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Waring—Goldbach Problem with
Piatetski-Shapiro Primes

par YILDIRIM AKBAL et AHMET M. GULOGLU

RESUME. Dans cet article nous donnons une formule asymptotique pour
le nombre de représentations d’'un grand entier comme somme de puissances
identiques des nombres premiers de Piatetski-Shapiro, établissant donc une
variante du probleme de Waring—Goldbach pour des suites clairsemées de
nombres premiers.

ABSTRACT. In this paper, we exhibit an asymptotic formula for the number
of representations of a large integer as a sum of a fixed power of Piatetski-
Shapiro primes, thereby establishing a variant of Waring—Goldbach problem
with primes from a sparse sequence.

1. Introduction

We define, for a natural number k, and a prime p, 6 = 0(p, k) to be the
largest natural number such that p? | k, and define v(p, k) by

0+2 ifp=2and2|Ek,
0 +1 otherwise.

vzv(p,k)Z{

We then put K (k) = [T(p—1)% p7- In this work, we establish an asymptotic
formula for the number of representations of a positive integer N in the
form

(1.1) szlf—i-”-—i-pf, with p1,...,ps € P,

for k > 3, provided that A is congruent to s modulo K (k), and ¢ > 1 takes
values in a small interval depending on s and k. Here, the set of primes

P.={|m°] : [m°] is prime for some m € N}

is named after I.I. Piatetski-Shapiro, since he was the first to prove an
analog of the Prime Number Theorem (cf. [12]) for ¢ € (1,12/11).
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Theorem 1.1. Lett > 0 be any integer such that the inequality

1 2~k2t
1.2 / e2mian
12 >

da < X% Flog" X
1<n<X

holds for all X > 2 with some constants C = C(k,t) and n = n(t, k) >
Then, for any integer s > 2t, the number of representations R( ,)g(./\/') 0f a
positive integer N as in (1.1) satisfies

T'(1+1/(ck))® SV N8/ (ck)—1 <Ns/(ck)—1>

(c) _
R (N) = T (s/(ck)) ( log® N/ log' N

where &(N) defined in (2.3) is the singular series in the classical Waring—
Goldbach problem, provided that c is a fized number satisfying

3 min { 7754515&7 755—‘:16415} k=3,
(1.3) I<e<14(s—2t) 1
EER T k>3,
where
k(k+ 1) if 4 < k < 11,
1.4 v=142[3k/2| (|3k/2)* - 1
(1.4) S

By [7, Lemmas 8.10 and 8.12], when N' = s (mod K(k)), the singular
series satisfies §(N') < 1 for the values of s given in Theorem 1.1. Thus, our
theorem implies that all sufficiently large integers N congruent to s modulo
K (k) can be written as in (1.1), thereby establishing a variant of Waring—
Goldbach problem with Piatetski-Shapiro primes for k > 3. For k = 2, it is
shown in [15] that every sufficiently large integer N =5 (mod 24) can be
written as in (1.1) with s = 5, provided that 1 < ¢ < %, while for k =1,
it follows from [9] that every sufficiently large odd integer can be written
as in (1.1) with s = 3, provided that 1 < ¢ < 23

Following the proof of the main theorem of [15], the current range of ¢
in Theorem 1.1 for the case k = 3 can be improved. We shall leave this to
a subsequent paper.

In analogy to Waring—Goldbach Problem, one can define H.(k) to be
the least integer s such that every sufficiently large integer congruent to
s modulo K (k) can be expressed as in (1.1). Following the proof of The-
orem 1 and using the methods in Hua’s book [7, §9], one may conclude
that, for large k, H.(k) is bounded above by 4k log k(1 + o(1)), when ¢ lies
in a slightly larger range than that of Theorem 1.1. However, coupling our
results with the recent improvements of Wooley and Kumchev [10, 11] on
Waring—Goldbach problem, we intend to futher improve this bound in an
another paper.
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The range of ¢ in Theorem 1.1 is determined by three different estimates
for exponential sums; van der Corput’s estimate in Lemma 2.4 for k = 3,
Heath Brown’s new estimate in Lemma 2.3 for 3 < k£ < 12, and finally our
estimate in Lemma 2.9 for k£ > 12.

Remark 1.2. Using Wooley’s result [14, Theorem 4.1] in the light of recent
developments on Vinogradov’s Mean Value Theorem by Bourgain, Deme-
ter and Guth in [4, Theorem 1.1], it follows that the smallest exponent
satisfying (1.2) is

k(34|55 |67 |8]9 10| 11 | 12
2t (8116243448 |62 | 78|98 | 118 | 142

while for £ > 12, it follows from [3, Theorem 11] that 2¢ can be chosen as
the smallest even integer no smaller than

k—s—1
41— _—
+ I?gl?[sk—s+lw

and for large k, 2t can be taken as large as k2 — k + O(Vk).

2. Preliminaries and Notation

2.1. Notation. Throughout the paper, k, m and n are natural numbers
with £ > 3, and p always denotes a prime number. We write n ~ N to
mean that N < n < 2N. Furthermore, ¢ > 1 is a fixed real number and we
put d =1/c.
Given a real number z, we write e(z) = e*™® {z} for the fractional part
of z, |x| for the greatest integer not exceeding z. We write £ = log N'V/*.
For any function f, we put

Af(@)=f(=@+17) = f(=)),  (z>0).

We recall that for functions F' and real nonnegative G the notations
F < G and F = O(G) are equivalent to the statement that the inequality
|F| < aG holds for some constant o« > 0. If ' > 0 also, then F' > G
is equivalent to G <« F. We also write I’ < G to indicate that F' < G
and G < F. In what follows, any implied constants in the symbols < and
O may depend on the parameters c, ¢, k, s, t, but are absolute otherwise.
We shall frequently use € with a slight abuse of notation to mean a small
positive number, possibly a different one each time.

Finally we put

Ser(e, X) =" e(ap?),  Torla, X) =" p° e(ap).
p<X p<X
pEP:
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2.2. Preliminaries.

2.2.1. Results related to Piatetski-Shapiro sequences. The charac-
teristic function of the set A. = {|m¢] : m € N} is given by

(2.1) L_”[;J B {—(”“)BJ _ {1 if n € A,

0 otherwise.
Putting 1(z) = z — || — 1/2 we obtain
2.2) {—n‘SJ — {—(n + 1)‘5J = (n+1)° —n® + Ai(n)
= 6n° "L+ O(n°2) + Adp(n).

The following result due to Vaaler gives an approximation to ¢ (x).

Lemma 2.1 ([5, Appendix]). There ezists a trigonometric polynomial
V()= Y ape(hx), (an < A7)
1<|h|<H
such that for any real x,
[W(z) =y (@) < D bpe(ha), (bp < H™Y).
|h|<H
2.2.2. Definitions related to Waring—Goldbach Problem. Put
S(a,q) = > e(az"/q),
1<z<q
(J:,q):l
Sm(a) = Y (p(a)"'S(a,q))°e(~ma/q),  (s€N,meZ)

1<a<q
(a,9)=1

6<m) = ZSm<Q)7

q=1

NYE §0-le(z2k) 51 .
J(z) :/2 de, Z(z) :/0 0z’ “e(za") dx,

v(z) = ¢(q) ' 5(a,9) T (2).
By [7, Lemma 8.5] the estimate

(2.4) S(a,q) < ¢'/**e

(2.3)

holds for ged(a, ¢) = 1. By the substitution y = zz* and the trivial estimate,
it easily follows that

(2.5) Z(2) < min (N*/F, |2 79/F)
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Definition 2.2 (Major and Minor Arcs). For fixed x > 0, define
My(a,q) = {a €R: Jga —a < LX)

Let 9, be the union of all M, (a,q) where a,q are coprime integers such
that 1 < a < ¢ < L. Note that the sets My (a,q) are pairwise disjoint
and are contained in the unit interval U, = (£FX % 1 + £°XF]. Put
m,, = U, \ M.

2.3. Standard Lemmas.

Lemma 2.3 ([6, Theorem 1]). Let k > 3 be an integer, and suppose that
f : [0,N] — R has continuous derwatwes of order up to k on (0,N).
Suppose further that 0 < A\, < f®)(z) < A\, for x € (0, N). Then,

> e(f(n)

n<N

CAke Nlte ()\kl/k(kq) + N-VRGE=D) 4 N72/k(k—1))\];2/k2(k71)) ‘

Lemma 2.4 ([5, Theorem 2.8]). Let q be a positive integer. Suppose that f
1s a real valued function with g+2 continuous derivatives on some interval I.
Suppose also that for some A > 0 and for some a > 1,

A< (@) < ad
on I. Let Q = 21, Then,
> e(f(n) <

nel
|I|(a2)\)1/(4Q*2) + ‘[‘1*1/(262)041/(2@ + ‘111*2/Q+1/Q2)(1/(2Q)

where the implied constant is absolute.

Lemma 2.5. Assume Iy is a subinterval of an interval I with |I1] > 1, and
g(x) is defined on I. Then,

> elg(n)) <log(1+[I]) sup | > e(g(n)+n)|.
nely Yyel01) 1y er
Proof. The result follows upon taking the supremum over all v € [0, 1] in

/Z n)+n) Y e(—ym)dy,

neh nel mel

and using the fundamental inequality
1 1
/0 Z e(—ym)|dy < /0 min {\Il| BT } dy < log(1+ |1])

mely
where ||v|| = min,ez [n — 7| O
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Lemma 2.6 ([3, Theorem 5)]). Let k > 3 be an integer, and let aq, . .., o €
R. Suppose that there exists a natural number j with 2 < j < k such that,
for some a € Z and q € N with (a,q) =1, one has |a; —a/q| < ¢ ~2. Then,
1/k(k—1)
Z e<a1n+-~+akn’“)<<N”€( Ly N L4 gN— J) .
1<n<N
The following result can be deduced from [8, Proposition 13.4].

Lemma 2.7 (Vaughan’s Identity). Let u,v > 1 be real numbers. If n > v

then,
= > n(a)logb— > M) pu(d)— > pb)Ala)
ab=n ab=n dlb abc=n
a<su a>v,b>u d<u b<u,a<v

Lemma 2.8. For any nonzero B € R,

5k
J(B) — 5_11(5) < /E\CHQ + mm{j\/"s/k 18 5/k}10glog/\/‘

Proof. Using trivial estimate

J J&/k
0—1 k -1 -1

for any 2 < J < N'V/k_ By partial integration
N1/k
/ 62 Le(Ba") ((log z) - £_1> dz

J
log (N'VE /g
log (A1) sup | ®(8,1)

<

where .
(B, t) :/ 5% 1e(Bz*) de < min{t?, |B|9/%)
2

uniformly for 2 < t < N'*. Choosing J = N'/*(log N')~¢**1) and com-
bining the above estimates completes the proof. O

2.4. Exponential sum estimates. This part constitutes the backbone
of the entire paper and is to be used in the proof of Theorem 1.1.

Lemma 2.9. Assume k > 3, D > 0, and g(z) € R[z] is a polynomial of
degree not exceeding k. Let £ > k + 1 be an integer. Then, the estimate

Z e (g(n) + Dn‘s)
nel

< N'te ((DNH—I) + (DN®)#I N7 + (DN°®)~ e+1)



Waring—Goldbach Problem with PS Primes 455

holds with o= = £(¢ — 1) or with o' = 2F whenever £ = k + 1, for any
subinterval I of (N,2N], where the implied constant depends only on €,k
and £.

Proof. We shall first bound the sum
3" elgn) + Dnd)

n~N
for an arbitrary g(z) € Rlz]| with degg < k, and the result will follow by
Lemma 2.5.
We can assume that 2(t! < DN? < N*+1 since otherwise the claimed
estimate holds trivially. Put f(x) = g(x) + Dx%. For m € Z with 1 < m <
M < N/2,

Y elf(n) =Y e(f(n+m))+O0(m).

n~N n~N
Thus, summing over m € [1, M],
1
doelfm) <3 > | X e(flntm) |+ M.

Let Rj(z) = (1+x)° — Fj(z), where Fj(z) = Yocic; (f)azZ is the jth Taylor
polynomial of (1 + x)?. Then, taking 2 = m/n,
f(n+m) = g(n+m)+Dn’ (F(m/n) + Re(m/n))
= Py(m) 4+ Dn’ Ry(m/n)
where Py(z) = Y ¢_geir’ € Rlz], ¢pp1 = CDnO% 1 and 0 < |C| < 1.

Noting that Rj(z) < |z|® uniformly for |z| < M/N < 1/2, we derive by
partial integration and Lemma 2.5 that

> e(f(n+m))

m<M

< (14 DN (M/N)™) sup log M.

’76[071)

S e (Bym) +ym)
1<m<M
Note that |cx41 £ 1/q] < ¢72, where ¢ = [|cg1]7t] = 1 since |cpi1] < 1.
Then, taking ¢ = k+1 and applying Weyl’s inequality (cf. [13, Lemma 2.4])
yields for any v € R that

ka
Z e (Pk’-l-l(m) + ’YTR) < Mlite (q_l + M1 + qM—k—l) :
1<m<M

while it follows from Lemma 2.6 that for arbitrary ¢ > k + 1,

1/6(¢—-1
> e(Pom) +ym) < M7= (g7 M4 gMET) /=)

1<m<M
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In either case, we choose M = N(DN‘S)V%1 so that we have 1 < M < N/2,
and thus we obtain

S e(f(m) < N (g7 4+ M M)

n~N
Using the definitions of M and ¢, and the fact that o < (£ — k)~!, we see

that the contribution of N'*¢(¢M~*~1)7 is already larger than M, thus M
can be eliminated, and the result follows. O

Lemma 2.10. Uniformly for any complex numbers a,, by, with |ay|, |bm| <
1, and g(t) € Rt] of degree not exceeding k,

S(z,y) = Z anbme(hn®m? + g(mn)) < N+ min{S;, Sy, S3},
mn~N

where
= (’h|N5—11;_€)#ﬁ1 + (|h|N5—1 —k)%
+ (BN 4 (N2 4 g T2,
— (2/N)Y/2 4 (|h| NO)"VRG+1? | =1 /2k (k1)
2.
( 6) + (|h|N571x*k)1/2(k2+k+1)

727}671 21721{27217’6 271@71
x

Sz =z + (z/N)Y? + (|| Nz~ 1=F)~

+ (RN T,

Proof. We may assume that |h|N9~12=F < 1; otherwise, the assertion is
trivial. Applying Weyl-van der Corput inequality (cf. [5, Lemma 2.5]) we
see that

T 2 T 2
Ploy) < LS ax [D(gn, o)

Q @ fgequsmnta<
where 1 < @ < y is to be chosen optimally, and
(27) T(gn2)=> e(h((n+9)° —n')m’ + g ((n+g)m) - g(nm)),
mel

where I C (x,2z] is an interval determined by the conditions m ~ =z,
nm ~ N, and (n+¢q)m ~ N.

If we apply Lemma 2.9 with D = |h ((n +4q)° — n5> |, noting that D =<
|hqly’

T(g,n,x) < 2 ((|hg| Ntz =F)"

, we obtain

+ (|hgI NP e T 4 (|hg| N ) ).
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Inserting this estimate above and summing over ¢ yields
S*(a,y)(@y) 27" < Q7+ (QIAINTaTH)?
+ (QIMINT a7 + QRN )~
Using [5, Lemma 2.4] to choose 1 < @ < y optimally, we conclude that
82 (a,y)(ay) 7 < (BN )T 4 (BN )T 4N
+ (BN a7 4 ([N Ry T
—k —k
+ (Jh|NO) "7 4 o TR 4 (z k)T

Since |h|N°~1z7% < 1, we can eliminate the second and the fourth terms,
and the last term is smaller than the penultimate one.

If we instead apply Lemma 2.3 (with k£ + 1 in place of k) to (2.7), we
obtain

I'(g,n,z) < :c1+5((|hq]N5—1x—k)1/k(k+1)
4 g k(L) (|hq|N5—1x)—2/k(k+1)2>’
which yields
S2(2,y)(zy) 25 < Q1 4 (Q[R| N~ Ly—h)L/kk+D)
VR 4 (Q|R| NS 1) 2/ k(ED)?,
Using [5, Lemma 2.4] once again, we conclude that
S%(z,y)(wy) 27 < x/N + (|h|NO g F)L/kUt1) g =1/k (kD)
(RN 2RO 2 M)y (N1 gy 02k

Since |h|N°~1zF < 1, we eliminate the second term.
Finally, if we apply van der Corput’s result, Lemma 2.4, to (2.7) and
carry on similar calculations as above, we derive the desired estimate. [

Lemma 2.11. For any e >0, and c € (1,2),

T66+7T 796+75 })

Ses(a, X) =T, 3(a, X) + O(X6 max {X 156, X 157
Senl0, X) = Top(o, X) + 0 (XUHEZHE) | >
holds uniformly for o € R, where v is given by (1.4).
Proof. By (2.1), (2.2) and Merten’s Theorem (see [8, (2.15)])

(28)  Ser(@X) = Tux(o, X) + - e(ap")Au(p) + Ofloglog X).
p<X
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In order to bound the middle term on the right, we divide the range
of summation [2, X] into dyadic intervals of the form (N,2N]. Applying
Lemma 2.1 on each such interval, we see that

> elap) AW —¢7)(p) < Hy' Y

p~N |h|<HN

Z e(hn‘s)

n~N

Using the exponent pair (1/2,1/2) (cf. [5, Chapter 3]) we obtain the esti-
mate

3" e(hnd) < |h[VANO/2 4 || TINTT0 (h # 0)
n~N
so that

(2.9) Z e(ap®) Ay — ") (p) < NHy' + BY? + Hyllog Hy N2,
p~N

where B = HyN°.
Next, we turn to the sum involving *. First using partial summation
and then introducing von Mangoldt function we obtain

> e(ap®)Av*(p) <

p~N

max
log N N'<2N

Z Aw*(n)e(ank)A(n)‘ +VN.

N<n<N’

Recalling the definition of ¢* it is not too hard (see [5, 4.6]) to derive that

> e(ap®)Av*(p) < O(N) + VN,
p~N

(210) N5—1

N =
o) log N Z ngsz

1<|h|<HN

> e(an® + hn®)A(n)|.

N<n<N’

Assume that u,v > 1 are real numbers with uv < N. Using Lemma 2.7 we
write the inner sum on the right as £y — Fs — E3 where

E, = Z wu(n) Z e (a(nm)k + h(nm)5> logm

n<u N/n<m<N'/n

—Z( > u(b)A(a)> > e(amm)t+hnm)?),

m<u ab=m N/m<n<N'/m

b<u,a<v
Ey= 3 AW ( 2 u<d>>€ (atnm)* + hnm)?)
N<nm<N' dlm

n>v,m>u d<u
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and
By= ). ( > M(b)A(a))e(Oé(nm)k+h(nm)5).

N<nm<N/ ab=m

u<m<uv b<u,a<v
Note that

k )
(211) B <logN Y. M%%N’ S e(atm) +h(nm)>‘.
I<nsu N/n<m<N'/n

Thus, applying Lemma 2.9 with D = |h|n® to the inner sum above and
summing over n < u we obtain

Ey < N (([n|N)7 (u/N) kDo
+ (|hIN)FT (u/N)7~ + (|| N?) =),
Hence, the contribution to (2.10) from Fj is
212) < BB /)T B N)T ),

Next, we estimate the bilinear sums Fy and F3. We first note that Fy <
NeY,, 1S(z,y)|, where

x,y) = Z b Z anpe (04(nm)]’C + h(nm)‘s) ,

m~x n~y
N<nm<N/

with y > v,z > u, zy < N and |ay|, |by,| < 1. Also,

B3 <log N> [S(z,y)]
T,y

with a similar bilinear sum S(z,y), where v < z < w, xy < N and
lan|, |bm| < 1. Applying the bound S; in Lemma 2.10 we obtain

By + By < N2 (072 4 (un/N)V? +uvfii1 + (|h| Ny~ o/
a/2
+ (BINSu 7T 4 (BN ).

Choosing v = (N/u)"/?, we see that the contribution of Fy + E3 to (2.10)
is

(213) < BYE((u/N)Y4 4w mel? 4 gL

o /2 /2
+ (BN~ 7T 4 (BNl k)17 ).
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Combining (2.9), (2.12) and (2.13) we conclude that
3 elaph)Ap(p) < NH7' + B 51724 4 pl/2
p~N
+ B (B (u/N)FHD7E o (u/N)V4 4 BT (u/N)7
TR0 (BN—lu—f)#ﬁl + (BN—lu—’f)f%).
Note that the second term dominates the third. Since the first two terms

are independent of u, we choose

- 1-A(%) (¢ —k)o

Hy = N U9=aw Al) = 27

N ’ © 200+ 1)

so as to balance them first. Note that with this choice, we have 1 < Hy <
N, and

1-A(0)

NHy' = NO¥730 | B = HyN® = N7 4@,
In order to minimize N H;,l, we set

A=A, = ax A(L).

It follows by an easy computation that ¢ = |3k/2] maximizes A(¢), and
with this choice of A, we find by setting u = N'/2 that all the remaining
terms are smaller than N H&l, and thus we conclude that

(2.14) S elaph)Ad(p) < NOFITATE,
p~N

Next, we estimate the inner sum in (2.11) using Lemma 2.3. This gives
B, < Nl—i—a((thS)l/k(k-‘rl)(u/N)l/k + (u/N)l/k(k+l) + (thS)—Q/k(k+l)2)’
whose contribution to (2.10) is
(2.15) < B1+5(B1/k:(k:+l)(u/N)1/k + (u/N)l/k(k+l) +sz/k(k+1)2)_

Using the bound Ss in (2.6), we see that the contribution of Eo+FE3 to (2.10)
is

(2.16) < Bl+2s<(u/N)1/4+Bfl/k(k+1)2 4y~ 1/2k(k+1)
+ (BN—lu—k)l/Q(H—f—k—&-l)).
Combining (2.9), (2.15) and (2.16) shows that (2.10) is bounded by
NHy + BUHRERDE 4 glte(BURESD (4 N)YE 4 (/N RESD
+ u—1/2k (k1) + (BN—lu—k)1/2(k2+k+1)>.
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Choosing Hy to balance the first two terms again gives
1

NH-! — N(H&)% -
N k(k+1)2

, CO=

As before, for u = N'/2, all the remaining terms are dominated by N Hg,l.
Thus,

(2.17) Z e(ap®) Ay (p) < N =gte,
p~N

One can easily check that for 3 < k& < 11, using Heath-Brown’s result
(Lemma 2.3) gives a better estimate since C' > A. For k > 12, however,
A > C, which explains our choice in (1.4).

Finally, (only) for £ = 3, one can do slightly better than Heath-Brown’s
estimate by using van der Corput’s estimate; namely, by Lemma 2.4 with
q = 2, it follows that

E) < Nlog N ((hN5(u/N)4)114 + (u/N)F + (hN‘S)_éNllfs>
whose contribution to (2.10) is
(2.18) < Blog N((B(u/N)")% + (u/N)s + BTN ).
On the other hand, using S5 in (2.10), we obtain for k = 3,
Ey + E3 < N+e (u—% + B3%u 10 + v 2 + B16(N/v)3
+ (uv/N)% + B_%(uv):%%).

Choosing v = \/N/u and summing over h, the contribution from FEs + F3
is

(219) < BY(u T + BIN3u T + (u/N)T + BT (ulN)ar ).
Combining (2.9), (2.18) and (2.19), the total contribution is
< NHy' + B/8N16 + B'** (u—% + B® N~ %0y 10 + B 16 (uN)s
+ B (u/N)1i + (u/N)7).

Choosing u optimally above by using [5, Lemma 2.4] with 1 < u < N, we
have that (2.10) is bounded by

1 Tie( nr—L 12 11 14 11
<<NHN + B (N 6+B30N 154+B 16Neda+B1aN 14}+B 20/N80

1 4 _ 1 11 1 7 .8 1 2
+B7 N 78+N 2a4+B 222 N111 + Bi2 N~ 81 + B54 N 27)7
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Here, only the first term has Hy with a negative exponent. Balancing
terms with an appropriate 1 < Hy < N using [5, Lemma 2.4] again, (2.10)
is bounded by

14641 316—4 606+1 156—4 766+1 796—4 246—1

< NE (14 N5 4 N N N N TR N N

211642 1696—16 556—4 75 310427 600+61 156411

+N 222 + N 162 + N 51 +Nﬁ+%+N 61 4+ N 122 + N 29

766477 796475 21164213 1696+153 556451 )

+NW+NT+N%+%+N 333 + N~ 331 + N 109

Comparing all the terms under the assumption that § € (1/2,1), we end
up with

766+77 796+75 }

(2.20) > e(ap®) Av(p) < N€max {N 156, N~ 157
p~N

The result follows by inserting (2.14), (2.17) and (2.20) back to (2.8). O
Lemma 2.12. If1 < ¢ < 12/11, then for any o € My (a, q) with ged(a, q) =
1, 1 <a < qg< L and sufficiently large X, we have

Ser(c, X) — v —a/q) < X’ exp(—C/log X),
where C > 0 is an absolute constant and the implied constant depends only

on k and k.

Proof. Combining (2.8) with equations (2.9) and (2.10), in which we take
Hy = N179t¢ we see that

Sl X) = Top(e, X) < 30 (N2 4+ O(N)).
N=2!<X

The inner sum in the definition of ©(N) can be written as

k
Z e <am) Z e(ﬁn’C + hn‘s)A(n) + O(qlog N).
1<m<q q N<n<N'’
(m,q)=1 n=m mod ¢

Removing e(An*) by partial summation this double sum is bounded by

14 NFgrx kgt max ‘ e(hn®)A(n ‘
K;éq ( ! )N<N,<2N N<nZ<N’ ( ) ( )
(m,q)=1 n=m mod q

Applying the estimate given as the first equation on page 323 of [1], which
is uniform both in m and ¢, we derive that

0—1 pr—1 -1 1
ON) < Nert 3T gt 3 max | D e(hn)A(n)‘

1<m<q 1I<|h<HN N<n<N’
(m,q)=1 n=m mod g

< NP exp(—c1y/log N)
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for an absolute constant ¢; > 0, and any fixed 1 < ¢ < 12/11.
Next, we deal with Tt (o, X). Writing f = o —a/q

Top(a, X) = Y elabF/q) Y op° e(Bp") + O(w(g))

1<b<q p<X
(b,9)=1 p=b mod q

where w(n) is the number of distinct prime divisors of n. It follows from
Siegel-Walfisz theorem that

Y o= /2 Y B,

i< p(q) J2 logt
p=b mod q

uniformly for ¢ < £", where E(z) < xexp(—cay/logz) for an absolute
constant ca = ca(k) > 0 and large z. By partial integration we derive that

S e = [P
= 2= p(q)logz

p=b mod ¢q

X

+0 (X‘HE(X) + ﬁ/ |E(x)|xd2 dx> .

Using E(z) < = when z is small (say z < v/X) and the above bound for
large  in the last integral and inserting the result above we obtain

Tep(or X) = v(e — a/g) + Op (X7 exp(—e3v/l0g X))
for sufficiently large X and some positive absolute constant c3 < ¢a. Com-

bining all the estimates above, the result follows. O

3. Proof of Theorem 1.1
Recall that, for a fixed ¥ > 3 and ¢ > 1, Ric,)c(]\/ ) is the number of
representations of a positive integer N as in (1.1). It can be rewritten as

Rgc,)g(/\/') :/ Sek(a, X)’e(—aN) da,
’ u

where U is any interval of unit length and X = {/\/’ 1/ kJ

Lemma 3.1 (Major Arcs). Assume that s > max(5,k + 1), and that 1 <

c < min{%,%}. Then, uniformly for integers m with 1 < m < N, and

T+ 6/k)" NOs/E—L
S, _ ds/k—1
/Dm Se (o, X)’e(—am)da = &(m)m T(s0 k) L* +o ( Iz .
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Proof. By Lemma 2.12 below,
Sc,k’(avX) - ’U(Oé - a/q) < XéE(X)v
where E(X) = exp(—c2+y/log X), uniformly for o € My (a, q) with (a,q) =1
and 1 <a < g < LF. Put B =a—a/q. Then,
Se(, X)* —v(B)* < (X°B(X))* + X°E(X)|v(B)]"".
Therefore,
Z Z Ser(a, X)*—v(a—a/q)’)e(—am)da =o <X587k£75> .
q<LF  a<q x(a,q)
(a,g9)=1

Furthermore,

Z Z (—am) da

g<Lr a<q r(a,q)
(a,9)=1

= 3" Snlo) /|q e T a5

qsLr

Using Lemma 2.8 together with (2.5) and the bound S,,(q) < ¢'~*/**¢
(which follows from (2.4)), we see that replacing the integral J (/) above
by £7'Z(8) introduces an error of size o(X%~*/L£*). We can then extend
the integral over 5 to R with another permissible error. By [2, Lemma 8],
(A +6/k)°
I d — 68//(: 1 )

/ (=Bm)d5 = T'(s0/k)

Finally, using
Z Sm(Q) _ 6(777,) +0 (En(2fs/2+5))

q<LF

completes the proof. O

Lemma 3.2 (Minor Arcs). Assume that A > 0, and t is an integer for
which (1.2) holds. Then,

/ |Sck(aa X)’S da < Xés—k£2t—1—)\6(s—2t)+n + X(s—2t)9+2t—k+a’
mg

provided that k > 26%(2 4+ ), where 0 is the exponent of X in the error
term in Lemma 2.11.

Proof. Using equation (2.8) we obtain

/ 1Sup(ar, X)|* da < Iy + I + O ((loglog X)*)
mg
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where
S

I :/ T (v, X)|* dav, Igz/
My My

> e(ap®)Av(p)

p<X

We first bound I;. Let 2 < J < X be a constant to be determined. By
partial integration

Tep(o, X) < J+J°71 sup
J<t<X

> elap®)
J<p<t
Take a € m,. By Dirichlet’s approximation theorem, one can find integers
a, ¢ with 1 < a < ¢ < L7°X* such that |a — a/q| < ¢~ 'L5X*. Since
a € m,, we have ¢ > L. Writing o = a/q+ 3, and using partial integration
we obtain

Z e(ap®) < sup

S elap/a) (1+151)

J<py

Following the proof of Lemma 2.5 and recalling that y <t < X,

> e(ap®/q+ vp)’,

p<X

> e(ap®/q) < log X sup
J<p<y 7€[0,1)

so that

Tep(o, X) < J° + 771 sup log X.

v€[0,1)

> e(ap®/q +p)

p<X

By [7, Theorem 10] it follows for arbitrary A > 0 and any v € R that
whenever x > 26F(2 4 )\),

> elap®/q+p) < XL
p<X

Choosing J = XL~ we conclude that
Tep(o, X) < XL

Using this bound together with Hélder’s inequality yields
2t

1< sup [Toplen P72 [ ] 57 30 8pte(eph)| da
aEmy my 2l:N<XpNN
1 2t
< (X5£—>\5)(S—2t)£2t—1 Z / Z 6p6_16((1pk) da.
N<x 70 lyon

By considering the underlying Diophantine equations we see that the last

integral is
2t

do.

Z e(omk)

n<N

< N2E-1) /1
0
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Using (1.2) we conclude that for some 1 > 0,
(3.1) L < Xés—kEQt—l—Aé(S—Zt)—l-n.
Next, we deal with I5. Note that
1
J

Using (2.8) and then applying Lemma 2.11 together with (1.2) we obtain
(3.2) I, < X(s=200+2tk+e
Combining (3.1) and (3.2), the proof is completed. O

s—2t 2t

Iy < sup da.

aEmy

> e(ap®) Ap(p)

p<X

Z e(omk)

n<X

The proof of Theorem 1.1 can now be completed by taking m = N in
Lemma 3.1 and observing that taking A (and thus k) sufficiently large in
Lemma 3.2 ensures that the contribution from minor arcs is o(X%$~*£~%)
under the additional assumption in (1.3).
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