 5921,875]545 94 6125 1492 7
6 5812,5 131 6 578,125 |4 2
10 5781,25 245 10 1593,75 475 5
6 5812,5 72 6 250 4 2
69 5968,75 |576 97 6046,875|1674 7
3 5765,625]61 3 343,75 2 1
70 5890,625|417 95 5265,625]| 1359 7
8 5843,75 163 8 687,5 63 4
6 5718,75 1128 6 359,375 |18 3
8 5578,125] 148 8 265,625 |19 4
70 5890,625 1470 95 5062,5 1430 7
72 5828,1251482 97 5265,625]1428 8
0 5796,8751709 0 7468,75 | 2866 0
69 5890,625|577 97 8640,625| 1674 7
69 6031,25 | 365 119 2968,75 1411 7
67 5765,625 | 424 95 5171,875] 1407 6
0 5859,3751463 0 15,625 4 0
12 5828,125| 242 12 1265,625 [257 5
67 6375 407 117 3046,875]1435 6
6 5812,5 51 6 187,5 4 2
0 5734,375] 36 0 46,875 5 0
76 6328,125]598 126 3250 1435 9
76 6390,625 | 568 126 3453,125| 1404 10
6 6406,25 | 227 6 2203,125|83 2
72 6265,625| 537 100 6000 1539 8
67 6328,125| 366 117 3578,125] 1419 6
0 6125 677 0 2625 1383 0
3 6218,75 |59 3 156,25 2 1
12 6937,5 277 12 2218,75 768 6
12 6406,25 |272 12 1375 133 5
70 6453,125]408 95 6015,625]|1383 7
6 5796,875| 222 6 1218,75 |21 2
6 5812,5 88 6 703,125 |5 2
6 7187,5 64 6 515,625 |4 2
0 6375 711 0 8156,25 |2838 0
67 7437,5 431 95 6015,625] 1407 6
69 7156,25 | 565 97 6781,25 11572 7

90

APPENDIX D. AUTOMATED RESULTS

91

	Introduction
	1.1 	Problem Definition
	1.2 	Thesis Outline

	Incomplete Information and Virtual Links
	2.1 	A Base for Solution: Extended Unidirectional Graph
	2.2 	Intuitive Connections
	2.3 	Virtual Links
	2.3.1 	Virtual Link Type-1
	2.3.2 	Virtual Link Type-2
	2.3.3 	Virtual Link Type-3
	2.3.4 	Virtual Link Type-4
	2.3.5 	Virtual Link Maintenance

	2.4 	Accepted Target Set
	2.5 	Why These Virtual Link Types

	Problem Extensions
	3.1 	Multiple Stop Transportation Lines
	3.2 	Alternative Routes
	3.3 	Search Preferences

	Search Algorithm
	4.1 	Related Work
	4.2 	A*CD Algorithm Details
	4.3 	Calculation of h-value and Heuristics
	4.4 	An Example Execution Scenario
	4.5 	Virtual Link Preference

	User Interface for Data Entry and Route Query
	5.1 	Searching Locations
	5.2 	Entering a New Location
	5.3 	Managing Location Information
	5.4 	Managing Location Relationships
	5.5 	Managing Links
	5.6 	Logging Mechanism
	5.7 	Route Query

	Search Algorithm Evaluation
	6.1 	Missed Cases
	6.2 	Example Data Set
	6.3 	Effects of Heuristics
	6.4 	Automated Tests
	6.4.1 	Comments on Results
	6.4.2 	Limitations

	Conclusion and Future Work
	Glossary
	Example Data Set
	B.1 	Bus Network in Ankara (EGO – Maintained by municipality)
	B.2 	Bus Network in Istanbul (IETT – Maintained by municipality)
	B.3 	Plane Network in Turkey (THY – A private corporation)
	B.4 	Intercity Bus Network in Turkey (Ulusoy – A private corporation)
	B.5 	Ferry Network in Istanbul (IDO - A private corporation)

	Example Query Results for Testing Heuristics
	Automated Test Results
	D.1 	Duration: Example Query Results (Routes)
	D.2 	Duration: Values to Be Evaluated
	D.3 	Financial Cost: Example Query Results (Routes)
	D.4 	Financial Cost: Values to Be Evaluated

