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We consider a finite dimensional modular representation V of
a cyclic group of prime order p. We show that two points in V
that are in different orbits can be separated by a homogeneous
invariant polynomial that has degree one or p and that involves
variables from at most two summands in the dual representation.
Simultaneously, we describe an explicit construction for a separat-
ing set consisting of polynomials with these properties.
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Introduction

Let V denote a finite dimensional representation of a group G over a field F . The induced ac-
tion on the dual space V ∗ extends to the symmetric algebra F [V ] := S(V ∗) of polynomial functions
on V . More precisely, the action of σ ∈ G on f ∈ F [V ] is given by (σ f )(v) = f (σ−1 v) for v ∈ V .
The subalgebra in F [V ] of polynomials that are left fixed under the action of the group is denoted
by F [V ]G . Any invariant polynomial f ∈ F [V ]G is constant on the G-orbits in V . A subset A ⊆ F [V ]G

is said to be separating (for V ) if for any pairs of vectors v, w ∈ V , we have: If f (v) = f (w) for all
f ∈ A, then f (v) = f (w) for all f ∈ F [V ]G . If G is finite, this is equivalent to saying that whenever
v, w ∈ V are in different G-orbits, there exists f ∈ A such that f (v) �= f (w). Although the concept of
separating invariants dates back to the origins of the invariant theory there has been a recent interest
in the topic initiated by Derksen and Kemper [2] who pointed out that one can get nice separating
subalgebras as opposed to the full invariant ring which is often complicated in terms of constructive
and ring theoretical considerations. For instance, there always exists a finite separating set [2, 2.3.15]
and the Noether bound (for finite groups) holds with no restriction on the characteristic of the field
[2, 3.9.14]. Since then, separating invariants have been studied by several people and further evidence
for their well behavior has been revealed, see [3,5–7,9,13,14]. We direct the reader to [2, 2.3.2, 3.9.4]
and [12] for more background and motivation on the subject.
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In this paper we study separating invariants for representations of a cyclic group Z/p of prime
order p, over a field F of characteristic p. Invariants of cyclic p-groups over characteristic p are dif-
ficult to describe. Although exact degree bounds for the algebra generators for the invariant rings of
all representations of Z/p are known [10], explicit generating sets are available only for handful of
cases. Actually, generating sets for the two and the three dimensional indecomposable representa-
tions of Z/p were given by Dickson [4] as early as the beginning of the twentieth century. It turns
out that these invariant rings are generated by two and four elements respectively. But things get
complicated very quickly. The only other indecomposable representations where a generating set for
the corresponding ring of invariants are known are the four and the five dimensional representations
which were computed by Shank through difficult computations, see [15]. His methods were later used
to work out some decomposable cases. A generating set that applies to all representations of Z/p is
described by Hughes and Kemper [11]. Their set consists of norms (orbit products) of some variables,
transfers (orbit sums) and invariants up to a certain quite optimal degree. The reason to include in-
variants up to some degree is that norms and transfers can be employed to decompose invariants
only after some degree and there are invariants in small degrees that are not expressible using norms
and transfers. In [13] it is shown that this uncertainty in small degrees is not an issue for separating
purposes: The sum of relative transfers with respect to maximal subgroups together with the norms
of certain variables is separating for any representation of any p-group. But unfortunately this sep-
arating set is infinite dimensional as a vector space. In this paper we restrict ourselves to Z/p and
show that a separating set for an indecomposable representation Vn of dimension n can be obtained
by adding to any separating set for the indecomposable subrepresentation Vn−1 some explicitly de-
scribed transfers and the norm of the terminal variable of V ∗

n , see Theorem 3. The set which we add
to a separating set for Vn−1 consists of polynomials of degree p. Inductively this yields a separating
set of polynomials of degree one or p for an indecomposable representation Vn , see Remark 4. But
the size of the separating set for Vn obtained from Theorem 3 is not optimal, see again the discussion
in Remark 4.

Next we consider decomposable representations. A major result concerning decomposable repre-
sentations is that the polarization of separating invariants yields a separating set over any character-
istic, see Draisma et al. [6] which does not hold for generating invariants. A result by Domokos [5]
states that for the direct sum of any number copies of a representation V there exists a separating
set of polynomials each of which involve variables from at most 2n summands in V ∗ , where n is the
dimension of V . If the group is reductive 2n can be replaced by n + 1. We obtain a sharpening of
this result for Z/p as follows. Let W be a Z/p representation over characteristic p. We show that
the separating invariants for a particular proper subrepresentation of W union separating invariants
for the indecomposable summands in W together with an explicitly constructed set of transfers form
a separating set for W , see Theorem 6. These transfers involve variables from two summands only
and are of degree p. Hence we obtain by induction that for any representation W of Z/p there is a
separating set consisting of degree one and degree p polynomials that involve variables from at most
two summands in W ∗ .

Modular separating invariants

Let p > 0 be a prime number. For the rest of the paper G denotes the cyclic group of order p,
and F denotes a field of characteristic p. We fix a generator σ of G . It is well known that there
are exactly p indecomposable representations V 1, V 2, . . . , V p of G up to isomorphism where σ acts
on Vn for 1 � n � p by a Jordan block of dimension n with ones on the diagonal. Let e1, e2, . . . , en

be the Jordan block basis for Vn with σ(ei) = ei + ei−1 for 2 � i � n and σ(e1) = e1. We identify
each ei with the column vector with 1 on the i-th coordinate and zero elsewhere. Let x1, x2, . . . , xn

denote the corresponding elements in the dual space V ∗
n . Since V ∗

n is indecomposable it is isomorphic
to Vn . In fact, x1, x2, . . . , xn forms a Jordan block basis for V ∗

n in the reverse order. We may assume
that σ(xi) = xi + xi+1 for 1 � i � n − 1 and σ(xn) = xn . We have F [Vn] = F [x1, x2, . . . , xn]. Pick a
column vector (c1, c2, . . . , cn)t in Vn , where ci ∈ F for 1 � i � n. There is a G-equivariant surjection
Vn → Vn−1 given by (c1, c2, . . . , cn)t → (c2, c3 . . . , cn)t . We use the convention that V 0 is the zero
representation. Dual to this surjection, the subspace in V ∗

n generated by x2, x3, . . . , xn is closed under
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the G-action and is isomorphic to V ∗
n−1. Hence F [Vn−1] = F [x2, x3, . . . , xn] sits as a subalgebra in

F [Vn]. For f ∈ F [Vn], the norm of f , denoted by N( f ), is defined by
∏

0�l�p−1 σ l( f ). Moreover

define Tr = ∑
0�l�p−1 σ l , which we call the transfer map. Note that both N( f ) and Tr( f ) are invariant

polynomials. For a positive integer k, let Jk denote the ideal in F [Vn] generated by xk, xk+1, . . . , xn if
1 � k � n and let Jk denote the zero ideal if k > n. We need the following well-known fact.

Lemma 1. Let a be a positive integer. Then
∑

0�l�p−1 la ≡ −1 mod p if p − 1 divides a and
∑

0�l�p−1 la ≡ 0
mod p, otherwise.

Proof. We direct the reader to [1, 9.4] for a proof. �
Lemma 2. Let 2 � i � n − 1 be an integer. Then there exist f1, f2 ∈ F [x2, x3, . . . , xn] such that Tr(x1xp−1

i ) =
f1x1 + f2 . Moreover, f1 ≡ −xp−1

i+1 mod J i+2 .

Proof. Since the vector space generated by x2, x3, . . . , xn is closed under the G-action and σ(x1) =
x1 + x2, it follows that Tr(x1xp−1

i ) as a polynomial in x1 (with coefficients in F [Vn−1]) is of degree at
most one. Therefore the first assertion of the lemma follows.

For 0 � l � p − 1 we have

σ l(x1xp−1
i

) =
(

x1 + lx2 +
(

l

2

)
x3 + · · ·

)(
xi + lxi+1 +

(
l

2

)
xi+2 + · · ·

)p−1

.

Let a,b be non-negative integers with a + b = p − 1. Then the coefficient of x1xa
i xb

i+1 in σ l(x1xp−1
i )

is
(p−1

b

)
lb . Therefore the coefficient of x1xa

i xb
i+1 in Tr(x1xp−1

i ) is
∑

0�l�p−1

(p−1
b

)
lb . By the previous

lemma this number is zero unless b = p − 1 and is −1 if b = p − 1. This completes the proof. �
Let S ⊆ F [Vn−1]G be a separating set of invariants for Vn−1. Our next result describes a finite set

of invariant polynomials in F [Vn]G such that, when added to S , one gets a separating set for Vn .

Theorem 3. Let S ⊆ F [Vn−1]G be a separating set for Vn−1 . Then S together with N(x1), Tr(x1xp−1
i ) for

2 � i � n − 1 is a separating set for Vn.

Proof. Let v1 = (c1, c2, . . . , cn)t and v2 = (d1,d2, . . . ,dn)t be two column vectors in Vn in different
G-orbits, where ci,di ∈ F for 1 � i � n. If (c2, c3, . . . , cn)t and (d2,d3, . . . ,dn)t are in different orbits
in Vn−1, then there exists a polynomial in S that separates these points because S ⊆ F [Vn−1]G is
separating. Therefore this polynomial separates v1 and v2 as well. Hence by replacing v2 with a
suitable element in its orbit we may assume that ci = di for 2 � i � n. Note that with this assumption
we must have c1 �= d1. First assume that there exists index 3 � i � n such that ci = di �= 0. Let j denote
the largest integer � n such that c j �= 0. We show that Tr(x1xp−1

j−1 ) separates v1 and v2 as follows. By

the previous lemma we can write Tr(x1xp−1
j−1 ) = f1x1 + f2 such that f1, f2 ∈ F [x2, x3, . . . , xn] with f1 ≡

−xp−1
j mod J j+1. Since ci = di for 2 � i � n, we have f2(v1) = f2(v2) and f1(v1) = f1(v2). Moreover

f1(v1) = −cp−1
j because ci = 0 for j < i, so f1(v1) (and hence f1(v2)) is non-zero. It follows that

f1x1 + f2 separates v1 and v2 because the first coordinates of these vectors are different. We now
assume that ci = di = 0 for 3 � i � n. We show that in this case N(x1) separates v1 and v2. Note that
N(x1)(v1) = ∏

0�l�p−1(c1 +lc2). We define a polynomial Q (x) = ∏
0�l�p−1(x+lc2) ∈ F [x]. Notice that

N(x1)(v1) = Q (c1) and that Q (c1) = Q (c1 +c2) = Q (c1 +2c2) = · · · = Q (c1 +(p −1)c2). Since Q (x) is
a polynomial of degree p, it follows that c1, c1 + c2, c1 + 2c2, . . . , c1 + (p − 1)c2 are the only solutions
to Q (x) = Q (c1). Therefore if N(x1)(v2) = ∏

0�l�p−1(d1 + ld2) = ∏
0�l�p−1(d1 + lc2) = Q (d1) is equal

to N(x1)(v1) = Q (c1), then d1 must be equal to c1 + lc2 for some 0 � l � p − 1. Equivalently we must
have σ l(v1) = v2. This is a contradiction because then v1 and v2 are in the same G-orbit. �
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Remark 4. The invariants of the two dimensional indecomposable representation V 2 is a regular ring
generated by the fixed variable of V ∗

2 and the norm of the terminal variable of V ∗
2 , see [4]. The set

in Theorem 3 which we add to a separating set for Vn−1 consists of n − 1 polynomials of degree p.
Hence, inductively this yields a separating set of n(n − 1)/2 + 1 polynomials of degree one or p for
an indecomposable representation Vn . We note that there is always a separating set of size 2n + 2
for any representation of dimension n of any group. This fact was forwarded to us with a sketch of a
proof during the refereeing process of [13] and it also appears in [8]. However, the proof is not con-
structive as opposed to Theorem 3. We will see that it is possible to obtain separating sets consisting
of polynomials of degree one or p for decomposable representations as well, see Corollary 7.

We have mentioned in the introduction that the computations [15] for the invariants of V 4 and V 5
are difficult and the generating sets are more complicated compared to the two and the three di-
mensional representations. On the other hand our result yields a much more simpler separating
subalgebra. Consider F [x2, x3, x4] = F [V 3] ⊆ F [x1, x2, x3, x4] = F [V 4]. Then F [x2, x3, x4]G is generated
by x4, x2

3 −2x2x4 − x3x4, Tr(x3xp−1
4 ), N(x2), see [4]. Since these four polynomials form a separating set

in F [x2, x3, x4]G , by the previous theorem, this set together with N(x1), Tr(x1xp−1
2 ), Tr(x1xp−1

3 ) is a
separating set in F [x1, x2, x3, x4]G . It is instructive to compare this separating set with the generating
set given in [15].

We now consider decomposable representations of G . Let W = ⊕m
i=1 W i , where W i is an inde-

composable G representation of dimension qi � p, i.e., W i = Vqi . Let ei,1, ei,2, . . . , ei,qi denote the
standard basis vectors for W i , where ei, j is the column vector of dimension qi with one at the j-th
coordinate and zero elsewhere. As before, we assume that these vectors form a Jordan block basis for
W i with σ(ei, j) = ei, j−1 for 2 � j � qi and σ(ei,1) = ei,1. Let xi,1, xi,2, . . . , xi,qi denote the correspond-
ing elements in the dual W ∗

i . Define Ti = Vqi−1 and recall that there is a G-equivariant surjection
πi : W i → Ti , given by (ci,1, ci,2, . . . , ci,qi )

t → (ci,2, ci,3, . . . , ci,qi )
t , where ci, j ∈ F for 1 � j � qi . Define

T = ⊕m
i=1 Ti . We identify W as the vector space of m-tuples (w1, w2, . . . , wm) with wi ∈ W i and T

as the vector space of m-tuples (t1, t2, . . . , tm) with ti ∈ Ti . Then we have a G-equivariant surjection
π : W → T given by (w1, w2, . . . , wm) → (π1(w1),π2(w2), . . . ,πm(wm)). Dual to this surjection, the
subspace in W ∗ generated by xi, j for 1 � i � m, 2 � j � qi is isomorphic to T ∗ . Therefore we get the
inclusion

F [T ] = F [xi, j | 1 � i � m, 2 � j � qi] ⊆ F [W ] = F [xi, j | 1 � i � m, 1 � j � qi].
We prove a result along the same lines of Lemma 2. Let k be a positive integer and for 1 � j � m, let
J j,k denote the ideal in F [W j] generated by x j,k, x j,k+1, . . . , x j,q j . Set J j,k = 0 if k > q j .

Lemma 5. Let i, j,k be integers satisfying 1 � i, j � m, i �= j and 1 � k � q j − 1. Then there exist f1 ∈ F [W j]
and f2 ∈ F [Ti] ⊗ F [W j] such that Tr(xi,1xp−1

j,k ) = f1xi,1 + f2 . Moreover, f1 ≡ −xp−1
j,k+1 mod J j,k+2 .

Proof. The proof essentially carries over from Lemma 2. For 0 � l � p − 1, we have

σ l(xi,1xp−1
j,k

) =
(

xi,1 + lxi,2 +
(

l

2

)
xi,3 + · · ·

)(
x j,k + lx j,k+1 +

(
l

2

)
x j,k+2 + · · ·

)p−1

.

Note that no monomial in the above expansion is divisible by x2
i,1. Therefore as a polynomial in xi,1,

the transfer Tr(xi,1xp−1
j,k ) is of degree at most one and moreover if a monomial m that appears in

Tr(xi,1xp−1
j,k ) is divisible by xi,1, then m/xi,1 is in F [W j]. Finally, for non-negative integers a and b

with a + b = p − 1 the coefficient of xi,1xa
j,kxb

j,k+1 in σ l(x1xp−1
i ) is

(p−1
b

)
lb . Therefore the coeffi-

cient of xi,1xa
j,kxb

j,k+1 in Tr(xi,1xp−1
j,k ) is

∑
0�l�p−1

(p−1
b

)
lb . Hence the final statement follows as in

Lemma 2. �
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For 1 � i, j � m with i �= j and 1 � k � q j − 1 define Hk
i, j = Tr(xi,1xp−1

j,k ). Set

H = {
Hk

i, j

∣∣ 1 � i, j � m, i �= j, 1 � k � q j − 1
}
.

We show that the union polynomials in H and the separating sets for T , W i for 1 � i � m gives a
separating set for W .

Theorem 6. Assume the notation and the convention of the previous paragraphs. For 1 � 1 � m, let Si ⊆
F [W i]G denote a separating set for W i and S ⊆ F [T ]G denote a separating set for T . Then the union of the
polynomials in S, S1, S2, . . . , Sm, H is a separating set for W .

Proof. Let v1 = (c1, . . . , cm) and v2 = (d1, . . . ,dm) be two vectors in W in different G-orbits, where
ci,di ∈ W i for 1 � i � m. Say ci = (ci,1, ci,2, . . . , ci,qi )

t and di = (di,1,di,2, . . . ,di,qi )
t , where ci, j,di, j ∈ F

for 1 � i � m and 1 � j � qi . If π(v1) and π(v2) in T were in different G-orbits, then there exists a
polynomial in S that separates π(v1) and π(v2) because S is a separating set for T . This polynomial
separates v1 and v2 as well. Therefore we may assume that π(v1) and π(v2) are in the same G-orbit.
Hence by replacing v2 with a suitable vector in its orbit we may assume that π(v1) = π(v2), that is
ci, j = di, j for 1 � i � m and 2 � j � qi . Also if ci and di are in different G-orbits for some 1 � i � m,
then there exists a polynomial in Si that separates ci and di because Si is a separating set for W i .
Then v1 and v2 is separated by this polynomial as well. Therefore we may assume that ci and di are
in the same G-orbit for 1 � i � m.

First assume that there exists 1 � r � m and 3 � k � qr such that cr,k = dr,k �= 0. By replacing k
with a larger integer if necessary, we may assume that cr,k′ = dr,k′ = 0 for k < k′ � qr . Since cr,dr ∈ Wr

are in the same G-orbit, there exists an integer 0 � l � p − 1 such that σ l(cr) = dr . Since cr,k′ = 0 for
k′ > k, the (k − 1)-st coordinate of σ l(cr) is equal to cr,k−1 + lcr,k . Therefore the equality of the vectors
σ l(cr) and dr gives cr,k−1 + lcr,k = dr,k−1. But since we have cr,k−1 = dr,k−1, it follows that l = 0, that is
cr = dr . On the other hand since v1 �= v2, there exists 1 � b � m, b �= r such that cb �= db . Equivalently
cb,1 �= db,1. We show that Hk−1

b,r = Tr(xb,1xp−1
r,k−1) separates v1 and v2. By the previous lemma we can

write Tr(xb,1xp−1
r,k−1) = f1xb,1 + f2 with f2 ∈ F [Tb] ⊗ F [Wr], f1 ∈ F [Wr] with f1 ≡ −xp−1

r,k mod Jr,k+1.
Since cb,k′ = db,k′ for k′ > 1, cr = dr and f2 ∈ F [Tb] ⊗ F [Wr], it follows that f2(v1) = f2(v2). We also

have f1(v1) = −cp−1
r,k because cr,k′ = 0 for k′ > k. Similarly f1(v2) = −dp−1

r,k . Since cr,k = dr,k �= 0, it

follows that f1(v1) = f1(v2) �= 0. Hence Hk−1
b,r separates v1 and v2 because cb,1 �= db,1.

Next we consider the case ci, j = di, j = 0 for all 1 � i � m and 3 � j � qi . We look into two
subcases. First assume that there exists 1 � r � m such that cr,2 = dr,2 �= 0. Since cr and dr are in
the same G-orbit there exists an integer 0 � l � p − 1 such that σ l(cr) = dr . Moreover, since ci, j = 0
for 1 � i � m and 3 � j � qi , all coordinates of σ l(ci) and ci are the same except the first one for
1 � i � m. That is π(v1) = π(σ l(v1)). Therefore by replacing v1 with σ l(v1), we may assume that
cr,1 = dr,1 as well. On the other hand since v1 �= v2, there exists 1 � b � m, b �= r such that cb �= db .
Now we have reduced to the situation considered in the previous paragraph: There exists 1 � r � m
such that cr = dr and 1 � b � m such that cb,1 �= db,1. Since cr,k′ = dr,k′ = 0 for 2 < k′ � qr , the

argument in the previous paragraph shows that H1
b,r = Tr(xb,1xp−1

r,1 ) separates v1 and v2. Finally if
ci, j = di, j = 0 for all 1 � i � m and 2 � j � qi , then each ci and di is a fixed point in W i . Hence if
ci and di are in the same G-orbit, then ci = di . Since this is true for all 1 � i � m, it follows that
v1 = v2. �

Note that the dimensions of indecomposable summands in T are one less than the dimensions
of the indecomposable summands in W . Meanwhile, the polynomials in Si may be chosen to be of
degree one and p for all 1 � i � m by Remark 4 and the polynomials in H are of degree p and
involve variables from two summands. Therefore by induction on the maximum dimension of an
indecomposable summand in a representation one easily gets the following.



4104 M. Sezer / Journal of Algebra 322 (2009) 4099–4104
Corollary 7. Let W be a Z/p representation over characteristic p. Then there exists a separating set for W
consisting of polynomials each of which has degree one or p and involves variables from at most two summands
in W ∗ .
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