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We investigate nonlinear regression and introduce a novel approach based on the joint optimization 
of linear and nonlinear models. In order to capture both the nonlinear and linear characteristics in 
sequential data, we model the underlying data as a combination of linear and nonlinear models, where 
we optimize the models jointly to minimize the final regression error. As the nonlinear model, we 
employ a differentiable version of the boosted decision trees. As the linear model, we use the well-
known SARIMAX model. Our approach is generic so that any differentiable nonlinear or linear model can 
be readily employed provided that they are differentiable. By this joint optimization, we alleviate the 
well-known underfitting and overfitting problems in modeling sequential data. Through our experiments 
on synthetic and real-life data, we demonstrate significant improvements over individual components as 
well as the combination/mixture methods in the literature.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Background

We study online regression/prediction, where we observe a se-
quential time series signal with related side-information sequence 
and predict the next sample. Online regression is extensively stud-
ied in the signal processing [1,2] and machine learning [3] liter-
atures since it has a wide range of application areas including 
transportation [4], education [5] and object tracking [6]. In such 
regression problems, linear modeling approaches are commonly 
used because of their low computational complexity and robust-
ness with limited data [7]. However, in most real-life applications, 
the data display nonlinear characteristics [8], where linear mod-
els may be inadequate [9]. In these situations, nonlinear models 
such as decision trees [10] and neural networks [11] are com-
monly used. We emphasize that the linear models are a subclass of 
nonlinear models, nonlinear models can theoretically model both 
the linear and nonlinear data. However, most nonlinear approaches 
have well-known shortcomings as they are hard to optimize due to 
high computational complexity [12] and tend to overfit [13].

As a remedy, ensemble or mixture models are heavily inves-
tigated in the signal processing and machine learning literatures 
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[14] as they provide diversity and reliability by combining several 
different models including linear and nonlinear models [15]. Al-
though ensemble models combine the predictions of different base 
models, each base model in the combination is independently op-
timized for the underlying data. Hence, the issues of underfitting 
and overfitting persist for linear models and nonlinear models, re-
spectively. Another model mixture approach that tries to alleviate 
these problems is to combine linear and nonlinear models by fit-
ting one of the models to the residuals of the other model [16]. 
This approach is called direct two-stage modeling and is exten-
sively studied in the signal processing and machine learning liter-
atures [16,17]. By fitting one model to the residuals of the other, 
the direct approach tries to capture both the underlying linear and 
nonlinear data components in real-life scenarios [8]. However, di-
rect two-stage models are also insufficient in modeling the real-life 
sequential data as there is no joint optimization in this approach, 
i.e., one model is first fitted to the data independent of the other 
model and then the second model is fitted to the residuals of the 
first one. Hence, the models are not trained jointly to minimize the 
final error yielding sub-optimal performance [18].

To remedy these problems, we model the underlying data as an 
ensemble or combination of linear and nonlinear models, however, 
unlike previous approaches [14,16] we optimize the parameters 
jointly to minimize the final regression error. Hence, with joint 
optimization, we leverage both models. As the linear model, we 
use the well-known SARIMAX (Seasonal Auto-Regressive Integrated 
Moving Average with eXogenous factors) [19] and as the nonlinear 
model, we use the boosted soft decision trees (Soft GBDT) [20]. We 
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provide the related gradient calculations for both architectures. We 
emphasize that our framework is generic so that any differentiable 
nonlinear or linear can be used instead of SARIMAX or Soft GBDT 
by changing the corresponding gradient equations, as shown in our 
paper.

1.2. Prior art

Real-life time series often contain both linear and nonlinear 
patterns [8], where neither linear models such as SARIMAX [19]
nor nonlinear models such as decision trees [10] are adequate. As 
a remedy, different models are used together to capture different 
patterns in real-life data [21], the most common approach being 
ensemble or mixture models. Ensemble models combine the pre-
dictions of several models and are heavily investigated in different 
fields such as signal processing [22,14], speech recognition [23], 
computational intelligence, statistics, and machine learning [15,17]. 
There are several methods for designing ensembles; one can train 
individual models independently from each other and then com-
bine them [14], or train individual models in a sequential manner 
where each model focuses on correcting the errors made by the 
previous ones [16].

Ensembling approaches are prone to suffer from overfitting and 
underfitting issues that are present in the individual base models 
[18]. To remedy these issues, several approaches are investigated, 
such as adding independent noise to the training data of each 
model, using different preprocessing techniques for each model, 
subsampling the training data of each model, and using an addi-
tional model to combine the predictions of the base models [21]. 
These approaches all introduce sub-optimal solutions, as the base 
models are still independently optimized to the data; hence, the 
training is independent of the model combination stage [18]. How-
ever, as we show in our simulations, linear and nonlinear models 
must be optimized jointly as joint optimization benefits all models. 
Therefore, we introduce an algorithm that optimizes the parame-
ters of a linear and a nonlinear model jointly to minimize the final 
error.

There have been previous attempts to jointly optimize the base 
models in ensembling. The negative correlation learning method 
[18] attempts to train and combine individual models in the same 
learning process by negatively correlating the error of each model 
with the rest of the ensemble at each sample. Even though this ap-
proach introduces interaction among the individual models during 
training, all the base models still predict the same data, and the fi-
nal prediction is produced by averaging the predictions of the base 
models. In addition, the negative correlation learning model [18]
also requires a predetermined λ term, which is a parameter used 
to adjust the strength of the penalty given in the loss function 
for the correlation between the errors of the individual models, 
and can take any value between 0 and 1. Therefore, the value 
of the λ term directly changes the loss of each individual model 
at each sample, thus affecting the learning procedure of the en-
semble algorithm. This causes the ensemble structure to become 
biased. Note that various approaches to model the λ term have 
been proposed [24,25], but they do not eliminate the bias in the 
structure but rather reduce it while increasing the complexity of 
the optimization. Our approach differs from the joint optimization 
methods in the literature [18,24,25] as the linear and nonlinear 
models in our approach learn to produce a single joint prediction 
for the data samples. Thus, the correlation between the models is 
not predetermined but learned during joint optimization. Hence, 
we significantly improve the regression performance as illustrated 
in our simulations.
2

1.3. Contributions

Our contributions are as follows:

• We introduce a two-stage model composed of the linear SARI-
MAX model and the nonlinear Soft GBDT model for sequential 
time series data regression that can be jointly optimized using 
any gradient based optimization algorithm.

• Our proposed structure is generic as the linear and nonlinear 
models in our approach can be readily replaced by any other 
differentiable regression model.

• With various experiments containing real-life data, we illus-
trate significant performance improvements with respect to 
the mixture methods in the literature.

2. Preliminaries

We first present a literature review on the two-stage ap-
proaches that focus on combining linear and nonlinear models. We 
then illustrate our problem description where we explain our no-
tations to be employed for the rest of the paper.

2.1. Literature review

In the literature of time series forecasting, there have been var-
ious approaches to combine linear and nonlinear models. These 
approaches rely on the assumptions that real-life time series data 
often contain both linear and nonlinear patterns [26]. Therefore, 
linear models are not solely adequate in modeling complex real-
life data, as they can not capture the nonlinear patterns in the 
data. On the other hand, even though nonlinear models can the-
oretically model both the linear and nonlinear data component, 
nonlinear models such as decision trees and artificial neural net-
works are hard to optimize due to high computational complexity 
[12] and tend to overfit [13].

One of the former well-known model mixture/ensemble ap-
proaches is the two-stage method of fitting one of the models on 
the residuals, the error series, of another model. The final forecasts 
are then obtained by summing the forecasts of the two models 
[16,27–29]. The assumption in this approach is, the real-life time 
series data can be modeled as the aggregation of its distinct linear 
and nonlinear components in some manner [26]. This approach 
has inspired many researchers to employ different models to fore-
cast real-life time series in various fields. G. Peter Zhang [16] pro-
posed fitting a neural network on the residuals of a linear ARIMA 
(Auto-Regressive Integrated Moving Average) model, and showed 
significant performance improvements compared to the base mod-
els on different datasets. Qiang Wang et al. [27] proposed using the 
linear ARIMA (Auto-Regressive Integrated Moving Average) and the 
nonlinear BPNN (Back Propagation Neural Network) to form two 
separate ARIMA-BPNN and BPNN-ARIMA models, to simulate the 
carbon emissions of India, China, U.S and EU. However, by inde-
pendently fitting the models to the data and then the residuals of 
the former model, it is hard to ensure that the linear and nonlinear 
patterns present in the data are captured solely by the linear and 
nonlinear models, respectively [26]. In addition, the relation be-
tween the forecasts of the former model in the approach, and its 
residuals, or even the relation between the forecasts of two mod-
els is unknown [26]. Hence, the two models do not fully benefit 
from each other.

As a remedy, several researchers have proposed an ensem-
bling addition to this mixture approach [26,30–33]. After the latter 
model is fit on the residuals of the former model, an ensemble al-
gorithm is introduced to the scheme, which combines the forecasts 
of the two models in a linear or nonlinear fashion. Paulo S.G. de 
Mattos Neto et al. [26] proposed combining the forecasts of two 
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different models using an MLP (Multi-Layer Perceptron) for time 
series forecasting related to public health. Domingos S. de O. San-
tos Júnior et al. [30] proposed two different models, one which an 
SVR (Support Vector Regression) is employed to combine the fore-
casts of an ARIMA-MLP model, where the MLP is fit on the resid-
uals of the ARIMA, and another one in which an MLP is employed 
to combine the forecasts of an ARIMA-SVR model, where the SVR 
model is fit on the residuals of the ARIMA model. Paulo S.G. de 
Mattos Neto et al. [31] proposed fitting an LSTM (Long Short-Term 
Memory) on the residuals of several linear statistical models, and 
then combining the two model forecasts using SVR for wind speed 
forecasting. Diogo M. F. Izidio et al. [32] used a similar method 
for energy consumption forecasting, where a nonlinear model of 
choice is fit on the residuals of a seasonal ARIMA model, and a sep-
arate nonlinear model is used for combination of the forecasts of 
the two models. João Fausto Lorenzato de Oliveira et al. [33] inves-
tigated different techniques to combine the forecasts of different 
linear and nonlinear models using PSO (Particle Swarm Optimiza-
tion). However, even though this approach has been widely used 
by various researchers in different fields, the two base models are 
still independently optimized to the data, hence, the training is 
independent of the model combination stage [18]. Therefore, the 
addition of an ensemble algorithm to model the relation between 
the forecasts of the former model and the latter residual model, 
is naturally sub-optimal. As we show in our simulations, linear 
and nonlinear models must be optimized jointly during training, 
as joint optimization benefits all models.

Another approach combining linear and nonlinear models, that 
employs joint optimization among the models, is the negative cor-
relation learning [18], where the individual models are trained in 
the same learning process by negatively correlating the error of 
each model with the rest of the ensemble at each sample. This is 
done by introducing an additional penalty to the loss employed 
in the training of each base model, which evaluates the correla-
tion between the errors of the current base model and the rest of 
the models in the ensemble. In addition, a λ term is introduced 
to the introduced component, which is used to adjust the strength 
of the correlation penalty and can take any value between 0 and 
1. One of the main issues with this approach is the determina-
tion of the value of the λ term, which directly affects the loss 
of each individual model, thus changing the learning procedure of 
the whole ensemble. Even though there have been efforts to re-
duce the impact of this parameter [24,25], its effects have not been 
eliminated but rather reduced while increasing the complexity of 
the optimization. In addition, even though the negative correlation 
approach introduces interaction among the individual models dur-
ing training, all the base models still predict the same data, and 
the final prediction is produced by averaging the predictions of 
the base models. Thus, conflicting with the assumption of the pre-
vious linear and nonlinear model combination approaches that the 
real-life time series data can be modeled as the aggregation of its 
complementing linear and nonlinear components [26].

2.2. Problem description

All the vectors presented in this paper are in bold lowercase let-
ters. Matrices are denoted by uppercase bold letters. For instance, 
x represents a vector while X represents a matrix. xk denotes the 
kth element of the vector x, and xt,k represents the kth element of 
the vector xt at time instance t . Xi, j represents the entry at the ith

row and jth column of the matrix X . Finally, xT and X T represent 
the transpose of the vector x and the matrix X , respectively.

In this paper, we study the nonlinear prediction of sequential 
time series data. We observe the sequence {yt}t≥1, along with the 
side information sequence {st}t≥1, where yt ∈R and st ∈Rm . At 
3

each time t , based on {y1, ..., yt} and {s1, ..., st}, we predict yt+1

in a purely online manner

ŷt+1 = f
({. . . , yt−1, yt}, {. . . , st−1, st}

)
, (1)

where f is chosen in order to minimize the total loss L, given as

L = 1

T

T∑
t=1

l(yt, ŷt), (2)

for any T , where l is a given differential loss function, where we 
employ the squared error loss.

We next present our proposed approach in Section 3.

3. Proposed approach

We first propose our joint optimization approach in Section 3.1
and indicate the advantages and disadvantages over the mixture 
approaches in the literature that focus on combining linear and 
nonlinear models, based on residual fitting and/or ensemble learn-
ing. Next, we introduce the linear and the nonlinear models to be 
employed in our approach, in Section 3.2 and Section 3.3, respec-
tively. Finally, training for the joint optimization of the two models 
is given in Section 3.4.

3.1. Joint optimization method

Fig. 1 illustrates the online training architecture of our proposed 
approach. At any sample time t , the linear and nonlinear models in 
our approach predict ŷ{n}

t+1 and ŷ{m}
t+1, respectively, while employing 

the past samples of the observed data {yt }t≥1 and the past side 
information vectors {st}t≥1. Hence, our joint model prediction is 
given by ŷt+1 = ŷ{n}

t+1 + ŷ{m}
t+1. After the predicted sequence is ob-

served for the sample time t + 1, i.e., yt+1 is made available, we 
optimize the linear and nonlinear models, where the loss to be 
minimized is given as l(yt+1, ŷt+1) = l(yt+1, ŷ

{m}
t+1 + ŷ{n}

t+1). We then 
update/optimize the learnable parameters of each model by the re-
lated gradients through the calculated differentiable loss function 
using a gradient based optimization.

We emphasize that the optimization of the linear and non-
linear models is based on residual fitting. As we employ the 
squared error loss function as l (which can be directly interchanged 
with error metrics such as root mean squared error (RMSE) or 
mean absolute error (MAE)), the calculated loss for the param-
eters of the linear model takes the form l(yt+1, ŷ{m}

t+1 + ŷ{n}
t+1) =

l(yt+1 − ŷ{n}
t+1, ŷ

{m}
t+1), and similarly, the loss function for the param-

eters of the nonlinear model takes the form l(yt+1, ŷ
{m}
t+1 + ŷ{n}

t+1) =
l(yt+1 − ŷ{m}

t+1, ŷ
{n}
t+1), since the linear and nonlinear model pre-

dictions are produced solely by the linear and nonlinear model 
parameters, respectively. Thus, the prediction of the linear (nonlin-
ear) model acts as a constant for the gradient calculations of the 
nonlinear (linear) model, which we illustrate during the gradient 
calculations in Section 3.4.

Hence, at each sample time t , our model makes the joint pre-
diction ŷt+1, and once the yt+1 is observed, we optimize our linear 
and nonlinear models by their gradients through a differentiable 
loss function of choice, where the individual model predictions 
directly effect the optimization process of each other, hence per-
forming joint optimization. Once the optimization to the single 
sample loss is done, we move on to predicting the next sample, 
thus, our predictions are produced in a purely online manner.

Therefore, we model f in (1) as the process of producing a joint 
prediction by the linear and nonlinear models, where both models 
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Fig. 1. Online training of our proposed approach based on the joint optimization of linear and nonlinear models.
are optimized together to minimize the final loss in an online man-
ner, updating f at each time sample/iteration accordingly. Hence, 
the corresponding relation is given as:

ŷt+1 = f
({. . . , yt−1, yt}, {. . . , st−1, st}

) = ŷ{n}
t+1 + ŷ{m}

t+1, (3)

where f indicates the proposed joint optimization approach ex-
plained in Fig. 1, ŷ{m}

t+1 is the forecast of the linear model and ŷ{n}
t+1

is the forecast of the nonlinear model, for the time sample t + 1.
Our proposed approach is based on the widely-known resid-

ual fitting methods in the literature. Many researchers have pro-
posed different methods as explained in Section 2.1, with the main 
aspect being residual fitting. Our method distinguishes from the 
state-of-the-art residual fitting methods in the literature as our 
model learns the co-relation between the model predictions di-
rectly from joint-optimization. For example, the method of fitting 
one of the models on the residuals, the error series, of another 
model that is directly fit to the observed sequence [16,27–29], 
does not adequately provide the learning process between the 
relation between the forecasts of the two models. In addition, 
even though the latter model is fit on the residuals of the for-
mer model, the former model does not benefit from the learn-
ing process of the latter model. On the other hand, the intro-
duction of an ensemble algorithm to the scheme, which mod-
els the relation between the residual fit model and the former 
model [26,30–33] also has certain drawbacks. Even though there 
is a model that learns the relation between the two model pre-
dictions, in our proposition, we show that the learning between 
the two models can be directly achieved with joint optimization. 
Thus, the introduction of an ensemble algorithm is not necessary 
that also increases the computational complexity, as we demon-
strate in our simulations. Even though there are a few approaches 
in the literature that involve some level of interaction between 
the models during the learning procedure, such as the negative 
correlation learning [18], none of these approaches satisfy unbi-
ased interaction between the models during learning, which is 
satisfied by our joint optimization approach. However, the disad-
vantage of using our proposed approach, compared to the similar 
studies is that the base models in our approach must be fully 
differentiable. Hence, model structures that are not differentiable, 
such as the hard decision trees [34], can not be directly em-
ployed.
4

We next introduce the models employed in our approach and 
then provide the corresponding gradient equations for the pro-
posed joint optimization.

3.2. Linear model

As the linear model we employ the widely used model SARI-
MAX (Seasonal Auto-Regressive Integrated Moving Average with 
eXogenous factors) developed by Box and Jenkins [19]. The SARI-
MAX model is a statistical approach and its main purpose is to 
forecast future values of the given sequential time series data by 
using linear relations of the previously observed values of the se-
quential data, as well as the side-information and the error terms. 
The SARIMAX is often expressed by the orders of its parameters, 
such as SARIMAX (p, d, q)(P , D, Q )s, and is given as

φ(B)�(Bs)�d�D
s yt = c + θ(B)�(Bs)εt +

m∑
i=1

βi st,i, (4)

where c is constant, εt is the white noise process that can be eval-
uated as the error sequence, B is the back-shift operator defined 
as Bi yt = yt−i and s is the seasonality parameter of the model. 
For example, s = 7 implies weekly seasonality in daily data, while 
s = 365 implies yearly seasonality. � term indicates the differenc-
ing applied to the sequential data to diminish the effect of the 
trend to make the data stationary, where �d = (1 − B)d is the non-
seasonal difference in the order of d and �D

s = (1 − Bs)D is the 
seasonal difference in the order of D . φ(B) and θ(B) are the non-
seasonal auto-regressive and moving average parts of the model 
in the orders of p and q, respectively, whereas �(Bs) and �(Bs)

are the seasonal auto-regressive and moving average parts of the 
model in the orders of P and Q , respectively. The φ(B), θ(B), 
�(Bs) and �(Bs) indicate the lag operations given as

φ(B) = 1 − φ1 B − · · · − φp B p

θ(B) = 1 − θ1 B − · · · − θq Bq

�(Bs) = 1 − �1 Bs − · · · − �P BsP

�(Bs) = 1 − � Bs − · · · − � BsQ .

(5)
1 Q
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The summation term 
∑m

i=1 βi st,i on the right side of (4) is the 
eXogenous term, which models the relationship between the ob-
served sequence yt and the side information vector st . To clarify 
the model structure, an example of the SARIMAX (2, 1, 1)(1, 0, 1)

[7] model can be expressed as:
Note that, the parameters of φ(B), θ(B), �(Bs) and �(Bs), as 
well as the constant term c and side-information coefficients 
βi are learnt during our joint optimization approach explained 
in Section 3.1. The orders of these parameters indicated as 
(p, d, q)(P , D, Q )s are the hyperparameters of the model to be se-
lected before optimizing the linear model and play a critical role 
in modeling the observed data accurately.

Remark. Although we use SARIMAX as our linear model, other lin-
ear models can also be directly used. We would like to emphasize 
that the Box & Jenkins models family [19] guarantees the proper 
linear modeling of the observed data sequence, as the error se-
ries of the models (difference between the model forecasts and 
the predicted sequence) do not present relevant linear patterns 
with respect to the predicted sequence. Therefore, the models from 
the Box & Jenkins family can be directly interchanged with the 
SARIMAX model in our approach. Note that, this is not a premise 
guaranteed by other models such as decision trees [10] or neural 
networks [11]. One only needs to change the gradient calculations 
in (10) and (11) to incorporate different linear models.

3.3. Nonlinear model

As the nonlinear model, we use regression decision trees [35]. 
Commonly, hard decision trees are employed in the literature [34], 
which work by strictly partitioning the input space using hard de-
cision boundaries [36]. The input vector xt , which in our case is 
given as [. . . , yt−1, yt , . . . , st−1, st]T , enters the tree from the root 
node, and is then subjected to a decision rule, rooting it either to 
the left or the right child, called the internal nodes. This decision-
making process is repeated at each internal node, finally reaching 
a leaf node. A leaf node is a node where no further nodes are con-
nected to itself. At the leaf node, a scalar output value is produced, 
which in time series regression is the prediction of the model, 
through which the input space is partitioned.

Hard decision trees have well-known shortcomings as they are 
prone to overfitting [13] and the decision rule applied at each 
node is strict, in the sense that only one of the leaf nodes con-
tributes to the output. In addition, the hard decisions made by 
the hard decision tree model cause it to inherently lack differ-
entiability. However, in order to jointly optimize the outputs of 
the linear and nonlinear models in our joint optimization approach 
with respect to Fig. 1, we need to have a fully differentiable and 
learnable model structure. Therefore, as the nonlinear model in our 
approach, we employ the sof t version of the decision trees, which 
is introduced in [20].

Soft decision trees differ from the hard decision trees as there 
is no strict rooting at the nodes, but certain rooting probabilities 
for each child node are generated, resulting in all of the leaves 
5

contributing to the final output. At each internal node n ∈ N in the 
tree, we apply a decision process that produces a Bernoulli random 
variable pn . The value of pn corresponds to the “probability” of 
rooting the input to the left child node, given by

pn = σ(w T
n xt + bn), (6)

where wn and bn are the learnable parameters of the internal 
node n ∈ N , xt is the input vector to the tree and σ is the sigmoid 
function given by σ(x) = 1/(1 + e−x). Similarly, the probability of 
rooting the input to the right child node is given by 1 − pn . The 
sigmoid function maps the outputs of the internal nodes to the 
range of [0, 1] so that the output values produced by each internal 
node can be expressed as probabilities.

Fig. 2 illustrates the prediction mechanism of the soft decision 
tree, e.g., we have 4 leaf nodes and 3 internal nodes. N1, N2, N3

represent the first, second and third internal nodes of the tree, 
respectively. All other nodes are the leaf nodes. The input vector 
passes through all the internal nodes and produces probabilities. 
For each leaf node, there exists a “path probability” formed by tak-
ing the product of all the probabilities produced by the internal 
nodes leading to the leaf node, starting from the root node. There-
fore, unlike hard decision trees, we do not end up with an output 
value produced by a single leaf, but all the leaves contribute to 
the output on the scale of their path probabilities. Hence, the final 
output of a single decision tree is given by

o(xt) =
L∑

�=1

P� φ�

=
L∑

�=1

( ∏
n∈N(�)

pi
)
φ�

=
L∑

�=1

( ∏
n∈N(�)

σ (w T
n xt + bn)

)
φ�,

(7)

where L represents all the leaves of the tree, P� is the path prob-
ability of the �th leaf node, the nodes leading to the �th leaf node 
are given by N(�) and φ� is the scalar output value produced at 
the �th leaf node. The probabilities at each internal node n ∈ N in 
the tree, given by pn , allow us to form a fully differentiable tree 
structure, where the learnable parameters are wn and bn of the 
internal nodes, and φ� of the leaf nodes. Therefore, as illustrated 
in Fig. 2, all internal nodes have learnable parameters wn and bn , 
and produce probabilities given by pn . As shown by the bold ar-
rows, all leaves contribute to the final output of the soft decision 
tree by producing the corresponding leaf output φl , for any given 
input vector xt . Note that φl are also learnable.

Many of these soft decision trees are used together in order to 
form soft gradient boosting decision trees (Soft GBDT). Each con-
secutive tree fits to the residuals of the previous tree and produces 
output values with respect to (7). Hence, the final output value 
produced by the Soft GBDT is given as



A. Fazla, M.E. Aydin and S.S. Kozat Digital Signal Processing 132 (2022) 103802
Fig. 2. Soft decision tree.

ŷ{n}
t+1 =

K∑
k=1

νo(k)(xt) + c, (8)

where K is the total number of trees, o(k) is the scalar output value 
produced by the kth soft decision tree, ŷ{n}

t+1 is the final output 
value, the prediction, produced by the Soft GBDT, xt is the input 
vector, ν is the regularization parameter that weighs the predic-
tions of each tree in order to prevent overfitting and c is a constant 
value independent of the input vector that can be selected as the 
mean of the sequential time series data yt , until the current pre-
diction time t + 1. Note that each soft decision tree k ∈ K has its 
own learnable parameters w(k)

n , b(k)
n and φ(k)

� .
Therefore, we have constructed a fully differentiable gradient 

boosting tree, with learnable parameters w(k)
n and b(k)

n for each in-
ternal node n ∈ N and φ� for each leaf node � ∈ L for each tree 
k ∈ K . Note that, the depth of the soft decision trees, the regular-
ization parameter ν and number of trees in the Soft GBDT are the 
hyperparameters of the model to be selected before the optimiza-
tion stage, and play a critical role in modeling the observed data 
accurately.

Remark. The training of a soft decision tree differs from the hard 
decision tree as there are learnable parameters (weight vectors) in 
each node. These learnable parameters are initially set randomly 
regarding a normal distribution, and are then optimized at each it-
eration/sample of the online learning stage, in order for the overall 
Soft GBDT to produce more accurate predictions of the observed 
sequence.

Remark. Although we use Soft GBDT as our nonlinear model, other 
nonlinear models such as Artificial Neural Networks (ANN), Poly-
nomial Auto-Regressive (PAR) model etc. can be directly used. One 
only needs to change the gradient calculations in (12), (13) and 
(14) to incorporate different nonlinear models.

3.4. Model training

Hence, we have differentiable structures for both the linear and 
nonlinear model to be employed in our proposed joint optimiza-
tion approach. For joint optimization, we choose the stochastic 
gradient descent algorithm since it is fast, generalizes better than 
other gradient based optimization algorithms [37] and is suitable 
for online learning where a single sample is used for optimization 
at each iteration. However, different optimization algorithms that 
use the gradient information such as Adam, AdaGrad etc. can also 
be directly employed. Note that, both of the models are optimized 
to the data sample-by-sample, as we conduct the training based 
on online learning, as explained in Section 3.1 and illustrated in 
Fig. 1. We now provide the related gradient calculations for both 
of the linear and nonlinear models.
6

The linear SARIMAX and the nonlinear Soft GBDT models are 
jointly optimized using stochastic gradient descent, in an online 
manner. The loss to be minimized by our joint model at time t is 
given as

l(yt, ŷt), (9)

where ŷt = ŷ{m}
t + ŷ{n}

t . Here, ŷ{m}
t and ŷ{n}

t are the linear and non-
linear predictions of the joint model, respectively. In the case of 
the squared error loss, which is the error metric we employ in our 
simulations, the loss equation (9) takes the form

l(yt, ŷt) = 1

2
(yt − ŷt)

2.

Since our model has two components, a linear model and a 
nonlinear one, while jointly optimizing both models, the parame-
ters of both models are updated based on the joint prediction error 
made by the two models. The structure for the linear model in our 
approach is given as (4), where the parameters to be estimated are

w =[
φ1, . . . , φp,�s, . . . ,�sP , θ1, . . . , θq,�s, . . . ,�sQ ,

β1, . . . , βm
]T

,

where φi are the coefficients of the autoregressive terms in the or-
der p, �i are the coefficients of the seasonal autoregressive terms 
in the order P , θi are the coefficients of the moving average terms 
in the order q, �i are the coefficients of the seasonal moving aver-
age terms in the order Q , s is the seasonality and m is the length 
of the eXogenous terms. The sizes of these parameters depend on 
the given time series data, and are the hyperparameters of the 
model, which should be adjusted in order to accurately predict the 
data. Here, w is the weight vector, which contains all the learn-
able parameters of the model to be updated. The gradients for the 
parameters in w are given as

∂l(yt, ŷt)

∂ w j
= ∂l(yt, ŷt)

∂ ŷ{m}
t

∂ ŷ{m}
t

∂ w j

= ( ŷt − yt)
∂ ŷ{m}

t

∂ w j

= ( ŷ{n}
t + ŷ{m}

t − yt)
∂ ŷ{m}

t

∂ w j
,

(10)

where w j is the jth term in w to be estimated. The ∂ ŷ{m}
t

∂ w j
term in 

the equation is simply the term that w j is multiplied with in (4). 
For example, in the case of no differencing nor seasonal differenc-
ing in the equations, the gradients for w are given as

∂ ŷ{m}
t

∂ w
= [

yt−1, . . . , yt−sP , εt−1, . . . , εt−sQ , st,1, . . . , st,m
]
. (11)

The output of the nonlinear model in our approach is given as 
(8) where the equation for the output of each soft decision tree is 
given by (7). Differing from the linear model in our approach, the 
nonlinear model consists of many individual weak-learners, con-
tributing to an ensemble result. Therefore, we need to consider 
the loss with respect to every soft decision tree in the model. This 
loss is given by

Etotal = 1

2

K∑
k=1

(r(k) − νo(k))2, (12)

where o(k) is the output of kth tree, ν is the regularization parame-
ter and r(k) is the residual coming to the kth tree, which is formed 
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by adding the residual terms from the previous trees up to the kth

tree. r(k) can be expressed for any kth tree as

r(k) = yt − ŷ{m}
t − νo(0) − νo(1) − · · · − νo(k−1).

We now represent the gradient equations based on the total 
loss function (12). The learnable parameters for the kth soft deci-
sion tree are the leaf node outputs φ(k)

� for each leaf node � ∈ L
where L is the set of leaves of the tree, the weight term w(k)

n and 
the bias term bn

(k) for each internal node n ∈ N where N is the 
set of internal nodes of the tree. The gradients of the total loss 
with respect to these parameters are given by

∂ Etotal

∂φ
(k)
�

= P(k)
�

K∑
i=k

(νo(i) − r(i)) (13)

∂ Etotal

∂ w(k)
n

=
( ∑

�(k)∈D(n(k))

φ
(k)
�

P(k)
� p(k)

n (1 − p(k)
n )

p(k)
n − ρ(�(k))

xt

K∑
i=k

(νo(i) − r(i))

)
,

∂ Etotal

∂b(k)
n

=
( ∑

�(k)∈D(n(k))

φ
(k)
�

P(k)
� p(k)

n (1 − p(k)
n )

p(k)
n − ρ(�(k))

K∑
i=k

(νo(i) − r(i))

)
,

(14)

where K is the total number of soft decision trees in the model, 
D(n(k)) is the set of all the leaf nodes that pass down from the 
internal node n(k) , xt is the common input to all the soft decision 
trees of the model and ρ(�(k)) is the piece-wise function

ρ(�(k)) =
{

0, if �(k) ∈ LD(n(k))

1, if �(k) ∈ RD(n(k)),

where LD(n(k)) is the set of leaf nodes that pass down from the 
left branch of the internal node n, and RD(n(k)) is the set of leaf 
nodes that pass down from the right branch of the internal node 
n. Therefore, we have LD(n(k)) + RD(n(k)) = D(n(k)).

Finally, the updates for the parameters of both models are given 
as

w = w − μm
∂l(yt, ŷt)

∂ w

φ
(k)
� = φ

(k)
� − μn

∂ Etotal

∂φ
(k)
�

w(k)
n = w(k)

n − μn
∂ Etotal

∂ w(k)
n

b(k)
n = b(k)

n − μn
∂ Etotal

∂b(k)
n

,

where μm and μn are the hyperparameters of the stochastic gra-
dient descent algorithm for the linear and nonlinear models that 
determine how quickly the models are adapted to the optimization 
problem. Hence, we now have the gradient equations for both the 
linear and nonlinear models in our joint optimization approach.

Note that, the number of parameters to be optimized for each 
model is important, as it determines the complexity of the opti-
mization problem, which depends on the hyperparameters of the 
models. Given a SARIMAX (p, d, q)(P , D, Q )s model, the number of 
parameters (constants) to be optimized is given as p +q + P + Q +
m +1, where p, q, P , Q determine the order of the auto-regressive 
7

Table 1
The illustrations of the models used in our simulations.

Model Name Explanation

SARIMAX The fully differentiable SARIMAX base model

Soft GBDT The fully differentiable Soft GBDT base model

Joint Approach Our joint optimization approach introduced in 
Section 3.1 and Fig. 1.

literature_model_1 Soft GBDT is fit on the residuals of SARIMAX, then the 
predictions of both models are summed for the final 
prediction.

literature_model_2 SARIMAX is fit on the residuals of Soft GBDT, then the 
predictions of both models are summed for the final 
prediction.

literature_model_3 SARIMAX and Soft GBDT are both fit on the data 
independently. Then a Linear Regressor is used to 
combine the predictions of the models.

literature_model_4 SARIMAX and Soft GBDT are both fit on the data 
independently. Then a 2-layer MLP is used to combine 
the predictions of the models.

literature_model_5 SARIMAX is fit on the residuals of Soft GBDT. Then a 
2-layer MLP is used to combine the predictions of the 
models.

literature_model_6 Soft GBDT is fit on the residuals of SARIMAX. Then a 
2-layer MLP is used to combine the predictions of the 
models.

and moving average terms of the model, m is the size of the side 
information vector at any sample time and the additional 1 comes 
from the constant c in the model. Similarly, consider a Soft GBDT 
model with K soft decision trees, where each tree consists of L
number of leaves, N = L − 1 number of internal nodes. Note that 
each soft decision tree k ∈ K has its own learnable parameters w(k)

n

of size Nm, b(k)
n of size N and φ(k)

� of size L. Therefore, the num-
ber of learnable parameters (constants) of a Soft GBDT model is 
given as K (Nm + N +L) = K ((L − 1)(m + 1) +L). We emphasize 
that, joint optimization does not increase the number of parame-
ters to be optimized, as the number of parameters to be optimized 
for the joint optimization approach is the sum of the number of 
parameters (constants) of the individual models in the approach. 
However, joint optimization does increase the time of the search 
for the optimal hyperparameters on the same level of a simple 
residual fitting operation, as both the hyperparameters of linear 
and nonlinear models should be set in both cases.

The following section illustrates the simulations of our jointly 
optimized model.

4. Simulations

In this section, we demonstrate the performance of our joint 
model under different scenarios with several examples, while com-
paring with other mixture approaches in literature focusing on 
combining linear and nonlinear models, based on residual fitting 
and/or ensemble learning. We use five different models, which are 
explained in Table 1. Note that, for each of the mixture methods, 
we employ the SARIMAX and the Soft GBDT models from our pro-
posed approach for fairness. For the rest of the simulations, we 
refer to these models with their names given in Table 1 in order 
to reduce repetition.

For our simulations, first, we generate synthetic data with 
strong linear and nonlinear components and verify the necessity 
of using linear and nonlinear models in a combined manner, rather 
than individually. In the second part, we illustrate the performance 
of our model in real-life scenarios, using the daily data of the to-
tal residential natural gas demand in Turkey between the years 
2018-2020, and the M5 Forecasting Dataset [38] by Walmart. For 
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Table 2
The hyperparameter search pace for the models used in our simulations.

SARIMAX p:{0,1,2}, d:{0,1}, q:{0,1,2}
P :{0,1,2}, D:{0,1}, Q :{0,1,2}, μn:{0.0005:0.1}

Soft GBDT K :{5,10,25,50,100,200},
L:{2,4,8,16}, μm:{0.0005:0.1}, ν:{ 1

K : 10
K }

MLP Ensemble hidden layer length:{8,16,32,64,128},
number of epochs:{100,250,500,1000,2000},
learning rate:{0.005:0.5}

all the scenarios, we only consider one-step-ahead forecasting and 
compare different models in terms of the total loss, where the 
loss function l is demonstrated for different error metrics given 
as Mean Squared Error (MSE), Mean Absolute Percentage Error 
(MAPE), Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE). We also illustrate the cumulative normalized total error 
with respect to time for all the models used in the experiments, in 
order to illustrate the online learning process of the model, given 
as

t∑
k=1

(yk − ŷk)
2

t
, t = 1, . . . , T ,

where yk is the sample of the signal to be predicted and ŷk is the 
prediction by the corresponding model.

During the training of the models in our simulations, we first 
search for the best possible hyperparameters while excluding the 
test dataset, which consists of the last 20% of the data. We select 
the best set of hyperparameters for each of the models used in the 
simulations, which minimizes the total loss in terms of the squared 
error loss on the first 80% of the data. (Note that the predictions 
are calculated according to Fig. 1, therefore, we eliminate any data 
leakage problem.) After the hyperparameters are calculated we re-
train the models with the best set of hyperparameters found, on 
the entire dataset with online learning as explained in Section 3.1
and Fig. 1. We then illustrate and compare the performance of our 
models using multiple error metrics. The search space for the hy-
perparameters of the models to be used in our simulations is given
Table 2.

Note that, for the models from the literature (reviewed in 
Section 2.1) that use an additional ensemble model to combine 
base model forecasts (literature_model_3, literature_model_4, lit-
erature_model_5, literature_model_6), the ensembling operation is 
not trained with online learning for fairness, as the ensemble mod-
els that we employ (MLP and Linear Regressor) are not trained 
with online learning in the given studies. Therefore, after the on-
line learning of the base models, we train the ensemble models on 
the first 80% of the data and illustrate their performances on the 
last 20% of the data.

4.1. Synthetic data

The synthetic data consists of manually generated linear and 
nonlinear data components. Formulation for the linear data is 
given by

y{m}
t = m1 y{m}

t−1 + (1 − m1)y{m}
t−2 + v{m}

t ,

where v{m}
t is a sample function from a stationary white Gaussian 

process with unit variance and m1 is a uniformly distributed ran-
dom variable between 0 and 1. The nonlinear data is generated by 
a piecewise linear model given by

y{n}
t = n1 y{n}

t−1 + n2 y{n}
t−2 + v{n}

t , if y{n}
t−1 > 0 and y{n}

t−2 > 0

y{n}
t = n2(y{n}

)2 − n2 y{n} + v{n}
t , if y{n}

> 0 and y{n}
< 0
t−1 t−2 t−1 t−2

8

Table 3
The performance comparison for the models used in simulating the 
synthetic datasets, under various error metrics.

Model Name MSE RMSE MAE MAPE

SARIMAX 0.20809 0.44630 0.33566 0.13314
Soft GBDT 0.59441 0.76619 0.61431 0.19306
Joint Approach 0.16067 0.39696 0.30932 0.12163

y{n}
t = (n3 + n1)y{n}

t−1 + n3(y{n}
t−2)

2 + v{n}
t , if y{n}

t−1 < 0

and y{n}
t−2 > 0

y{n}
t = (n1 + n2)y{n}

t−1 − n1 y{n}
t−2 + v{n}

t , if y{n}
t−1 < 0 and y{n}

t−2 < 0,

where v{n}
t is a sample function from a stationary white Gaussian 

process with unit variance and n1, n2 and n3 are uniformly dis-
tributed random variables between 0 and 1. Finally, we generate 
our synthetic data by

yt = y{m}
t + y{n}

t ,

where the data is of length 1000 and the accuracy of the models 
is evaluated on the last 200 samples of the data. We generate 10 
random instances of yt (note that instances in case of divergence 
of the data have been excluded), and illustrate the performance of 
the models under various error metrics over 10 experiments.

Using the synthetic dataset, we fit the linear, nonlinear and 
joint models on the synthetically generated data, which contains 
both the linear and nonlinear data components. Fig. 3 illustrates 
the performance of the models in terms of the cumulative normal-
ized squared error with respect to time, on the test data. We also 
illustrate the performance comparison of our joint approach and 
the based models under different error metrics in Table 3, for an 
average of 10 randomly generated synthetic datasets. We observe 
that our joint model outperforms all the other models, hence our 
joint optimization approach is able to learn the data components 
better than the base models. Hence, joint optimization is beneficial 
to both models.

We now illustrate the performance of our joint optimization 
approach under real-life datasets, while also comparing with state-
of-the-art model mixture methods in the literature.

4.2. Total residential natural gas demand in Turkey

The data used in this section consists of the total residential 
natural gas demand in Turkey for 1000 days during the years 2018-
2020. Each day is considered as a single sample, and the data is in 
natural logarithmic scale. The data shows both linear and nonlin-
ear characteristics, therefore, it is a good candidate for our model 
experiments. We evaluate the model accuracy on the test set, con-
sisting of the last 200 samples of the data.

We fit the linear and nonlinear base models, our jointly opti-
mized model, and the mixture methods from the literature to the 
data. In Fig. 4, the comparison of the cumulative error for the mod-
els are given, where our jointly optimized model outperforms all 
other approaches. The error of the Soft GBDT is not provided on 
Fig. 4 since it had significantly worse error than other methods. 
Note that, due to the high error of the Soft GBDT, all of the model 
mixture that combine the two base methods perform worse than 
the linear SARIMAX model. However, our joint optimization ap-
proach does not have this issue and outperforms both of the base 
models and other mixture models, in terms of multiple error met-
rics as illustrated in Table 4.

4.3. M5 forecasting data

The M5 Forecasting Data is the dataset used in the M5 compe-
tition, which is the fifth competition held by the Makridakis Open 
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Fig. 3. Comparison of the cumulative normalized squared error for the synthetic data of our jointly optimized model, the base models.

Fig. 4. Comparison of the cumulative error in the natural logarithmic scale for the total residential natural gas demand in Turkey. The performance of our jointly optimized 
model, the base models and the mixture methods are shown. Note that the error plot for the Soft GBDT model is not provided here, as the error produced by the nonlinear 
model is high compared to other methods. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Table 4
The comparison of model performances used in simulating the total residential nat-
ural gas demand in Turkey.

Model Name MSE RMSE MAE MAPE

SARIMAX 0.004337 0.06586 0.04989 0.002957
Soft GBDT 0.0133116 0.11538 0.07293 0.004738
Joint Approach 0.004178 0.06463 0.04951 0.002936
literature_model_1 0.004559 0.06752 0.05055 0.002989
literature_model_2 0.005163 0.07185 0.05341 0.003163
literature_model_3 0.005205 0.07215 0.05213 0.003067
literature_model_4 0.005241 0.07239 0.05395 0.003174
literature_model_5 0.004826 0.06947 0.04845 0.002864
literature_model_6 0.004431 0.06657 0.04927 0.002915

Forecasting Centre (MOFC), widely cited in the prediction litera-
ture [38]. The dataset consists of the unit sales of products sold in 
the USA by the retail company Walmart. There are a total of 3049 
products, which are classified in 3 different categories and 7 dif-
ferent departments. The products are sold in 10 different Walmart 
stores at 3 different states. For our experiments, we use the total 
number of product sales in store CA_1 and department FOODS_3, 
9

which is 1941 days long and each day is evaluated as a single sam-
ple. As illustrated in Fig. 5, the data shows strong weekly season-
ality and also nonlinearity in certain regions. Therefore, the data is 
a strong candidate for our experiments. We illustrate only the last 
100 samples, for visual clarity. We evaluate the model accuracy on 
the test set, consisting of the last 400 samples of the data.

We fit the linear and nonlinear base models, our jointly opti-
mized model, and the mixture methods to the data. The compari-
son of the cumulative error for these models is given in Fig. 6 and 
their errors on the test set under different error metrics are illus-
trated in Table 5. Note that, the comparisons for the error metric 
MAPE are not given as the data contains zero values. Our jointly 
optimized model significantly outperforms all of the models based 
on residual fitting from the literature, where only the MLP en-
semble combination approach literature_model_6 outperforms our 
model.

5. Conclusions

We studied the nonlinear regression problem in an online man-
ner and introduced a novel joint optimization approach consisting 
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Fig. 5. Total number of sales for the test set in store CA_1 department FOODS_3 of Walmart, USA.

Fig. 6. Comparison of the cumulative error in the natural logarithmic scale for the M5 data. The performance of our jointly approach, the base models and the mixture 
methods from the literature are shown. The error plots start from the 10th sample for a clear visualization.
Table 5
The comparison of model performances used in simulating the 
total unit sales in store CA_1 department FOODS_3 of Walmart, 
USA.

Model Name MSE RMSE MAE

SARIMAX 54309.38 233.04 165.85
Soft GBDT 58460.0 241.79 174.97
Joint Approach 52419.90 228.95 163.98
literature_model_1 54611.06 233.69 166.40
literature_model_2 57555.69 239.91 174.87
literature_model_3 52591.76 229.33 163.84
literature_model_4 51907.17 227.83 160.52
literature_model_5 54481.61 233.41 169.58
literature_model_6 53313.32 230.90 162.75

of linear and nonlinear models. In order to capture both the lin-
ear and nonlinear properties of real-life sequential data, we model 
the underlying data as an ensemble/combination of linear and 
nonlinear models. However, unlike the previous state-of-the-art 
approaches, we jointly optimized the parameters of both models 
in order to minimize the final regression error. Thus, we lever-
age both models while avoiding the well-known overfitting and 
underfitting issues associated with nonlinear and linear models, 
10
respectively. We use the widely known SARIMAX for the linear 
model and employ the soft gradient boosted decision trees (Soft 
GBDT) for the nonlinear model. We then use the stochastic gradi-
ent descent algorithm to jointly optimize the two models and also 
provide the related gradient calculations. Our model is generic so 
that any differentiable linear and/or nonlinear model can be used 
instead of SARIMAX and/or Soft GBDT, or any gradient optimization 
algorithm can be used instead of stochastic gradient descent. We 
first verify the necessity of our joint optimization approach, and 
then showcase performance improvements with respect to both 
the individual base models and the model mixture methods in the 
literature over the well-known real life datasets.
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