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ABSTRACT

BROKER-BASED AD ALLOCATION IN SOCIAL
NETWORKS

İzzeddin Gür
M.S. in Computer Engineering

Supervisors: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu, Assist. Prof. Dr. Buğra Gedik
August, 2013

With the rapid growth of social networking services, there has been an explosion in
the area of viral marketing research. The idea is to explore the marketing value of
social networks with respect to increasing the adoption of a new innovation/product,
or generating brand awareness. A common technique employed is to target a small set
of users that will result in a large cascade of further adoptions. Existing formulations
and solutions in the literature generally focus on the case of a single company. Yet,
the problem gets more challenging if there are a number of companies (the advertis-
ers), each one aiming to create a viral advertising campaign of its own by paying a
set of network users (the endorsers). The endorsers are asked to post intriguing and
entertaining ad messages that contain the content selected by the advertising company.
The advertiser has a predefined budget on how much it is going to spend on this ef-
fort. Also each endorser has a limit on the number of companies for which it serves
as an endorser. In this thesis, we design a broker system as an intermediary between
advertisers and endorsers. We seek to maximize the spread of advertisements over
regular users (the audience), while considering the budget constraints of advertisers.
Our system avoids overburdening of the endorsers and overloading of the audience.
We model the problem through a combinatorial optimization framework with budget
constraints. We develop a cost-effective algorithm called CEAL, which is designed for
solving the problem with close to optimal performance on large-scale graphs. We
also revisit the traditional Independent Cascade Model (ICM) to account for over-
loaded users. We propose an extension of ICM called Independent Cascade Model
with Overload (ICMO). We study the influence maximization problem on variations of
this model. We perform experiments over multiple real-world social networks and em-
pirically show that the proposed CEAL algorithm performs close to optimal in terms
of coverage, yet is sufficiently lightweight to execute on large-scale graphs.

Keywords: Social Networks, Submodular Welfare Problem, Influence Maximization
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ÖZET

SOSYAL AĞLARDA ACENTA TABANLI REKLAM
ATAMA

İzzeddin Gür
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu, Assist. Prof. Dr. Buğra
Gedik

Ağustos, 2013

Hızla gelişen sosyal ağ servisleri sayesinde, viral pazarlama alanında yapılan
araştırmalarda bir patlama yaşandı. Sosyal ağlarda yeni bir fikrin, ürünün benim-
senmesi veya marka bilinirliğinin geliştirilmesi için çokça uygulanan bir yöntem,
küçük bir çekirdek kullanıcı kümesi seçerek, sonraki benimsenmelerin maksimize
edilmesidir. Literatürdeki çözüm ve formülasyonlar genel olarak tek bir şirket du-
rumunu göz önüne alır. Fakat, herbiri ağdaki bir kısım kullanıcılara (reklam ak-
tarıcı) belli bir ücret ödeyerek bir viral pazarlama kampanyası oluşturmak isteyen
birden fazla şirket (reklam veren) olduğu durumda problem daha zor bir hal al-
maktadır. Reklam aktarıcıların amacı ağ üzerinde reklam verenin seçtiği içeriği de
barındıran ilgi çekici ve eğlenceli mesajlar göndermektir. Herbir reklam verenin
önceden belirlenmiş belli bir bütçesi bulunmaktadır. Ayrıca, herbir reklam aktarıcının
kaç tane reklam veren tarafından kullanılabileceğini sınırlayan bir limiti bulunmak-
tadır. Bu tezde, reklam verenler ile reklam aktarıcılar arasında bir aracı sistem tasar-
lamaktayız. Amacımız, reklam verenlerin bütçelerini muhafaza ederek, reklamların
ağdaki sıradan kullanıcılar (son kullanıcılar) arasında yayılımını maksimize etmektir.
Tasarladığımız sistem, reklam aktarıcılarının aşırı yüklenimine ve son kullanıcıların
de reklamlarla boğulmasına engel olmaktadır. Bu problemi kombinatoryal optimiza-
syon problemi üzerinden bütçe kısıtlarını entegre ederek tasarlıyoruz. Bu problemin
çözümü için büyük çaptaki ağlarda optimale yakın performanslı, maliyet-etkili bir
algoritma tasarladık. Ayrıca son kullanıcıların aşırı-yüklenimini modellemek için
klasik Bağımsız Yayılım Modelini (BYM) tekrar gözden geçirip, bu modele bir eklenti
sunuyoruz: Aşırı-Yüklenim etkili Bağımsız Yayılım Modeli (ABYM). Yayılım mak-
simizasyon problemini bu model üzerinde çalışıyoruz. Birkaç gerçek büyük sosyal
ağ verisi üzerindeki deneylerimizde gösteriyoruz ki sunulan algoritma optimal per-
formansa yakın ve büyük sosyal ağlar üzerinde de çalıştırılabilecek kadar zaman
açısından verimli.
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would like to thank Mehmet Güvercin for his patience and friendship.

I would also like to thank my thesis commitee members, Cevdet Aykanat and Savaş
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Chapter 1

Introduction

Over the last decade, with the enormous growth in the adoption of social networking

services among people, viral marketing has gained newfound interest. Social networks,

such as Facebook and Twitter, allow us to explore how ideas, information, and inno-

vations spread. Companies spend more and more money each year to exploit these

opportunities to gain attention, increase sales, and generate brand awareness. Consider

a company that wants to initiate a large cascade of adoptions (or attention, awareness)

by a careful selection of seed users. Selecting the seeds to maximize the cascade is

a fundamental problem in viral marketing research and is referred to as the influence

maximization problem [1]. It is defined on a directed graph, where vertices represent

users, edges represent friendships among users, and weights associated with the edges

represent the influence weights for the friendships. The goal is to target a set of k seed

users that will maximize the expected spread of influence, also referred to as the cov-

erage. A propagation process is started from the seed users and the coverage of these

seed users is defined as the number of regular users (the audience) in the network that

are activated at the end of the process.

Broker-based ad allocation. The problem gets more challenging when there are a

number of companies (the advertisers) that want to initiate viral advertisements (ads).

This calls for need of a broker system where the advertisers can sign-up to find seed

users (the endorsers) for their ads, and endorsers can sign-up to find advertisers whose

1



ads they will spread. Suppose each advertiser has a predefined budget and each en-

dorser has an associated coverage and cost (price they request for their service). An

advertiser wants to pay a set of endorsers to achieve high coverage, considering its bud-

get. As such, we want to assign each advertiser a set of endorsers to maximize its total

coverage, without leaving any advertiser unassigned. Furthermore, we want to limit

the number of advertisers an endorser is assigned to. This ensures that no endorser is

overburdened or perceived as a spammer. Finally, we want to avoid the users getting

overloaded due to too many ad messages.

Research challenges. There are several challenges in addressing this problem. First,

the propagation model used should consider the overloading of the audience. There

are several propagation models in the literature, Independent Cascade Model(ICM)

and Linear Threshold Model(LTM) being the most widely studied ones [1]. These

models mostly assume that the chance of a user to get influenced increases as more of

her neighbors spread the information. In ICM, when a user becomes activated it has

a chance to influence its inactive neighbors. If a neighbor is activated, then it further

attempts to activate its inactive neighbors. In LTM, a user chooses an activation thresh-

old uniformly at random and becomes active if the fraction of its active neighbors is

greater than this threshold. For example, in Twitter, if a user is fond of a mobile phone,

she can post tweets to her followers, recommending or praising the phone. If one of

her neighbors buys or has already bought the phone, he may in turn recommend the

phone to his followers. This may trigger a cascade of recommendations. Both propa-

gation models (ICM and LTM) assume that as additional neighbors of a user become

active, the aptitude of the user to adopt the product increases. This is in contrast to our

problem setup, where overloading is a concern. Consider a user in Twitter who has

received the same ad from a large number of her neighbors. Then the user may get

overloaded by the same type of message. This may in turn cause the user to have a

bad opinion about the ad, or unfollow several of her followers, or even churn. This is

a serious problem in viral marketing that needs addressing.

Second, the broker-based ad allocation problem needs to be formalized as an opti-

mization problem, where the coverage provided to the advertisers is to be maximized,

while considering the budget constraints of the advertisers as well as the advertisement

limits of the endorsers. Furthermore, if possible, no advertisers should be left without
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coverage and the broker system should be fair to the advertisers in the sense that the

budget used per coverage provided to ads with similar budgets should be similar.

Last but not the least, we need fast heuristic algorithms that can match advertisers

to endorsers with close to optimal coverage. Ideally, the matching algorithm should be

fast enough to be executed on large-scale social network databases.

Solution approach. We address each of these challenges in our work. First, in order

to model the audience overload problem, we propose a novel propagation model and

revisit influence maximization in the context of this model. An active user u tries to

activate a neighbor v with a probability pu,v as in ICM. But the user gets overloaded

if she receives too many ads. We model this by a probabilistic function where the

user becomes overloaded with a probability pu(S) with every attempt, where S is the

set of active neighbors. We assume that pu(S) is nondecreasing. We call this model

Independent Cascade Model with Overload (ICMO). We consider both progressive and

non-progressive variations of this model. The progressive model preserves desirable

properties such as submodularity and monotonocity, which help prove approximation

bounds for the greedy algorithms. The non-progressive model aims to model also the

overloading of previously activated users.

Second, we formalize the problem through a combinatorial optimization frame-

work. We generalize the Maximizing Submodular Welfare problem to several linear

constraints. We show that the generalized problem is NP-hard.

Last, we propose a cost-effective greedy algorithm called CEAL to solve the broker-

based ad allocation problem. The algorithm operates by searching through the set of

advertisements and endorsers to find the best pair that results in maximum marginal

gain per cost. We successively pick (ad, endorser) pairs according to cost-effective

marginal gain until we consider all endorsers. If there are more than one ads achieving

maximum gain for the chosen endorser, we pick the ad that has the least remaining

budget. Furthermore, the algorithm is guaranteed to assign at least one endorser for

each ad, if there are enough number of endorsers. Our results show that the CEAL

algorithm can provide high coverage at low computational cost, can use up most of

the ad budgets given sufficient number of endorsers, and be fair to the advertisers with

respect to the cost charged per coverage provided.

3



Contributions. This thesis makes the following contributions:

• We formalize the problem of broker-based ad allocation in social networks.

• We introduce the ICMO propagation model that captures the ad overload prob-

lem.

• We develop the CEAL algorithm – a fast greedy algorithm that can perform ad

allocation with high accuracy and low computational cost.

• We provide an evaluation using real-world networks, giving insights on the prob-

lem of broker-based ad allocation and illustrating the effectiveness of our tech-

niques.

The rest of this thesis is organized as follows. In Chapter 2 we give the necessary

background and related work with their analysis. Especially the Ad Allocation Prob-

lem, the Submodular Welfare Problem and Influence Maximization and Propagation

in social networks is given. In Chapter 3, we study the introduced propagation models

in detail, give a formulation for the broker-based ad allocation problem, and explain

the proposed algorithms. We present the results of our evaluation on several real-life

networks in Chapter 4. We conclude the thesis in Chapter 5.
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Chapter 2

Background and related work

In this chapter, we review the basic concepts and notational conventions used through-

out this thesis. Next, we survey the works on influence maximization, ad allocation

and submodular welfare problem.

2.1 Basic concepts and definitions

We briefly define necessary concepts and definitions and introduce some terminology

used throughout this thesis.

2.1.1 Graph theoretic concepts and social networks

We represent a social network by a graph. A graph G = (U,L) is a set of vertices U

and a set of edges L between vertices. We interchangeably use the word vertex, node,

user, individual and the word edge, link, relationship.

For each nodes u, v ∈ U , an edge from u to v is represented by a tuple (u, v) ∈ L if

any exists.

Next, we define several basic terminology and their relationships with a social network:
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Directed and undirected graph: A graph is undirected if (u, v) ∈ L ⇐⇒
(v, u) ∈ L. A graph is called directed if the order of the pairs for each edge is im-

portant. We can also use the same convention for each edge seperately. An edge

(u, v) ∈ L is undirected if the pairs are unordered, and directed otherwise. An undi-

rected edge may reflect the friendship between two users which generally is a mutual

relationship. A directed edge on the other hand may reflect that one user is following

the interests of another user.

Subgraph: A subgraph Gz = (Vz, Ez) of a graph G = (U,L) is a graph where

Ez ⊆ L and Vz = {u, v : (u, v) ∈ Ez}.

Node degree: For directed graphs, we divide the degree of a node u into two:

indegree δin(u) of u is the number of nodes where there is a directed edge from v to u,

outdegree δout(u) of u is the number of nodes where there is a directed edge from u to

v. For undirected graphs there is only one type of degree, and the degree of a node u

is the number of nodes δ(u) where there is an edge between u and v.

We make a distinction between a social network and an influence network. Differ-

ent from a social network, an influence network also represents relationships between

individuals as an influence relationship.

Influence network: An influence networkG = (U,L, p) is a social network where

p is the influence function. For each edge (u, v) ∈ L, pv(u) reflects the influence of

node v over u.

2.2 Cascading behavior and influence maximization in

social networks

Information cascades are the processes of wide spread transmission of an idea, inno-

vation, advertisement, or disease due to the peer-to-peer influences of individuals. The

phenomena of how innovations spread in a social environment is first studied by soci-

ologists [2]. More recently, the phenomenon has attracted different researchers from
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various fields including finding seed users for viral marketing [3, 1], finding inocula-

tion targets in case of spread of an epidemic [4], and explaining evolution of networks

in blogosphere [5].

There are two basic models that try to capture the spread of influence in a social

network: Linear Threshold Model (LTM) [6] and Independent Cascade Model (ICM)

[7].

2.2.1 Linear Threshold Model

The process is based on node-specific thresholds. Given an influence network G =

(U,L, p), a node u is influenced by her neighbors v according to a weigth pv(u) where

∀u ∈ M(u),
∑

v pv(u) ≤ 1. Then, each node u in the network picks a random thresh-

old value θu ∈ [0, 1] uniformly at random. This threshold value indicates the weighted

fraction of neighbors of u that has to be active in order for u to get active. Given the

threshold distribution over each node in the network and initial set of seed users S0

(initally active nodes) at time t0, the diffusion process unfolds according to the follow-

ing process: at time t each active node remains active at time t + 1 and each inactive

node u becomes active if the sum of the weights of the edges between u and her active

neighbors is at least the threshold θu that u set for herself:∑
v∈Mu

pv(u) ≥ θu (2.1)

The process continues as such there is no new active node. Threshold values reflect the

tendency of users to adopt the idea when their friends start to get active. The reason

why the thresholds are randomly chosen is because of the fact that our the lack of

knowledge of the respective values of the thresholds.

The weights of the edges indicates the tendency of a user to get influenced by her

neighbors. It shows the authority, influence, or friendship of a neighbor v ∈ M(u)

over u.
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2.2.2 Independent Cascade Model

ICM captures the dynamics of diffusion of an idea in a step-by-step manner. Given an

influence network G = (U,L, p), a node u is influenced by her neighbors v according

to a weigth pv(u) where ∀u ∈ M(u),
∑

v pv(u) ≤ 1, and pv(u) is the probability

that v is succesful in the attempt of activating u. Let’s assume that at time t a node v

gets active. Then, v has a one chance of activating her previously inactive neighbor

u with probability pv(u). If she succeeds, then v is active at time t + 1, otherwise

v stays inactive. If multiple neighbors of v gets active at t, then their attempts are

sequenced arbitrarly. Each of these neigbors independently attempts to activate u at

time t with respective probabilities and if any of them is succesful then v gets active at

time t+ 1. Given the set of active neighbors St(u) of u at time t, the probability that u

is successful at t+ 1 is

Pr(u is active at t+1 ) = 1−
∏

v∈St(u)

(1− pv(u)) (2.2)

The process continues as such there is no new active node.

Similar to LTM, the weights of the edges indicates the tendency of a user to get

influenced by her neighbors. Again, it shows the authority, influence, or friendship of

a neighbor v ∈M(u) over u.

Decreasing Cascade Model (DCM). The probability pv(u) that u is influenced by

v depends only on the individual authority of v possesses over u. But as the failed

attempts to influence u increases, u may get marketing-saturated. Thus the probability

of further attemps drops with each unsuccessful attempt. This natural restriction is

modeled by generalizing the probability functions pv(u) as nondecreasing functions

pv(u, S) (pv(u, S) ≥ pv(u, T )) for S ⊆ T where S is the set of nodes that already

attempted to influence u but failed.

2.2.3 Influence Maximization

One of the most fundamental question in viral marketing is how do we select a set of

nodes in a social network for an ad campaign so that the number of users in the network

8



that received the ad is maximized? The problem is referred to influence maximization

problem and there has been a wide-spread work on different variants of the problem.

Informally, influence maximization is the problem of finding a set of seed nodes

in a network so that the spread of influence initiated by these seeds is maximized.

The problem is first introduced by Domingos et al. [3] and formalized as a discrete

optimization problem by Kempe et al. [1, 8].

Influence Maximization Problem. Given an influence network G = (U,L, p), the

influence maximization problem is to find a set of nodes S of size k where if the

cascade process is initiated by these nodes, then the number of final active set of nodes

is maximized. We use σG(S) to denote the coverage of the set S over the network G.

We omit G when the context is clear.

The influence maximization problem is NP-hard [1]. The most fundamental result

on the problem is based on the submodularity of the influence function.

Submodular set functions. Submodular set functions are discrete analogs for

convex functions on real space. A set function f(.) is called submodular if it satisfies

the so called diminishing returns property [38]: the marginal gain from adding an

element to a set S returns at least as high as the marginal gain from adding an element

to any set T where S ⊆ T . More formally, a function f is called submodular iff

f(S ∪ u)− f(S) ≥ f(T ∪ u)− f(T ) (2.3)

From influence maximization point of view, submodular set functions have a de-

sirable property. Consider the case where f(.) is submodular and also monotone

(f(S ∪ u) ≥ f(S)). The purpose is to find a set S of size k such that f(S) is max-

imized. This problem is NP-hard but it has been shown that the following simple

greedy hill-climbing algorithm gives a (1 − 1/e) approximation to the optimum :

start with empty set and iteratively add one element u to S where the marginal gain

f(S ∪ u)− f(S) is maximized. It is shown that the resulting influence function for all

the models we considered is submodular and monotone [1], [8]:

Theorem 1 The influence function σ(.) for ICM, LTM, and DCM is submodular and

monotone.
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The basic idea to find the set S over a social network is to run simulations to obtain

the value of f(S ∪ u) and f(S) and use greedy algorithm.

Different approaches for cascading behavior on networks are developed since,

including data-centric influence propagation [9], minimizing budget and time to-

gether [10], budgeted influence maximization [11], emergence of competitive and op-

posite opinions [12, 13, 14], based on product adoption [15], and topic-sensitive [16,

17, 18, 19]. There has also been work on scalable and parallel influence dissemina-

tion [20, 21, 22, 23, 24]. We will briefly explain the idea behind some of the approaches

that is used throughout this thesis.

Budgeted influence maximization. In the traditional influence maximization

problem, nodes in the network has uniform cost, i.e., each node has unit cost. The

problem gets more challenging if nodes may have nonuniform costs and we have a

budget constraint on how much we can spend. Instead of selecting k nodes, we now

need to select a set of nodes where the total costs of the nodes are not violating the

budget. The simple solution would be to use greedy algorithm to select the nodes

maximizing the cost-effective marginal gain, i.e., given a cost function c(.), the cost

effective marginal gain is (σ(S ∪ u)− σ(S))/c(u). But this simple solution has an un-

bounded error and a small modification resolves the issue [11]. In the simplest case,

the algorithm works as follows: iteratively run cost-effective greedy algorithm and ob-

tain S, also run simple greedy algorithm and obtain S ′. Both of the algorithms stop if

∀u ∈ U \ S, c(S ∪ u) > b. If σ(S) > σ(S ′) use S, otherwise use S ′. This algorithm is

called CEF and provides a 1/2(1− 1/e) approximation to the optimal.

Scalable and parallel influence dissemination. Computing the expected spread

given a seed set is ]P-hard under both LTM [21] and ICM [20] model. One needs to

run a large number of simulations to obtain an accurate esimate of σ(S). This is cum-

bersome for even networks of size of thousands and several heuristics are proposed to

scale the greedy algorithm to large datasets [20, 21, 22, 23, 24]. The idea is based

on restricting computations on the local influence regions of nodes. The size of the

regions is variable which enables tunable tradeoff between accuracy and efficiency.

The main idea is to use arborescence structures (a tree where edges are directed to-

wards (in-arborescence) or from (out-arborecence) root) to estimate the influence. The
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arborescence trees is built using maximum influence paths (MIP) which are the paths

having maximum influence value for each pair of nodes. MIPs are estimated using Di-

jkstra shortest-path algorithm, and some of the MIPs which have probability smaller

than the tunable threshold value are discarded. By unioning MIPs, they build Maximum

Influence In-Arborescence (MIIA) and Maximum Influence Out-Arborescence (MIOA)

trees and estimate influence only on these local arborescence structures. Given a set

of seed nodes, let the activation probability of a node u in an MIIA be the probability

that u is activated on this MIIA when the propagation is initiated by these seed nodes.

Then the influence of these seeds over network is the sum of the activation probabili-

ties for each node u estimated on the MIIA having u as the root. This model is called

Maximum Influence Arborescence (MIA).

The Degree Discount method [23] can be considered as a special case of MIA. To

build local influence regions, only 1-hop distant neighbors of nodes are used. Then,

for each node a score is assigned based on the expected influence of the node over her

neighbors. The idea is valid only in case of uniform weights.

The MIOA structures also yields parallel influence estimations [24]. Instead of

using activation probabilities, they use MIOA structures and estimate influence using

inclusion-exclusion. The process can be run in a parallel setting which provides further

scalability.

Information Overload. Information overload in a social network refers to the

concept that the number of messages, tweets, notifications reaches a level beyond a

user can process in a reasonable time. The closest overload work to our ICMO model

is [25], which models the overload of a sequence of different messages by an expo-

nential decay parameter. They focus on activation of messages (messages that are not

ignored), whereas we focus on activation of users and their overload due to repeated

messages. Our model is significantly different, as the focus is on user overload and

once a user is overloaded, no future activations are possible. Also, they do not in-

vestigate whether or not the influence function with the proposed overload measure is

submodular.
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2.3 Ad Allocation and Submodular Welfare Problem

Combinatorial allocation problems refer to the assignment of a set I ofm items among

n players such that the total utility provided to the players is maximized. The most

general case of this problem is to find a partitioning (I1, I2, ..., In) of the items among

players such that the total utility is maximized, i.e.,
∑n

i=1 wi(Si) where wi : SI → R
is the utility function for player i. This general case is NP-hard [29]. The problem

is divided into categories based on the properties of the utility functions. If the utility

function is submodular, then the problem is called Maximizing Submodular Welfare

Problem (MSW).

2.3.1 Maximizing Submodular Welfare Problem

MSW problem is first studied by [26]. They show that MSW problem is NP-hard and

the following simple greedy algortihm gives 2-approximate solution to the optimal:

start with empty assignments to each player, iterate over items and for each item x

pick the player with highest wi(Ii ∪ x)− wi(Ii) and assign x to player i.

The problem is also studied under different oracle models [27, 28, 29].

• A value oracle gives the result of a basic query: what is the result of wi(S)?

• A demand oracle answers queries of the form: given the prices px for each item

x ∈ I , what is the result of argmax
S∪I

wi(S)−
∑

x∈S px?

A randomized algorithm is proposed for MSW problem in a value oracle model

which provides a (1− 1/e) approximation [27]. The algorithm employs a continuous

greedy heuristic which returns an approximate solution to a non-linear continuous

optimization problem. The idea is based on obtaining canonical extensions to smooth

monotone submodular functions by taking expectation. Then the process unfolds by

finding a local optimal value for the extension by only considering local values.

The approximation ratio of the problem is improved under a demand oracle model.
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A (1 − 1/e + ε) approximate randomized algorithm is introduced in [29] for some

absolute constant ε. The algorithm first reduces the problem into a linear programming

and resolves conflicts between players using a new technique called fair content reso-

lution. Suppose that several players are requesting an item with different probabilities.

The idea to resolve the conflict among players is to assign the item to players with the

same probability.

Although the approximation ratio of the problem can be improved if a demand

oracle is used [29], an 1− 1/e-approximation [30] is the best approximation ratio that

one can obtain [31] under a value oracle model.

In the online version of the problem, the following greedy algorithm is optimal [32]

using coverage valuations in which a valuation function w : 2I → R+ is a coverage

valuation if there is a set system Yi : i ∈ I such that w(S) = |
⋃
i∈S Yi|: allocate each

incoming item to the player maximizing the marginal gain. The algorithm gives 1/2

approximation to the problem.

Under a stochastic setting with iid items and valuations satisfying diminishing re-

turns, the same greedy algorithm gives (1− 1/e) approximation.

Different than our setup, the problem is not studied in a social network environ-

ment. Furthermore, unlike our problem, players do not have budget constraints and

assignments do not have limit constraints in these problems.

2.3.2 Budgeted Ad Allocation

Budgeted allocation is the problem of maximizing the total profit extracted by the

algorithm under a budget constraint for each player. The utility function in this problem

is linear, i.e., wi(S) =
∑

j∈S wij .

The problem is studied in [33, 34] assuming an offline setting. Both of the al-

gorithms are based on the linear programming relaxation of the problem. Then, the

solution to the original problem is obtained by a rounding schema afterwards. The

competitive ratio of the algorithms is 4/3 and 3/2 respectively.
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In an online setting, where the set of impressions arrive online, the objective is to

assign impressions to advertisers whenever an item arrives. An assignment algorithm

with free disposal is proposed in [35] where players are assigned with items more than

the number of items they have in their contract for the online ad allocation problem.

The idea is that, players are indifferent to assigning more than they requested because

the value of an assignment only considers the items having highest values and have the

same amount as requested.

A primal-dual training based algorithm is proposed for online ad allocation [36].

The algorithm provides a (1 − o(1)) approximation ratio for the problem. They also

consider the efficiency and fairness of the algorithm and show that there is a trade-off

between these.

An optimization algorithm for the online bipartite matching problem is proposed

in [37]. The idea is to compute two disjoint solutions to the expected instance of the

problem in an offline setup and use both of them in the online allocation algorithm.

The objective function in these problems can be explicitly stated as linear formu-

las. In contrast, our objective function has no open form and depends on coverage

computation on the social network, which often requires simulations to estimate its

value.

To the best of our knowledge, no previous work has studied the broker-based ad

allocation problem we have formulated in this thesis. In addition, the ICMO model we

developed, including progressive and non-progressive variants, to realistically model

the coverage computation in ad dissemination is not covered elsewhere.
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Table 2.1: Table of symbols

SYMBOL DESCRIPTION
G = (U,L) Regular graph
U Vertex set
L Edge set
(u, v) Edge in the graph
Gz Subgraph
W Weight function for the edges
pv(u) Influence function under ICM and LTM
δin(u) Indegree of u
δout(u) Outdegree of u
δ(u) Degree of u
M(u) Neighbors of node u
θu Activation threshold for node u
pv(u, S) Influence function under DCM
σG(S) Coverage of S over G
c(S) Total cost of the set of users S
wi(S) Utility function for player i
(C) Set of advertisers
E Set of endorsers
Ai Set of ad campaigns started by advertiser Ci
ai Number of ads started by advertiser Ci
B(Aij) Budget of the ad Aij
Sij Set of endorsers assigned to ad Aij
R(El) Reverse assignment of ads to endorser El
puo(S) Overload distribution function (ODF)
G = (U,L, p) Influence network
G = (U,L, p, po) Influence network with overload
Gt = (Vt, Et) Graph at time t
KT Set of active nodes at time t
Dt Set of overloaded nodes at time t
D Entire set of replicated endorsers
δij(El) Marginal gain for adding El into Sij
Q(E) Priority queue over endorsers
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Chapter 3

Broker-Based Ad Allocation

In this chapter, first we present the design of our broker system. Next, we formalize

the ad allocation problem.

3.1 Broker System

Advertisers want to benefit from viral advertising by paying a set of endorsers (seed

users) that will spread their ads, and endorsers want to spread ads to make profit. We

design an intermediary called the “broker” to find a match between the advertisers and

endorsers. We consider four different perspectives while designing the system: the

advertiser, the endorser, the broker, and the audience.

Advertiser Perspective. The advertiser registers its ads with the system by specifying

a maximum budget to be spent for each ad. The broker system provides a simulated

coverage of how wide the ad campaign can spread. If the company wants a wider

coverage, it may increase the budget. On the other hand, while the total money paid

by the advertiser cannot exceed its budget, the entire budget may not be used if the

coverage that can be provided by the broker system is not sufficiently high.

Endorser Perspective. The endorser registers with the system and specifies a cost

per ad it will endorse. The cost of an endorser is assumed to be dependent, but not

necessarily linear, on the number of users from the audience it can reach. The broker
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system assigns ads to the endorsers. Thus, the amount earned by the endorser is given

by its cost times the number of ads it is assigned. If an endorser’s cost per ad is too

high, the broker may not assign it any advertisers.

Broker Perspective. The broker plays the role of a matcher between the advertisers

and the endorsers. It matches a set of endorsers to each ad considering the budget

constraints and the nature of ad propagation on the social network. It can also provide

a coverage estimate for potential advertisers. The goal of the broker is to provide the

highest coverage possible to the advertisers. The broker can take a fixed percentage of

what is paid to the endorsers.

Audience Perspective. There are three kinds of behavior a regular user who received

an ad message may exhibit: 1) the user is interested in the content and forwards the

message to her friends; 2) the user may or may not be interested but does not propagate

the message, yet she may do so for a future message; 3) the user has received too many

messages and whether or not she is interested she does not propagate the message and

will not do so for future messages. The goal of the system is to gain the interest of

users without them getting overloaded due to too many ad messages.

3.2 Problem Formulation

Our purpose is to design the broker considering the following informal objective:

• Provide the highest coverage possible to each advertiser

And with the following informal constraints:

• Avoid violating the budget limits of advertisers

• Avoid overburdening endorsers and avoid endorsers being perceived as spam-

mers

• Avoid overloading of the audience with ads and avoid ads being perceived as

spam
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We now explain how we incorporate each of the above objectives and constraints

into our formal model. We assume that we are given an influence network G =

G(U,L, p), where U is the set of users, L is the set of relationships, and p : L→ [0, 1]

is the influence function. A set of advertisers C = {C1, C2, · · · , Cn} and a set of en-

dorsers E = {E1, E2, · · · , Ek} ⊂ U with corresponding costs c(Ei) for Ei ∈ E have

enrolled in the system. Here, n = |C| is the number of advertisers and k = |E|
is the number of endorsers. Each advertiser Ci has started a set of ad campaigns

Ai = {Ai1, Ai2, · · · , Aiai}, with corresponding budgets B(Aij) for Aij ∈ Ai. Here,

ai = |Ai| is the number of ads started by the advertiser Ci ∈ C, and a =
∑

i ai is the

total number of ads.

Disseminating Influence. We define the coverage of a set S ⊆ E of endorsers on G

by σG(S) : 2E → U . Our primary goal is to assign a set of endorsers Sij ⊆ E for each

ad Aij such that the total coverage is maximized. Given this assignment, we denote

the reverse assignment of ads to endorsers as R(El) = {Aij | El ∈ Sij} for endorser

El ∈ E .

Essentially, we try to maximize:

n∑
i=1

ai∑
j=1

σG(Sij) (3.1)

Handling Budget Constraints. We model the budget constraints using inequality

conditions for each ad. That is, for each ad, the total cost of the endorsers assigned

should not exceed the budget allocated for the ad. Formally:∑
E∈Si

j

c(E) ≤ B(Aij), ∀
i∈[1..n],j∈[1..ai]

(3.2)

Avoid Spamming and Overburdening of the Endorser. Both spamming and over-

burdening has the same characteristic. If an endorser is disseminating a lot of ads, then

the users will perceive the endorser as a spam account. Also if we assign a lot of ads to

an endorser, the endorser may get overburdened. We use a threshold-based approach

to prevent overburdening and spamming from an endorser. We assign a threshold value

to each endorser that limits the number of ads assigned to it. More formally, we pick

a threshold θj for an endorser Ej ∈ E as its dissemination limit. Then the following
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constraint is satisfied:

|R(Ej)| < θj, ∀
j∈[1..k]

(3.3)

Avoid Overloading of a Network User. Consider a case where a user is in the close

social network proximity of several endorsers. If a large portion of these endorsers are

assigned the same ad, then the user will get a lot of similar ad messages and eventually

get overloaded. We propose an extension of the ICM to model the overloading of a

user with respect to an ad campaign. We introduce a probabilistic component to ICM

that handles overloading, while preserving some desirable properties such as submodu-

larity and monotonicity. This model impacts the coverage σG(S), as when a user from

the audience gets overloaded, the coverage suffers. As such, overloading is handled as

part of the objective function.

3.2.1 Independent Cascade Model with Overload

In ICM, if a user adopts a product and becomes active, she further tries to activate her

neighbors. As more of a user’s neighbors become active, the tendency that the user

will get activated increases. For a uniform ICM where p(l) = z, ∀l ∈ L, given that

k neighbors of a user adopted an idea, the probability that the node will adopt it is

1− (1− z)k. As k increases, this probability always increases. However this does not

hold in modern social networks where each trial to activate a neighbor is accomplished

by posting a message, sending an email, or posting a tweet. If a user has a lot of active

friends, then the user will receive a lot of messages which will eventually cause the

user to get overloaded.

We now propose the Independent Cascade Model with Overload (ICMO). LetNu ∈
U be the list of neighbors of a user u ∈ U in the social network G(U,L, p). We

define an Overload Distribution Function (ODF) puo : 2Nu → [0, 1]. Given the set

of active neighbors S ⊆ Nu of a node u, puo(S) is the probability that the user u is

overloaded. The ODF puo is monotonically increasing on |S|. An example ODF is

given by puo(S) = 1− (1− z)|S|.

In ICMO, we differentiate between the influence of a user v on u and the activation
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of u. If the attempt to influence u is successful then u is interested in the idea but

not necessarily activated. There is a chance for an interested user u to get activated

with probability 1 − puo(S), and overloaded with probability puo(S). If u is activated,

then it will attempt to activate her inactive neighbors. We first study a progressive

model where an active user will always be active and an overloaded user will always

be overloaded as sending more messages to influence the user will not have any positive

effect. Thus all the subsequent attempts to activate u are unsuccessful. We denote the

ICMO model by G(U,L, p, po).

We will now study the influence maximization problem on ICMO. Influence max-

imization problem is to choose k seed users from the network such that the influence

propagation is maximized when initiated by these seeds. Finding influential users in

ICM is NP-hard. Intuitively the ICMO problem is NP-hard as well. However, as we

will show, the influence function is submodular and monotone under ICMO. Thus,

for any ε > 0, it is possible to find a simple greedy algorithm that will lead to a

(1− 1/e− ε)-approximation [38].

Theorem 2 The influence maximization problem using the ICMO model is NP-hard.

Proof If we set puo(.) = 0 for each user u, then we have a linear time transformation

of the ICM problem into ICMO. Since ICM is NP-hard, this completes the proof.

Theorem 3 The coverage function σG using the ICMO model is submodular and

monotone.

Proof We first reduce the problem to a simpler cascade model and show that if in-

fluence under this model is submodular and monotone, then influence under ICMO is

also submodular and monotone. Borrowing the live-edge idea from [1], we flip coins

for each edge prior to the propagation. We obtain graph G′ = (V, L′, po) where if

e ∈ L′ then e is live. Each live-edge (v, u) reflects whether or not a neighbor v has

been succesful to attract the interest of u. Then the influence of a seed set S on G is

equal to σG(S) =
∑

G′ P [G′] · σG′(S) where P [G′] is the probability of obtaining G′.
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It is easy to see that if σG′(.) is submodular and monotone, then σG(.) is submodu-

lar and monotone, as non-negative linear combinations of submodular and monotone

functions are also submodular and monotone.

To show the submodularity of σG′(.), we show that the influence propagation on G′

is a special case of influence propagation on Decreasing Cascade Model (DCM). We

first define a timed version of the diffusion process on G′. Start by activating a set of

seed nodes S in G′. If u has any path to v ∈ S consisting of only live-edges than u gets

activated with probability 1 − po(Z
u
t ), otherwise it gets overloaded with probability

po(Z
u
t ), where Zu

t is the set of active neighbors of u at time t. If there is no such path,

then u stays inactive. Now consider the following diffusion process of DCM on graph

G′′ = (U,L′′, p′′): L′′ ⊆ L′, δin(u) = 1, and u is active with probability p′′(Zt), where

δin(u) is the in degree of u, and Zt is the number of active neighbors of u at time t. If

p′′(.) = 1− po(.) then the two processes are equal. Since the influence function σG′′(.)

under DCM is submodular and monotone, σG′(.) is also submodular and monotone,

completing the proof.

3.2.2 Non-progressive ICMO

The ICMO model we just described is a progressive model where if a node is active

then it will remain active throughout the process. But in real-life an active node may

also become overloaded if she receives a lot of ad messages. This is different from

traditional non-progressive propagation models because once a node gets overloaded,

she may never become active again. Figure 3.1 gives an overview of the state transition

diagram for non-progressive ICMO.

We can model this problem as a non-progressive ICMO on time-stamped subgraphs

of the original graph over a time period [0, T ]. Let Gt = (Vt, Et) be the graph at time

t where Go = G, Kt ⊆ Vt be the set of active nodes at time t, and Dt ⊆ Vt be the

set of overloaded nodes at time t. We start the dissemination process by activating

a set of seed users S ⊆ V0. At time t = 1, some of the users in the network may

get overloaded. These users will not disseminate any ad messages and they will stay

overloaded until the end of the process. Thus, we remove the overloaded nodes, that
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Figure 3.1: State transition diagram of non-progressive ICMO

is G1 = G0[V0\D1]. Next, the active neighbors Lu ⊆ K1 of an inactive node u will

try to influence u. If any of them succeeds, then we have u ∈ K2 with probability

1 − puo(Lu), otherwise u is overloaded. This process continues similarly, and we are

interested in the number of active nodes at time t = T . This is different from the

traditional propagation models [1] that focus on the expected coverage over the entire

duration of the propagation process. Differently, we are interested in the users that are

active at the end of the process and only those users are counted towards the coverage.

While non-progressive ICMO is neither monotone nor submodular, our experimental

study shows that greedy solutions still provide good results in practice.

3.2.3 Cost Effective Influence Maximization

Consider the case where we have a budget and each user has a cost. Cost effective

influence maximization is the problem of finding a set of influential users I from a set

of candidates N where the coverage of I is maximized and the budget is not violated.

It is proven that CELF (Cost Effective Lazy Forward selection) algorithm achieves a

constant rate approximation for the problem [11]. We can easily incorporate our ICMO

model into CELF algorithm.

3.2.4 Formalization of Broker-based Ad Allocaton

We are now ready to define our ad allocation problem.
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Definition (Broker-based Ad Allocation Problem) Given an influence network G =

G(U,L, p, po), find a set of endorsers Sij for each ad Aij , such that:

n∑
i=1

ai∑
j=1

σG(Sij) (3.4)

is maximized, subject to: ∑
E∈Si

j

c(E) ≤ B(Aij), ∀
i∈[1..n],j∈[1..ai]

(3.5)

|R(Ej)| < θj, ∀
j∈[1..k]

(3.6)

In what follows, we seek computationally efficient approximations for this prob-

lem.

Our objective function (Eq. 3.4) is closely related to the “Maximizing Submodular

Welfare (MSW)” problem [26]. In the MSW problem, when adopted to ad alloca-

tion, the objective is to allocate endorsers to ads such that Eq. 3.4 is maximized and

allocations are disjoint, i.e., Si1j1 ∩ S
i2
j2

= ∅,∀j1 6= j2, i1 6= i2.

In our problem, allocations can have non-empty intersections, that is the same

endorser can be assigned to more than one ads. Furthermore, our problem involves

budget constraints. We resolve the non-empty intersection problem by replicating the

endorsers. For each endorser Ei, we replicate it by θi times, yielding E1
i , E

2
i , · · · , E

θi
i .

With this modification, the budget constraints remain as the only additional constraints

on top of what can be supported by an MSW formulation.

MSW problem is known to be NP-hard [26]. Greedy algorithms [26, 39, 40, 41]

are commonly used as heuristics for solving the MSW problem. In the simple case, for

each endorser E an ad A is chosen such that the marginal gain is maximized:

A = argmax
i∈[1..n],j∈[1..ai]

σG(Sij ∪ E)− σG(Sij) (3.7)

The algorithm stops when all the endorsers are considered.
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3.3 Approximability of the problem

The simple greedy algorithm we outlined provides a near optimal competitive ratio for

some special cases, which we look at next.

Unit cost and infinite budget case. In the unit cost and infinite budget case, we can

reduce the ad allocation problem to MSW. LetE1
i , E

2
i , · · · , E

θi
i be the replication of the

endorser Ei, and D = {E1
1 , · · · , E

θ1
1 , · · · , E1

k , · · · , E
θk
k } be the entire set of replicated

endorsers. Then the ad allocation problem is reduced to MSW with the following

optimization problem:

argmax
S=P (D),|S|=a

∑
S∈S

σ(S), (3.8)

where P (D) is a partitioning of D and S is a partitioning that has as many parti-

tions as there are ads. The greedy algorithm for the MSW problem provides a 2-

approximation [26]:

Theorem 4 Let ALG be the result returned by the above greedy algorithm and OPT

be the optimal solution. Then:

ALG ≥ 1/2 ·OPT (3.9)

Hence, the greedy algorithm is guaranteed to find a solution with an objective value

that is at least half of the optimum value. Furthermore there is no polynomial time

approximation algorithm for the MSW problem having a competitive ratio larger than

1− 1/e [31].

Non-uniform cost with one ad case. In non-uniform cost with a single ad campaign

case, the problem is to find the set of endorsers having maximum coverage without

violating the budget. This is called the budgeted influence maximization problem [11].

The cost-effective forward selection (CEF) algorithm for this case provides a constant

factor approximation [11]:

Theorem 5 Let ALG be the result returned by CEF and OPT be the optimal solution.

Then:

ALG ≥ (1− 1/e)/2 ·OPT (3.10)
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NP-hardness of the problem. Both of the above special cases of the broker-based ad

allocation problem are NP-hard, which intuitively suggest that broker-based ad alloca-

tion is NP-hard too. We prove it formally as well:

Theorem 6 The broker-based ad allocation problem is NP-hard.

Proof If each endorser has unit cost, i.e., c(Ei) = 1, and if ads have infinite budgets,

the problem is reduced to MSW problem. Following the results of [26], MSW is

NP-hard and consequently the ad allocation problem is NP-hard.

Motivated by this result, in the rest of this chapter we describe heuristic techniques

for solving the ad allocation problem. Importantly, the heuristic we develop not only

provides a near optimal solution to the general problem, but also it satisfies the approx-

imation bounds of the special cases outlined above.

3.4 CEAL Algorithm

We now describe our Cost Effective Ad Allocation (CEAL) algorithm used to solve

the broker-based ad allocation problem.

The CEAL algorithm is based on iteratively finding the (ad, endorser) pair max-

imizing the marginal gain considering the cost of the endorsers, while preserving the

ad budget and endorser capacity constraints. We cache the marginal gains of (ad, en-

dorser) pairs and update the estimations only when necessary.

We start with an empty set of assignments for each ad. Initially the marginal

gain of an endorser E over ads is her coverage, i.e., σ(E) − σ(∅). We choose the

endorser that has the maximal marginal gain per cost, i.e., argmaxE δ(E), where

δ(E) = (σ(E)− σ(∅)) /c(E). At this point, any one of the ads having adequate bud-

get for the endorser can be chosen for the assignment. Among these, we choose the ad

that has the minimum remaining budget because she has the least likelihood of getting

assigned an endorser. As long as there is at least one ad with enough budget that has
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Algorithm 1: CEAL-initial-assignment(G, E ,D)
Sij ← ∅,∀i ∈ [1..n], j ∈ [1..ai] . Reset endorser to ad assignments
βi ← 0, ∀i ∈ [1..k] . Reset used endorser capacities
while E 6= ∅ ∧ D 6= ∅ do . Endorsers and ads remain

. Compute the marginal gain per cost for all pairs

δij(El)←
σG(Si

j∪El)−σG(Si
j)

c(El)
, ∀i ∈ [1..n], j ∈ [1..ai], l ∈ [1..k]

. Find the best pair among all viable (ad has enough budget)
(El̄, A

ī
j̄
)← argmax

El⊂E,Ai
j⊂D,c(El)≤B(Ai

j)

〈δij(El),−B(Aij)〉

S ī
j̄
← S ī

j̄
∪ El̄ . Make the assignment

βl̄ ← βl̄ + 1 . Increment used capacity for endorser
if βl̄ = θl̄ then . Endorser is full
E ← E \ El̄ . Remove endorser

B(Aī
j̄
)← B(Aī

j̄
)− c(El̄) . Decrease ad’s remaining budget

if B(El̄) < min
E∈E

c(E) then . Ad cannot take more endorsers

D ← D \Aī
j̄

. Remove the ad

return {Sij}, i ∈ [1..n], j ∈ [1..ai] . Return the assignments

not been assigned with any endorser, the maximum marginal gain of the best endorser

will stay the same. Thus, we continue to select the endorser that has the maximum

δ(E) until we assign each ad with one endorser or the endorser’s capacity is reached.

We should note that, in most practical scenarios, the algorithm will assign at least

one endorser to each ad. This is because the marginal gains are maximized for ads that

have empty assignments. This may not hold in extreme cases, such as when there is an

ad that does not have enough budget for a singe endorser, or the number of endorsers

are small and they do not have enough capacity for covering all the ads.

We iteratively continue the assignment process and at each step we pick the (ad,

endorser) pair that maximizes the marginal gain per cost, and re-estimate the marginal

gains when they become outdated. The marginal gain computed for a pair is valid as

long as the ad is not assigned a new endorser since the time the gain value was last

computed. Algorithm 3 gives the pseudocode for the CEAL algorithm. For brevity, we

do not show the caching of the marginal gain computations in the pseudocode.

Scaling up the algorithm. Searching for the (ad, endorser) pair maximizing the

marginal gain per cost, δij(El), over all ads and all endorser sets is prohibitive in a
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Algorithm 2: CEAL-post-processing(G, E ,D, {Sij})
ctrl← true . Reset loop control variable
βi ← |R(Ei)|,∀i ∈ [1..k] . Reset used endorser capacities
F ← {El | βl = θl ∧ El ∈ E} . Fully assigned endorsers
while ctrl do . While there are still changes

ctrl← false . Reset loop control variable
for Aij ∈ D in incr. order of B(Aij) do . Iterate over ads
Ē ← E \ F ∪ Sij . Current candidates for assignment
for El ∈ Sij do . Endorsers previously assigned to ad

βl ← βl − 1 . Make previous assignment available

while Ē 6= ∅ do . Endorsers remain
. Compute the marginal gain for all endorsers
δij(El)← σG(Sij ∪ El)− σG(Sij), El ∈ Ē
. Find the best ad among ads with enough budget
El̄ ← argmax

El⊂Ē,Ai
j⊂D,c(El)≤B(Ai

j)

δij(El)

if El̄ = ∅ then break . No viable endorser
if βl̄ < θl̄ then . Endorser has capacity

S̄ij ← S̄ij ∪ El̄ . Assign endorser to ad
B(Aij)← B(Aij)− c(El̄) . Decrease ad budget
βl̄ ← βl̄ + 1 . Increase used endorser capacity

if βl̄ = θl̄ then . Endorser used all capacity
Ē ← Ē \ El̄ . Remove endorser

if σG(Sij) < σG(S̄ij) then . A better assignment
Sij ← S̄ij . Use the new assignment
ctrl← true . Assignment has changed

return {Sij}, i ∈ [1..n], j ∈ [1..ai] . Return the assignments

large-scale setup. This is due to the cost of coverage computations on the social net-

work. In particular, each evaluation of δij(El) requires estimating the coverage of a set

of nodes, which in turn requires running a series of simulations. Fortunately, we can

avoid estimating δij(E) for all pairs (Aij, El).

We estimate δij(El) for each (ad, endorser) pair during initialization (iteration t0).

But luckily when all nodes are empty, we have δij(El)=σ(El),∀l and thus coverage

computation is performed only as many times as there are endorsers. We use a priority

queue Q over endorsers, where the value associated with an endorser El is taken as the

maximum of the marginal gain per cost values over the ads, that is maxi,j δ
i
j(E). At
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Algorithm 3: CEAL
{Sij} ← CEAL-initial-assignment(G, E ,D) {S̄ij} ← CEAL-post-processing(G, E ,D, {Sij})

iteration t0, we use the endorser at the top of the priority queue Q and assign it to the

ad that provides the maximum marginal gain.

At iteration t0 + 1, we need to find another endorser having maximum marginal

gain per cost. Instead of re-estimating marginal gains for each pair, we first re-estimate

the maximum marginal gain of the endorser at the top of the queue. If the resulting

value is still the highest one in priority queue, then we can use the endorser that is

currently at the top of the priority queue without further marginal gain computations.

This is because coverage is submodular, and thus the priority queue contains upper

bounds for all endorsers at any given time. Updating the values for other endorsers can

never result in an increase.

For any step t, we can summarize the complete process as follows: If the marginal

gain per cost value of the endorser at the top of the priority queue is up-to-date, use

the endorser as the next one to assign to an ad. Otherwise, recompute its marginal gain

and readjust its location in the priority queue. Continue until the endorser at the top of

the queue has an up-to-date marginal gain value.

As an additional optimization, we can further reduce the number of coverage eval-

uations by limiting the number of marginal gain computations performed when an

update is performed for an endorser E that is currently at the top of the priority queue

Q. Normally, such an update requires computing marginal gains for each ad. This

can be avoided by keeping a priority queue Q(E) over ads for each endorser E. We

recompute the marginal gain for the ad at the top of the priority queue Q(E) and short-

cut the computations of further marginal gains if the same ad is still at the top of the

queue after the re-computation. Again, this is possible due to the submodularity, which

means that the values can only get smaller and thus the Q(E) always contains the up-

per bounds, just like for the global priority queue Q before.

Boundness of the algorithm. Unfortunately, using only cost effective marginal gain

may result in arbitrarily large error. Consider a case where there are two ads A1

and A2 with unit budgets, and four endorsers E1, E2, E3, and E4 having coverages
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ε, ε, 1 − ε, 1 − ε and costs ε, ε, 1, 1, respectively. Assume that the coverage sets of the

endorsers do not intersect. Then the CEAL algorithm will assign E1 to A1 and E2

to A2. While E1 and E2 have higher marginal gain per cost, they leave a significant

portion of the budget unused. Yet this budget is not sufficient to accommodate an ad-

ditional endorser. In this particular case, the optimal assignment would be to assign E3

and E4 to the two ads. We can generalize this situation to arbitrarily large number of

ads and endorsers.

We handle this problem by using a post-processing step. After the initial assign-

ments of the endorsers to ads is complete, we consider alternative assignments for

each ad. Let F ⊂ E be the set of endorsers that the initial assignment phase of

CEAL used to their limits, i.e., ∀El ∈ F, βl = θl. We start with the ad having the

smallest budget and aim to locate the set of endorsers S ⊂ {E − F ∪ El} that max-

imizes the coverage without considering the endorser costs. In other words, we have

S = argmax
S⊂{E−F∪El}

∑
e∈E σ(e). For this purpose, we use the same greedy procedure from

earlier, but this time the marginal gains in coverage are not divided by the endorser

costs. Thus, we iteratively assign endorsers that provide the highest marginal gains

and are not violating the remaining budget of the ad at hand. Let S̄ be the resulting

set of assignments for the ad. If the coverage σ(S̄) of this new assignment is larger

than that of the original coverage that was provided by the initial phase of the CEAL

algorithm, then we replace the assignments for the ad at hand with S̄ and adjust the

endorser capacities. Otherwise, we continue with the initial assignments for the ad.

We continue this process by considering other ads, in increasing order of ad budget

and potentially performing multiple scans, until the assignments do not change for any

of the ads.

This post-processing step of CEAL is given in Algorithm 2 and the complete CEAL

algorithm, which consists of the initial and post-processing steps is given in Algo-

rithm 3.
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3.5 An Upper Bound on Coverage

Finding the exact solution to broker-based ad allocation problem requires considering

exponential number of assignments of endorsers to ads. This is infeasible even for

a small number of ads and endorsers. We show that under certain circumstances, an

upper bound on the accuracy of the CEAL algorithm can be provided. Our bound is

based on the following theorem [38]:

Theorem 7 Let ρj = σ(S ∪ {j})− σ(S), then the following statement defines a sub-

modular set function σ:

σ(T ) ≤ σ(S) +
∑
j∈T−S

ρj(S) (3.11)

If we let S = ∅, then the theorem suggests that the coverage of any set of nodes

is smaller than the sum of the coverages of any partitioning of it. Let us assume

that the total cost c(E) of endorser E is linear on the coverage it provides, i.e.,

c(E) = ασ(E)+β. Thus the total cost of a set of endorsers S becomes
∑

E∈S c(E) =

α
∑

E∈S σ(E) + |S| β. And the total coverage of the set can be expressed using the

total cost of the set: ∑
E∈S

σ(E) =
1

α

(∑
E∈S

c(E)− |S| β

)
(3.12)

Based on this result and the theorem above, we can give an upper bound on total

coverage as follows:

Corollary 1 Given c(E) = ασ(E) + β

σ(S) ≤ 1

α

(∑
E∈S

c(E)− |S| β

)
(3.13)

Then, the total coverage of assignments is bounded from above by the following:

∑
i,j

σ(Sij) ≤
1

α

∑
i,j

∑
E∈Si

j

c(E)− |Sij| β

 (3.14)
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Chapter 4

Evaluation

We conducted experiments using the ICMO model and the CEAL algorithm. We used

three large, real-world datasets for our evaluation and experiment with different work-

load parameters.

We first present our results on the proposed ICMO model. In these experiments, we

investigated influence maximization under our ICMO model, which factors in the po-

tential overloading of the users. We evaluated the performance of the greedy algorithm

and other heuristics for influence maximization using ICMO.

We then focus on illustrating the performance of the CEAL algorithm by investi-

gating the following aspects:

1. total coverage provided compared to a baseline algorithm as well as to an upper-

bound,

2. total coverage as a function of the skew in the polynomial cost function used for

endorsers,

3. the number of endorsers assigned work (fairness to endorsers),

4. the total budgets of companies that are be filled (profitability for the broker),

5. the variation in the cost charged per coverage provided for the ads (fairness to

companies/ads).
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4.1 Experimental Setup

Datasets. We used three different real-world social network datasets that are publicly

available [42, 43].

•WikiVote Dataset: The network contains the Wikipedia voting data till Jan 2008.

Nodes in the network represent Wikipedia users. A directed edge from i to j denotes

that the user i has voted on user j. Thus the reverse edge represents the flow of influ-

ence from user j to user i. The network contains 7,115 nodes and 103,689 edges.

• Epinions Dataset: This is the who-trusts-whom network of users from the

epinions.com website. Nodes represent users. A directed edge from i to j in the

network represents the trust of user i to user j. Thus the reverse edge represents the

influence from user j to user i. There are 75,879 nodes and 508,837 edges.

• Facebook Dataset: This is the Facebook friendship network. Nodes in the net-

work represent users and edges represents relationships between user pairs. The orig-

inal network is undirected, but we convert it into a bidirectional one, where directed

edges exist in both directions. There are 63,731 nodes and 1,269,502 edges.

The various workload features are generated as follows:

Propagation probabilities. We used the weighted cascade model [1] to assign prop-

agation probabilities in ICMO. In this model, pu(v) = 1/d(v), where d(v) is the in-

degree of a node v. Thus the propagation probability of each edge is determined by the

number of incoming edges of the destination node.

Overload probabilities. We used a trivalency-based approach to generate the overload

probabilities of users. Intuitively, a user gets overloaded easier than she gets activated.

It may take a few consecutive messages to overload a user, while this may be hardly

enough to catch the interest of the user. Thus we used relatively larger probabilities

to capture this phenomenon. We selected uniformly at random a probability from

{0.1, 0.3, 0.5} to represent different levels of overload tendency for users.

Endorser selection. We selected 500 users as endorsers from each network separately,

where the total influence of these users under ICMO model is maximized. We used the

same 500 endorsers throughout the experiments and vary the number of companies.

Endorser limits. Since we do not know the exact limits for endorsers that cause them
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to get overburdened or perceived as spammers. We selected uniformly at random the

limits from the list {1, 2, 3, 4, 5} for each endorser.

Endorser costs. To model different costs for endorsers, we used a polynomial f(x) of

order α where 0 < α ≤ 1. We used the individual coverages of endorsers as inputs

to f and obtained different cost models by changing α, aka the endorser cost skew

parameter.

Ad budgets. We generated at least one endorser whose cost is less than the budget of

an ad. We iteratively picked a random sample from a power law distribution with an

exponent of −0.9 and exponential cutoff of maxcost = 0.5 and added mincost = 0.3

to it for each ad.

(a) Wikivote (b) Epinions

(c) Facebook

Figure 4.1: Coverage under the progressive ICMO model
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(a) Wikivote (b) Epinions

(c) Facebook

Figure 4.2: Coverage under ICM, progressive and non-progressive ICMO

4.2 Experimental Results

4.2.1 Influence Maximization with ICMO

We compared several centrality-based measures as well as greedy algorithms to in-

vestigate the coverage under our ICMO propagation model. We used the following

heuristics in our experiments:

• Greedy: The greedy algorithm proposed in [1] along with lazy-forward tun-

ing [11]. For each iteration, we ran 10,000 simulations to estimate the coverage. We

picked the m nodes that provide the best total coverage based on the greedy selection

procedure.

• PageRank: The web page ranking algorithm proposed in [44]. We used 0.1 as

the restart probability and 0.001 as the stopping margin. We picked the m nodes with

the highest PageRank values.

• Highest Degree: Degree of a node represents its popularity. We picked the m
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(a) Wikivote (b) Epinions

(c) Facebook

Figure 4.3: Total coverage as number of ads increases

nodes that have the highest probabilities.

• Random: We uniformly at random picked m seeds from the network. We did

not pick nodes that have 0 out-degree.

We generated subgraphs of size 10,000 and 7,000 respectively by uniform sam-

pling, and used whole Wikivote network to evaluate the influence under ICMO. We

generated a seed set with a maximum size of 50. We iteratively increased the size of

the seed set by adding the node that has the highest score for the current heuristic.

Figure 4.1 illustrates the results of the algorithms on the three datasets. They

plot the coverage achieved as a function of the seed set size. For all three datasets,

the greedy algorithm performs better than the others. This is expected as all other

heuristics choose clustered seeds whose coverage sets might be overlapping. Thus the

marginal profits of seeds in terms of coverage degrades. We expect PageRank and De-

gree heuristics to perform worse with ICMO. This is because if seeds are clustered,

then every node that is close to the clustered seeds will possibly get the same message

multiple times. Thus, the overload likelihood of these nodes will increase.
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In the Wikivote dataset, the difference between the Greedy algorithm and other

heuristics is larger. This dataset is denser than the other two. So it is more likely

for the nodes in clustered regions to receive the same message multiple times. This

is the reason for the large gap between the Greedy algorithm and other heuristics,

compared to other datasets. In the Epinions and Facebook datasets, PageRank and

Degree heuristics are closer to the Greedy algorithm. The reason is that, although

these heuristics may pick clustered seeds, a node in the clustered regions will receive

the same message only a few times because the density of the graphs is lower.

Additionally, we examined the increase in the number of overloaded users as the

number of seeds increase. We observed that the increase in the number of overloaded

users slows down as the seed set size increases. The reason is that, as users get over-

loaded, the number of messages that non-overloaded users can receive starts to de-

crease, which also decreases the probability that additional users get overloaded.

We also estimated the coverage without the overloading effect. We ran greedy

algorithm to select 50 seeds. As expected, the cascade of influence is overestimated

by ICM. On average, the coverage under ICM is 2.34, 2.09, and 2.20 times larger than

the coverage under ICMO for Wikivote, Epinions, and Facebook datasets, respectively.

This emphasizes the importance of overload effect while estimating the coverage. Also

under ICM the coverage has a more longstanding increase compared to under ICMO.

Figure 4.2 illustrates the results.

To study the impact of non-progressive ICMO, we applied the greedy algorithm

under this model to choose 50 seeds. Intuitively, we expect the coverage under non-

progressive ICMO to be significantly smaller than under the progressive model. Sur-

prisingly, the coverage decreases by an insignificant amount. We can explain this phe-

nomenon by the sparseness of the influence propagation. In general, the coverage over

a network is sparse and the spread of influence has a fast degrading effect as users

get distant from the seed. Considering that the greedy algorithm picks seeds that have

small coverage overlap with previously chosen seeds and relatively high coverage, and

that users that will receive the same message multiple times are likely to be close to

several seeds, such users are not common. Importantly, they are a very small portion

of the activated users, and thus the decrease due to the non-progressive model is small.
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The small decrease is caused by overloading of active users that are locally central and

close to one of the seed users. Thus the user will receive the same message several

times which is initiated by the same seed user.

Figure 4.2 illustrates the results. ICMO-p denotes the progressive ICMO and

ICMO-n denotes the nonprogressive ICMO. At 50 seeds, the coverage under progres-

sive ICMO is 1%, 2%, and 12% more than the coverage under the non-progressive

model for the Wikivote, Epinions, and Facebook datasets, respectively.

In summary, the coverage under ICMO using the greedy algorithm is significantly

smaller than the coverage under ICM. The reason is that users get overloaded as they

receive the same ad message several times. This is more realistic since users tend to

get overloaded easily than they get influenced. Also, other heuristics suffer more under

ICMO than under ICM, because they select seeds that are likely to be clustered which

is the main reason why coverage under ICMO decreases compared to ICM. This effect

is more clear when coverage is measured under denser graphs. As the density of the

graph increases, the users within the clustered regions of seed users will receive the

same message multiple times. Finally, we observe that the negative impact of non-

progressive ICMO on the coverage is insignificant.

4.2.2 Coverage in Broker-based Ad Allocation

We evaluatde the effectiveness of the CEAL algorithm by comparing its coverage with

that of a base algorithm (BA). The base algorithm iteratively selects an (ad, endorser)

pair at uniform random, where the budget constraints of the ad is not violated, the

endorser has capacity for an ad assignment, and the ad was not already assigned to the

same endorser. Once a random suitable pair is located, the assignment of the endorser

to the ad is made.

Figure 4.3 illustrates the results for total coverage. In particular, it plots the total

coverage achieved as a function of the number of ads, for the CEAL and BA algo-

rithms.

We observed a near linear relationship between the number of ads and the total
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(a) Wikivote (b) Epinions

(c) Facebook

Figure 4.4: Total coverage as α increases

coverage provided by the CEAL and BA algorithms. The reason is that the companies

in the tail part of the budget distribution are assigned with a few endorsers (very few

overlaps exist among the coverage of these endorsers). Thus the submodular coverage

function behaves like linear in the tail. And the total coverage of the endorsers assigned

to the companies in the tail has almost half of the total coverage. As a result, total

coverage linearly increases as the number of ads increases.

The BA algorithm can pick endorsers that have low gain/cost ratio, since it is ran-

domized. Furthermore, some ads that may have higher marginal gains for an endorser

may not have enough remaining budget due to earlier assignments. Meanwhile, CEAL

picks an (ad, endorser) pair that is locally optimal. It searches towards the global op-

timum by making local optimal decisions. At worst, we expect to find a local optimal

result. Consequently, CEAL algorithm has higher coverage compared to BA. On aver-

age, CEAL improves the total coverage relative to BA by 37%, 68%, and 32% for the

Wikivote, Epinions, and Facebook datasets, respectively.

Figure 4.3 also presents the upper-bounds on the coverage results. The upper bound

38



(a) Wikivote (b) Epinions

(c) Facebook

Figure 4.5: Number of different endorsers that are assigned to an ad

in Chapter 3 requires linear cost functions, so we provide the upper-bounds only for

the case of α = 1. CEAL-1, BA-1, and Bound-1 are the coverage results on CEAL

and BA algorithms, respectively, for α = 1. As the number of endorsers assigned to

an ad increases, the difference between the upper bound and the optimal result also

increases. This fact comes from the submodularity of the coverage function. So as

the number of ads increases, we expect the difference between the upper bound and

CEAL to increase. We can observe that when the number of companies is 50, CEAL is

almost optimal for the three datasets. The difference from the upper bound is smaller

than 6%, 4%, and 2% for 50 companies. But as the number of companies increases, the

difference grows up to 13%, 15%, and 20%, respectively. On average, CEAL is within

91%, 91%, and 84% of the upper bound and considering that the optimal lies between

the upper bound and CEAL, we conclude that CEAL is very close to the optimal.
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4.2.3 Impact of the Endorsers Cost Model

Intuitively, the higher the coverage of an endorser, the lower the increase in her per

ad cost as new users are added to the coverage set. For example, let us assume that

one endorser has 10K coverage, while another has 1000K. If they start to influence an

additional 5K, then it is a noteworthy increase for the first endorser. And the total cost

of the endorser will probably increase a lot. But this change may not cause an easily

observable increase in the total cost for the second endorser. To study how CEAL and

BA behave and how total coverage changes under different cost models, we assign the

costs to endorsers using the following function f(σ(Ei)) = (σ(Ei))
α, where Ei ∈ E .

Figure 4.4 presents the relationship between the total coverage of the algorithms

and the value of α. For the Wikivote dataset, as α increases, there is a slight decrease

in the coverage for CEAL, whereas the coverage is stationary for BA. On the other

hand, for the Epinions dataset, we observe an increase in the coverage for BA. As α

increases, the cost distribution of endorsers approaches a power law distribution. And

the coverage/cost ratio of each endorser is the same. As we assign endorsers to ads, the

marginal gain of endorsers slightly degrades and CEAL starts to pick high coverage

(and thus high cost) endorsers. But as α decreases, the cost distribution of endorsers

approaches a uniform distribution and BA starts to pick high cost endorsers that have

low coverage.

For all datasets and for all α values, the CEAL algorithm outperforms the BA

algorithm. On average, CEAL improves total coverage compared to BA by 32%, 38%,

and 36% for the Wikivote, Epinions, and Facebook datasets, respectively.

4.2.4 Number of distinct endorsers used

All other things being equal, such as the total coverage provided and the total company

budgets used up, a broker that uses less endorsers is desirable to one that uses more,

as it will reduce operational overheads. We compared the number of distinct endorsers

used by the CEAL algorithm to that of BA.

40



Figure 4.5 plots the number of distinct endorsers used as a function of the number

of ads. We observed that for both of the datasets, CEAL uses less number of distinct

endorsers than BA. In particular, BA uses 1.40, 2.13, and 2.23 times more distinct

endorsers for the Wikivote, Epinions, and Facebook datasets, respectively.

To understand the intuition behind this, consider the working of the CEAL algo-

rithm. Before any assignments are made, the marginal gain of each endorser will be

equal to her coverage. Let us assume that CEAL has assigned the endorser El ∈ E to

the ad A. If the endorser has additional capacity (θl > 1) and there exists other ads

that have enough budget to accommodate the ad (∃A′ 6=A ∈ D s.t. B(A′) ≥ c(E)),

then the endorser El will still have the highest gain. Then the algorithm will again

pick El. Similar steps are taken later in the execution of the algorithm as well, as long

as the coverage of the best endorser has limited intersection with the coverage sets of

viable ads. This results in using the capacities of some endorsers in full, leaving some

endorsers with empty assignments. In our broker model, this is not necessarily a prob-

lem. In fact, it is an advantage when same or better coverage can be provided by less

number of endorsers.

(a) Wikivote (b) Epinions

(c) Facebook

Figure 4.6: Total pay and total budget as number of companies increases
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(a) Wikivote (b) Epinions

(c) Facebook

Figure 4.7: Fairness to the companies

4.2.5 Total company budgets used

Total company budgets used is another important metric, which also determines how

much profit the broker can make. This can be computed as the total cost of the en-

dorsers assigned to ads times a fixed percentage, aka the profit margin.

Figure 4.6 plots the total budget of the companies and the total payment made for

the ads as the number of ads increases. We observed that for all datasets, most of

the budget is used, irrespective of the number of ads. As the coverage of endorsers is

power law distributed, we have a lot of low cost endorsers. Thus we can use almost all

the budgets of the ads. On average CEAL uses 93%, 74%, and 91% of the budgets of

ads for the Wikivote, Epinions, and Facebook datasets, respectively.
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4.2.6 Fairness to companies

To measure the fairness of CEAL and BA to companies, we calculate their unit pay-

ments: the amount of payment companies make (their used budget) per unit coverage

we provide to them. A naı̈ve comparison of unit payment will be biased, because the

unit payments of small budgeted ads are considerably smaller than the unit payments of

larger budgeted ads. This is due to the submodularity of coverage. As we assign more

and more endorsers to an ad, the marginal gain per cost of the subsequent assignments

will drop.

To provide a reasonable comparison with respect to the fairness metric, we divided

ads into segments according to their budgets (full budgets before the assignments are

made) and compared ads within their own segment. We first sorted the ads in decreas-

ing order of their budgets and created a new segment with the ad having the highest

budget. We iterated over remaining ads and put the ads into the current segment if the

difference between the maximum budget in the segment and the budget of the current

ad is within h times the overall standard deviation, where h is used to model the ho-

mogeneity of the segments. If the budget of the ad exceeds this value, then we created

a new segment and put the ad into it. We continued the process until we put all the ads

into a segment. We took the weighted average of standard deviation of unit payments

for the segments as our fairness metric.

Figure 4.7 plots the fairness metric as a function of the number of ads. Since the

fairness metric depends more on the distribution of costs and budgets than the number

of ads, there is not a pronounced pattern between fairness and number of ads. In all

three datasets, CEAL provides higher fairness than BA. On average, CEAL improves

fairness by 11%, 4%, and 6% compared to BA for the Wikivote, Epinions, and Face-

book datasets, respectively.
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Chapter 5

Conclusion and Future Work

We formulated the problem of broker-based ad allocation in social networks. We

modeled the problem through a combinatorial optimization framework and proposed a

cost-effective solution. We presented a novel information propagation model that can

capture the case of users getting overloaded due to too many messages.

The ICMO propagation model we proposed makes a distinction between a user

getting interested and a user getting active. A user becomes interested if she gets

influenced by the content of a sent message. A user becomes active if she is interested

and the number of messages she received is not too high to cause her to get overloaded.

We show that influence under ICMO is more sparse than under general ICM. We also

show that several heuristics techniques used for influence maximization have different

characteristics on ICMO than they have on ICM. In particular, choosing clustered seeds

has a more pronounced degrading effect on the coverage with ICMO, since it increases

the likelihood of users getting overloaded.

The greedy CEAL algorithm we developed to perform broker-based ad allocation

iteratively searches the locally optimal and viable (in terms of ad budget and endorser

capacity) (ad, endorser) pair to perform an assignment. At each iteration, CEAL picks

the pair that has the highest cost-effective marginal gain. After CEAL assigns en-

dorsers to ads using cost effective marginal gain, it enters a post-processing phase to

solve unboundness issues that may result from the use of cost effective gain. During
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post-processing, CEAL iteratively picks an ad and assigns endorsers using marginal

gain without cost effects. If the newly assigned endorsers have higher coverage than

the previous assignments, the new assignments are used. CEAL continues the post-

processing step until no further improvements are possible.

We measured the coverage provided by CEAL with varying number of ads and dif-

ferent cost functions, using real-world social networks. Experimental results showed

that the algorithm is close to optimal. CEAL is within 91%, 91%, and 84% of the

upper bound for the three different datasets we experimented with. We compared it

with a baseline algorithm and on average CEAL improves the total coverage by 37%,

68%, and 32% for the three datasets. We showed that under different cost functions

for endorsers, total coverage differs. In particular, when the increase in the cost of

the endorsers slows down as the coverage of the endorser increases (which models the

real-world behavior), then the CEAL algorithm provides even better coverage relative

to the baseline. CEAL also consumes close to the entire budgets of the companies and

it is fair to the companies with respect to the cost charged per coverage provided for

similar budgeted ads.

In the following, we discuss a number of directions for extending this work.

Ad Allocation with User Interests. In a social network environment, the interests

of users are different from each other. Users tend to follow others having interests

similar to their own. This eventually forms the underlying topology of the network

and affects the influence users have over each other. Also, users have different levels

of authority on different topics and influence others at different levels based on their

expertise. Furhermore, each ad has a dedicated content and appeals only to a subset

of users. Consequently, it is more natural and desirable to assign ads to endorsers

considering the authority of the endorsers and the interests of the users in their area of

influence.

Ad Allocation with Competitive Ads. Consider a scenario where there are two

companies from the same market segment and both willing to make a viral advertise-

ment campaign using our system. We need to assign these ads to endorsers such that

both receive high coverage, yet none of them die out or get adversely affected because
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of the negative effect of the other. Assigning these ads to endorsers in the same re-

gion will reduce the effectiveness of the ads and will give unsatisfactory results. The

assignment algorithm should take this into account as well.

Ad Allocation with Targeted Endorser Selection. Endorsers are enrolling our

system voluntarily. But a targeted selection of endorsers may increase the effective-

ness of the assignments. Consider the case where there are bottleneck users which are

highly inactive and the propagation of ads cease when these users are reached. On

the other hand, if the bottleneck users are activated, the propagation process acceler-

ates significantly. By paying a relatively higher amount of money to these users and

attracting them to the system may increase the success of the system.

Ad Allocation with Community Structure. Users with similar interest tend to

cluster together. Also, acquaintances have relatively close circles. These communi-

ties have distinct behaviors considering the whole network. A targeted selection of

communities for assignment of an ad may increase the accuracy and reduce the search

space of the algorithm. Also, core users which generally generate ideas and peripheral

users that adopt ideas may be targeted more extensively, instead of targeting arbitrary

users.
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[32] M. Kapralov, I. Post, and J. Vondrák, “Online submodular welfare maximization:

Greedy is optimal,” in Annual ACM-SIAM Symposium on Discrete Algorithm

(SODA), pp. 1216–1225, 2013.

[33] A. Srinivasan, “Budgeted allocations in the full-information setting,” in Inter-

national Workshop on Approximation, Randomization and Combinatorial Opti-

mization. Algorithms and Techniques (APPROX), pp. 247–253, 2008.

[34] Y. Azar, B. Birnbaum, A. R. Karlin, C. Mathieu, and C. T. Nguyen, “Improved

approximation algorithms for budgeted allocations,” in International Colloquium

on Automata, Languages and Programming (ICALP), pp. 186–197, 2008.

[35] J. Feldman, N. Korula, V. Mirrokni, S. Muthukrishnan, and M. Pál, “Online ad

assignment with free disposal,” in International Conference on Internet and Net-

work Economics, pp. 374–385, 2009.

50



[36] J. Feldman, M. Henzinger, N. Korula, V. S. Mirrokni, and C. Stein, “Online

stochastic packing applied to display ad allocation,” in Annual European con-

ference on Algorithms (ESA), pp. 182–194, 2010.

[37] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan, “Offline optimization

for online ad allocation (extended abstract),” in Proceedings of the Ad Auctions

Workshop, 2009.

[38] G. Nemhauser and L. Wolsey, “Maximizing submodular set functions: Formula-

tions and analysis of algorithms,” Annals of Discrete Mathematics - Studies on

Graphs and Discrete Programming, vol. 11, pp. 279–301, 1982.
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